arXiv:1908.02816v1 [cs.IT] 7 Aug 2019

IEEE TRANSACTIONS ON COMMUNICATIONS

Short Non-Binary Low-Density Parity-Check Codes
for Phase Noise Channels

Tudor Ninacs, Student Member, IEEE, Balazs Matuz, Member, IEEE, Gianluigi Liva, Senior Member, IEEE,
Giulio Colavolpe Senior Member, IEEE

Abstract—This work considers the design of short non-binary
low-density parity-check (LDPC) codes over finite fields of
order m, for channels with phase noise. In particular, m-ary
differential phase-shift keying (DPSK) modulated code symbols
are transmitted over an additive white Gaussian noise (AWGN)
channel with Wiener phase noise. At the receiver side, non-
coherent detection takes place, with the help of a multi-symbol
detection algorithm, followed by a non-binary decoding step. Both
the detector and decoder operate on a joint factor graph. As a
benchmark, finite length bounds and information rate expressions
are computed and compared with the codeword error rate (CER)
performance, as well as the iterative threshold of the obtained
codes. As a result, performance within 1.2 dB from finite-length
bounds is obtained, down to a CER of 1073.

Index Terms—Non-binary coded modulation, non-coherent de-
tection, LDPC codes, phase noise, DP algorithm, turbo detection.

I. INTRODUCTION

In the context of the upcoming fifth generation (5G)
standard for cellular communications, massive machine-type
communications (mMTC) are considered to be one of the
key applications [[L], [2]. In this scenario, small devices, for
instance sensors, sparsely transmit small amounts of data. To
keep the cost of such devices small, low-end oscillators might
be used, which give rise to phase noise. Furthermore, non-
binary modulation schemes might be employed, in order to
efficiently exploit the available spectrum. Also, the number
of pilots for estimating the channel is chosen such that the
overall transmission overhead is kept as small as possible,
while maintaining sufficient quality of the channel estimate

[3].
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Whenever short frames are considered, e.g., in the order
of a few hundred symbols, pilots may yield a non-negligible
loss in spectral efficiency. A remedy consists in dropping the
usage of pilots and using a differential modulation scheme,
such as differential phase-shift keying (DPSK), with non-
coherent detection at the receiver [4], [S]], [6]. To recover the
performance gap with respect to the coherent case, i.e., when
full phase information is available at the receiver, non-coherent
detectors, which use multiple symbols to compute a decision,
may be used in practice. For sufficiently long sequences, they
are shown to perform close to coherent schemes [4], [7].

Depending on various constraints, two approaches can be
taken to reliably communicate in this scenario [6]]. In the
first approach, differential modulation can be used together
with a standard forward error correcting code [8]. This results
in a serial turbo scheme that is then decoded by iteratively
exchanging soft information between the detector and decoder.
This has been previously used on a variety of channels [9], [8],
[S]]. Alternatively, the channel code itself may be modified and
made resilient to phase uncertainties, as demonstrated, e.g., in
(10[, (L]

Code design for phase noise channels has been widely
addressed in the literature. In [6], [12] the authors investi-
gate different detection algorithms to counteract phase noise.
The detector is concatenated with the decoder of various
binary codes from the literature to form a turbo detection
scheme. Binary low-density parity-check (LDPC) code de-
sign for continuous phase frequency shift keying modulation
and a blockwise non-coherent additive white Gaussian noise
(AWGN) channel was performed in [13]] for a bit-interleaved
coded modulation scheme. In [14], a code design for binary
codes using differential modulation was considered. It was
shown that taking into account the differential modulator in
the code design yields performance gains. The work in [15]]
extends [[12]], by introducing an accumulator based LDPC code
design. Iterative decoding thresholds for irregular ensembles
are provided, while finite-length designs were not investigated.
In [16]], a similar scheme for multiple-input and multiple-
output communications was presented, where the detector was
merged with the check node (CN) decoder of a binary repeat
accumulate code.

Initial work on non-binary convolutional codes over rings,
using phase-shift keying (PSK) modulation, dates back to [[L7],
[18]], where various convolutional code designs were presented
for the AWGN channel. In order to make the codes robust
against block-wise phase noise, an additional differential mod-
ulator is suggested in [[L8], without yet considering powerful



turbo detection at the receiver.

A binary LDPC code design for binary phase shift keying
(BPSK) and Wiener phase noise, with turbo and blind phase
estimation, was presented in [19]]. During code construction,
some local CNs are introduced to resolve phase ambiguities.
In [10], the work is extended to quaternary phase shift keying
(QPSK) using 4-ary codes over rings. The scheme is shown
to handle Wiener phase noise with a standard deviation of up
to 2°. In both cases, codewords of a few thousand bits are
considered. LDPC codes over rings for PSK modulation and
the coherent AWGN channel were studied in [20].

In [21], a surrogate non-binary LDPC code design over a
finite field for the AWGN channel was presented. The codes
were adapted to the non-coherent phase noise channel and
showed excellent performance for short blocks. This work is
a continuation of [21]], where we further elaborate on the code
design.

In the following, we focus on transmission of short blocks
over AWGN channels with Wiener phase noise. To achieve
reliable communication, we make use of a coded modulation
system, where a non-binary LDPC code over a field of order
m is interfaced with a DPSK scheme of order m through a
symbol interleaver. At the receiver, detection and decoding
are performed on a joint factor graph, making use of the
discretized-phase (DP) algorithm for the detector [12] and
the non-binary belief propagation (BP) algorithm [22] for the
LDPC code decoder.

This contribution differs from the literature, as the focus is
on short blocks (in the order of a few hundred symbols) with
application to mMTC. In contrast to many existing works,
we make use of non-binary LDPC codes over finite fields,
owing to their excellent performance over the AWGN channel
for short blocks [22], [23], [24], [25]. Compared to [21],
we directly perform the code design of the concatenated
scheme for the non-coherent Wiener phase noise channel and
also present useful finite-length benchmarks for this channel.
Furthermore, we introduce a refinement step in the code design
process, aiming at lowering the error-floor.

The paper is organized as follows. Section [[I] provides some
background on the notation used, the channel model and the
receiver structure. In Section [[II| the performance bounds used
to benchmark our results are presented, followed by Section
where the code design is described. Finally, in Section[V]some
numerical results are provided and are followed by Section
where some conclusions are drawn.

II. SYSTEM SETUP
A. Transmitter Description

Throughout this paper, we will consider a coded modulation
system as depicted in Figure [T} Here, a length-K information
frame w = (uy, uy,...,uk), is encoded by a non-binary code
C over the finite field of order m, F,,. This yields a length-N
codeword v = (vi,Vvp,...,vy). Both u and v are non-binary
vectors whose elements belong to F,,.

The symbols of the codeword vector v are then inter-
leaved by means of a (random) interleaver m, yielding ¢ =
(c1,¢2,...,cN), and input to an m-ary DPSK modulator, where
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Fig. 1. Transmitter block diagram.

the field and modulation order are matched to each other. Dif-
ferential modulation is performed in two steps. At first the non-
binary symbols ¢;, are mapped to complex constellation points
belonging to X = {efz”l/m}, 1e€{0,...,m- 1} This results
in N complex modulation symbols, a = (ay, ay, ...,an), a; =
e/%i . In the second step, the phase of these symbols is accumu-
lated, obtaining the transmitted symbols s = (sg, 51, ..., SN)-
By expressing ¢; = arg(s;), the phase accumulator implements
¢ = [¢i—1 + ©i]2x, Where [-]o, denotes the operation modulo
27, and outputs N + 1 symbols, with so = 1.

In the following, we will always assume that the non-binary
code order is matched to the modulation order and that m > 2.
We also denote by k and n the number of information and
codeword bits in u and v respectively, with k = Klog, m,
n = Nlog, m. We define the code rate of the code C as Rc =
K/N = k/nf|

B. Channel Model

The DPSK symbols s; are transmitted over an AWGN
channel affected by phase noise. To model the phase noise,
we make use of a popular model from literature [6], i.e., the
Wiener model. Hence, the received sample r; is given by

ri = sie!% +n; (1
= % 6l% 4 p,
=ei+m 2)

where 6; is an unknown phase rotation introduced by the
channel and n; are independent AWGN samples distributed
as

ni ~CN (0,202).

According to the Wiener model we have that

0; = 0;_1 + Ab; 3)
where A6; are independent, distributed as

£6; ~ N (0.03)

with 6y uniformly distributed in [0,27). The phase of the
received signal ¢; is obtained as ¥; = [0; + ¢;]2x-

As a reference, we also evaluate the performance of our
system on a coherent AWGN channel, obtained by setting 6; =
0,Vi in (I).

'Examples of such mappings are given in Section E]

ZRecall that the DPSK accumulator outputs N + 1 symbols, where the
symbol sg is a phase reference symbol. It follows that the exact code rate of
the concatenated scheme is K /(N + 1) = k/(n +log, m). The difference with
respect to the code rate R¢ turns out to be very limited for the block lengths
considered in this paper. We always refer to R¢ in the paper.
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Fig. 2. Block diagram of the iterative receiver.

C. Iterative Detection and Decoding at the Receiver

The block diagram in Figure [2] illustrates the exchange
of messages at the receiver. First, the detector processes the
received samples r together with the a priori information LA-det
on the modulated codeword sequence a, available from the de-
coder. The message vector LAdet = (LA det LA’det L’?}det)
is a vector of N probability mass functions (p m.f.s), having
m-dimensional components L det The same holds for all the
other vectors, LE-det LA,dec LE dec LAPP dec_

We have that Lf\’det = P(ai) is initially set to
[1/m,...,1/m]. The detector computes soft extrinsic infor-
mation LE9! on the modulated codeword symbols a with
L:.E’det = kP(a;|r)/P(a;), with the division performed element-
wise and followed by a normalization step (denoted as such
by multiplication with constant k). The elements of LEdet
are de-interleaved and provided as a priori information on
the code symbols v to the decoder. Second, from these a
priori messages, the decoder computes a posteriori messages
LAPP.dec yiih L APP-dec o p(y, l|LA de) and extrinsic messages
LEdeCc  with L~ dec _ kLAPP deC/LA’deC, where again the
division is performed element wise and is followed by a
normalization step. The extrinsic messages are interleaved and
provided to the detector as a priori information, which can
be used to compute refined estimates of Ll.E’det. The message
exchange between the decoder and detector is iterated for
a certain number of times, before a decision on the code
symbols, based on LAPP.dec iq made.

In the following, we describe the structure of the detector
based on the work in [12]], [21], followed by a discussion on
the decoder.

1) Detection: The role of the detector is to provide an
estimate of the symbol-wise probability P(g;|r), which is
divided element-wise by the priors P(a;) and normalized, to
obtain the extrinsic information L~ ® that is forwarded to the
decoder. It is computed starting with the factorization [6]]

p(a,yr) = p(r|a, !ﬁ)p(lﬁla)P(a)—

p(r)

N )
o prolo) [ | prilwap@ilwi, ai)P(ar)
i=1

where due to the Wiener model and the differential modula-

tion p(YilYi-1,...,¥0.a) = p(ili-1,a;). This factorization
allows us to make use of factor graphs [26] and compute
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P(aj|r)/P(a;) as

2n 2m

Plailr) / / Wi BWIPWilVi, adyidiy  (5)

P(a,

where a(y;) and B(y;) equal [12]

2
a(y;) = P(HM)/ (ZP(%Wil,ai)P(ai)) a(i-1) diy
0o ‘%
(6)

27
B) = P(Vi|lﬂi)/ (Z pWisil i, ai+1)P(ai+l)) BWis1) dic
0

ai+1

(7

with a(yo) = p(rolo) and BYn) = p(ryl¥N).
To compute a(y;) and B(y;), we proceed as follows. Firstly,

p(ril¥;) is a complex Gaussian probability density function
(p.d.f.) with mean /¥ and variance o> per dimension. For
the coherent case, where there is no phase uncertainty, i.e.,
0; = 0,Vi, in the above iterations, the probability p(y;|y;-1, a;)
reduces to an indicator function
if /% = q.elPi-1
PWiliot @) “S" L = aei?r) = {1’ e = e
0, otherwise
()
The detector implements nothing else but the Bahl Cocke
Jelinek Raviv (BCJR)[27] algorithm on the trellis of the
differential modulator.

For the non-coherent case we start with the Wiener model
in (3) and the identity ¢; = [¢;—1 + ¢;]2x, which allows us to
write y; = [i_1 +@; +A0; 2. Since a; = e/%i is a deterministic
mapping between ¢; and a;, it holds that

pWilgi-1,ai) = pWili-1, ¢i) = pali —=vi-1 — i) (9)

where pa(-) is the p.d.f. of the phase-noise increment A6;
(modulo 2r). For brevity we denote x = Af; and hence

+00
pa(x) = > 8(0,03;x = 2m) (10)
{=—c0
where
1 _<x—;12)2
g(u,o-ﬁ;x)z e %A (1)

A / 27r0'§

since the increment A#; is normally distributed.

For the values that o takes in practice, the p.d.f. in (TI)
is approximately zero in all points, except for some points in
the vicinity of u [15]. Hence, we can approximate

pax) = (0,073 x) (12)
and simplify (T0) to
PaWi = Wic1 — @) = (0,004 —Yis1 — ). (13)

Still, using (13) in @), () and (7). the computations are
rather complex, since they involve evaluating integrals of



continuous p.d.f.s. A possible solution to this problem is to
discretize the channel phase and implement the so-called DP
algorithm [6]. We hence assume that i; is discrete and belongs
to the set {2nj/L}, j € {0,..., L—1}, with L being the number
of discretization levels. Moreover, [8] suggests using a further
simplification

1- PA, x=0
_ )] Pa _ 2n
palx) =954, |x| = =+ (14)
0, else

with Pp being an optimization parameter obtained via simula-
tion. For all our simulations we have used P, = 0.1. It has been
shown that a phase discretization factor of L = 8m is enough to
obtain negligible losses with respect to the unquantized case.
With these two approximations, the integrals in (3), (6) and
become summations and the computation of all values above
becomes feasible in practice.

2) Decoding: The code C is assumed to be an LDPC code.
Thus, standard belief propagation for non-binary LDPC codes
from the literature can be applied. For more details on non-
binary decoding of LDPC codes, the reader is referred, e.g.,
to [22]], [28]]. For our setup, we perform only one iteration of
the belief propagation algorithm within the decoder at a time,
and allow a maximum of N; = 200 iterations between the
detector and decoder. This value was chosen in accordance
with the literature on non-binary LDPC codes (see, e.g., [22],
1241, 1291, [130D).

III. PERFORMANCE BOUNDS

We use two benchmarks to assess the performance of our
system. The first one is the information rate, which gives a
lower bound on the achievable rate when the block length
goes to infinity. It is defined as

[logz ”l(?l({lg) = lim_ %E [i((S: R)]
where i(-;-) denotes the information density and S and R
are random vectors associated to the process describing the
transmitted and received symbols, respectively. To compute it,
we resort to the methods of [31] as described in [15]].

As a finite-length performance benchmark we compute the
dependency testing (DT) bound [32]], which provides an upper
bound to the average block error probability Pp of a random
code with M = mX codewords of length N + 1. Following [32]
we obtain

1
lim —E
N—ooo N

15)

2— (i(S;R)—log2 MT’I )

Pp<E (16)

1 —(i(s;r)—(K log, m—l))
~ 5 Z 2 (17)

(s.r)

where (x)* = max(x,0) and D is the number of (s,r)
tuples. Analogously to the computation of the information
rate, we compute the information density as described in [32],
following a Monte Carlo approach. To this end, we randomly
generate an input sequence of DPSK modulated symbols s,
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which we transmit over the communication channel to obtain
r. For the tuple (s,r) we then evaluate the information density
i(s;r) and the corresponding summand in (T7). We repeat this
experiment D times and average over the outcomes. For the
communication channel used to compute r, we either use a
Wiener phase noise channel, as defined in @) or a coherent
AWGN channel, both yielding different expressions for the
information density in (T7).

IV. CODE DESIGN

We are interested in the design of m-ary LDPC codes for
m-DPSK modulation over a non-coherent Wiener phase noise
channel, described in Section[[Tl Our methodology for the code
design is as follows. First, we aim to find a protograph LDPC
code ensemble with an iterative decoding threshold close to the
theoretically achievable limit. In an optional second step, we
refine the protograph code design, aiming at error floors below
a target block error probability. Next, a brief introduction on
protograph LDPC codes is given, followed by a discussion
on the computation of the iterative decoding threshold. Then,
a detailed description of the protograph search algorithm is
provided. The section is complemented by some remarks on
the algorithm.

A. Protograph LDPC Codes

Protograph-based binary LDPC codes were originally intro-
duced in [33]. This class of structured LDPC codes performs
excellently on a wide class of communication channels while
the code structure permits hardware friendly implementations.
A protograph can be any Tanner graph, typically one with a
relatively small number of nodes [33] which are connected
by single or multiple edges. In the protograph, each variable
node (VN) and CN is said to be of a certain type. The
protograph can be seen as a template for the bipartite graph
of an LDPC code, which is obtained by lifting the protograph
through “copy-and-permute” operations. For this, ¢ copies of
the protograph are generated and interconnected as follows.
Edges among all copies are permuted such that if a node of
type i was connected to a node of type j in the protograph,
then any of its £ copies are connected to any of the ¢ copies
of the node of type j. After expansion, parallel edges are no
longer permitted. In order to optimize the girth of the resulting
graph, we perform the expansion by a circulant version of the
progressive edge growth (PEG) algorithm [34]. A protograph
can be represented by a my X nj, base matrix B whose entries
b;j give the number of edges connecting a CN of type i to
a VN of type j E] Note that a protograph, or alternatively its
base matrix, describe an ensemble of LDPC codes.

Non-binary protographs were first introduced in [24], and
can be divided into constrained and unconstrained protographs
[35]. The former ones possess additional edge labels from
F,»\{0}. After expansion, these labels correspond to the non-
binary coefficients in the code’s parity-check matrix. In this
work, our attention is on unconstrained protographs, for which

3The expansion factor £ can be computed as £ = [N/ny], where the
squared brackets denote the "nearest integer" function.
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no edge labels are assigned at protograph level. Rather, the
edge labels are assigned after the final expansion step and are
chosen uniformly at random from F,,\{0}.

B. Iterative Decoding Threshold Computation

The iterative decoding threshold of an LDPC code ensemble
is defined as the worst channel parameter for which the
ensemble average probability of symbol error vanishes, when
the block length and the number of decoding iterations go
to infinity. Iterative decoding thresholds of unstructured non-
binary LDPC code ensembles for AWGN channels can be
conveniently computed by making use of extrinsic information
transfer (EXIT) analysis [36]. The extension to non-binary
protograph ensembles can be done by adapting the results in
[37]].

We have computed iterative decoding thresholds for pro-
tograph LDPC code ensembles over F,, adopting Method 1
from [36]. Here, the log-probability ratios, passed on the
edges of the bipartite graph, are approximated as multivari-
ate Gaussian random variables. We have found empirically
that the computed thresholds obtained by Method 1 provide
limited accuracy for the setup in Figure [T} To increase the
accuracy of the threshold computation, the authors in [36]
propose Method 2. This method can be adapted to non-binary
protograph LDPC codes and requires measuring the transfer
function, for each VN and CN type in the protograph, which
relates the extrinsic mutual information at the output of a
node to the a priori mutual information at its input. Measuring
the transfer function imposes a high computational burden, in
particular if various protographs are tested, each with different
node types. In this case, EXIT analysis loses its advantage
of providing a low-complexity alternative to other techniques,
such as Monte Carlo density evolution [38]].

We therefore resort to Monte Carlo density evolution [38] to
obtain the thresholds. In brief, the iterative decoding threshold
of a protograph LDPC code ensemble is obtained by perform-
ing decoding on a large bipartite graph, where iteration by
iteration, the edge interleavers between the different node types
are changed in order to emulate the average ensemble behavior
(see [38], [39] for details). We also make use of channel
adapters for the iterative decoding threshold computation and
resort to the all-zero codeword assumption [36]. Note that,
owing to the protograph structure of the LDPC codes, we place
an interleaver between the detector and decoder, similarly to
[40]. For the threshold computation we use a different random
interleaver for every decoding attempt. The computational
cost of Monte Carlo density evolution is still too high to
enable the use of iterative optimization algorithms, such as
differential evolution [41], for the search of protographs with
good iterative decoding thresholds. For this reason, we propose
a simplified protograph search methodology, aiming to reduce
the protograph search space.

C. Protograph Search

On the coherent AWGN channel, let us denote the input
constrained Shannon limit in terms of energy per information
bit to noise power spectral density ratio by (Ejp /No)gh and

the iterative decoding threshold of a protograph LDPC code
ensemble by (Ej,/Ny)s. Similarly, on the non-coherent Wiener
phase noise channel the theoretical limit from the information
rate expression in Section is named (Ep /NO)EQ, while
the iterative decoding threshold of a protograph ensemble is
termed (Ep/No)ne- Also, we denote by Z, the set of non-
negative integers smaller than p. We introduce the following
definitions.

Definition 1. An my, X np, single entry matrix Q is a matrix
whose entry g; ; = 1 for some i, j and all other entries are set
to zero.

Definition 2. A minimal set M, of my X n, matrices is a
set for which an element B € M, cannot be obtained by row
and/or column permutation of any other element in M,.

Minimal sets are of particular interest, since the iterative
decoding threshold of a protograph does not change by
permuting the rows and/or columns of the associated base
matrix. Hence, in the following, we start from a set M of
protograph base matrices and generate a minimal set M, out
of it, as follows. We start with an empty set M, and pick one
element of M after the otherE] We include an element of M in
M., if, after inclusion, M, is still a minimal set. Otherwise,
the element is rejected. We formalize the protograph search
algorithm as follows.

First Step (Threshold Optimization): Our objective is to
find a protograph with iterative decoding threshold (Ep/No)ne
on the Wiener phase noise channel as close as possible to
(Eb/No)ﬁg. We consider only a small number of protographs
for which iterative decoding thresholds are computed and
proceed as follows.

First, generate all p"*"> my, X n;, base matrices whose ele-
ments b; ; are picked from Z, yielding the set M. Expurgate
M by imposing constraints on the base matrices contained
in it: discard an element if it contains zero weight columns
or if the number of weight-1 columns exceeds my. Generate
a minimal set M, out of the expurgated set and compute
iterative decoding thresholds for the elements of M,. Select
the base matrix B* with the best iterative decoding threshold
and expand it to obtain an (&, K) LDPC code as discussed in
Section Finally, evaluate the code performance on the
Wiener phase noise channel by Monte Carlo simulation.

Second Step (Refinement): If the simulation results show a
visible error floor above a target block error probability, we
attempt to lower the error floor by changing the code design
as follows.

The base matrix B* from step 1) is expanded by a factor of
t’, where ¢’ = max; ; sz is the largest base matrix entry. The
expansion is done according to the description in Section[[V-A]
This yields the m; X n, base matrix B’, with m; = {'m.
Generate a new set M’ where each element is obtained by
adding to B’ a different m; X n, single entry matrix. This

yields a set with cardinality |[M’| = m; n;, since there are

bbb’

4The ordering of the elements of M does not play a role in our case.



myn, distinct m; X n, single entry matrices. Note that the
matrices in M’ have an increased average column and row
weight with respect to B*, which is expected to improve the
distance properties of the corresponding ensemble and hence
to lower the error floor (see, e.g., [42], [43]]). Next, a minimal
set M, is generated out of M’. Iterative decoding thresholds
for the base matrices in M, are computed and the one with
the best iterative decoding threshold is selected. By expansion,
an (N, K) LDPC code is obtained and simulated on the Wiener
phase noise channel. In the case that the error floor is no longer
visible above the target block error probability the algorithm
stops, otherwise step 2 is repeated by selecting the next best
candidate in M,.

D. Remarks

We conclude the section with the following remarks. Firstly,
for a given code rate, the dimensions my and nj of the base
matrix are picked to be as small as possible in order to limit the
search space. For instance, for code rates R = (r — 1)/r, base
matrices of size 1Xr are considered. Secondly, the base matrix
entries b; ; are chosen from Z4. This is motivated by the fact
that non-binary LDPC codes with VN degrees of three and
less show excellent performance on Gaussian channels [25],
[23].

V. NUMERICAL RESULTS

In the following, we present some code design examples
by applying the rule described in Section We also provide
theoretical benchmarks based on the results in Section [l In
particular, for the coherent AWGN case, the Shannon limit
(Ep/ No)gh and DT bound are computed. For the non-coherent
case, the respective theoretical limit (Ej/No)S and DT bound
are given. Different DPSK orders (thus field orders), code
rates and standard deviations of the phase noise increment
are considered. In particular, the standard deviation of the
phase noise increment is op = 2° for 8-PSK and op = 1°
for 16- PSKE] The mapping between field elements and 8-
PSK, as well as 16-PSK symbols, are provided in Tables m
and [I1] l respectively. A target block error probability of 1073 is
assumed, above which no visible error floor should occur. This
falls in the range of error probabilities currently discussed for
mMTC in 5G.

Example 1 (R, = 1/2, 8-DPSK). Step 1 of the protograph-
search for the Wiener phase noise channel yields the set M,
of 1 x 2 base matrices. All elements of M, are given in the
upper part of Table [0 The Shannon limit for the coherent
case is (Eb /No)C = 1.28 dB. For the non-coherent channel
(E;,/NO)nC = 1.56 dB. We find that among all the tested
candidates the protograph with base matrix Bl1 = [2 1] has
the best threshold (Ep/No)ne = 2.11 dB on the non-coherent
phase noise channel. We designed an 8-ary (160, 80) LDPC
code with rate R. = 1/2 from B!, where code parameters are
given in symbols belonging to Fg.

SNote that the chosen values represent worse case scenarios for the phase
noise for Digital Video Broadcasting - Satellite 2 (DVB-S2) [44]] or 5G [45].
This can be seen by comparing the respective phase noise masks with the
power spectral density (PSD) of the Wiener process with oy = 2° or oy = 1°.

IEEE TRANSACTIONS ON COMMUNICATIONS

TABLE I
MAPPING BETWEEN Fg CODE SYMBOLS, THEIR BINARY IMAGE, AND
GRAY LABELED 8-PSK MODULATION SYMBOLS. THE PRIMITIVE

POLYNOMIAL FOR Fg IS 1 + x + x°.

Fg element | Binary label | 8-PSK symbol

0 000 1
a® 001 eIl
a! 010 el3m/4
a? 100 el /4
@’ 011 eI m?
P 110 el

a’ 111 elSm/4
a® 101 el37/2

TABLE II

MAPPING BETWEEN Fig CODE SYMBOLS, THEIR BINARY IMAGE, AND
GRAY LABELED 16-PSK MODULATION SYMBOLS. THE PRIMITIVE

POLYNOMIAL FOR Fig IS 1 + X + x*.

Fi6 element | Binary label | 16-PSK symbol

0 0000 1
a® 0001 e/m/8
a! 0010 eJ3n/8
a? 0100 el /8
@ 1000 e 157/8
at 0011 e/
a’ 0110 eln/2
ab 1100 el

a’ 1011 e/ 137/8
al 0101 eJ3n/4
@ 1010 el /2
(Yl() 0111 ej57r/8
Q“ 1110 ejllﬂ/S
a'? 1111 e/ /4
al? 1101 e/ /8
a'* 1001 eI /4

Simulation results for both the coherent and non-coherent
channels in terms of codeword error rate (CER) versus Ej, /Ny
are given in Figure [3] We observe that both in the coherent,
as well as in the non-coherent case, the gap to the DT bound
is around 1 dB. Since an error floor above the target block
error probability of 1073 occurs, step 2 of the protograph
search is performed. This yields the set M, consisting of three
2 x 4 base matrices given in the lower part of Table [Tl The
base matrix Bl , 1s selected since it has the lowest threshold
among all elements in M_,. With a minor loss in the waterfall
performance, the error floor no longer appears in the simulated
Ey /Ny regime, as can be seen in Figure |3} We note that the
gap between the two DT bounds is similar to the gap between
the CER performance for the code with base matrix B] 1~ This
suggests robustness against phase noise, at least when o is
not larger than 2°.

As a benchmark, we compare our scheme with a competitor
from the literature. To this end, we adopt the serially concate-
nated scheme from [6] in the absence of pilots, where the
detector implements the DP algorithm. The difference to our
setup is that the outer channel code in [6] is a binary con-
volutional code with generators (5,7) in octal notation. Both
detector and convolutional code decoder iteratively exchange
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TABLE III
ITERATIVE DECODING THRESHOLDS FOR THE NON-COHERENT AND
COHERENT AWGN CHANNEL FOR 8-DPSK MODULATION AND RATE-1/2
PROTOGRAPHS.

Base Matrix (Ep/No)ne [dB] | (Ep/No)g [dB]

B! [2 1] 2.11 1.84

B} [31] 2.51 2.35

B! [22] 3.05 2.82

B, [32] 391 3.66
I

Bl [3 3] 478 4.46
. 2 1 1 0

B!, 2.18 1.98
’ 1 1 0 1
| 1 1 2 0

B!, 251 2.31
’ 1 1 0 1
. 1 1 1 0

B!, 235 2.15
’ 11 1 1

messages, yielding a powerful serial turbo code, denoted as
such in Figure [3] We observe a loss of around 0.7 dB of the
turbo code with respect to our LDPC protograph code for both
the coherent and non-coherent case. We may further improve
the error floor performance of the turbo scheme by increasing
the memory of the binary convolutional code, which yields a
small sacrifice in the waterfall performance for the coherent
case. The performance of the turbo scheme having a 16 state
(23, 25) outer convolutional code is also depicted in Figure

Example 2 (R, = 2/3, 8-DPSK). Step 1 of the protograph
search for the Wiener phase noise channel yields the set M,
of 1x3 base matrices. Iterative thresholds for all elements are
given in Table[[V]for both the coherent and non-coherent chan-
nels. The Shannon limit for the coherent case 1s (Eh/ NU)
2.76 dB. For the non-coherent channel (Ej, /NO)nc =3.15 dB.
We find that the protograph with base matrix BH [2 2 1] has
the best threshold (Ep, /No)pe = 3.81 dB among all 7 candidates
in Table We build out of it a rate-2/3 code with parameters
(120, 80) and plot the CER versus Ep /Ny on both the coherent
and non-coherent AWGN channels in Figure 4| We observe
from the figure that the gap to the DT bounds is around 1 dB,
respectively. No visible error floor is present at the target block
error probability.

Example 3 (R. = 3/4, 16-DPSK). Step 1 of the proto-
graph search yields a set M, of 1 X 4 base matrices. Its
elements with the corresponding iterative decoding thresholds
are given in Table . The Shannon limit for the coherent
case is (Ep /No) = 6.73 dB. For the non-coherent chan-
nel (E, /N())nc 7.12 dB. We find that the base matrix
B = [2 2 2 1] has the best threshold (Ej,/No)ye = 8.24 dB
for the non-coherent phase noise channel. We observe from
the table that an ultra-sparse LDPC code with regular VN
degrees of two would have 0.5 dB worse threshold. A rate-3/4
(128,96) LDPC code is obtained from it and its CER versus
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—— DT bound, coh. ----- DT bound, non-coh.

—e— LDPC B!, coh. -©--LDPC B!, non-coh.
——LDPC B! |, coh. -4--LDPC B! |, non-coh.
Serial turbo (5, 7), coh. Serial turbo (5, 7), non-coh.
—— Serial turbo (23, 25), coh.  --¢-- Serial turbo (23, 25), non-coh.
100 T T
107t F B
o~
=
O
1072 .
1073 - Y
1.5 . 3.5 . 5

Ey/ Ny [dB]

Fig. 3. Comparison between LDPC codes over Fg with base matrices BI and
BI L1 with a serial turbo scheme, combined with 8-PSK modulation, code rate
1/2, N = 160 symbols and phase-noise having o, = 2° for the non-coherent
case.

TABLE IV
ITERATIVE DECODING THRESHOLDS FOR THE NON-COHERENT AND
COHERENT AWGN CHANNEL FOR 8-DPSK MODULATION AND RATE-2/3
PROTOGRAPHS.

Base Matrix | (Ep/No)ne [dB] | (Ep/No)s [dB]

BIl [221] 3.81 3.44
Bl [321] 4.15 3.77
B! [331] 4.62 421
Bl [222] 4.42 4.02
Bl [322] 4.80 437
B! [332] 5.19 475
Bl [333] 5.55 5.09

Ep /Ny curve is depicted in Figure [5] together with the DT
bound for the coherent and non-coherent AWGN channel. We
observe from the figure a gap with respect to the DT bound
of around 1.2 dB.

VI. CONCLUSIONS

In this work, we investigate the design of non-binary
protograph LDPC codes for the Wiener phase noise channel.
We consider the serial concatenation of an outer m-ary LDPC
code over the finite field of order m and m-DPSK, and target
transmission of short blocks in the order of a few hundred
symbols. Decoding of the concatenated scheme is performed
in a turbo-like fashion where a detector and decoder iteratively
exchange beliefs among each other. We give a finite-length



—— DT bound, coh.
—— LDPC B, coh.

10° T

----- DT bound, non-coh.

-4-- LDPC B!, non-coh.

1071

CER

1072

-3 i
10 3 3.5 4 4.5 5 5.5 6 6.5

Ey/No [dB]

Fig. 4. Simulation results of an LDPC code over Fg with base matrix BIII
combined with 8-DPSK modulation, code rate 2/3, N = 120 symbols and
phase-noise with oy = 2° for the non-coherent case.

TABLE V
ITERATIVE DECODING THRESHOLDS FOR THE NON-COHERENT AND
COHERENT AWGN CHANNEL FOR 16-DPSK MODULATION AND RATE-3/4

PROTOGRAPHS.
Base Matrix | (Ep/No)pe [dB] | (Ep/No)s [dB]
B [2221] 8.24 7.85
Bl [3221] 8.57 8.16
Bl [3321] 8.95 8.50
Bl [3331] 9.31 8.83
BII [2222] 8.76 8.33
B[ [2223] 9.08 8.62
Bl [3322] 9.40 8.93
B! [3332] 9.71 9.19
B [3333] 9.97 9.45

benchmark, namely the DT bound, both for the coherent and
non-coherent case. We show that, with a proper protograph
LDPC code design, a performance of 1.2 dB or less from the
DT bound is achieved down to a CER of 1073, even in the
presence of strong phase noise. All our designs are robust
with respect to phase noise, in the sense that they nearly
show the same gap to the respective bounds for both the
coherent and non-coherent setup. Furthermore, we observe that
the protographs obtained for the Wiener phase noise channel
are also the ones which have the best thresholds among all
investigated protographs on the coherent channel.
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