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On the Optimal Broadcast Rate of the Two-Sender

Unicast Index Coding Problem with

Fully-Participated Interactions
Chinmayananda Arunachala, Vaneet Aggarwal, and B. Sundar Rajan.

Abstract—The problem of two-sender unicast index coding
consists of two senders and a set of receivers. Each receiver
demands a unique message and possesses some of the messages
demanded by other receivers as its side-information. Every
demanded message is present with at least one of the senders.
Senders avail the knowledge of the side-information at the re-
ceivers to reduce the number of broadcast transmissions. Solution
to this problem consists of finding the optimal number of coded
transmissions from the two senders. One important class of the
two-sender problem consists of the messages at the senders and
the side-information at the receivers satisfying fully-participated
interactions. This paper provides the optimal broadcast rates,
for all the unsolved cases of the two-sender problem with fully-
participated interactions when the associated interaction digraphs
contain cycles. The optimal broadcast rates are provided in
terms of those of the three independent single-sender problems
associated with the two-sender problem. This paper also provides
an achievable broadcast rate with t-bit messages for any finite t

and any two-sender problem with fully-participated interactions
belonging to (i) any one of the six instances (classes) of the two-
sender problem when the associated interaction digraph does not
contain any cycle, and (ii) one of the classes of the two-sender
problem when the associated interaction digraph contains cycles.
The achievable broadcast rates are obtained by exploiting the
symmetries of the confusion graph to color the same according
to the two-sender graph coloring.

I. INTRODUCTION

Index coding problem (ICP) with a single sender and a set

of receivers was introduced in [1]. Each receiver has some

messages as its side-information and demands a unique mes-

sage. The sender avails the cognizance of the side-information

present at all the receivers to reduce the number of broadcast

transmissions, such that all the receivers can decode their

demands using the broadcast transmissions and their side-

information. Many practical scenarios demand for distributed

transmissions, where the messages are distributed among mul-

tiple senders. Content is delivered in cellular networks using

large storage capacity nodes called caching helpers [2], where

the messages are distributed among the helpers to reduce the

total average delay of all the users. Data is stored over multiple

storage nodes to account for any failure in one or more storage

nodes in distributed storage networks [3], [4]. Hence, multi-

sender ICP is of practical significance.
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Multi-sender ICPs were first studied by Ong et al. in [5].

They studied a special class of multi-sender ICPs, where

each receiver knows a unique message and demands a sub-

set of other messages. An iterative algorithm was proposed

which provided different lower bounds on the optimal code-

length based on the strongly-connected component of the

information-flow graph selected in each iteration. Tightness of

the lower bounds for the optimal codelength was not quantified

and no performance guarantees were given for the algorithm

[5]. Two-sender unicast ICPs were studied by Thapa et al.

[6]. They extended some graph theory based single-sender

index coding schemes to the two-sender unicast ICP (TUICP).

No class of non-trivial two-sender problems were identified

for which the proposed schemes were optimal. Tightness of

the gap between the optimal codelengths and the codelengths

given by the proposed schemes were not quantified for any

special class of the TUICP. Many variations of multi-sender

ICPs were studied and bounds for the capacity region were

given [7], [8], [9], [10]. These works assume that there are

independent channels with fixed finite capacities from every

sender to every receiver. This is in contrast with the previous

works where a single shared channel was assumed with the

transmissions from multiple senders being orthogonal in time.

Variations of random coding were used to provide the bounds

and the bounds were tightened with further improvements in

the encoding schemes.

Thapa et al. [11] studied the TUICP using a new variation

of graph coloring called the two-sender graph coloring to

account for the non-availability of some messages at each

sender. The confusion graph was colored according to the

two-sender graph coloring to obtain the optimal broadcast rate

with t-bit messages for any finite t. The TUICP described

by the side-information digraph has been analyzed using

three independent single-sender sub-problems described by the

vertex-induced sub-digraphs of the side-information digraph

and the interactions between these sub-problems. The TUICP

was divided into 64 classes based on these interactions. The

type of interaction was captured using the interaction digraph

obtained from the associated side-information digraph. There

are 64 possibile interaction digraphs broadly classified into

two cases: Case I and Case II. Case I consists of acyclic

interaction digraphs and the optimal broadcast rate with t-bit

messages for any finite t was obtained using the two-sender

graph coloring of the confusion graph for half of the sub-cases

with any type of interactions (fully-participated or partially-

participated). For the remaining sub-cases, a conjecture was

http://arxiv.org/abs/1809.08116v2
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stated. Case II was further classified into five sub-cases. For

Case II-A, the optimal broadcast rate with t-bit messages

for any finite t was obtained for any two-sender problem

with any type of interactions. For other sub-cases, only fully-

participated interactions were considered. For Cases II-C, II-D,

and II-E, the optimal broadcast rate with t-bit messages for any

finite t was obtained for some sub-cases based on the relation

between the corresponding optimal broadcast rates of the sub-

problems. For other sub-cases, upper bounds were provided.

The optimal broadcast rates with t-bit messages for any finite

t, the corresponding code constructions and the upper bounds

(for the optimal broadcast rates) were provided in terms of

those of the three related single-sender unicast index coding

sub-problems.

Optimal scalar linear codes were obtained for some spe-

cial sub-cases of Case II-C and Case II-D with partially-

participated interactions using the notion of joint extensions

of two single-sender index coding problems [12]. Optimal

linear broadcast rates with t-bit messages for any finite t and

the corresponding code constructions were provided for all

the cases of the two-sender problem with fully-participated

interactions in [13].

CASE βt(Dk,P)

I,H16 βt(D
16,P
2

) + βt(D
16,P
1∗3

)

I,H18 βt(D
18,P
2
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1◦3

)
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20,P
1

) + βt(D
20,P
2∗3

)
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21,P
1

) + βt(D
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)
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23,P
2
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23,P
3◦1

)

I,H25 βt(D
25,P
1

) + βt(D
25,P
3◦2

)

II-E,Hk max{βt(D
k,P
1

) + βt(D
k,P
2

), βt(D
k,P
1

)

+βt(D
k,P
3

), βt(D
k,P
2

) + βt(D
k,P
3

)}

TABLE I
SUMMARY OF THE ACHIEVABILITY RESULTS FOR ANY TUICP WITH

FULLY-PARTICIPATED INTERACTIONS BETWEEN THE SUB-DIGRAPHS

Dk,P
1

,Dk,P
2

, AND Dk,P
3

IN THE SIDE-INFORMATION DIGRAPH Dk .

THE DEFINITIONS OF THE DIGRAPHS Dk,P
i◦j AND Dk,P

i∗j ARE GIVEN IN THE

DEFINITIONS 8 AND 9 RESPECTIVELY. THE LISTING OF ALL THE

INTERACTION DIGRAPHS Hk AND THE RELATED CASES IS GIVEN IN

FIGURE 4.

In this paper, we first provide an achievable broadcast

rate with t-bit messages for any finite t and any two-sender

problem belonging to any one of the six sub-cases of Case I

of the TUICP with fully-participated interactions, for which

no achievable broadcast rates were given earlier. This is

obtained by providing a valid two-sender graph coloring of

the confusion graph associated with the two-sender problem.

This exploits some unexplored symmetries of the confusion

graph. We propose new ways of grouping its vertices to color

it according to the two-sender graph coloring. The proofs

indicate a possibility for the Conjecture 1, given in [11] to

be false. However, we don’t disprove the conjecture. We also

provide an achievable broadcast rate with t-bit messages for

any finite t and any two-sender problem belonging to Case

II-E of the TUICP with fully-participated interactions. This is

obtained using a code-construction for the two-sender problem

using codes of the associated single-sender sub-problems. This

serves as a tighter upper bound on the optimal broadcast rate

with t-bit messages for any finite t compared to those given in

[11]. The results on the achievable broadcast rates presented in

this paper are given in Table I. All the notations and definitions

required to understand the results are given in Sections II and

III.

We then provide the optimal broadcast rates for all the two-

sender problems belonging to Case II with fully-participated

interactions, for which only upper bounds were provided

earlier. The optimal broadcast rates are given in terms of

those of the three related single-sender unicast index coding

sub-problems. Thus, the complexity of finding the optimal

broadcast rate for the TUICP with fully-participated inter-

actions is reduced to that of finding the optimal broadcast

rate for the single-sender unicast ICP, which is an NP-Hard

problem in general. We use the existing results available for

the single-sender unicast index coding problem to prove tight

lower bounds on the optimal broadcast rates based on the two-

sender graph coloring of the confusion graphs. The matching

upper bounds were provided by Thapa et al. [11] for problems

belonging to Cases II-C and II-D. For Case II-E, we utilize

the achievable broadcast rate with t-bit messages for any

finite t given in this paper, to obtain an upper bound on

the optimal broadcast rate which matches the lower bound

obtained by using the results of Cases II-C and II-D. All the

results on the optimal broadcast rates of any TUICP with fully-

participated interactions are given in Table II. All the notations

and definitions required to understand the results are given in

Sections II and III. The results marked with a “!” are the ones

which also hold for any partially-participated interactions. The

results marked by “∗” are the ones which are provided in this

paper and was partially resolved in [11].

CASE β(Dk,P)

I β(Dk,P
1

) + β(Dk,P
2

) + β(Dk,P
3

)!

II-A β(Dk,P
1

) + β(Dk,P
2

) + β(Dk,P
3

)!

II-B max{β(Dk,P
3

), β(Dk,P
1

) + β(Dk,P
2

)}

II-C β(Dk,P
2

) +max{β(Dk,P
1

), β(Dk,P
3

)}∗

II-D β(Dk,P
1

) +max{β(Dk,P
2

), β(Dk,P
3

)}∗

II-E max{β(Dk,P
1

) + β(Dk,P
2

), β(Dk,P
1

)

+β(Dk,P
3

), β(Dk,P
2

) + β(Dk,P
3

)}∗

TABLE II
OPTIMAL BROADCAST RATES FOR ANY TUICP WITH FULLY-PARTICIPATED

INTERACTIONS BETWEEN THE SUB-DIGRAPHS Dk,P
1

,Dk,P
2

, AND Dk,P
3

IN

THE SIDE-INFORMATION DIGRAPH Dk . THE LISTING OF ALL THE CASES IS

GIVEN IN FIGURE 4.

The key results of this paper are summarized as follows.

• Achievable broadcast rates with t-bit messages for any

finite t is given for six sub-cases of the TUICP belonging

to Case I with fully-participated interactions, for which

no non-trivial achievable schemes were known prior to

this work.

• Achievable broadcast rates with t-bit messages for any

finite t is given for Case II-E of the TUICP with fully-

participated interactions, which serve as tighter upper

bounds for the optimal broadcast rates with t-bit mes-

sages for any finite t, compared to those known prior to

this work.

• Optimal broadcast rates are established for all the sub-

cases of Case II with fully-participated interactions, for

which only upper bounds were known earlier.
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The remainder of the paper is organized as follows. Section

II introduces the problem setup and establishes the required

definitions and notations. Section III recapitulates the notion

of the confusion graph and the two-sender graph coloring of

the same. Section IV provides achievable broadcast rates with

finite-length messages, for some sub-cases of the two-sender

problem with fully-participated interactions belonging to Case

I and all sub-cases of Case II-E. Section V provides optimal

broadcast rates for all the TUICPs with fully-participated

interactions belonging to Cases II-C, II-D, and II-E. Section

VI concludes the paper.

II. PROBLEM FORMULATION AND DEFINITIONS

In this section, we formulate the two-sender unicast index

coding problem, and establish the notations and definitions

used in this paper.

The set {1, 2, · · · , n} is denoted as [n]. In a two-sender uni-

cast index coding problem (TUICP), there are m independent

messages given by the set M = {x1,x2, · · · ,xm}, where

xi ∈ F
t×1
2 , ∀i ∈ [m], and t ≥ 1. There are m receivers.

The ith receiver demands xi and has Ki ⊆ M \ {xi} as its

side-information. The sth sender is denoted by Ss, s ∈ {1, 2}.

Ss possesses the message set Ms, such that Ms ⊂ M, and

M1 ∪ M2 = M. Each sender knows the identity of the

messages present with the other sender. The senders transmit

through a noiseless broadcast channel and the transmissions

from different senders are orthogonal in time. Single-sender

unicast ICP is a special case of TUICP, where M1 = M and

M2 = Φ.

Given an instance of the TUICP, each codeword of a two-

sender index code consists of two sub-codewords broadcasted

by the two senders respectively. An encoding function for the

sender Ss is given by Es : F
|Ms|t×1
2 → F

ps×1
2 , such that

Cs = Es(Ms), where ps is the length of the sub-codeword Cs
transmitted by Ss, s ∈ {1, 2}. The sub-codewords from the

two senders are sent one after the other. The ith receiver has

a decoding function given by Di : F
(p1+p2+|Ki|t)×1
2 → F

t×1
2 ,

such that xi = Di(C1, C2,Ki), ∀i ∈ [m], i.e., it can decode

xi using its side-information and the received codeword con-

sisting of C1 and C2. For single-sender unicast ICP, M2 = Φ.

Hence, p2 = 0. In this case, we assume that only E1 exists.

We state the definitions of broadcast rate of an index code,

the optimal broadcast rate of a two-sender problem with t-bit

messages for any finite t, and the optimal broadcast rate of

the same, as given in [11]. Note that the definitions take into

account both linear and non-linear encoding schemes.

Definition 1 (Broadcast rate, [11]). The broadcast rate of

an index code (for a single-sender problem or a two-sender

problem) described by ({Ej}, {Di}) is the total number of

transmitted bits per received message bits (t-bit messages for

some finite t), given by pt ,
(p1+p2)

t
.

The optimal (minimum) length of any index code for a given

ICP and t-bit messages is called the optimal codelength.

Definition 2 (Optimal broadcast rate with t-bit messages for

any finite t, [11]). The optimal broadcast rate for a given ICP

with t-bit messages and any finite t is given by βt , min
{Ej}

pt.

Note that for a single-sender unicast ICP, only E1 is

considered in the expression for βt.

Definition 3 (Optimal broadcast rate, [11]). The optimal broad-

cast rate of a given ICP is given by β , inf
t

βt = lim
t→∞

βt.

We state some definitions from graph theory [14], that will

be used in this paper.

A directed graph (also called digraph) given by D =
(V(D), E(D)), consists of a set of vertices V(D), and a set

of edges E(D) which is a set of ordered pairs of vertices. A

sub-digraph G of a digraph D is a digraph, whose vertex set

satisfies V(G) ⊆ V(D), and edge set satisfies E(G) ⊆ E(D).
The sub-digraph of D induced by the vertex set V(G) is the

digraph whose vertex set is V(G), and the edge set is given by

E(G) = {(u, v) : u, v ∈ V(G), (u, v) ∈ E(D)}. A directed path

in a digraph D is a sequence of distinct vertices {v1, · · · , vr},

such that (vi, vi+1) ∈ E(D), ∀i ∈ [r−1]. A cycle in a digraph

D is a sequence of distinct vertices (v1, · · · , vc), such that

(vi, vi+1) ∈ E(D), ∀i ∈ [c− 1], and (vc, v1) ∈ E(D).
For an undirected graph, the edge set consists of a set of

unordered pairs of vertices. Two vertices are said to be adjacent

if there exists an edge between the two vertices. A proper

graph coloring of an undirected graph D is an onto function J :
V(D) → J , where J is a set of colors such that, if (u, v) ∈
E(D), then J(u) 6= J(v). The minimum number of colors

required for any proper coloring of an undirected graph D is

its chromatic number and is denoted by χ(D). Two undirected

graphs G and H are said to be isomorphic if there exists a

bijection between the vertex sets V(G) and V(H) given by

f : V(G) → V(H), such that (u, v) ∈ E(G) iff (f(u), f(v)) ∈
E(H). A subset of vertices of an undirected graph V(G) is said

to be independent, if there is no edge between any two vertices

of the subset. A clique C of an undirected graph G is a vertex-

induced subgraph of G such that there is an edge between every

pair of vertices in C. A largest clique of a given graph is a

clique with maximum number of vertices. The clique number

ω(G) of an undirected graph G is the number of vertices in a

largest clique of G.

The following graph products of any two given undirected

graphs are used in this paper.

Definition 4 (Lexicographic product). The lexicographic prod-

uct G of two undirected graphs G1 and G2 is denoted by G1◦G2,

where V(G) = V(G1)×V(G2) and ((u1, u2), (v1, v2)) ∈ E(G)
iff (u1, v1) ∈ E(G1) or ((u1 = v1) and (u2, v2) ∈ E(G2)).

Definition 5 (Disjunctive product). The disjunctive product G
is denoted by G1 ∗ G2, where V(G) = V(G1) × V(G2) and

((u1, u2), (v1, v2)) ∈ E(G) iff (u1, v1) ∈ E(G1) or (u2, v2) ∈
E(G2).

An example of the lexicographic product of two graphs G1

and G2 is shown in Figure 1. For the same G1 and G2, the

disjunctive product is shown in Figure 2.

For any unicast ICP (either single-sender or two-sender),

the knowledge of side-information and demands of all the

receivers is represented by the side-information digraph D =
(V(D), E(D)), where the vertex set is given by V(D) =
{v1, · · · , vm}. The vertex vi represents the ith receiver which

demands the message xi. Due to the one-to-one relationship
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1,1 2,1 3,1

1,2 2,2

G1 ◦ G2

3,2

1,3 2,3 3,3

2

G2

1

3

1 2

G1

3

Fig. 1. Lexicographic product of G1 and G2.

2

G2

1

3

1 2

G1

3

1,1 2,1 3,1

1,2 2,2

G1 ∗ G2

3,2

1,3 2,3 3,3

Fig. 2. Disjunctive product of G1 and G2.

between the ith receiver and xi, vi also represents xi. Hence,

we refer to vi as the ith message, the ith receiver and

the ith vertex interchangeably. The edge set is given by

E(D) = {(vi, vj) : xj ∈ Ki, i, j ∈ [m]}. The message sets

P1 = M1 \M2 and P2 = M2 \M1 contain the messsages

available only with S1 and S2 respectively. P3 = M1 ∩M2

is the set of messages available with both the senders. Let

mi = |Pi|, i ∈ {1, 2, 3}. Let P = (P1,P2,P3). Any TUICP I
can be described in terms of the two tuple (D,P), as I(D,P).
The optimal broadcast rates β and βt of any TUICP I(D,P)
are denoted by β(D,P) and βt(D,P) respectively. Similarly,

an achievable broadcast rate pt is denoted by pt(D,P). For

a single-sender unicast ICP with side-information digraph D,

the β and βt are denoted by β(D) and βt(D) respectively.

The TUICP has been analyzed using three disjoint sub-

digraphs of the side-information digraph (equivalently three

sub-problems) induced by the three disjoint vertex sets re-

spectively [11]. Let Ds be the sub-digraph of D, induced by

the vertices {vj : xj ∈ Ps, j ∈ [m]}, where s ∈ {1, 2, 3}.

If there exists an edge from some vertex in V(Di) to some

vertex in V(Dj), in the side-information digraph D, i, j ∈
{1, 2, 3}, i 6= j, then we say that there is an interaction from Di

to Dj , and denote it by Di → Dj . We say that the interaction

Di → Dj is fully-participated, if there are edges from every

vertex in V(Di) to every vertex in V(Dj). Otherwise, it is

said to be a partially-participated interaction. We say that the

TUICP has fully-participated interactions if all the existing

interactions are fully-participated interactions. For a given two-

sender problem, we define a digraph called the interaction

digraph, which captures the type of interactions between the

sub-digraphs of the side-information digraph.

Definition 6 (Interaction digraph). For a given TUICP

I(D,P), the digraph H with V(H) = {1, 2, 3} and E(H) =
{(i, j)|Di → Dj , i 6= j, i, j ∈ {1, 2, 3}}, is defined as the

interaction digraph of the side-information digraph D.

Note that a given side-information digraph can correspond

to different interaction digraphs based on the choice of the

message tuple P . The edges (i, j) and (j, i) in any interaction

digraph are denoted by a single edge with arrows at both the

ends, i, j ∈ {1, 2, 3}. There are 64 possibilities for the digraph

H as shown in Figure 4, which were enlisted and classified in

[11]. The number written below each interaction digraph in the

figure is used as the subscript to denote the specific interaction

digraph. The side-information digraph D describing a given

two-sender problem with the interaction digraph Hk is denoted

by Dk, k ∈ {1, 2, · · · , 64}. For any TUICP I(Dk,P), the

corresponding sub-digraphs Di, i ∈ {1, 2, 3}, are denoted

as Dk,P
i . Any TUICP I(Dk,P) is analyzed using the three

single-sender unicast ICPs with the side-information digraphs

Dk,P
i , i ∈ {1, 2, 3}. Note that all the possible interaction

digraphs are classified into two cases broadly: Case I and Case

II. Case I consists of acyclic interaction digraphs (i.e., with

no cycles). Case II is further classified into five sub-cases as

shown in Figure 4. We illustrate the above definitions using

an example.

1

5

4 3

2

1 2

3

1 2

34

5

D H

D1

D2

D3

Fig. 3. Example to illustrate the interaction digraph and the three sub-
digraphs of a given side-information digraph of the two-sender problem given
in Example 1.

Example 1. Consider the TUICP with m = 5 messages,

where the ith receiver demands ith message xi. Sender S1

has M1 = {x1,x2,x5}. Sender S2 has M2 = {x3,x4,x5}.

Hence, P1 = {x1,x2}, P2 = {x3,x4}, and P3 = {x5}.

The side-information of all the receivers are given as follows:

K1 = {x2,x5}, K2 = {x1}, K3 = {x4,x5}, K4 = {x3},



5

21

3

21

3

(10) (11)
21

3

(13)
21

3

(12)

(30) (31) (32)

21

3

21

3

21

3

21

3

(42) (43) (44) (45)

21

3

(53)
21

3

21

3

(54) (55)

2121

3 3

21

3

2121

3 3

21

3

2121

3 3

21

3

(8) (9)(7)(6)(5)(4)(3)(2)(1)

21

3

21

3

21

3

21

3

21

3

21

3

21

3

21

3

(18) (19) (20) (21) (22) (23) (24) (25)

21

3

21

3

21

3

21

3

(26) (27) (28) (29)

21

3

21

3

21

3

21

3

(14) (15) (16) (17)

21

3

21

3

21

3

21

3

(34) (35) (36) (37)
21

3

21

3

21

3

21

3

(38) (39) (40) (41)

21

3

21

3

21

3

21

3

(46) (47) (48) (49)
21

3

21

3

21

3

(50) (51) (52)

(33)
21

3

21

3

21

3

21

3

21

3

21

3

(56) (57)

21

3

21

3

(61) (63)
21

3

21

3

21

3

(58) (59) (60)
21

3

(62)
21

3

(64)C
A

S
E

 II
−

E
C

A
S

E
 II

−
D

C
A

S
E

 II
−

C
C

A
S

E
 II

−
A

C
A

S
E

 I

C
A

S
E

 II
−

B

Fig. 4. Enumeration of all the possible interactions between the sub-digraphs D1, D2, and D3, denoted by the interaction digraph H.

K5 = {x1,x2}. The side-information digraph D and the

corresponding interaction digraph H are shown in Figure 3.

The vertex-induced sub-digraphs D1, D2, and D3 induced by

the messages in P1, P2, and P3 respectively are also shown

in the figure. Note that the interaction D3 → D1 is fully-

participated. Others are partially-participated interactions. The

interaction digraph shown in Figure 3 is H37 as given in Figure

4. Hence, the side-information digraph D can also be denoted

as D37.

The following notations are required for the construction of

a two-sender index code from single-sender index codes. Let

C1 and C2 be two codewords of length l1 and l2 respectively.

C1 ⊕ C2 denotes the bit-wise XOR of C1 and C2 after zero-

padding the shorter message at the least significant positions to

match the length of the longer message. The resulting length

of the codeword is max(l1, l2). For example, if C1 = 1010,

and C2 = 110, then C1⊕C2 = 0110. C[a : b] denotes the vector

obtained by picking the bits from bit position a to bit position

b, starting from the most significant position of the codeword

C, with a, b ∈ [l], l being the length of C. For example C1[2 :
4] = 010.

III. CONFUSION GRAPHS AND THE TWO-SENDER GRAPH

COLORING

In this section, we review confusion graphs and recapitulate

some results on the two-sender graph coloring of confusion

graphs provided in [11]. We also provide some definitions

which are used to describe the symmetries of the confusion

graph. Then, we state and prove a lemma related to these

symmetries, which is used to establish the main results in this

paper.

Consider a unicast ICP (single-sender or two-sender) de-

scribed by a side-information digraph D with m messages.

Let x = (u1, ...,um) and x
′ = (v1, ...,vm) be two tuples of

realizations of m messages, where ui,vi ∈ F
t
2, ∀i ∈ [m]. The

tuples x and x
′ are said to be confusable at the ith receiver,

if ui 6= vi and uj = vj for all j such that xj ∈ Ki.

Two tuples are said to be confusable if they are confusable

at some reciever. Confusion at a receiver refers to existence

of confusable tuples at the receiver. In index coding, two

tuples of realizations of m messages that are confusable cannot

be encoded to the same codeword as one of the receivers

cannot decode the demanded message succesfully using the

broadcasted codeword and its side-information. The confusion

graph is defined as follows.

Definition 7 (Confusion graph, [11]). The confusion graph

of a side-information digraph D with m vertices and t-
bit messages is an undirected graph, denoted by Γt(D) =
(V(Γt(D)), E(Γt(D))), where V(Γt(D)) = {x : x ∈ F

mt
2 }

and E(Γt(D)) = {(x,x′) : x and x
′ are confusable}.

We require the following notations and definitions to state

our results in the following section. For any TUICP with the

side-information digraph Dk, k ∈ [64], and any message set

tuple P with t-bit messages for any finite t, we have the

following definitions.

Definition 8. Dk,P
u◦v denotes the side-information digraph

whose confusion graph Γt(D
k,P
u◦v) is given by Γt(D

k,P
u ) ◦

Γt(D
k,P
v ), u 6= v, u, v ∈ {1, 2, 3} (where the lexicographic

graph product denoted using “ ◦ ” is given in Definition 4).

Definition 9. Dk,P
u∗v denotes the side-information digraph

whose confusion graph Γt(D
k,P
u∗v) is given by Γt(D

k,P
u ) ∗

Γt(D
k,P
v ), u 6= v, u, v ∈ {1, 2, 3} (where the disjunctive graph

product denoted using “ ∗ ” is given in Definition 5).

We use the following notation used in [11], in the context of

confusion graphs. Each realization of the bits of concatenated

messages belonging to P1, P2, and P3, (i.e., each element

of F
tm1

2 , F
tm2

2 and F
tm3

2 respectively), is represented by
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unique tuples b
i
P1

, b
j
P2

, and b
k
P3

respectively. Superscripts

i, i′ ∈ [2tm1 ], j, j′ ∈ [2tm2 ], and k, k′ ∈ [2tm3 ] are used

to represent possible realizations of concatenation of all the

messages belonging to P1,P2, and P3 of tm1, tm2, and

tm3 bits respectively. Each message tuple (x1, ...,xm) can

be uniquely written as (bi
P1

,bj
P2
,bk

P3
) for some i, j, and k.

Hence, each vertex of the confusion graph can be labelled by

a unique tuple (bi
P1

,bj
P2
,bk

P3
).

Consider a valid coloring of the confusion graph Γt(D) with

a set of colors J . This results in |J | sets of vertices, such that

all the vertices in a given set are colored with a unique color.

Each set of vertices is independent and can be coded into the

same codeword, as no pair of vertices in the given set are con-

fusable. Hence, sending a codeword is equivalent to sending

the identity of a color. As χ(Γt(D)) is the minimum number

of colors required, the optimal codelength is ⌈log2 χ(Γt(D))⌉
bits. The classical graph coloring of the confusion graph may

not yield the optimal codelength for the two-sender unicast

ICP, as there is a constraint on the coloring due to the non-

availability of some messages at one of the senders. To account

for the encoding done by the two senders, two-sender graph

coloring had been introduced in [11].

Definition 10 (Two-sender graph coloring of Γt(D), [11]).

Let two onto functions J1 : F
tm1

2 × F
tm3

2 → J1 and

J2 : F
tm2

2 × F
tm3

2 → J2 be the coloring functions carried

out by senders S1 and S2 respectively. A proper two-sender

graph coloring of Γt(D) is an onto function J0 : F
tm1

2 ×
F
tm2

2 × F
tm3

2 → J1 × J2 where Jo((b
i
P1

,bj
P2

,bk
P3
)) =

(J1(b
i
P1
,bk

P3
), J2(b

j
P2

,bk
P3

)) such that if (bi
P1

,bj
P2
,bk

P3
)

and (bi′

P1
,bj′

P2
,bk′

P3
) are adjacent vertices of Γt(D), then

Jo((b
i
P1

,bj
P2

,bk
P3
)) 6= Jo((b

i′

P1
,bj′

P2
,bk′

P3
)).

Note that the two ordered pairs of colors given by (c1, c2)
and (c′1, c

′
2), where ci, c

′
i ∈ Ji, with i ∈ {1, 2} are said to

be different iff c1 6= c′1 or c2 6= c′2 or both. We recapitulate

some basic results on the two-sender graph coloring stated as

Lemmas 1 to 4 in [11]. These lemmas are used in coloring the

confusion graph according to the two-sender graph coloring.

Lemma 1 (Lemma 1, [11]). For any two vertices

(bi
P1

,bj
P2
,bk

P3
) and (bi′

P1
,bj

P2
,bk

P3
) in Γt(D) which

are confusable, if Jo((b
i
P1

,bj
P2
,bk

P3
)) = (c1, c2) and

Jo((b
i′

P1
,bj

P2
,bk

P3
)) = (c′1, c

′
2), then we must have c1 6= c′1

and c2 = c′2 for some c1, c
′
1 ∈ J1 and c2, c

′
2 ∈ J2.

Lemma 2 (Lemma 2, [11]). For any two vertices

(bi
P1

,bj
P2
,bk

P3
) and (bi

P1
,bj′

P2
,bk

P3
) in Γt(D) which

are confusable, if Jo((b
i
P1

,bj
P2
,bk

P3
)) = (c1, c2) and

Jo((b
i
P1

,bj′

P2
,bk

P3
)) = (c′1, c

′
2), then we must have c1 = c′1

and c2 6= c′2 for some c1, c
′
1 ∈ J1 and c2, c

′
2 ∈ J2.

Lemma 3 (Lemma 3, [11]). For any two vertices

(bi
P1

,bj
P2
,bk

P3
) and (bi′

P1
,bj′

P2
,bk

P3
) in Γt(D)

which are confusable due to some vertices in D1

and D2, if Jo((b
i
P1

,bj
P2

,bk
P3
)) = (c1, c2) and

Jo((b
i′

P1
,bj′

P2
,bk

P3
)) = (c′1, c

′
2), then we must have c1 6= c′1

and c2 6= c′2 for some c1, c
′
1 ∈ J1 and c2, c

′
2 ∈ J2.

Lemma 4 (Lemma 4, [11]). For any two vertices

(bi
P1

,bj
P2
,bk

P3
) and (bi

P1
,bj

P2
,bk′

P3
) in Γt(D) which

are confusable, if Jo((b
i
P1

,bj
P2

,bk
P3
)) = (c1, c2) and

Jo((b
i
P1

,bj
P2
,bk′

P3
)) = (c′1, c

′
2), then we must have either

c1 6= c′1, or c2 6= c′2, or both, for some c1, c
′
1 ∈ J1 and

c2, c
′
2 ∈ J2.

The optimal broadcast rate for the TUICP with t-bit mes-

sages for every finite t is given by Theorem 2 in [11].

Lemma 5 (Theorem 2, [11]).

βt(D,P) = min
J1,J2

⌈log2 |J1|⌉+ ⌈log2 |J2|⌉

t
(1)

We illustrate the two-sender graph coloring of the confusion

graph using an example.

1 2

3

D

000

010

100

110
001

011

101

111

Γ1(D)

(R,R)
(R,B)

(B,B)
(B,R)

(B,R)
(B,B)

(R,B)

(R,R)

Fig. 5. Side-information digraph and two-sender graph coloring of its
confusion graph for the two-sender problem given in Example 2.

Example 2. Consider the following TUICP with t = 1 and

m = 3 messages. S1 has M1 = {x1,x3} and S2 has

M2 = {x2,x3}. Hence, P1 = x1, P2 = x2, and P3 = x3.

The side-information of the receivers are as follows: K1 = x2,
K2 = {x1,x3}, and K3 = x1. Hence, we have V(Di) = xi,
i ∈ {1, 2, 3}. The side-information digraph and its confusion

graph are shown in Figure 5. The confusion graph Γ1(D)
has 2m = 8 vertices representing all possible binary tuples

(bi
P1

,bj
P2
,bk

P3
), i, j, k ∈ {1, 2}, of length three. Edges are

drawn between every two confusable tuples. For example,

there is an edge between (0, 1, 0) and (1, 1, 1) due to confusion

at receiver 1. After the construction of the confusion graph, all

the vertices are colored by each sender. In the ordered pair of

colors, the first color is associated with S1 and the second color

is associated with S2. Color RED is denoted as R and BLUE is

denoted as B in Figure 5. Coloring is done based on Lemmas

1 to 4. Hence, if S1 colors (0, 1, 0) with BLUE color, it must

color (1, 1, 1) with another color, say RED. Similarly, we can

color other vertices using the two-sender graph coloring. It

can be easily verified that only two colors are required at each

sender to color the confusion graph. The two-sender coloring

shown in Figure 5 can be easily verified to be a valid two-

sender coloring. Hence, J1 = J2 = {RED,BLUE}. Assuming

a map from the colors to binary bits that maps RED to 1 and

BLUE to 0, the tuple (0, 0, 0) can be mapped to the codeword

11, the tuple (0, 0, 1) can be mapped to the codeword 10, and

so on. Thus the two-sender index code consists of codewords
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given by {00, 01, 10, 11}. The first bit of the codeword is sent

by S1, and the second bit is sent by S2. Thus, βt(D,P) ≤ 2
for any t ≥ 1. As each sender has a single message which is

not present with the other sender, each of them must atleast

send one bit. Thus, βt(D,P) ≥ 2. Hence, βt(D,P) = 2.

To exploit the symmetries of confusion graphs and facilitate

the two-sender graph coloring, the vertices of Γt(D) can be

grouped in different ways. Let Bbi
P1

, {(bi
P1
,bj

P2
,bk

P3
) : for

some fixed b
i
P1

} with cardinality 2tm2×2tm3 . Similarly, B
b

j

P2

and Bbk
P3

are also defined. The subgraph of Γt(D) induced

by the vertices belonging to Bbk
P3

is called the kth K-block.

There are 2tm3 K-blocks. Similarly, the subgraph of Γt(D)
induced by the vertices belonging to B

b
j

P2

is called the jth J-

block. There are 2tm2 J-blocks. Similarly, ith I-block Bbi
P1

is also defined. We define three types of inter-block edges.

Definition 11. (Inter-block edges) An edge between two ver-

tices, each belonging to a different I-block of Γt(D) is called

an inter-I-block edge. An edge between two vertices, each

belonging to a different J-block of Γt(D) is called an inter-

J-block edge. An edge between two vertices, each belonging

to a different K-block of Γt(D) is called an inter-K-block

edge.

We require the following lemma to exploit the symmetry in

the two-sender graph coloring of the confusion graph.

Lemma 6. All I-blocks in a given confusion graph are iso-

morphic to each other. Similarly, all J-blocks are isomorphic

to each other, and all K-blocks are isomorphic to each other,

in a given confusion graph.

Proof. We prove the lemma for all I-blocks. The proof is

similar for all J-blocks and all K-blocks.

Every vertex in any ith I-block induced by the vertices

in Bbi
P1

has the same b
i
P1

sub-label, i ∈ [2tm1 ]. Thus,

any edge in any ith I-block is only due to confusion

at the vertices (i.e, receivers) belonging to V(D2 ∪ D3).
Every I-block has 2tm2 × 2tm3 vertices. If there is an

edge given by ((bi
P1

,bj
P2
,bk

P3
), (bi

P1
,bj′

P2
,bk′

P3
)) in ith I-

block induced by Bbi
P1

, then there is an edge given by

((bi′

P1
,bj

P2
,bk

P3
), (bi′

P1
,bj′

P2
,bk′

P3
)) in i′th I-block induced by

B
bi′

P1

, i 6= i′ and vice versa, as the confusion is only due to

tuples (bj
P2

,bk
P3

) and (bj′

P2
,bk′

P3
), at some vertex belonging

to V(D2 ∪ D3). Hence, all I-blocks are isomorphic to each

other. �

IV. AN ACHIEVABLE BROADCAST RATE WITH FINITE

LENGTH MESSAGES FOR SOME SUB-CASES OF CASE I AND

ALL SUB-CASES OF CASE II-E

In this section, we provide an achievable broadcast rate

with t-bit messages for any finite t, for some sub-cases of

Case I with fully-participated interactions, using a valid two-

sender graph coloring of the confusion graph. No non-trivial

achievable broadcast rate was known for these sub-cases with

t-bit messages for any finite t. In particular, an achievable

broadcast rate βt(D
k,P) is given for any TUICP with side-

information digraph Dk, k ∈ {16, 18, 20, 21, 23, 25}, having

fully-participated interactions between its sub-digraphs Dk,P
i ,

i ∈ {1, 2, 3}.

We also provide an achievable broadcast rate with t-bit

messages for any finite t, for all the sub-cases of Case II-E

with fully-participated interactions, using a code-construction

based on the optimal codes for the single-sender sub-problems.

This provides a tighter upper bound on βt(D
k,P), k ∈

{58, 59, · · · , 64}, when compared to that given in [11].

We first review the related results known prior to this paper.

The following conjecture was stated in [11].

Conjecture 1 (Conjecture 1, [11]). For any side-information

digraph Dk, k ∈ {13, 14, · · · , 25}, having any type of inter-

action (i.e., either fully-participated or partially-participated)

between its sub-digraphs Dk,P
i , i ∈ {1, 2, 3}, for any P , and

t-bit messages for any finite t,

βt(D
k,P) = βt(D

k,P
1 ) + βt(D

k,P
2 ) + βt(D

k,P
3 ) + ǫ/t,

for some ǫ ∈ {−2,−1, 0}.

The conjecture was stated considering that a minimum of

χ(Γt(D
k,P
1 ))χ(Γt(D

k,P
2 ))χ(Γt(D

k,P
3 )) ordered pairs of colors

are required to color the confusion graph Γt(D
k), k ∈

{1, 2, · · · , 12}, according to the two-sender graph coloring.

In this section, we show that there is a possibility to color

the confusion graph Γt(D
k), k ∈ {16, 18, 20, 21, 23, 25}, with

comparitively less number of ordered pairs of colors. However,

we do not provide an instance of the two-sender problem

where our achievable broadcast rate is strictly less than that

stated in the conjecture. The results are of importance as

no non-trivial achievable broadcast rates with finite length

messages are given for these cases in the literature.

The following achievable broadcast rate with t-bit messages

for any finite t, for any two-sender problem belonging to

Case II-E with fully-participated interactions was stated in

Theorem 9 in [11] as an upper bound on βt(D
k,P) with

k ∈ {58, 59, · · · , 64}.

βt(D
k,P) ≤ max(βt(D

k,P
1 ), βt(D

k,P
3 ))+

max(βt(D
k,P
2 ), βt(D

k,P
3 )).

(2)

This result uses a code-construction based on any opti-

mal codes (with t-bit messages) for the single-sender sub-

problems. In this section, we provide a tighter upper bound

for βt(D
k,P) with k ∈ {58, 59, · · · , 64} by using another

code-construction based on the same optimal codes for the

single-sender sub-problems.

We first make the following observation which halves the

number of sub-cases to be proved in Case I.

Observation 1. Observe that the interaction digraphs Hk,

k ∈ {20, 21, 25}, are obtained from Hk′ , k′ ∈ {16, 18, 23},

respectively, by interchanging the labels of vertices 1 and

2. If the corresponding TUICPs have the same set of sub-

digraphs, i.e., Dk,P
1 , Dk,P

2 , and Dk,P
3 are same as Dk′,P

1 ,

Dk′,P
2 , and Dk′,P

3 respectively, and all the interactions are

fully-participated interactions, then Dk can be obtained from

Dk′

by interchanging the labels of sub-digraphs Dk′,P
1 and

Dk′,P
2 . Hence, an achievable broadcast rate for any TUICP
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with Hk, k ∈ {20, 21, 25}, is obtained using that of a TUICP

with Hk′ , k′ ∈ {16, 18, 23}, respectively, by interchanging the

labels 1 and 2 in the expression for the broadcast rate.

In the Theorems 1, 2, and 3, an achievable broadcast rate

with finite length messages is obtained for any TUICP with

fully-participated interactions between its sub-digraphs, based

on a two-sender graph coloring of the confusion graph Γt(D
k)

for k ∈ {16, 18, 23}. The results for any TUICP with side-

information digraph Dk, k ∈ {20, 21, 25}, are stated without

proof for completeness, based on Observation 1.

A. An achievable broadcast rate for any TUICP with the

side-information digraph being D16 or D20.

The following theorem provides an achievable broadcast

rate with t-bit messages in terms of the corresponding optimal

broadcast rates of the single-sender problems described by the

side-information digraphs D20,P
1 , D16,P

2 , D16,P
1∗3 , and D20,P

2∗3 .

The notation Dk,P
u∗v is explained in Definition 9.

Theorem 1. For any TUICP with the side-information digraph

Dk, k ∈ {16, 20}, having fully-participated interactions be-

tween its sub-digraphs Dk,P
i , i ∈ {1, 2, 3}, for any P , and

t-bit messages for any finite t, the following broadcast rates

are achievable.

(i) pt(D
16,P) = βt(D

16,P
2 ) + βt(D

16,P
1∗3 ). (3)

(ii) pt(D
20,P) = βt(D

20,P
1 ) + βt(D

20,P
2∗3 ). (4)

Proof. See Appendix A for the proof of (3). The proof of (4)
follows from the proof of (3) in conjunction with Observation

1. �

Remark 1. Note that the proof of (i) in Theorem 1, avails the

following symmetries of the confusion graph Γt(D
16). All the

J-blocks of Γt(D
16) are isomorphic to each other. If there is

an edge between any jth J-block and any j′th J-block, where

j, j′ ∈ [2tm2 ], then there are edges between every vertex of

the jth J-block and every vertex of the j′th J-block.

The following lemmas, the first one stated as Lemma 10

in [11], and the second one stated as Theorem 1 in [15] are

required to prove our next result.

Lemma 7 (Lemma 10, [11]). For any real numbers a and b,
⌈a+ b⌉ = ⌈a⌉+ ⌈b⌉+ ǫ, for some ǫ ∈ {−1, 0}.

Lemma 8 (Theorem 1, [15]). For any two undirected graphs

G1 and G2, χ(G1 ∗ G2) ≤ χ(G1)χ(G2).

The following Corollary 1 shows that there is a possibility

to achieve a broadcast rate lesser than that stated by Conjecture

1 in [11].

Corollary 1. For any TUICP with the side-information di-

graph Dk, k ∈ {16, 20}, having fully-participated interactions

between its sub-digraphs Dk,P
i , i ∈ {1, 2, 3}, for any P , and

t-bit messages for any finite t, we have,

pt(D
k,P) ≤ βt(D

k,P
1 ) + βt(D

k,P
2 ) + βt(D

k,P
3 ) + ǫ/t, (5)

for some ǫ ∈ {−1, 0}, where pt(D
k,P) is the broadcast rate

given in Theorem 1.

Proof. We first prove (5) for k = 16. The proof of (5) for

k = 20 follows from the proof for k = 16 in conjunction with

Observation 1.

Consider the side-information digraph D16,P
1∗3 whose confu-

sion graph is given by Γt(D
16,P
1 ) ∗Γt(D

16,P
3 ). Using Lemma

8 we have

χ(Γt(D
16,P
1 ) ∗ Γt(D

16,P
3 )) ≤ χ(Γt(D

16,P
1 ))χ(Γt(D

16,P
3 )).

(6)

Taking logarithm on both the sides of (6) and using Lemma

7, we have

tβt(D
16,P
1∗3 ) ≤ ⌈log2 χ(Γt(D

16,P
1 ))⌉+⌈log2 χ(Γt(D

16,P
3 ))⌉+ǫ,

(7)

for some ǫ ∈ {−1, 0}. We have used Lemma 5 with the color

set J2 = Φ (which corresponds to a single-sender problem)

to obtain tβt(D
16,P
1∗3 ) = ⌈log2 χ(Γt(D

16,P
1∗3 ))⌉ in (7). Dividing

both the sides of (7) by t and using (3), we have the result of

(5). �

Remark 2. Note that there is a possibility of achieving a

broadcast rate lesser than that stated by Conjecture 1 in [11],

when pt(D
k,P) < βt(D

k,P
1 ) + βt(D

k,P
2 ) + βt(D

k,P
3 ) + ǫ/t,

where ǫ ∈ {−1, 0}. However, we do not provide any example,

where the inequality holds strictly. The proof of the corollary

suggests that the conjecture can be proved in negative if one

can find two side-information digraphs D1 and D3 such that

⌈log2 χ(Γt(D1∗3))⌉ is strictly lesser than ⌈log2 χ(Γt(D1))⌉+
⌈log2 χ(Γt(D3))⌉ − 2.

B. An achievable broadcast rate for any TUICP with the side-

information digraph being D18 or D21.

The following lemma stated as Corollary 3.4.2 in [16] is

required to derive our next result. Recall that the definition

of lexicographic graph product denoted by “ ◦ ” is defined in

Definition 4.

Lemma 9 (Corollary 3.4.2, [16]). For any two undirected

graphs G1 and G2, χ(G1 ◦ G2) ≤ χ(G1)χ(G2).

The following theorem provides an achievable broadcast

rate with t-bit messages in terms of the corresponding optimal

broadcast rates of the single-sender problems described by the

side-information digraphs D21,P
1 , D18,P

2 , D18,P
1◦3 , and D21,P

2◦3 .

Recall that the notation Dk,P
u◦v is explained in Definition 8. The

following theorem also avails the symmetries of the confusion

graphs Γt(D
k), k ∈ {18, 21}, to obtain the stated achievable

broadcast rates (as given in Remark 1).

Theorem 2. For any TUICP with the side-information digraph

Dk, k ∈ {18, 21}, having fully-participated interactions be-

tween its sub-digraphs Dk,P
i , i ∈ {1, 2, 3}, for any P , and

t-bit messages for any finite t, the following broadcast rates

are achievable,

(i) pt(D
18,P) = βt(D

18,P
2 ) + βt(D

18,P
1◦3 ), (8)

(ii) pt(D
21,P) = βt(D

21,P
1 ) + βt(D

21,P
2◦3 ), (9)

and for the same achievable broadcast rate pt(D
k,P), we have

(iii) pt(D
k,P) ≤ βt(D

k,P
1 ) + βt(D

k,P
2 ) + βt(D

k,P
3 ) + ǫ/t,

(10)



9

for some ǫ ∈ {−1, 0}.

Proof. See Appendix B for the proof of (8). The proof of (9)

follows from the proof of (8) in conjunction with Observation

1. The proof of (10) follows from the proofs of (8) and (9), on

the same lines as that of Corollary 1, using Lemma 9 instead

of Lemma 8. �

C. An achievable broadcast rate for any TUICP with the side-

information digraph being D23 or D25.

The following theorem provides achievable broadcast rates

for two sub-cases of Case I, availing the symmetries of the

confusion graph as seen in Theorems 1 and 2.

Theorem 3. For any TUICP with the side-information digraph

Dk, k ∈ {23, 25}, having fully-participated interactions be-

tween its sub-digraphs Dk,P
i , i ∈ {1, 2, 3}, for any P , and

t-bit messages for any finite t, the following broadcast rates

are achievable,

(i) pt(D
23,P) = βt(D

23,P
2 ) + βt(D

23,P
3◦1 ), (11)

(ii) pt(D
25,P) = βt(D

25,P
1 ) + βt(D

25,P
3◦2 ), (12)

and for the same achievable broadcast rate pt(D
k,P), we have

(iii) pt(D
k,P) ≤ βt(D

k,P
1 ) + βt(D

k,P
2 ) + βt(D

k,P
3 ) + ǫ/t,

(13)

for some ǫ ∈ {−1, 0}.

Proof. See Appendix C for the proof of (11). The proof of (12)

follows from the proof of (11) in conjunction with Observation

1. The proof of (13) follows from the proofs of (11) and (12),

on the same lines as that of Corollary 1, using Lemma 9

instead of Lemma 8. �

D. An achievable broadcast rate for any TUICP belonging to

Case II-E with fully-participated interactions.

The following theorem provides an achievable broadcast

rate for any TUICP belonging to Case II-E, by providing

a code construction which uses optimal codes of the sub-

problems described by the three sub-digraphs of the side-

information digraph. This provides a tighter upper bound

compared to the one given in [11] and stated in (2).

Theorem 4. For any TUICP with the side-information digraph

Dk, k ∈ {58, 59, · · · , 64}, having fully-participated interac-

tions between its sub-digraphs Dk,P
i , i ∈ {1, 2, 3}, for any P ,

and t-bit messages for any finite t, the following broadcast

rate is achievable.

pt(D
k,P) = max{βt(D

k,P
1 ) + βt(D

k,P
2 ), βt(D

k,P
1 )

+ βt(D
k,P
3 ), βt(D

k,P
2 ) + βt(D

k,P
3 )}.

(14)

Proof. We provide a code-construction for t-bit messages for

any finite t and show that the constructed code satisfies all

the demands of the receivers. For the case with βt(D
k,P
3 ) ≤

min{βt(D
k,P
1 ), βt(D

k,P
2 )}, the broadcast rate pt(D

k,P) =
βt(D

k,P
1 ) + βt(D

k,P
2 ), has been shown to be achievable in

Theorem 9 of [11].

Without loss of generality, we assume that βt(D
k,P
2 ) ≤

min{βt(D
k,P
1 ), βt(D

k,P
3 )}. The case with βt(D

k,P
1 ) ≤

min{βt(D
k,P
2 ), βt(D

k,P
3 )} can be proved similarly. Let Ci be

a code with the optimal broadcast rate with t-bit messages for

any finite t given by βt(D
k,P
i ) for the single-sender unicast

ICP described by Dk,P
i , i ∈ {1, 2, 3}. Our code for the original

TUICP I(Dk,P) is given as follows:

C1 ⊕ C3[1 : tβt(D
k,P
2 )] sent by S1,

C2 ⊕ C3[1 : tβt(D
k,P
2 )] sent by S2,

C3[1+ tβt(D
k,P
2 ) : tβt(D

k,P
3 )] sent by any one of S1 or S2.

The overall length of the two-sender code is given by

t(βt(D
k,P
1 ) + βt(D

k,P
2 ) + (βt(D

k,P
3 )− βt(D

k,P
2 )))

= t(βt(D
k,P
1 ) + βt(D

k,P
3 )),

with the broadcast rate βt(D
k,P
1 ) + βt(D

k,P
3 ).

We provide the decoding procedure for receivers in the

side-information digraphs Dk with k ∈ {58, 59, · · · , 62}. The

decoding procedure for those in the side-information digraphs

Dk with k ∈ {63, 64} is similar. Receivers belonging to Dk,P
1

and Dk,P
2 recover their demanded messages using

(C2⊕C3[1 : tβt(D
k,P
2 )])⊕ (C1⊕C3[1 : tβt(D

k,P
2 )]) = C1⊕C2

and their side-information P2 and P1 respectively. Receivers

belonging to Dk,P
3 recover their demanded messages using

C3[tβt(D
k,P
2 ) + 1 : tβt(D

k,P
3 )] and either C2 ⊕ C3[1 :

tβt(D
k,P
2 )] or C1 ⊕ C3[1 : tβt(D

k,P
2 )], and their side-

information, depending on the presence of the interaction

Dk,P
3 → Dk,P

2 or Dk,P
3 → Dk,P

1 respectively. �

Remark 3. Note that the upper bound on βt(D
k,P), k ∈

{58, 59, · · · , 64}, stated in (2) can also be written as follows.

βt(D
k,P) ≤ max{βt(D

k,P
1 ) + βt(D

k,P
2 ), βt(D

k,P
1 )+

βt(D
k,P
3 ), βt(D

k,P
2 ) + βt(D

k,P
3 ), 2βt(D

k,P
3 )}.

(15)

Comparing this upper bound with the achievable broadcast rate

given in Theorem 4, we see that the achievable broadcast rate

given in Theorem 4 is a tighter upper bound.

V. OPTIMAL BROADCAST RATES FOR CASES II-C, II-D,

AND II-E

In this section, we provide the optimal broadcast rate

for any TUICP with fully-participated interactions between

the sub-digraphs of the side-information digraph Dk, where

k ∈ {34, 35, · · · , 64}. Optimal broadcast rate for any TUICP

with Dk such that k ∈ {1, 2, · · · , 33} were given in [11].

For k ∈ {34, 35, · · · , 64}, results given in [11] depend on

the relation between the optimal broadcast rates of the indi-

vidual single-sender sub-problems described by the three sub-

digraphs of the side-information digraph. The results given in

this section along with those given in [11] provide a complete

characterisation of the optimal broadcast rate of any TUICP

with fully-participated interactions.

We require the following lemma which is a part of Theorem

3 in [19] to derive our results.
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Lemma 10 (Theorem 3, [19]). Consider any single-sender

unicast index coding problem described by a side-information

digraph. Removing edges not lying on any directed cycle does

not change the optimal broadcast rate.

We require the following lemmas to prove our results.

Lemma 11. For any D, P and finite t, if a side-information

digraph D′ is obtained by adding more directed edges to D,

we have βt(D,P) ≥ βt(D
′,P) and β(D,P) ≥ β(D′,P).

Proof. Consider an optimal code for the two-sender problem

I(D,P) with t-bit messages with broadcast rate βt(D,P).
This code can be used to solve the two-sender problem

I(D′,P) with t-bit messages, as the receivers have additional

side-information including the side-information present in the

original problem I(D,P). Hence, βt(D,P) ≥ βt(D
′,P).

Taking the limit as t → ∞, in the definition of the optimal

broadcast rate, we have β(D,P) ≥ β(D′,P). �

Lemma 12. For any D, P and finite t, we have βt(D,P) ≥
βt(D), and β(D,P) ≥ β(D).

Proof. Consider a two-sender index code with broadcast rate

given by βt(D,P). The same index code transmitted by a

single-sender for the single-sender unicast ICP described by

the side-information digraph D satsifies the demands of all

the receivers. Thus, we have the first lower bound. Taking the

limit as t → ∞, in the definition of the optimal broadcast rate,

we have β(D,P) ≥ β(D). �

A. CASES II-C and II-D

In this subsection, we provide the optimal broadcast rate

for any TUICP with side-information digraph Dk , where k ∈
{34, 35, · · · , 57}.

Theorem 5 (CASE II-C). For any TUICP with the side-

information digraph Dk , k ∈ {34, 35, · · · , 45}, having fully-

participated interactions between its sub-digraphs Dk,P
i , i ∈

{1, 2, 3}, and for any P , we have

β(Dk,P) = max{β(Dk,P
1 ), β(Dk,P

3 )}+ β(Dk,P
2 ). (16)

Proof. The result is proved in [11], for the case when

β(Dk,P
1 ) ≥ β(Dk,P

3 ). Hence, we prove the result for the case

with β(Dk,P
1 ) < β(Dk,P

3 ) by first providing a lower bound

and then providing a matching upper bound.

Removing the vertices belonging to Dk,P
1 from Dk , we

obtain a digraph Dk,P
23 which defines a TUICP. This can be

considered as a single-sender unicast ICP as both P2 and P3

are with S2. Hence, we have

β(Dk,P) ≥ β(Dk,P
23 ). (17)

As there are only unidirectional edges from V(Dk,P
2 ) to

V(Dk,P
3 ) or vice-versa (depending on the particular value of

k), using Lemma 10, we have

β(Dk,P
23 ) = β(Dk,P

2 ) + β(Dk,P
3 ). (18)

From (17) and (18), we have β(Dk,P) ≥ β(Dk,P
2 )+β(Dk,P

3 ).

From the result of Theorem 8 in [11], we have,

βt(D
k,P) ≤ βt(D

k,P
2 ) + βt(D

k,P
3 ). (19)

Dividing both the sides by t, and taking the limit as t → ∞
in (19), we have β(Dk,P) ≤ β(Dk,P

2 )+ β(Dk,P
3 ), which is a

matching upper bound. �

We make the following observation to obtain the optimal

broadcast rate for Case II-D.

Observation 2. Observe that the interaction digraphs Hk,

k ∈ {34, 35, · · · , 45} are obtained from H′
k, k′ ∈

{46, 47, · · · , 57}, by interchanging the labels of vertices 1
and 2 respectively. Hence, the optimal broadcast rate for any

TUICP with Hk, k ∈ {34, 35, · · · , 45}, is obtained using that

of a TUICP with H′
k, k′ ∈ {46, 47, · · · , 57}, respectively,

by interchanging the labels 1 and 2 in the expression for the

optimal broadcast rate. Note that the corresponding TUICPs

must have the same set of sub-digraphs, i.e., Dk,P
1 , Dk,P

2 , and

Dk,P
3 must be same as Dk′,P

1 , Dk′,P
2 , and Dk′,P

3 respectively.

Hence, we state the following theorem which follows from

Theorem 5 in conjuncion with Observation 2.

Theorem 6 (CASE II-D). For any TUICP with the side-

information digraph Dk, k ∈ {46, 47, · · · , 57}, having fully-

participated interactions between its sub-digraphs Dk,P
i , i ∈

{1, 2, 3}, and for any P , we have

β(Dk,P) = max{β(Dk,P
2 ), β(Dk,P

3 )}+ β(Dk,P
1 ). (20)

B. CASE II-E

In this subsection, we will present our results for Case II-E.

The proof uses the results of Case II-C and Case II-D derived

in the previous subsection.

Theorem 7 (CASE II-E). For any TUICP with the side-

information digraph Dk, k ∈ {58, 59, · · · , 64}, having fully-

participated interactions between its sub-digraphs Dk,P
i , i ∈

{1, 2, 3}, and for any P , we have

β(Dk,P) = max{β(Dk,P
1 ) + β(Dk,P

2 ),

β(Dk,P
1 ) + β(Dk,P

3 ), β(Dk,P
2 ) + β(Dk,P

3 )}.
(21)

Proof. We first provide a lower bound using the results of

Cases II-C and II-D. Then, we provide a matching upper bound

using the result of Theorem 4.

Given any side-information digraph Dk with k ∈
{58, 59, · · · , 64}, with fully-participated interactions between

its sub-digraphs Dk,P
1 , Dk,P

2 , and Dk,P
3 , we can get (i) one

of the side-information digraphs Dk′

, k′ ∈ {44, 45} and (ii)
one of the side-information digraphs Dk′′

, k′′ ∈ {56, 57} with

the same sub-digraphs Dk,P
1 , Dk,P

2 , and Dk,P
3 having fully-

participated interactions, by adding appropriate edges between

the sub-digraphs of Dk . From Lemma 11, we have,

β(Dk,P) ≥ β(Dk′

,P), (22)

β(Dk,P) ≥ β(Dk′′

,P). (23)
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Combining the results of Theorem 5 and Theorem 6 using

(22) and (23), we get,

β(Dk,P) ≥ max{β(Dk,P
1 ) + β(Dk,P

3 ),

β(Dk,P
2 ) + β(Dk,P

3 ), β(Dk,P
1 ) + β(Dk,P

2 )}.
(24)

Using the result of Theorem 4, we have

βt(D
k,P) ≤ max{βt(D

k,P
1 ) + βt(D

k,P
2 ), βt(D

k,P
1 )+

βt(D
k,P
3 ), βt(D

k,P
2 ) + βt(D

k,P
3 )}.

(25)

Taking the limit as t → ∞ in the definition of β(Dk,P), we

obtain the matching upper bound as follows, and hence the

theorem is proved.

β(Dk,P) ≤ max{β(Dk,P
1 ) + β(Dk,P

2 ), β(Dk,P
1 )+

β(Dk,P
3 ), β(Dk,P

2 ) + β(Dk,P
3 )}.

(26)

�

Remark 4. We note that the results of all the theorems in

this section are given in terms of those of the sub-problems

which are single-sender unicast ICPs. However, the optimal

broadcast rates of single-sender unicast ICPs are known only

for some special cases [5], [17],[18]. Hence, the complexity of

solving the two-sender problem is reduced to that of solving

single-sender problems.

Remark 5. For Case II-E, [11] provided upper bound for the

optimal broadcast rate with t-bit messages when βt(D
k,P
3 ) >

min{βt(D
k,P
1 ), βt(D

k,P
2 )} and optimal broadcast rate when

β(Dk,P
3 ) > min{β(Dk,P

1 ), β(Dk,P
2 )}. However, we have

shown that the given upper bounds in [11] are loose, and

Theorem 7 provides the optimal broadcast rates for Case II-E.

VI. CONCLUSION AND FUTURE WORK

This paper establishes the optimal broadcast rates for all

the cases of the TUICP with fully-participated interactions, for

which only upper bounds were known. The results are given

in terms of those of the three single-sender sub-problems.

Achievable broadcast rate with t-bit messages for any finite

t is given for some cases of the TUICP with fully-participated

interactions, using two-sender graph coloring of the confusion

graph. No results were known for these cases.

We conjecture that the achievable broadcast rates with t-bit

messages for any finite t, for the six sub-cases of Case I given

in this paper are optimal.

Finding non-trivial achievable broadcast rate with t-bit mes-

sages for any finite t, for the remaining sub-cases of Case I is

an interesting problem. Optimal broadcast rates with partially-

participated interactions is also open. Further, extension of the

results to general number of senders is open.
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APPENDIX A

PROOF OF THEOREM 1

Proof. To prove this theorem, we construct the confusion

graph Γt(D
16) and identify the edges due to confusions at

the vertices (receivers) belonging to each of the sub-digraphs

D16,P
1 , D16,P

2 , and D16,P
3 . Then, we exploit the symmetries

of the confusion graph to color it according to the two-sender

graph coloring. The number of ordered pairs of colors required

to color the confusion graph is used to calculate an achievable

broadcast rate with t-bit messages.

To avail the symmetries of the confusion graph, we view

Γt(D
16) as the union of all the J-blocks connected by inter-

J-block edges. Next, we list all the edges of Γt(D
16).

Edges due to confusions at the vertices in V(D16,P
1 ): If

b
i
P1

and b
i′

P1
are confusable at some vertex in V(D16,P

1 ),
i, i′ ∈ [2tm1 ], then the corresponding edges in Γt(D

16) due to

the confusion at the same vertex in V(D16) are of the form

((bi
P1
,bj

P2
,bk

P3
), (bi′

P1
,bj

P2
,bk′

P3
)), where j ∈ [2tm2 ], and

k, k′ ∈ [2tm3 ], as the vertex has all the messages represented

by V(D16,P
2 ) as its side-information in V(D16), and has no

side-information belonging to V(D16,P
3 ) in V(D16). Hence,

confusion at any vertex in V(D16,P
1 ) does not contribute to

inter-J-block edges.

Edges due to confusions at the vertices in V(D16,P
2 ): If

b
j
P2

and b
j′

P2
are confusable at some vertex in V(D16,P

2 ),
j, j′ ∈ [2tm2 ], then the corresponding edges in Γt(D

16) due

to the confusion at the same vertex in V(D16) are of the form

((bi
P1
,bj

P2
,bk

P3
), (bi′

P1
,bj′

P2
,bk′

P3
)), where i, i′ ∈ [2tm1 ],

and k, k′ ∈ [2tm3 ], as the vertex has no side-information

in V(D16) belonging to V(D16,P
1 ) and V(D16,P

3 ). Hence,

confusion at any vertex in V(D16,P
2 ) results in inter-J-block

edges.

Edges due to confusions at the vertices in V(D16,P
3 ): Con-

fusion at any vertex in V(D16,P
3 ) does not result in inter-J-

block edges, as each vertex has all the messages represented

by V(D16,P
2 ) as its side-information. The edges are of the

form ((bi
P1

,bj
P2
,bk

P3
), (bi′

P1
,bj

P2
,bk′

P3
)), where b

k
P3

and b
k′

P3

are confusable at some receiver in V(D16,P
3 ), as there is no

side-information belonging to V(D16,P
1 ) in V(D16).

Coloring the confusion graph Γt(D
16): From Lemma 6, we

know that all the J-blocks are isomorphic to each other. From

the enlisting of all the edges of the confusion graph, we

know that the inter-J-block edges between any two J-blocks

are only due to the confusions at the receivers belonging to

V(D16,P
2 ). Confusion at any receiver in V(D16,P

2 ) does not

result in any edge belonging to any J-block. Hence, in order

to color the confusion graph according to the two-sender graph

coloring, we find an optimal classical graph coloring of any

J-block and associate the resulting colors with sender S1. This

can be done, as the edges within any J-block are only due to

the confusions at the vertices belonging to V(D16,P
1 ∪D16,P

3 ),
and S1 alone has all the messages in P1 ∪ P3. As all the

J-blocks are isomorphic to each other and all the inter-J-

block edges between any two J-blocks are only due to the

confusions at the receivers belonging to V(D16,P
2 ), the same

set of colors can be used by S1 to color every J-block
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identically. This resolves all the confusions at all the receivers

in V(D16,P
1 ∪ D16,P

3 ).
From the listing of all the edges in Γt(D

16), we observe that

there is an edge given by ((bi
P1

,bj
P2
,bk

P3
), (bi′

P1
,bj

P2
,bk′

P3
)),

belonging to any jth J-block iff either the edge (bi
P1

,bi′

P1
) ∈

Γt(V(D
16,P
1 )) or the edge (bk

P3
,bk′

P3
) ∈ Γt(V(D

16,P
3 )). From

the definition of the disjunctive graph product, we observe

that each J-block is isomorphic to Γt(D
16,P
1 ) ∗ Γt(D

16,P
3 ).

Note that the graph Γt(D
16,P
1 ) ∗ Γt(D

16,P
3 ) and any J-block

have 2tm1 × 2tm3 vertices. Hence, S1 requires a minimum of

χ(Γt(D
16,P
1∗3 )) colors to color any J-block.

The confusions associated with inter-J-block edges between

any two J-blocks can be resolved by S2 alone, as all such

confusions are associated with vertices in V(D16,P
2 ) and only

S2 has all the messages in P2. Observe that there are inter-

J-block edges between any jth and any j′th J-blocks iff

(bj
P2

,bj′

P2
) is an edge in Γt(D

16,P
2 ). We know that a minimum

of χ(Γt(D
16,P
2 )) colors are required to color Γt(D

16,P
2 ).

By assigning the color given to b
j
P2

in Γt(D
16,P
2 ) to the

jth J-block (to all the vertices in the jth J-block) for all

j ∈ [2tm2 ], we observe that all the confusions associated with

all the inter-J-block edges are resolved. Hence, a minimum

of χ(Γt(D
16,P
2 )) colors are sufficient for S2 to color the

confusion graph.

Hence, this is a valid two-sender graph coloring of Γt(D
16)

requiring a total of χ(Γt(D
16,P
1∗3 )) × χ(Γt(D

16,P
2 )) ordered

pairs of colors, where S1 requires χ(Γt(D
16,P
1∗3 )) colors and

S2 requires χ(Γt(D
16,P
2 )) colors.

Thus, we have the total length of the two-sender index code

given by the sum of the lengths of codewords transmitted by

the two-senders as,

t× pt(D
16,P)

= ⌈log2(χ(Γt(D
16,P
1∗3 )))⌉+ ⌈log2(χ(Γt(D

16,P
2 )))⌉.

(27)

Hence, we have the associated broadcast rate given by

pt(D
16,P) = βt(D

16,P
1∗3 ) + βt(D

16,P
2 ). (28)

�

APPENDIX B

PROOF OF THEOREM 2

Proof. To prove this theorem, we follow the same approach

used to prove Theorem 1.

To avail the symmetries of the confusion graph, we view

Γt(D
18) as the union of all the J-blocks connected by inter-

J-block edges. We list all the edges of Γt(D
18) as follows.

Edges due to confusions at the vertices in V(D18,P
1 ): If

b
i
P1

and b
i′

P1
are confusable at some vertex in V(D18,P

1 ),
where i, i′ ∈ [2tm1 ], then the corresponding edges in

Γt(D
18) due to the confusion at the same vertex in V(D18)

are of the form ((bi
P1
,bj

P2
,bk

P3
), (bi′

P1
,bj

P2
,bk′

P3
)), where

j ∈ [2tm2 ], and k, k′ ∈ [2tm3 ], as the vertex has all the

messages represented by V(D18,P
2 ) as its side-information in

V(D18), and has no side-information in V(D18) belonging to

V(D18,P
3 ). Hence, confusion at any vertex in V(D18,P

1 ) does

not contribute to inter-J-block edges.

Edges due to confusions at the vertices in V(D18,P
2 ): If

b
j
P2

and b
j′

P2
are confusable at some vertex in V(D18,P

2 ),
then the corresponding edges in Γt(D

18) due to the

confusion at the same vertex in V(D18) are of the form

((bi
P1
,bj

P2
,bk

P3
), (bi′

P1
,bj′

P2
,bk′

P3
)), where i, i′ ∈ [2tm1 ],

and k, k′ ∈ [2tm3 ], as the vertex has no side-information

belonging to V(D18,P
1 ) and V(D18,P

3 ) in V(D18). Hence,

confusion at any vertex in V(D18,P
2 ) results in inter-J-block

edges.

Edges due to confusions at the vertices in V(D18,P
3 ): Con-

fusion at any vertex in V(D18,P
3 ) does not result in inter-J-

block edges, as each vertex has all the messages represented

by V(D18,P
1 ) and V(D18,P

2 ) as its side-information in V(D18).
The edges are of the form ((bi

P1
,bj

P2
,bk

P3
), (bi

P1
,bj

P2
,bk′

P3
)),

where b
k
P3

and b
k′

P3
are confusable at some receiver in

V(D18,P
3 ).

Coloring the confusion graph Γt(D
18): We follow the same

approach as that given in the proof of Theorem 1 to color the

confusion graph Γt(D
18), as it can be easily verified that the

same reasoning given for the coloring approach in the proof

of Theorem 1 also holds in this case. We only mention the

required changes.

From the listing of edges in Γt(D
18), we observe that

there is an edge given by ((bi
P1

,bj
P2

,bk
P3
), (bi′

P1
,bj

P2
,bk′

P3
)),

belonging to any jth J-block iff either the edge (bi
P1

,bi′

P1
) ∈

Γt(V(D
18,P
1 )), or the edge (bk

P3
,bk′

P3
) ∈ Γt(V(D

18,P
3 )) and

b
i
P1

= b
i′

P1
. From the definition of the lexicographic graph

product, we observe that each J-block is isomorphic to

Γt(D
18,P
1 ) ◦ Γt(D

18,P
3 ). Hence, S1 requires a minimum of

χ(Γt(D
18,P
1◦3 )) colors to color any J-block.

As in the proof of Theorem 1, a minimum of χ(Γt(D
18,P
2 ))

colors are sufficient for S2 to color the confusion graph.

Hence, this is a valid two-sender graph coloring of Γt(D
18)

requiring a total of χ(Γt(D
18,P
1◦3 )) × χ(Γt(D

18,P
2 )) ordered

pairs of colors, where S1 requires χ(Γt(D
18,P
1◦3 )) colors and

S2 requires χ(Γt(D
18,P
2 )) colors.

Thus, we have the total length of the two-sender index code

given by the sum of the lengths of the codewords transmitted

by the two-senders as,

t× pt(D
18,P)

= ⌈log2(χ(Γt(D
18,P
1◦3 )))⌉+ ⌈log2(χ(Γt(D

18,P
2 )))⌉.

(29)

Hence, we have the associated broadcast rate given by

pt(D
18,P) = βt(D

18,P
1◦3 ) + βt(D

18,P
2 ). (30)

�

APPENDIX C

PROOF OF THEOREM 3

Proof. To prove this theorem, we follow the same approach

used to prove Theorem 2.

To avail the symmetries of the confusion graph, we view

Γt(D
23) as the union of all the J-blocks connected by inter-

J-block edges. We list all the edges of Γt(D
23) as follows.

Edges due to confusions at the vertices in V(D23,P
1 ): If

b
i
P1

and b
i′

P1
are confusable at some vertex in V(D23,P

1 ),
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where i, i′ ∈ [2tm1 ], then the corresponding edges in

Γt(D
23) due to the confusion at the same vertex in V(D23)

are of the form ((bi
P1
,bj

P2
,bk

P3
), (bi′

P1
,bj

P2
,bk

P3
)), where

j ∈ [2tm2 ], and k, k′ ∈ [2tm3 ], as the vertex has all the

messages represented by V(D23,P
2 ) and V(D23,P

3 ) as its

side-information in V(D23). Hence, confusion at any vertex

in V(D23,P
1 ) does not contribute to inter-J-block edges.

Edges due to confusions at the vertices in V(D23,P
2 ):

If b
j
P2

and b
j′

P2
are confusable at some vertex in

V(D23,P
2 ), then the corresponding edges in Γt(D

23)
due to confusion at the same vertex in V(D23) are of the

form ((bi
P1

,bj
P2
,bk

P3
), (bi′

P1
,bj′

P2
,bk′

P3
)), where i, i′ ∈ [2tm1 ],

and k, k′ ∈ [2tm3 ], as the vertex has no side-information

belonging to V(D23,P
1 ) and V(D23,P

3 ) in V(D23). Hence,

confusion at any vertex in V(D23,P
2 ) results in inter-J-block

edges.

Edges due to confusions at the vertices in V(D23,P
3 ): Con-

fusion at any vertex in V(D23,P
3 ) does not result in any inter-J-

block edges, as each vertex has all the messages represented by

V(D23,P
2 ) as its side-information in V(D23). The edges are of

the form ((bi
P1

,bj
P2
,bk

P3
), (bi′

P1
,bj

P2
,bk′

P3
)), where b

k
P3

and

b
k′

P3
are confusable at some receiver in V(D23,P

3 ).
Coloring the confusion graph Γt(D

23): We follow the same

approach as that given in the proof of Theorem 1 to color the

confusion graph Γt(D
23), as it can be easily verified that the

same reasoning given for the coloring approach in the proof

of Theorem 1 also holds in this case. We only mention the

required changes.

From the listing of edges in Γt(D
23), we observe that

there is an edge given by ((bi
P1

,bj
P2
,bk

P3
), (bi′

P1
,bj

P2
,bk′

P3
)),

belonging to any jth J-block iff either the edge (bi
P1

,bi′

P1
) ∈

Γt(V(D
23,P
1 )) and b

k
P3

= b
k′

P3
, or the edge (bk

P3
,bk′

P3
) ∈

Γt(V(D
23,P
3 )). From the definition of the lexicographic graph

product, we observe that each J-block is isomorphic to

Γt(D
23,P
3 ) ◦ Γt(D

23,P
1 ). Hence, S1 requires a minimum of

χ(Γt(D
23,P
3◦1 )) colors to color any J-block.

As in the proof of Theorem 1, a minimum of χ(Γt(D
23,P
2 ))

colors are sufficient for S2 to color the confusion graph.

Hence, this is a valid two-sender graph coloring of Γt(D
23)

requiring a total of χ(Γt(D
23,P
3◦1 )) × χ(Γt(D

23,P
2 )) ordered

pairs of colors, where S1 requires χ(Γt(D
23,P
3◦1 )) colors and

S2 requires χ(Γt(D
23,P
2 )) colors.

Thus, we have the total length of the two-sender index code

given by the sum of the lengths of the codewords transmitted

by the two-senders as,

t× pt(D
23,P)

= ⌈log2(χ(Γt(D
23,P
3◦1 )))⌉+ ⌈log2(χ(Γt(D

23,P
2 )))⌉.

(31)

Hence, we have the associated broadcast rate given by

pt(D
23,P) = βt(D

23,P
3◦1 ) + βt(D

23,P
2 ). (32)

�
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