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Abstract

The maximum likelihood detection rule for a four dimensional direct-detection optical front-end is derived.

The four dimensions are two intensities and two differential phases. Three different signal processing algorithms,

composed of symbol-by-symbol, sequence and successive detection, are discussed. To remedy dealing with special

functions in the detection rules, an approximation for high signal-to-noise ratios (SNRs) is provided. Simulation

results show that, despite the simpler structure of the successive algorithm, the resulting performance loss, in

comparison with the other two algorithms, is negligible. For example, for an 8-ring/8-ary phase constellation, the

complexity of detection reduces by a factor of 8, while the performance, in terms of the symbol error rate, degrades

by 0.5 dB. It is shown that the high-SNR approximation is very accurate, even at low SNRs. The achievable rates

for different constellations are computed and compared by the Monte Carlo method. For example, for a 4-ring/8-

ary phase constellation, the achievable rate is 10 bits per channel use at an SNR of 25 dB, while by using an

8-ring/8-ary phase constellation and an error correcting code of rate 5/6, this rate is achieved at an SNR of 20 dB.
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I. INTRODUCTION

WE derive the maximum likelihood (ML) detection rule for the four dimensional direct-detection

receiver optical front-end described in [1]. We propose three digital signal processing (DSP)

algorithms: symbol-by-symbol, sequence (min-sum) and successive detection. For each proposed method,

we find the likelihood (utility) function to be maximized for the ML detection.

Due to their inexpensive structures, non-coherent detection schemes have promising applications in

short-haul (< 100 km) data transmission, e.g., intra data-center communication [2], [3]. In addition, the

demand for high data rates necessitates the usage of all degrees of freedom (DOF) for data transmission.

Although exploiting the intensity or the phase of the transmitted light without using any local oscillator

at the receiver was proposed earlier, exploiting both of them simultaneously in optical communication

goes back to the early 2000s [4]. To combat the practical issue of precise adjustment in those techniques,

self-homodyne detection was proposed in 2005 [5], which later was improved to exploit both of the

polarizations for the data transmission in wavelength division multiplexing systems [6], [7]. Similar to

self-homodyne detection, Stokes-vector direct detection (SVDD) was introduced in 2014, taking into

account the polarization rotation of the fiber [3], [8]. Despite the simple structure of the receiver, SVDD

(and also self-homodyne detection) devotes half of the available dimensions to the transmission of a

pilot symbol. Later, a modified Stokes-space direct detection scheme was introduced in [1] which, by

transmitting a data symbol instead of the pilot, achieves a higher data-rate. However, exploiting all of its

DOF is only possible under either non-realistic assumptions or by using a complex receiver. This issue

was later resolved for the same optical front-end by additional processing in the DSP [9]. The present

paper extends the results of [9] by determining the actual ML detection rule for the various schemes under

study.

The rest of the paper is organized as follows. The system model, including the transmitter, the channel

and the receiver, is introduced in Sec. II. In Sec. III-A we discuss symbol-by-symbol ML detection. In

Sec. III-B we describe sequence detection, exploiting the min-sum algorithm on the factor graph of the

system. To combat the complexity of symbol-by-symbol and sequence detectors, we propose a successive

detection scheme in Sec. III-C. Due to the existence of modified Bessel functions in the likelihood scores,

we introduce an accurate and easy-to-compute approximation, suitable for operation in the moderate to
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large SNR regimes. These approximately ML decoders are described at the end of Secs. III-A, III-B, and

III-C. In Sec. IV, we discuss about the fast fading behaviour of the fourth DOF subchannel. In Sec. V,

we compare the discussed methods in previous sections via simulations. Finally, we provide concluding

remarks in Sec. VI.

Through this paper, we adopt the following notational conventions.

• Scalars: lower-case letters, e.g., a and ρ.

• |a|, arg(a),Re(a), Im(a), a∗: the magnitude, phase, real and imaginary parts and complex conjugate

of the complex number a, respectively.

• Sets: blackboard bold capital letters, e.g., A,B. In particular, Z, R, R+ and C denote integers, real

numbers, non-negative reals, and complex numbers, respectively.

• AÖB : there is a bijection between A and B.

• Vectors: lower-case bold letters, e.g., v. The ith element of v is denoted by v(i). For u,v ∈ Cn, the

inner product is defined as 〈u,v〉 ,∑n
i=1 u(i)v(i)∗.

• Matrices: upper-case bold letters, e.g., M . In addition, In×n denotes the n× n identity matrix.

• |M | and M t: the determinant and the transpose of M .

• Random variables: non-bold capital letters, e.g. A. Realizations are shown in the same lower-case

letter, e.g., if A is a random variable then a is its realization.

• ai:j: the sequence ai, ai+1, . . . , aj−1, aj , where i ≤ j.

• D: the unit-delay operator, e.g., if x[n] denotes a discrete-time signal then Dx[n] = x[n− 1].

• We will extensively make use of the Jones vector representation of light [10]. For the Jones vector

v, vx and vy denote the X and Y polarizations, respectively.

II. THE SYSTEM MODEL

In this section, we formulate the signal processing operations performed by the transmitter, the channel,

and the receiver.

A. The Transmitter

For simplicity, we discuss the base-band equivalent model. We assume the use of Nyquist pulses, i.e.,

pulses without intersymbol interference, allowing for a discrete-time formulation corresponding to the
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(a) (b) (c)

Fig. 1. nr-ring/np-ary phase constellations: (a) 2-ring/4-ary, (b) 2-ring/8-ary, (c) 4-ring/8-ary.

sample times. We use an nr-ring/np-ary phase constellation (See Fig. 1) with equally-spaced squared radii

as in [1]. The radius set is{
r1, r1

√
1 + δ2, r1

√
1 + 2δ2, . . . , r1

√
1 + (nr − 1)δ2

}
,

where r1 and δ ∈ R+, and the phase set is{
0,

2π

np
,
4π

np
, . . . ,

(np − 1)2π

np

}
.

The transmitter sends two points, ex and ey, from the constellation over the X and Y polarizations,

respectively. As a result, the transmitted symbol is e = [ex, ey]
t ∈ C2. As ex and ey are complex numbers,

they have a magnitude and a phase, providing four DOF to exploit. As with any non-coherent scheme,

instead of the absolute phase, we use differential phase encoding. As a result, we encode our data in

i) |ex|,

ii) |ey|,

iii) θ , arg(exe
∗
y),

iv) γ , arg(ex · De∗y),

which we refer to as the first up to the fourth dimension, respectively. The relationship among these

dimensions are shown in Fig. 2a. The fourth dimension necessitates an initial condition on a symbol

block, which is achieved by transmitting a pilot symbol, e.g., epilot = [r1, r1]t, at the beginning of the

block.
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|ex||Dex|

|ey||Dey|

θD
θ γ

(a)

|kx||Dkx|

|ky||Dky|

θ′D
θ′ γ
′

(b)

|rx||Drx|

|ry||Dry|

θ′
′

D
θ′

′

γ
′′

(c)

Fig. 2. The four dimensions (a) at the transmitter, (b) before the amplifier, and (c) after the amplifier.

B. The Channel

We adopt a linear channel model, neglecting fiber nonlinearities, as is appropriate for short-haul data

transmission. The random birefringence of single mode fibers impose a linear transformation on the input

Jones vector. In particular, in the absence of noise, the output Jones vector, k, can be written as

k = He, (1)

where

H =

 a b

−b∗ a∗


is the channel rotation matrix, such that a, b ∈ C and |a|2 + |b|2 = 1 [1], [11]–[13]. The matrix H is

nonsingular; so if E and K denote all possible e and k vectors, respectively, then EÖK. The coherence

time of the channel matrix is assumed to be much larger than a symbol duration, so we can neglect its

variation over the transmission of a sequence of symbols. Fiber loss is not considered in (1), as it is

compensated by a receiver amplifier. The amplifier contaminates k with amplified spontaneous emission

noise, n ∈ C2, which is a zero-mean additive white Gaussian noise with the covariance matrix σ2I2×2 [10].

Its output is r = k + n, hence

r = He + n.
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Fig. 3. General transceiver model.

The angles θ′, γ′, θ′′, and γ′′ are defined in the same way as their “e-domain counterparts” as

θ′ , arg(kxk
∗
y), γ

′ , arg(kx · Dk∗y),

θ′′ , arg(rxr
∗
y), γ

′′ , arg(rx · Dr∗y),

as shown in Figs. 2b and 2c. The relation among e,k and r is shown in Fig. 3. It is assumed that the

receiver knows the channel parameters, i.e., a and b; such knowledge can be attained by transmitting

training symbols at the beginning of data blocks [8].

C. The Optical Front-end

We use the same optical front-end as proposed in [1] and shown in Fig. 4. Its components are:

• polarization beam splitter (PBS), which splits the input Jones vector into its X and Y polarizations;

• photo-diode (PD), which transforms its input, u ∈ C, to its output, |u|2;

• balanced photo-detector (BPD), which transform its two inputs, u and v ∈ C, to its output, |u|2−|v|2;

• 90◦ optical hybrid, which transforms its two inputs, u and v ∈ C, to its four outputs, (u + v, u −

v, u+ iv, u− iv).

The outputs of the optical front-end, w1:6, are six real-valued numbers which are processed in the back-end

DSP to detect e, denoted by ê (see Fig. 3). The relation between w1:6 and r is [9]

w1 = |rx|2, w3 = 2Re(rxr
∗
y), w5 = 2Re(rx · Dr∗y),

w2 = |ry|2, w4 = 2Im(rxr
∗
y), w6 = 2Im(rx · Dr∗y).

(2)
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Fig. 4. The optical front-end, presented in [1].

III. ML DETECTION

In this section, we derive the ML detector for the transmitted data under three processing assumptions,

after observing w1:6. Based on the transmitted and the received quantities, we define the vectors

de , [|ex|, |ey|eiθ, |Dey|eiγ]t ∈ R+ × C2,

dk , [|kx|, |ky|eiθ
′
, |Dky|eiγ

′
]t ∈ R+ × C2,

dr , [|rx|, |ry|eiθ
′′
, |Dry|eiγ

′′
]t ∈ R+ × C2,

d̂k , [|kx|, |ky|eiθ
′
]t ∈ R+ × C,

and

d̂r , [|rx|, |ry|eiθ
′′
]t ∈ R+ × C.

Note that w1:6 and dr are in one-to-one correspondence. The relationship among 〈dk,dr〉, 〈d̂k, d̂r〉, and

the components of dk and dr is depicted in Fig. 5, to be used in later sections.

A. Symbol-by-symbol ML Detection

In this section, we discuss about the symbol-by-symbol detection of all four dimensions. As EÖK, for

the ease of computation, first we decide on dk; after that, by a bijection we find de. In this process |Dky|

is fixed as it is decoded in the previous time slot.
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θ′ − θ′′

γ′ − γ′′

α

β

|kx| · |rx|

|ky|
· |ry
|

|D
k y
| ·
|D
r y
|

〈d̂k, d̂r〉

〈dk
,dr〉

Fig. 5. Relationship among 〈dk,dr〉, 〈d̂k, d̂r〉, and the components of dk and dr in the complex plane.

By the definition of conditional PDF, we can write the likelihood function as

f(|rx|, |ry|, θ′′, γ′′ | dk, |Dry|) =

f(|rx|, |ry| | dk, |Dry|) · f(θ′′, γ′′ | dk, |Dry|, |rx|, |ry|). (3)

In Theorems 1 and 2, we find f(|rx|, |ry| | dk, |Dry|) and f(θ′′, γ′′ | dk, |Dry|, |rx|, |ry|), respectively. After

that, we can find the likelihood function by (3).

Theorem 1.

f(|rx|, |ry| | dk, |Dry|) =
|rx| · |ry|

σ4
exp

(−(|rx|2 + |ry|2 + |kx|2 + |ky|2)

2σ2

)
· I0(λx)I0(λy), (4)

where I0(·) denotes the modified Bessel function of order zero and λu = |ru|·|ku|
σ2 for u ∈ {x, y}.

Proof. Let Ru = |Ru|eiΨu and Ku = |Ku|eiΦu , u ∈ {x, y}, be the random variables representing the

received and the transmitted (in K domain) signals. Note that Rx and Ry are independent complex

Gaussian random variables, with means ku = |ku|eiφu and each one has a covariance matrix σ2I2×2. The

radius has a Rician distribution with the PDF given as [14]

f(|ru| | |ku|) =
|ru|
σ2

exp

(−(|ru|2 + |ku|2)

2σ2

)
I0(λu). (5)
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In addition, given |Ku|, |Ru| is independent of other parameters in (dk, |Dry|), so we have

f(|rx|, |ry| | dk, |Dry|) = f(|rx| | |kx|) · f(|ry| | |ky|),

from which (4) is obtained by substituting from (5).

Theorem 2.

f(θ′′, γ′′ | dk, |Dry|, |rx|, |ry|) =
I0( |〈dk,dr〉|

σ2 )

4π2I0(λx)I0(λy)I0(Dλy)
.

Proof. See Appendix A.

By using Theorems 1 and 2, and (3), we have

f(|rx|, |ry|, θ′′, γ′′ | dk, |Dry|) =
|rx| · |ry|

4π2σ4

I0

(
|〈dk,dr〉|

σ2

)
exp

(
−(|rx|2+|ry |2+|kx|2+|ky |2)

2σ2

)
I0(Dλy)

. (6)

Note that |〈dk,dr〉| is the magnitude of the correlation of the observation, dr, and the hypothesis, dk (see

Fig. 5.)

To do ML symbol-by-symbol detection, we must solve

arg max
dk

f(w1:6 | dk, |Dry|)

subject to |dk(3)| = |Dky|.
(7)

From (2), we see that given |Dry|, there is a bijection between w1:6 and (|rx|, |ry|, θ′′, γ′′), which allows

us to rewrite (7) as

arg max
dk

f(|rx|, |ry|, θ′′, γ′′ | dk, |Dry|)

subject to |dk(3)| = |Dky|.
(8)

Noting that |dk(3)| is constant, by (6) and eliminating the common factors among all hypotheses, (8) is

equivalent to

arg min
dk

|dk|2 − 2σ2 ln
(
I0

(
|〈dk,dr〉|

σ2

))
subject to |dk(3)| = |Dky|,

(9)

which in practice can be solved by examining all possible dk’s that satisfy the condition.

After finding dk from (9), we find the equivalent de. Note that [1]

|kx|2

|ky|2

2|kx| · |ky| cos(θ′)

2|kx| · |ky| sin(θ′)


= M



|ex|2

|ey|2

2|ex| · |ey| cos(θ)

2|ex| · |ey| sin(θ)


, (10)
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where M = 

|a|2 |b|2 Re(ab∗) −Im(ab∗)

|b|2 |a|2 −Re(ab∗) Im(ab∗)

−2Re(ab) 2Re(ab) Re(a2 − b2) −Im(a2 + b2)

−2Im(ab) 2Im(ab) Im(a2 − b2) Re(a2 + b2)


.

Hence, after decoding (|kx|, |ky|, θ′), by using (10) we can find (|ex|, |ey|, θ). To decide on γ, we note

that [9]

|kx| · |Dky| exp(iγ′) = exp(iγ)

[
a2 −b2 −ab ab

]
`, (11)

where

` =



|ex| · |Dey|

|ey| · |Dex| · exp(−i(θ + Dθ))

|ex| · |Dex| · exp(−iDθ)

|ey| · |Dey| · exp(−iθ)


.

After decoding γ′ from (9) and finding (|ex|, |ey|, |θ|) from (10), the only unknown in (11) is γ, which

can easily be solved for.

High SNR approximation: For large arguments, I0(·) can be approximated as [15, eq. 9.7.1]

I0(x) ' ex√
2πx

(
1 +O(x−1)

)
. (12)

By neglecting O(x−1) terms in (12) and noting that

lim
x→∞

x− ln
(√

2πx
)

x
= 1, (13)

we can approximate (9) at high SNRs as

arg min
dk

|dk|2 − 2|〈dk,dr〉|

subject to |dk(3)| = |Dky|.
(14)

Despite the “similarity” of (14) and the minimum-distance decoder, they behave differently. By eliminating

|dr|2 in the expansion of |dk − dr|2, the minimum-distance decoder solves

arg min
dk

|dk|2 − 2Re (〈dk,dr〉)

subject to |dk(3)| = |Dky|,
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k0 k1 k2 k3
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w1:6[1] w1:6[2] w1:6[3]

Fig. 6. Flow-graph of the system. H is the channel matrix and hi denotes the optical front-end operation.

which is different from (14). For example, for dk1 = [3.5, 1.2e−3i, 2.8e−2i]
t, dk2 = [2.1, 2.8e0.5i, 2.8e3i]

t,

dr = [0.6, 1.8e−2i, 1.8e3i]
t, we have

|dk1|2 − 2|〈dk1,dr〉| < |dk2|2 − 2|〈dk2,dr〉|,

while

|dk1|2 − 2Re (〈dk1,dr〉) > |dk2|2 − 2Re (〈dk2,dr〉) .

As a result, the minimum-distance decoder maps dr to dk2, while the ML decoder maps it to dk1.

B. Sequence ML Detection

In this section, we show how to decode a sequence of transmitted data by using the min-sum algorithm

on the factor-graph of the system [16]. The sequence comprises two types of symbols: a pilot symbol

which is sent at the beginning of the sequence, and is known to the receiver (see Sec. II-A), and data

symbols.

The flow-graph of the system for a sequence of length four is shown at Fig. 6. Variable nodes (v-

nodes) and check nodes (c-nodes) are shown with circles and rectangles respectively. The channel matrix

is represented by H and the optical front-end is denoted by hi, i ∈ {0, 1, 2}.

Solving ML sequence-detection (MLSD) problem requires finding

arg max
de[1,...,n]

f(w1:6[1, . . . , n] | de[0, . . . , n]),
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dk[0] c0 dk[1] c1 dk[2] c2 dk[3]

w1:6[1] w1:6[2] w1:6[3]

Fig. 7. Final factor-graph. The c-nodes, ci, are cost functions.

which, as EÖK, can be written as

arg max
dk[1,...,n]

f(w1:6[1, . . . , n] | dk[0, . . . , n]), (15)

where de[0] and dk[0] are the pilot symbols. Note that w1:6[1, . . . , n] and dk[0, . . . , n] form a second-order

hidden Markov chain and as a result

f(w1:6[1, . . . , n] | dk[1, . . . , n]) =
n∏
j=1

f(w1:6[j] | dk[j − 1, j]).

By using (6), (15) is equivalent to

arg min
dk[1,...,n]

n∑
j=1

|kx[j]|2 + |ky[j]|2 − 2σ2 ln

I0

(
|〈dk[j],dr[j]〉|

σ2

)
I0(λy[j − 1])

 , (16)

which suggests to use the min-sum algorithm on its factor graph. A factor-graph representation of the

objective function of (16) for a sequence of length four is shown in Fig. 7. Note that the factor graph is

cycle-free, hence the min-sum algorithm produces the exact minimum. In addition, it is equivalent to the

Viterbi algorithm [16].

High SNR approximation: From (12) and (13), (16) can be approximated at high SNRs as

arg min
dk[1,...,n]

n∑
j=1

|kx[j]|2 + |ky[j]|2 − 2|〈dk[j],dr[j]〉|+ 2|ky[j − 1]| · |ry[j − 1]|.

C. Successive ML Detection

In symbol-by-symbol detection, we search over all possible transmitted symbols for the detection of each

received symbol; e.g., for an nr-ring/np-ary phase constellation for each polarization, (nrnp)
2 different
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possibilities must be examined. We can reduce this complexity by decoding in a successive manner, at

the expense of an increase in SER. In the proposed successive detection method, we decode the first

three dimensions jointly, then proceed to decode the fourth one with the knowledge of the first three

dimensions. In this way, we must examine (n2
r + 1)np different possibilities; which, for a large value of

np, the complexity reduction is significant. For example, for an 8-ring/16-ary phase constellation, we must

search over 214 possibilities to decode each symbol in the symbol-by-symbol scheme, while this number

reduces to 210 + 16 for successive detection.

1) The Likelihood Function at the First Successive-Step: The ML detection of the first three dimensions

necessitates solving

arg max
d̂k

f(w1:4 | d̂k),

which, due to the bijection between d̂r and w1:4 (see (2)), can be written as

arg max
d̂k

f(w1:4 | d̂k) = arg max
d̂k

f(|rx|, |ry|, θ′′ | d̂k). (17)

In Theorem 3, we find the likelihood function of the first three dimensions.

Theorem 3.

f(|rx|, |ry|, θ′′ | d̂k) =
|rx| · |ry|

2πσ4
exp

−
(
|d̂r|2 + |d̂k|2

)
2σ2

 I0

(
|〈d̂k, d̂r〉|

σ2

)
.

Proof. See Appendix B.

By using Theorem 3, we can rewrite (17) as

arg min
d̂k

|d̂k|2 − 2σ2 ln

(
I0

(
|〈d̂k, d̂r〉|

σ2

))
. (18)

Note that the optimal θ′, obtained by solving (18), is the closest possible one to θ′′, i.e., it maximizes

cos(θ′ − θ′′) over all feasible θ′. That is because I0(·) and ln(·) are strictly increasing functions. Hence,

to minimize the objective function of (18), we must maximize |〈d̂k, d̂r〉|, which from Fig. 5 obtains when

θ′ − θ′′ is the “closest” one to zero, i.e., cos(θ′ − θ′′) must be maximized.

High SNR approximation: Similar to the symbol-by-symbol detection, at high SNRs, (18) can be

approximated as

arg min
d̂k

|d̂k|2 − 2|〈d̂k, d̂r〉|.
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2) The Second Successive-Step: At the second successive-step, the fourth dimension is decoded. Ac-

cording to (2) we have

w5 = 2Re
(
rx · Dr∗y

)
= 2|rx| · |Dry| · cos(γ′′),

w6 = 2Im
(
rx · Dr∗y

)
= 2|rx| · |Dry| · sin(γ′′).

At this step, the intensities are treated as constants, as they have been decoded at the first successive-step.

As a result, there is a bijection between w5:6 and γ′′. The decoder performs ML detection of γ′ by solving

arg max
γ′

f(w5:6 | dk, d̂r, |Dry|) =

arg max
γ′

f(γ′′ | dk, d̂r, |Dry|). (19)

Theorem 4 provides an easy way to decide on γ′.

Theorem 4.

arg max
γ′

f(γ′′ | dk, d̂r, |Dry|) = arg max
γ′

cos(γ′ − γ′′ − α), (20)

where α = arg
(
〈d̂k, d̂r〉

)
, as shown in Fig. 5.

Proof. See Appendix C.

The interpretation of (20) is that the decoder chooses the closest feasible γ′ to γ′′ + α. This can be

justified by using Fig. 5 and (9) as well. In the first successive step we have decoded d̂k and as a result,

(λx, λy, θ
′ − θ′′) are fixed. From (9), we must maximize |〈dk,dr〉| to minimize its objective function,

which happens when the segment 〈dk,dr〉 in Fig. 5 has the smallest angular deviation from the segment

〈d̂k, d̂r〉. This means that γ′ − γ′′ must be the closest one to α.

IV. SUBCHANNEL FADING

In this section, we show that the optical front-end, studied in this paper, causes the fourth DOF (γ =

arg(ex · De∗y)) to be subjected to fast fading, which makes this subchannel exhibit a symbol error rate

behaviour that is markedly different than the other subchannels. For the purpose of this discussion, we

neglect the effect of noise (setting noise to zero); instead, we focus on the effect that the channel matrix,

H , has on the four DOF subchannels.
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As we see from (10), the relationship between the input and the output of the first three DOF subchannels

is determined by H , and does not depend on previously transmitted symbols. As a result, the subchannels

of the first three dimensions change only block-by-block; hence, we expect the first three dimensions to

experience a slow (block) fading channel.

The output of the fourth subchannel, however, is not only a function of the channel parameters, but

also a function of the previously transmitted symbols as well. Particularly, from (11), we have

eiγ
′
=

c

|kx| · |Dky|
eiγ,

where, the complex number c is

c = a2|ex| · |Dey| − b2|ey| · |Dex|e−i(θ+Dθ)

− ab|ex| · |Dex|e−iDθ + ab|ey| · |Dey|e−iθ.

The coefficient c is a function of (|Dex|, |Dey|,Dθ), which makes the fourth DOF subchannel vary symbol-

by-symbol. As a result, we see that the fourth DOF subchannel suffers from fast fading; and similar to a

Rayleigh fading channel, we expect the symbol error rate of the fourth dimension to be proportional to

1
SNR [17, p. 533]. In Sec. V, we see that the SER figures support this claim.

V. NUMERICAL RESULTS

In this section, we provide some numerical results to compare the discussed detection methods. For

all figures, the SNR is defined as the average transmitted energy per polarization over the complex-noise

variance per polarization. Specifically, for the discussed constellation, the SNR is defined as

SNR =
r2

1(1 + δ2
(
nr−1

2

)
)

2σ2
.

The resulting SERs for different constellations are shown in Figs. 8–14. The channel matrix for each

block of data is chosen uniformly over all possible H matrices (see Sec. II-B). By increasing δ2, the rings

become more distant from each other, hence it improves the performance of the first two dimensions in

terms of SER, but there is a trade-off with the performance of the phase channels. For example, for 2-

ring/4-ary phase constellation and the target SER of 10−3, changing δ2 from 1 to 4.83 results an improve

of 7 dB in the intensity channels, while it degrades the performance of the third channel by 3.5 dB

(compare Figs. 8 and 9). As another example, for 8-ring/8-ary phase constellation and the same target

SER, by changing δ2 from 2.12 to 15.36, the performance of the first two dimensions improve by 1.5 dB,
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while the performance of the third and the fourth dimensions degrades by 8 dB and 2.5 dB, respectively

(compare Figs. 10–12).

As shown, while the complexity of successive detection is smaller than other methods, its SER does

not differ noticeably. For example, by using 8-ring/8-ary phase constellation with successive detection,

the complexity of brute-force search is reduced (approximately) by a factor of 8, while for the target SER

of 10−3, it degrades the performance of the third channel less than 0.5 dB for δ2 = 0.69, and does not

affect the performance of other dimensions noticeably (see Fig. 10).

From Figs. 8–12, we see that the high-SNR approximation is a very good approximation which, by

avoiding computing the modified Bessel function, can reduce the complexity of decoder. In all of these

figures, the approximated figures and the actual ones are almost superposed. As a result, due to the large

size of the constellation and to remedy the long running time of the simulation, the SER figures for

8-ring/16-ary phase constellation are computed by high-SNR approximated formula.

As discussed in Sec. IV, we expect the fourth dimension to be under fast fading. The results support

our expectation. Similar to a Rayleigh fading channel, the SER of the fourth dimension is proportional

to 1
SNR , and that is the reason of the linear behaviour of the fourth dimension symbol error rate, shown in

Figs. 8–14. The fast fading behaviour is due to the non-zero b entry in the H matrix, which entangles the

fourth channel with the past data. Hence, we expect the fourth dimension to behave as same as the third

dimension when b = 0. Fig. 15 shows that this is indeed true. For this figure, the channel matrix varies

block-by-block, but in all cases, its b entry is zero. As |a|2 + |b|2 = 1, the no-entanglement condition

implies that a = eiζ , for some random ζ ∈ [−π, π).

The achievable rate for different constellations and δ2 are shown in Figs. 16–19. The rates are actually

I(|Kx|, |Ky|,Θ′,Γ′; |Rx|, |Ry|,Θ′′,Γ′′ | |DKy|, |DRy|), (21)

where I(U ;V ) denotes the mutual information between the random variables U and V , and is computed

by the Monte Carlo method. As there is a conditioning on |DRy|, (21) is actually the achievable rate of

the scheme, where the receiver feeds back the intensity of the received Y polarization. As we are using

an nr-ring/np-ary phase constellation, the maximum rate is 2 log(nrnp) bits per channel use.

The δ2 which causes the minimum Euclidean distance between two points on a ring (which happens for

the inner-most ring) to be the same as the minimum Euclidean distance between two points on different
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TABLE I

THE δ2BL FOR DIFFERENT CONSTELLATION, COMPUTED BY (22).

(nr, np) δ2bl (nr, np) δ2bl (nr, np) δ2bl

(2, 4) 4.83 (4, 4) 20.20 (4, 8) 6.18

(8, 4) 52.08 (8, 8) 15.36 (8, 16) 4.10

rings (which happens for the two outer-most rings) is denoted by δ2
bl (balanced δ2). It can be easily shown

that
δ2

bl = 4 sin2

(
π

np

)
(2nr − 3)

+ 4 sin

(
π

np

)√
4(nr − 1)(nr − 2) sin2

(
π

np

)
+ 1.

(22)

As it is shown in Figs. 16–19, although δ2
bl is not the optimal δ2, it is nearly optimal. The δ2

bl for different

constellation are shown in Table I. Inspired by [18], in Fig. 20 we have compared the achievable rate of

different constellations at their δ2
bl. This figure shows the necessity of using an error-correcting code at

the encoder. For example, by using a 4-ring/8-ary phase constellation without any error-correcting code,

we can transmit 10 bits per channel use at the SNR of 25 dB, while by using an 8-ring/8-ary phase

constellation and a code of rate 5
6
, we can achieve the same rate at the SNR of 20 dB; hence, we can

save 5 dB.

VI. CONCLUSION

We computed the maximum likelihood detection rule for symbol-by-symbol and sequence decoding, in

a four-dimensional Stokes-space scheme. To reduce the complexity of those schemes, we introduced

a successive detection method. To remedy dealing with special functions, we provided a high-SNR

approximation of the detection rules as well. We saw that the optical front-end studied in this paper

subjects the subchannel of one of the dimensions to fast fading. The decoding methods are compared by

simulations. We saw that using the successive method results a negligible loss, and in addition, the high-

SNR approximation is very accurate (even at low SNRs). Furthermore, the achievable rates of different

constellations are obtained by the Monte Carlo method.

An interesting future problem would be to design a a good error correcting code and modulation,

specialized for a particular application. We have assumed that noise contaminates the signal in the optical
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Fig. 8. Symbol-by-symbol detection (sym), its high-SNR approximation (apx), and successive detection (suc) of four dimensions for 2-

ring/4-ary phase constellation and δ2 = 1.
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Fig. 9. Symbol-by-symbol detection (sym), its high-SNR approximation (apx), sequence detection (seq), and successive detection (suc) of

four dimensions for 2-ring/4-ary phase constellation and δ2 = 2(1 +
√
2) ' 4.83.
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Fig. 10. Symbol-by-symbol detection (sym), its high-SNR approximation (apx), and successive detection (suc) of four dimensions for

8-ring/8-ary phase constellation and δ2 = 0.69.

10 15 20 25 30 35 40
10−5

10−4

10−3

10−2

10−1

100
sym.1 up to suc.2

superposed

sym.4 up to suc.4
superposed

sym.3 and apx.3
superposed

SNR (dB)

S
y
m
b
ol

E
rr
or

R
at
e

sym.1
apx.1
suc.1
sym.2
apx.2
suc.2
sym.3
apx.3
suc.3
sym.4
apx.4
suc.4

Fig. 11. Symbol-by-symbol detection (sym), its high-SNR approximation (apx), and successive detection (suc) of four dimensions for

8-ring/8-ary phase constellation and δ2 = 2.12.
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Fig. 12. Symbol-by-symbol detection (sym), its high-SNR approximation (apx), and successive detection (suc) of four dimensions for

8-ring/8-ary phase constellation and δ2 = 15.36.
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Fig. 13. High-SNR approximation of symbol-by-symbol detection of four dimensions for 8-ring/16-ary phase constellation and δ2 = 0.93.



21

10 15 20 25 30 35 40
10−5

10−4

10−3

10−2

10−1

100

SNR (dB)

S
y
m
b
ol

E
rr
or

R
at
e

apx.1
apx.2
apx.3
apx.4

Fig. 14. High-SNR approximation of symbol-by-symbol detection of four dimensions for 8-ring/16-ary phase constellation and δ2 = 4.10.
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Fig. 16. Achievable rate of 2-ring/4-ary phase constellation for different δ2.
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Fig. 17. Achievable rate of 4-ring/4-ary phase constellation for different δ2.
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Fig. 18. Achievable rate of 4-ring/8-ary phase constellation for different δ2.
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Fig. 19. Achievable rate of 8-ring/8-ary phase constellation for different δ2.
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Fig. 20. Achievable rate of different nr-ring/np-ary phase constellations, shown as (nr, np), at their δ2bl (see (22).)

domain, while a more comprehensive model might be to consider an additive noise source in the electrical

domain (after the photo diodes) as well. In that model, a noise term must be added to each of the six

output values, w1:6. Determing the ML detection rule for that scheme is left as future research. Throughout

this paper, we assumed that the receiver perfectly knows the channel matrix; it would be interesting to

conduct an analysis to determine how sensitive the detection performance is to this assumption.

APPENDIX A

Proof of Theorem 2. The phase of Ru, Ψu, has a von Mises distribution with the PDF given as [19]

f(ψu | |ru|, |ku|) =
exp(λu cos(ψu − φu))

2πI0(λu)
.

Note that

θ′ = φx − φy, γ′ = φx − Dφy,

θ′′ = ψx − ψy, γ′′ = ψx − Dψy,
(23)

and as a result, θ′′ and γ′′ are functions of ψx, ψy, and Dψy. Therefore, we use the Jacobian of this

transformation to compute the joint conditional PDF of Θ′′ and Γ′′ from the joint conditional PDF of

Ψx,Ψy, and DΨy [20, p. 244]. To use the Jacobian, the number of random variables before and after the
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transformation must be the same, which is not true in this case. We introduce a dummy random variable,

Ω = Ψx, and find the joint conditional PDF of Θ′′,Γ′′, and Ω. Then by marginalizing Ω, we obtain the

PDF of interest.

The determinant of the Jacobian matrix is

∣∣∣∣ ∂(Θ′′,Γ′′,Ω)

∂(Ψx,Ψy,DΨy)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣


1 −1 0

1 0 −1

1 0 0


∣∣∣∣∣∣∣∣∣∣

= 1,

where, e.g., the element in the first row and the second column of the Jacobian matrix is ∂Θ′′

∂Ψy
= −1.

As there is a one-to-one correspondence between (Θ′′,Γ′′,Ω) and (Ψx,Ψy,DΨy), there is only a unique

(ψx, ψy,Dψy) that contributes to the PDF of (θ′′, γ′′, ω). Let c , [|rx|, |ry|, |Dry|,dk]t denote the condition

vector. Then we have

fΘ′′,Γ′′,Ω|c(θ
′′, γ′′, ω | c) = fΨx,Ψy ,DΨy |c(ω, ω − θ′′, ω − γ′′ | c)

(i)
=
eλx cos(ω−φx)+λy cos(ω−θ′′−φy)+Dλy cos(ω−γ′′−Dφy)

8π3I0(λx)I0(λy)I0(Dλy)

(ii)
=

exp
(
|〈dk,dr〉|

σ2 cos(ω − φx + α + β)
)

8π3I0(λx)I0(λy)I0(Dλy)
.

where (i) is due to the independence of Ψx,Ψy and DΨy, and (ii) is true as, by using Fig. 5, we have

λxe
i(ω−φx) + λye

i(ω−θ′′−φy) + Dλye
i(ω−γ′′−Dφy)

=
(
|kx| · |rx|+ |ky| · |ry|ei(θ

′−θ′′) + |Dky| · |Dry|ei(γ
′−γ′′)

)
· e

i(ω−φx)

σ2

=
|〈dk,dr〉|

σ2
exp (i(ω − φx + α + β)) .

As a result,

λx cos(ω − φx) + λy cos(ω − θ′′ − φy) + Dλy cos(ω − γ′′ − Dφy)

= Re
(
λxe

i(ω−φx) + λye
i(ω−θ′′−φy) + Dλye

i(ω−γ′′−Dφy)
)

=
|〈dk,dr〉|

σ2
cos(ω − φx + α + β).
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By marginalizing Ω, we have

fΘ′′,Γ′′|c(θ
′′, γ′′ | c) =

∫ 2π

0

exp
(
|〈dk,dr〉|

σ2 cos(ω − φx + α + β)
)

8π3I0(λx)I0(λy)I0(Dλy)
dω

(i)
=

∫ 2π

0
exp

(
|〈dk,dr〉|

σ2 cos(ω)
)

dω

8π3I0(λx)I0(λy)I0(Dλy)

=
I0( |〈dk,dr〉|

σ2 )

4π2I0(λx)I0(λy)I0(Dλy)
,

where in (i), we have ignored the constant phase offset, −φx + α + β, as we are integrating over one

period of cosine function.

APPENDIX B

Proof of Theorem 3. We adopt the proof given in [19], with some adaptation to be consistent with our

notation. Let g = [d̂k, |rx|, |ry|]t. By the definition of conditional PDF, we have

f(|rx|, |ry|, θ′′ | d̂k) = f(|rx|, |ry| | d̂k)f(θ′′ | g),

so, to find f(|rx|, |ry|, θ′′ | d̂k), we compute f(|rx|, |ry| | d̂k) and f(θ′′ | g).

As said in the proof of Theorem 1, given |Ku|, |Ru| becomes independent of Θ′, for u ∈ {x, y}. As a

result, according to Theorem 1, we have

f(|rx|, |ry| | d̂k)) =
|rx| · |ry|

σ4
exp

(
−(|d̂k|2 + |d̂r|2)

2σ2

)
· I0(λx)I0(λy). (24)

To compute f(θ′′ | g), note that Θ′′ is the subtraction of two independent von Mises random variables

(see (23).) As a result, its PDF is the convolution of two von Mises PDFs, given as

f(θ′′ | g) =

∫ 2π

0

fΨ1(ψ1)fΨ2(ψ1 − θ′′)dψ1

=

∫ 2π

0
eλx cos(ψ1−φ1)+λy cos(ψ1−θ′′−φ2)dψ1

4π2I0(λx)I0(λy)

(i)
=

∫ 2π

0
exp

(
|〈d̂k,d̂r〉|

σ2 cos(ψ1 − φ1 + α)
)

dψ1

4π2I0(λx)I0(λy)

=
I0

(
|〈d̂k,d̂r〉|

σ2

)
2πI0(λx)I0(λy)

, (25)
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where (i) is true as

λx cos(ψ1 − φ1) + λy cos(ψ1 − θ′′ − φ2) = Re
(
λxe

i(ψ1−φ1) + λye
i(ψ1−θ′′−φ2)

)
= Re

(
ei(ψ1−φ1)

σ2

(
|kx| · |rx|+ |ky| · |ry|ei(θ

′−θ′′)
))

(ii)
= Re

(
ei(ψ1−φ1)

σ2
|〈d̂k, d̂r〉|eiα

)
=
|〈d̂k, d̂r〉|

σ2
cos(ψ1 − φ1 + α),

and for (ii) see Fig. 5 [21, p. 44]. Using (24) and (25), we have

f(|rx|, |ry|, θ′′ | d̂k) =
|rx| · |ry|

2πσ4
exp

−
(
|d̂r|2 + |d̂k|2

)
2σ2

 I0

(
|〈d̂k, d̂r〉|

σ2

)
.

APPENDIX C

Proof of Theorem 4. Given d̂k, d̂r becomes independent of (γ′, |Dry|, |Dky|). As a result, we have

arg max
γ′

f(γ′′ | dk, |Dry|, |rx|, |ry|, θ′′) = arg max
γ′

f(|rx|, |ry|, θ′′, γ′′ | dk, |Dry|)
f(|rx|, |ry|, θ′′ | dk, |Dry|)

= arg max
γ′

f(|rx|, |ry|, θ′′, γ′′ | dk, |Dry|)
f(|rx|, |ry|, θ′′ | |kx|, |ky|, θ′)

(i)
= arg max

γ′

I0

(
|〈dk,dr〉|

σ2

)
I0

(
|〈d̂k,d̂r〉|

σ2

)
(ii)
= arg max

γ′
|〈dk,dr〉|

= arg max
γ′

cos(γ′ − γ′′ − α),

where (i) is true due to (6) and Theorem 3, and (ii) is true as, at this step, |〈d̂k, d̂r〉| is the same for all

feasible γ′.
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