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Abstract—This work considers a multicell Massive MIMO
network with L cells, each comprising a BS with M antennas
and K single-antenna user equipments. Within this setting,
we are interested in deriving approximations of the achievable
rates in the uplink and downlink under the assumption that
single-cell linear processing is used at each BS and that each
intracell link forms an uncorrelated MIMO Rician fading channel
matrix; that is, with a deterministic line-of-sight (LoS) path
and a stochastic non-line-of-sight component describing a spatial
uncorrelated multipath environment. The analysis is conducted
assuming that N and K grow large with a given ratio N/K under
the assumption that the data transmission in each cell is affected
by channel estimation errors, pilot contamination, an arbitrary
large scale attenuation and LoS components. Numerical results
are used to prove that the approximations are asymptotically
tight, but accurate for systems with finite dimensions under
different operating conditions. The asymptotic results are also
used to evaluate the impact of LoS components. In particular,
we exemplify how the number of antennas for achieving a target
rate can be substantially reduced with LoS links of only a few
dBs of strength.

Index Terms—Massive MIMO, uncorrelated Rician fading
channels, asymptotic analysis, random matrix theory, non-
centered random channel estimates, pilot contamination.

I. INTRODUCTION

Massive MIMO refers to a wireless network technology

where base stations (BSs) are equipped with a very large

numberM of antennas to serve a multitude of user equipments

(UEs) by spatial multiplexing [1], [2]. Exciting developments

have occurred in the recent year. In industry, the technology

has been integrated into the 5G New Radio standard [3]. In

academia, the long-standing pilot contamination issue, which

was believed to impose fundamental limitations [1], [4], has

finally been resolved [5]. More precisely, [5] used optimal pro-

cessing under correlated Rayleigh fading channel models [6,

Sect. 2.4] and proved that an unbounded capacity (as M → ∞)

is achieved with Massive MIMO when the channel covariance

matrices of the pilot contaminating UEs are asymptotically

linearly independent, which is generally the case in practice.

In this work, we consider both uplink (UL) and down-

link (DL) of a Massive MIMO network with L cells, each

comprising a BS with M antennas and K single-antenna

L. Sanguinetti is with the University of Pisa, Dipartimento di Ingegneria
dell’Informazione, 56122, Italy (luca.sanguinetti@unipi.it). A. Kammoun is
with the Electrical Engineering Department, King Abdullah University of
Science and Technology, Thuwal, Saudi Arabia (abla.kammoun@gmail.com).
M. Debbah is with the Mathematical and Algorithmic Sciences Lab, Huawei
Technologies Co. Ltd., France (merouane.debbah@huawei.com).

A preliminary version of this paper was presented at IEEE ICASSP’17,
New Orleans, USA, March 2017.

This work was partially supported by the University of Pisa under the PRA
2018-2019 Research Project CONCEPT and also by the H2020-ERC PoC-
CacheMire project (grant 727682).

UEs. We assume that the system is affected by channel

estimation errors, pilot contamination, and an arbitrary large

scale attenuation. Single-cell linear processing is used at the

BSs [6, Sect. 4.1.1]. In particular, we assume that in the DL

maximum ratio transmit (MRT) or regularized zero forcing

(RZF) are used as precoding techniques, whereas maximum ra-

tio combining (MRC) or minimum mean square error (MMSE)

combing are used in the UL for data recovery. Inspired by [7],

we aim at deriving approximations of the achievable rates.

The analysis is conducted assuming that N and K grow

large with a non-trivial ratio N/K . Unlike [7] and most of

the existing literature on the asymptotic analysis of Massive

MIMO systems, we model the intracell communication links

as uncorrelated Rician fading, which is more general and

accurate to capture the fading variations when there is a line-

of-sight (LoS) component.

A. Contributions

Compared to Rayleigh fading, a Rician channel model

makes the asymptotic analysis of Massive MIMO much more

involved than in [7]. To overcome this issue, recent results

from random matrix theory and large system analysis [8], [9]

are used to compute asymptotic expressions of the signal-to-

interference-plus-noise ratios (SINRs), which are eventually

used to approximate the achievable rates. The approximations

are proven to be asymptotically tight, but accurate for realistic

system dimensions, by means of the numerical results. As a

notable outcome of this work, the above asymptotic analysis

provides an analytical framework that can be used to evaluate

the network performance under different settings without re-

sorting to heavy Monte Carlo simulations. Also, it can be used

to eventually get insights into how the LoS components in each

cell affect channel estimation errors, intercell interference,

and pilot contamination. To exemplify this, we consider a

simplified channel model wherein the LoS vectors of different

UEs are mutually orthogonal and analyze to which extent the

presence of LoS components, with only a few dBs of strength,

bring potential benefits to the SE of the network. To further

quantify this, we numerically compute the number of antennas

needed to achieve a given average rate with Rician fading and

show this is substantially smaller than with Rayleigh fading.

This confirms that if the UEs are scheduled properly (such that

the interference between their LoS components vanish as the

number of antennas grows) Rician fading may be beneficial

for Massive MIMO [10]. The conference version [11] of this

paper contains only a subset of the analysis above (and has

no technical proofs).

http://arxiv.org/abs/1811.11695v1
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B. Main literature

The main literature related to this work is represented by

[7], [12]–[23]. Tools from random matrix theory are used in

[12] to compute the ergodic sum rate in a single-cell MIMO

setting with Rayleigh fading and different precoding schemes

while the multicell case is analyzed in [13]. Similar tools

are used in [14] to solve the power minimization problem

under different configurations of cooperation among BSs. A

similar large system analysis is presented in [7] for the UL

and DL of Massive MIMO in cellular networks, wherein

channel estimation and pilot contamination are also taken

into account. All these works relies on random matrix theory

tools but assume Rayleigh fading channels. With Rician fading

channels, the asymptotic analysis is much more demanding

with the main difficulty lying in the correlation induced by

pilot contamination among the non-centered random chan-

nel estimates. In [16], the authors investigate a LoS-based

conjugate beamforming transmission scheme and derive some

expressions of the statistical SINR under the assumption that

N grows large and K is fixed. In [17], the authors study the

fluctuations of the mutual information of a cooperative small

cell network operating over a Rician fading channel under

the form of a central limit theorem and provide an explicit

expression of the asymptotic variance. In [18], a deterministic

equivalent of the ergodic sum rate and an algorithm for

evaluating the capacity achieving input covariance matrices

for the UL of a large-scale MIMO are proposed for spatially

correlated MIMO channel with LoS components. In [19], the

authors derive tractable expressions for the achievable UL rate

for ZF and MRC in the large-antenna limit, along with approx-

imating results that hold for any finite number of antennas

(N grows large and K is fixed). Based on these analytical

results, the transmit power scaling law to meet a desirable

quality of service is computed. A numerical analysis is used

in [20] to show how LoS components may potentially improve

the system performance and mitigate the pilot contamination

problem. In [21], a full-duplex multicell Massive MIMO

systems is analyzed. A deterministic approximation of the UL

achievable rate with MRC is derived based on random matrix

theory. It is then proved that the BS-to-BS interference and

self interference asymptotically vanishes. In [24], the authors

study the ergodic secrecy sum rate in the DL of a multiuser

MIMO system with RZF. Unlike this work where CSI is

acquired by using an UL pilot training phase that induces

pilot contamination, the imperfect CSI is modelled by using

the generic Gauss-Markov formulation. In [22], a detailed

achievable rate analysis of regular and large-scale single-

user MIMO systems is presented under transceiver hardware

impairments and Rician fading conditions. In [25], [26], the

UL SE of Massive MIMO communications with analog-

digital transceivers over Rician fading channels is investigated.

Unlike this work, only MRC with perfect and imperfect CSI

is considered, and the asymptotic analysis is carried out in

the regime where N grows large and K is fixed. In [27],

spatially correlated Rician fading channels are considered and

the closed-form expressions for the SE with both MRC and

MRT are derived with different channel estimation schemes.

C. Organization and notation

The remainder of this paper is organized as follows. Next

section describes the system model and derives achievable

rates for UL and DL with single-cell linear receive combining

and transmit precoding. Section III contains our main technical

results wherein we derive asymptotically tight approximations

for UL and DL achievable rates. A simplified channel model

is also considered to get instrumental insights into the impact

of LoS components on the network performance. In Section

V, the asymptotic analysis is numerically validated. Finally,

the major conclusions and implications are drawn in Section

VI. All the technical proofs are presented in the Appendices.

The following notation is used throughout the paper. Scalars

are denoted by lower case letters whereas boldface lower

(upper) case letters are used for vectors (matrices). We denote

by IN the identity matrix of orderN and call [A]i,k the (i, k)th
element of A. A random vector x ∼ CN (m,C) is complex

Gaussian distributed with mean m and covariance matrix

C. The trace, transpose, conjugate transpose, real part, and

expectation operators are denoted by tr(·), (·)T , (·)H , Re{·},

and E{·}. We use E{·|·} to denote the conditional expectation

operator. We use an ≍ bn to denote an−bn →n→∞ 0 (almost

surely) for two (random) sequences an, bn.

II. SYSTEM MODEL

Consider a Massive MIMO system composed of L cells,

the BS of each cell is equipped with N antennas and commu-

nicates with K single-antenna UEs. A double index notation

is used to refer to each UE as e.g., “user k in cell j”. Under

this convention, let hjlk ∈ CN be the channel from UE k
in cell l to BS j within a coherence block.1 We model the

channel vectors {hjjk; k = 1, . . . ,K}, i.e. from the K UEs

in cell j to BS j, as uncorrelated Rician fading. On the other

hand, an uncorrelated Rayleigh fading model is assumed for

{hjlk; k = 1, . . . ,K} with l 6= j. This choice is motivated

by the fact that the achievable rates under this model are

close to those under practical measured channels with LoS

and spatially distributed UEs [28]. Under the above model,

we have that hjlk =
√
βjlkwjlk where βjlk accounts for the

corresponding large scale channel fading or pathloss (from BS

j to UE k in cell l) and wjlk ∈ CN is the small scale fading

channel. The channel matrix Hjl ∈ CN×K from cell l to BS

j is thus given by Hjl = [hjl1, . . . ,hjlK ]. We model wjlk as

wjlk =

{ √
1

1+κjk
zjjk +

√
κjk

1+κjk
ajjk l = j

zjlk l 6= j
(1)

where zjlk ∈ CN ∼ CN (0N , IN ), ajjk ∈ CN is a determinis-

tic vector that accounts for the LoS component, and the scalar

κjk ≥ 0 is the Rician factor denoting the power ratio between

ajjk and zjjk . For notational convenience, we let

djlk =

{
βjjk

1+κjk
l = j

βjlk l 6= j
(2)

1A coherence block consists of a number of subcarriers and time samples
over which the channel response can be approximated as constant and flat-
fading (e.g. [6, Sect. 2.1])
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such that hjlk can be rewritten as

hjlk =

{
h̃jjk + hjjk l = j

h̃jlk l 6= j
(3)

with h̃jlk =
√
djlkzjlk and hjjk =

√
djjkκjkajjk . While

h̃jjk accounts for the small-scale fading variations of hjjk ,

hjjk depends on the large-scale fading components of prop-

agation channel and evolves slowly in time compared to

h̃jjk . Measurements in [29] suggest roughly two orders of

magnitude slower variations. In practice, this means that hjjk
maintains constant for a sufficiently large number of reception

phases to be accurately estimated at the BS. Therefore, in the

subsequent analysis we assume that hjjk is perfectly known,

which is the common practice in communication theory.

A. Channel estimation

Pilot-based channel training is utilized to estimate the

channel matrix Hjj at BS j. We assume that the BS and

UEs are perfectly synchronized and operate according to a

time-division duplex (TDD) protocol wherein the DL data

transmission phase is preceded in the UL by a training phase

for channel estimation [1], [10], [30]. In Massive MIMO,

it is reasonable to expect that the number of UEs per cell

will be very large. Due to the limited number of orthogonal

pilot sequences, the same set of orthogonal pilot sequences

is utilized for channel estimation in each cell (i.e., the pilot

reuse factor is one). This results into pilot contamination in

the channel estimation [1], [4]–[6]. If an MMSE estimator is

used [7], then the estimate ĥjlk of hjlk ∀j, k is given by [31]

ĥjlk =





hjjk +
djjk

1
ρtr

+
L∑

n=1
djnk

(
ytr
jk − hjjk

)
l = j

djlk

1
ρtr

+
L∑

n=1
djnk

(
ytr
jk − hjjk

)
l 6= j

(4)

where ρtr accounts for the SNR during the UL training phase

and ytr
jk is given by

ytr
jk = hjjk +

L∑

l=1,l 6=j

hjlk +
1√
ρtr

ntr
jk (5)

with ntr
jk ∼ CN (0N , IN ). The estimate ĥjjk is distributed as

ĥjjk ∼ CN (hjjk, φjjkIN ) with

φjlk =
djjkdjlk

1
ρtr +

L∑
n=1

djnk

. (6)

The estimated UL channel of cell j is thus given by Ĥjj =

[ĥjj1, . . . , ĥjjK ]. According to the orthogonality principle

[31], the estimation error ejjk = hjjk − ĥjjk is independent

from ĥjjk and distributed as ∼ CN (0N , (djjk − φjjk) IN ).

B. Uplink

Denoting by vjk ∈ C
N the receiving combiner of UE k in

cell j, its received signal is given by

yuljk =

K∑

i=1

vHjkhjjis
ul
ji +

L∑

l=1,l 6=j

K∑

i=1

vHjkhjlis
ul
li + vHjkn

ul
jk (8)

where sulli ∈ C is the signal transmitted in the UL from UE

i in cell l, assumed independent across (l, i) pairs, of zero

mean and unit variance, and nul
jk ∼ CN (0, 1/ρulIN ) where

ρul accounts for the signal-to-noise ratio (SNR) in the UL. The

SE that a UE can achieve is upper bounded by the channel

capacity, thus an achievable SE is any number that is below

the capacity. While the classical “Shannon formula” cannot

be applied when the receiver has imperfect CSI, there are

well-established capacity lower bounds that can be used. With

MMSE channel estimation, a standard lower bound in Massive

MIMO [4], [6], [7] allows to compute an achievable SE in the

UL as ruljk = E
Ĥjj

{log2(1+γuljk)} where E
Ĥjj

{·} denotes the

expectation with respect to Ĥjj and γuljk is the SINR given by

(7) on the top of next page. As mentioned earlier, we consider

MRC and single-cell MMSE (S-MMSE) as detection schemes.

Then, the combiner vector vjk is given by [6]

vMRC
jk = ĥjjk (9)

vS−MMSE
jk =

(
K∑

i=1

ĥjjiĥ
H
jji +

(
ξj +Nϕul

j

)
IN

)−1

ĥjjk (10)

where ϕul
j > 0 is a design parameter and

ξj =

L∑

l=1,l 6=j

K∑

i=1

djli +

K∑

i=1

(djji − φjji). (11)

The “single-cell” notion in (10) is used to differentiate it

from the multicell MMSE (M-MMSE) combining scheme

considered in [32], [33] for uncorrelated Rayleigh fading

channels and in [5], [34] for correlated ones. The main

difference from M-MMSE is that only the channel estimates

Ĥjj in the own cell are computed and used in S-MMSE [5],

[6]. The computational complexity of S-MMSE is thus lower

than with M-MMSE, though the pilot overhead is identical

since the same pilots can be used to estimate both intra-

cell and inter-cell channels. However, notice that M-MMSE

is optimal [5], [34] and provides unbounded capacity (in the

regime M → ∞ and K kept fixed) for correlated Rayleigh

fading channels [5]. In the case of uncorrelated channels (i.e.,

no spatial correlation), M-MMSE combining achieves only

marginal gains compared to S-MMSE and is also fundamen-

tally limited by pilot contamination as all other ’suboptimal’

single-cell processing schemes [5], [34]. Since uncorrelated

channels are considered in this work, we limit to consider S-

MMSE to make the problem analytically more tractable. The

asymptotic analysis of M-MMSE combining/precoding with

spatially correlated Rician fading channels is interesting but

left for future work since it requires more advanced random

matrix theory tools.
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γuljk =
|vHjkĥjjk|2

E

{
vHjk

(
L∑

l=1,l 6=j

K∑
i=1

hjlih
H
jli +

K∑
i=1,i6=k

hjjih
H
jji + ejjke

H
jjk +

1
ρul IN

)
vjk

∣∣∣Ĥjj

} . (7)

C. Downlink

Denoting by gjk ∈ C
N the precoding vector of UE k in

cell j, the received signal reads

ydljk =

K∑

i=1

hHjjkgjis
dl
ji +

L∑

l=1,l 6=j

K∑

i=1

hHljkglis
dl
li + ndl

jk (12)

where sulli ∈ C is the DL data symbol intended to UE i
in cell l, assumed independent across (l, i) pairs, of zero

mean and unit-variance, and ndl
jk ∼ CN (0, 1/ρdl) where ρdl

accounts for the signal-to-noise ratio (SNR) in the DL. As

in [1], [7], [35], [36] (among many others), we assume that

there are no downlink pilots such that the UEs do not have

knowledge of the current channels but can only learn the

average channel gain E{hHjjkgjk}. A well-established capacity

lower bound that can be used within this setting is the use-

and-then-forget (UatF) bound [6, Sec. 4.3], whose name comes

from the fact that channel estimates are used for designing

the receive combining vectors and then effectively “forgotten”

before signal detection. By applying the UatF bound, an

achievable SE in the DL for UE k in cell j is obtained as

rdljk = log2(1 + γjk) where γdljk is given by

γdljk =
|E{hHjjkgjk}|2

1
ρdl

+
L∑
l=1

K∑
i=1

E{|hHljkgli|2} − |E{hHjjkgjk}|2
(13)

where the expectation is taken with respect to the channel

realizations. The above result holds true for any precoding

scheme and is obtained by treating the inter-user interference

(from the same and other cells) and channel uncertainty as

worst-case Gaussian noise. As said earlier, we consider MRT

and RZF as precoding schemes [1], [2], [7], [35]. This yields

gMRT
jk =

ĥjjk√
E

{
1
K

K∑
k=1

||ĥjjk ||2
} =

√
θjĥjjk (14)

gRZF
jk =

ûjk√
E

{
1
K

K∑
k=1

||ûjk||2
} =

√
ψjûjk (15)

where ûjk =

(
K∑
i=1

ĥjjiĥ
H
jji +

(
ξj +Nϕdl

j

)
IN

)−1

ĥjjk or,

equivalently, ûjk = 1
NQjĥjjk with

Qj =

(
1

N

K∑

i=1

ĥjjiĥ
H
jji +

(
1

N
ξj + ϕdl

j

)
IN

)−1

(16)

where ϕdl
j ≥ 0 is a design parameter.

III. ASYMPTOTIC SPECTRAL EFFICIENCY

We exploit the statistical distribution for the channels {Hjl}
and the large dimensions of N and K to compute a deter-

ministic approximation of γjk in UL and DL, which will be

eventually used to find an approximation of the ergodic sum

rate. In doing so, we assume the following.

Assumption 1. N and K grow to infinity at the same pace,

that is 1 ≤ lim infNN/K ≤ lim supNN/K <∞.

The above assumption will be referred to as N,K → ∞
in the sequel. For technical reasons, the following reasonable

assumption are is imposed [7]–[9], [12].

Assumption 2. As N → ∞, we have that ∀j, l, k
lim infN βjlk > 0 and lim supN βjlk < ∞, and also that

∀j lim supN ||H̄jj || <∞.

The conditions on βjlk are a well established way to model

that the array gathers more energy as N increases [7], [12]. On

the other hand, the condition on H̄jj implies that the Euclidean

norm of the columns hjjk are uniformly bounded in N,K [8],

[9]. For simplicity, in the remainder we assume that ϕul
j =

ϕdl
j = ϕj and call λj =

1
N ξj + ϕj with

λj =
1

N

L∑

l=1,l 6=j

K∑

i=1

djli +
1

N

K∑

i=1

(djji − φjji) + ϕj (19)

such that vS−MMSE
jk = ûjk = 1

NQjĥjjk and gRZF
jk =√

ψjv
S−MMSE
jk . Notice that (19) follows from (11).

A. MRC and MRT

Our first results are asymptotic approximations of the SINRs

with MRC and MRT.

Lemma 1 (MRT). Let Assumptions 1 – 2 hold true. If MRT

is employed, then γMRT
jk ≍ γMRT

jk with γMRT
jk given in (17)

where sjk takes the form

sjk =
1

N

L∑

l=1

K∑

i=1

θldljk

(
φlli +

1

N
h
H

llihlli

)

+
1

N

K∑

i=1,i6=k

θj

(
φjji

1

N
h
H

jjkhjjk

)
(20)

and θl is given by

θl =

(
1

K

K∑

k=1

(
φllk +

1

N
h
H

llkhllk

))−1

. (21)

Proof: The proof is given in Appendix A using stan-

dard random matrix tools. Notice that this is not necessarily

required for MRT since similar results can be obtained by

computing the statistical expectations in (13) (e.g., [27]).
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γMRT
jk =

θj

(
φjjk +

1
N h

H

jjkhjjk

)2

1

Nρdl︸ ︷︷ ︸
Noise

+ sjk︸︷︷︸
Non-coherent interference

+ θj

K∑

i=1,i6=k

∣∣∣∣
1

N
h
H

jjihjjk

∣∣∣∣
2

+

L∑

l=1,l 6=j

θlφ
2
ljk

︸ ︷︷ ︸
Coherent interference

(17)

γMRC
jk =

(
φjjk +

1
N h

H

jjkhjjk

)2

1

Nρulθj︸ ︷︷ ︸
Noise

+ sjk︸︷︷︸
Non-coherent interference

+

K∑

i=1,i6=k

∣∣∣∣
1

N
h
H

jjkhjji

∣∣∣∣
2

+

L∑

l=1,l 6=j

φ2jlk

︸ ︷︷ ︸
Coherent interference

(18)

Unlike the former approach, the latter does not apply to MRC.

This is why random matrix tools are used in Appendix A.

Lemma 2 (MRC). Let Assumptions 1 – 2 hold true. If MRC

is employed, then γMRC
jk ≍ γ̄MRC

jk with γMRC
jk given by (18)

where sjk is given by

sjk =
1

N

L∑

l=1

K∑

i=1

djli

(
φjjk +

1

N
h̄Hjjkh̄jjk

)

+
1

N

K∑

i=1,i6=k

φjjk
1

N
h
H

jjihjji (22)

and θj si given by (21).

Proof: The proof is omitted for space limitations but relies

on the same random matrix tools of those used in Appendix

A for Lemma 1.

As for uncorrelated Rayleigh fading channels [7], the

asymptotic expressions for MRT and MRC are very similar.

The main difference between (17) and (18) is that (18) is only a

function of θj whereas (17) depends on all the factors {θl; l =
1, . . . , L}. As it follows from (21), the latter depends on the

channel estimation quality through the coefficients {φjjk} and

also on the normalized inner products 1
N h

H

llkhllk of the LoS

components in all other cells. Also, the asymptotic expressions

(17) and (18) provide some insights into the basic behaviours

of Massive MIMO systems with MRT and MRC under Rician

fading channels. The signal term in the numerator of (17) and

(18) scales quadratically with 1
N h

H

jjkhjjk . Following [6], the

second term in the denominator is referred to as non-coherent

interference because, as for Rayleigh channels, it vanishes with

1/N as N → ∞ and K is kept fixed [6]. Accordingly, the third

term is called coherent interference since it maintains constant

with respect to N as the signal term. Unlike for Rayleigh

channels, it is not only a consequence of pilot contamination

but also of the intracell interference generated by the LoS

components. Observe that the coherent interference vanishes

when pilot contamination is not present. This occurs when

every UE uses a unique orthogonal pilot for channel estimation

(with ensuing reduction of the system SE) or advanced pilot

decontamination schemes are used [6, Sec. 3.5].

We are ultimately interested in the ergodic achievable

UL rates rdl−MRT
jk = log2(1 + γdl−MRT

jk ) and rul−MRC
jk =

E
Ĥjj

{log2(1+γul−MRC
jk )}. Since the logarithm is a continuous

function, by applying the continuous mapping theorem [12],

from the almost sure convergence results of Lemma 1 it

follows that

rul−MRC
jk ≍ rul−MRC

jk = log2
(
1 + γ̄MRC

jk

)
. (23)

Similarly, by applying the continuous mapping theorem and

the dominated convergence theorem [12], we have that

rdl−MRC
jk ≍ rdl−MRC

jk = log2
(
1 + γ̄MRC

jk

)
. (24)

B. S-MMSE and RZF

To begin with, call Φjj = diag{φjj1, . . . , φjjK} and

rewrite Ĥjj = [ĥjj1 · · · ĥjjK ] ∈ CN×K as

Ĥjj = ZjjΦjj +Hjj . (27)

Then, let us introduce the fundamental equations that are

needed to express an asymptotic approximation of γjk under

S-MMSE and RZF. We start with:

δj =
1

N
tr

(
λj

(
1 + δ̃j

)
IN+

1

N
Hjj(IK+δjΦjj)

−1
H
H

jj

)−1

,
1

N
tr (Tj) (28)

δ̃j =
1

N
tr


Φjj

(
λj (IK + δjΦjj)+

1

N

H
H

jjHjj

1 + δ̃j

)−1



,
1

N
tr
(
ΦjjT̃j

)
(29)

which admits a unique positive solution in the class of Stieltjes

transforms of non-negative measures with support R+ [8], [9].

Notice that the matrices Tj and T̃j

Tj =

(
λj

(
1 + δ̃j

)
IN+

1

N
Hjj(IK+δjΦjj)

−1
H
H

jj

)−1

(30)

T̃j =

(
λj (IK + δjΦjj) +

1

N

H
H

jjHjj

1 + δ̃j

)−1

(31)

in (28) and (29) are approximations of the resolvent Qjj =

( 1
N ĤjjĤ

H
jj+λjIN )−1 and co-resolvent Q̃jj = ( 1

N ĤH
jjĤjj+

λjIK)−1. Also, let us define the following quantities (that will

be useful in the remainder of this work):

Fj = (1 + δ̃j)
−2 1

N2
tr
(
ΦjjT̃jH

H

jjHjjT̃j

)
(32)
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γS−MMSE
jk =

(
1− λj [T̃j ]kk

)2

φjjkνjλ
2
j [T̃j ]

2
kk + ςjk

Nρul︸ ︷︷ ︸
Noise

+ sjk︸︷︷︸
Non-coherent interference

+λ2j([T̃
2
j ]kk − [T̃j ]

2
kk) + λ2jδ

2
j

L∑

l=1,l 6=j

K∑

i=1

φ2jli[T̃j ]ki[T̃j ]ik

︸ ︷︷ ︸
Coherent interference

(25)

γRZF
jk =

ψj

(
1− λj [T̃j ]kk

)2

1

Nρdl︸ ︷︷ ︸
Noise

+ sjk︸︷︷︸
Non-coherent interference

+ψjλ
2
j

(
[T̃2

j ]kk − [T̃j ]
2
kk

)
+

L∑

l=1,l 6=j

ψl (φljkδl)
2
λ2l [T̃

2
l ]kk

︸ ︷︷ ︸
Coherent interference

(26)

∆j = (1− Fj)
2 − λ2j

1

N
tr
(
T2
j

) 1

N
tr
(
ΦjjT̃j

)2
(33)

ϑ̃j =
1

N
tr
(
ΦjjT̃jΦjjT̃j

)
(34)

νj =
1

∆j

1

N
tr
(
T2
j

)
(35)

ςjk =
1− Fj
∆j

[T̃j
1
NH

H

jjHjjT̃j ]kk

(1 + δ̃j)2

+ νjλ
2
j

(
[T̃jΦjT̃j ]kk − φjjk [T̃j ]

2
kk

)
(36)

ξjk = ν̄jλ
2
j [T̃jΦjT̃j ]kk +

1− Fj
∆j

[T̃j
1
NH

H

jjHjjT̃j ]kk

(1 + δ̃j)2
(37)

ζjk =
1− Fj
∆j

λ2j [T̃jΦjT̃j ]kk +
λ2j ϑ̃j

∆j

[T̃j
1
NH

H

jjHjjT̃j ]kk

(1 + δ̃j)2
.

(38)

The following theorems represent a major result of this work.

Theorem 1 (S-MMSE). Let Assumptions 1 – 2 hold true.

If S-MMSE is employed, then γS−MMSE
jk ≍ γS−MMSE

jk with

γS−MMSE
jk given by (25) where

sjk =

(
L∑

l=1

1

N

K∑

i=1

µjli

)
ξjk +

L∑

l=1

1

N

K∑

i=1

γjliζjk (39)

with

µjli =

{
djji − φjji + λ2j [T̃jΦjT̃j ]ii l = j

djli − λjφ
2
jliδj

(
2[T̃j ]ii + δjλj [T̃jΦjT̃j ]ii

)
l 6= j

(40)

and

γjli =





[T̃j
1
N

H
H

jjHjjT̃j ]ii

(1+δ̃j)2
l = j

φ2jliδ
2
j
[T̃j

1
N

H
H

jjHjjT̃j ]ii

(1+δ̃j)2
l 6= j.

(41)

Proof: The proof is sketched in Appendix B and relies

heavily on the techniques developed in [8] and [37]. The

presence of channel estimation errors and pilot contamination

makes it necessary to apply those techniques to new random

quantities whose computation in explicit form requires lengthy

derivations. A large effort has been made to present the results

in a simple form.

Theorem 2 (RZF). Let Assumptions 1 – 2 hold true. If RZF is

employed, then γRZF
jk ≍ γRZF

jk with γRZF
jk given by (26) where

ψj takes the form:

ψj =

(
λ2jνj

1

K
trΦjjT̃

2
j +

1− Fj

∆j(1 + δ̃j)2
1

KN
trT̃jH

H

jjHjjT̃j

)−1

(42)

and

sjk =

L∑

l=1

ψlµljk
1

N

K∑

i=1

ξil +

L∑

l=1

ψlγljk
1

N

K∑

i=1

ζli. (43)

Proof: The proof is omitted for space limitations, but

follows along the lines of Theorem 1.

Unlike the asymptotic expressions for MRC and MRT, those

provided in Theorems 1 and 2 are much more involved. The

distinction between non-coherent interference and coherent

terms is still doable and provides evidence of the fact that

the latter depends through complicated expressions of the

intracell LoS components {hjji; i = 1, . . . ,K}. Despite being

involved, when applied to practical networks such approxima-

tions are very much useful since they can be used to simulate

the network behavior under different settings without to carry

out extensive Monte-Carlo simulations. In fact, numerical

results provided in Section V prove that the approximations

provided in Theorems 2 and 1 are asymptotically tight, but

also accurate for systems with finite dimensions. Moreover, as

exemplified in the sequel and in Section IV, they can be used

to get important insights, with respect to CSI quality, induced

interference and impact of LoS components.

C. Limiting case N → ∞ with K/N → 0

We now look at the limiting case in which N → ∞ such

that K/N → 0. The following results are easily obtained from

the asymptotic analysis above:

Corollary 1 (MRC and MRT). If N → ∞ such that K/N →
0, then γMRC

jk reduces to:

γMRC
jk =

(
φjjk +

1
N h

H

jjkhjjk

)2

K∑

i=1,i6=k

∣∣∣∣
1

N
h
H

jjihjjk

∣∣∣∣
2

+

L∑

l=1,l 6=j

φ2ljk

︸ ︷︷ ︸
Coherent interference

. (44)
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Also, γMRT
jk becomes

γMRT
jk =

(
φjjk +

1
N h

H

jjkhjjk

)2

K∑

i=1,i6=k

∣∣∣∣
1

N
h
H

jjihjjk

∣∣∣∣
2

+
L∑

l=1,l 6=j

θl

θj
φ2ljk

︸ ︷︷ ︸
Coherent interference

(45)

with θj given by (21).

Proof: The proof follows easily from Lemmas 1 and 2

by noticing that the non-coherent interference sjk ≍
θj
∑K

i=1,i6=k | 1N h
H

jjihjjk |2 as N → ∞ with K/N → 0.

The above corollaries show that when N grows at a faster

rate than K , differently from Rayleigh fading, the coherent

interference depends also on the asymptotic behavior of the

inner products 1
N h

H

jjihjjk . If the BS is equipped with a

uniform linear array (ULA) and LoS vectors hjji and hjjk
are either aligned in the complex plane or have an angular

difference that scales as 1/Mα with α ≥ 1, then 1
Nh

H

jjihjjk
does not vanish asymptotically. Both cases belong to the

category of scenarios for which the favorable propagation

conditions are not satisfied [23], [38]. Similar observations

can be made under RZF and S-MMSE, as shown next.

Corollary 2 (S-MMSE and RZF). If N → ∞ such that

K/N → 0, we have that γS−MMSE
jk reduces to

(
1− λj [T̃j ]kk

)2

λ2j([T̃
2
j ]kk − [T̃j ]

2
kk) +

L∑

l=1,l 6=j

K∑

i=1

φ2jli[T̃j ]ki[T̃j ]ik

︸ ︷︷ ︸
Coherent interference

(46)

with

T̃j =

(
λjIK +Φjj +

1

N
H
H

jjHjj

)−1

. (47)

Also, γRZF
jk reduces to

ψj

(
1− λj [T̃j ]kk

)2

ψjλ
2
j

(
[T̃2

j ]kk − [T̃j ]
2
kk

)
+

L∑

l=1,l 6=j

ψlφ
2
ljk [T̃

2
l ]kk

︸ ︷︷ ︸
Coherent interference

(48)

where ψj =
(

1
K trΦjjT̃

2
j +

1
KN trT̃jH

H

jjHjjT̃j

)−1

.

Proof: The proof relies on observing that if N → ∞
with K/N → 0 then δj → λ−1

j and 1
N trT2

j → λ−2
j . Also,

Fj → 0, ∆j → 1 and νj → λ−2
j . Using these results into the

expressions in Theorems 1 and 2 completes the proof.

D. Limiting case N → ∞ with K/N → 0 under favorable

propagations

Consider now a system in which the favorable propagation

conditions are asymptotically satisfied, i.e., 1
N h

H

jjihjjk → 0

∀i 6= k as N → ∞ [23], [38]. For simplicity, we only consider

MRT and RZF, but similar results are obtained for MRC and

S-MMSE. Then, we have that:

Corollary 3. If N → ∞ with K/N → 0 and 1
Nh

H

jjihjjk → 0
∀i 6= k, then:

γMRT
jk =

θj

(
φjjk +

1
N h

H

jjkhjjk

)2

L∑
l=1,l 6=j

θlφ2ljk

(50)

with θj given by (21).

Corollary 4 (RZF). If N → ∞ with K/N → 0 and
1
N h

H

jjihjjk → 0 ∀i 6= k, then:

γRZF
jk =

ψj

(
φjjk+

1
N

h
H

jjkhjjk

λj+φjjk+
1
N

h
H

jjkhjjk

)2

L∑
l=1,l 6=j

ψl

(
φljk

λl+φllk+
1
N

h
H

llkhllk

)2

=
ψj

(
φjjk +

1
N h

H

jjkhjjk

)2

L∑
l=1,l 6=j

(
λj+φjjk+

1
N

h
H

jjkhjjk

λl+φllk+
1
N

h
H

llkhllk

)2

ψlφ
2
ljk

(51)

with ψj given by

ψj =




1

K

K∑

k=1

φjjk +
1
N h

H

jjkhjjk(
λj + φjjk +

1
N h

H

jjkhjjk

)2




−1

. (52)

Proof: If 1
N h

H

jjihjjk → 0 ∀i 6= k, then T̃j in (47) is

diagonal with [T̃j ]kk = (λj + φjjk +
1
N h

H

jjkhjjk)
−1.

In line with [19], [38], the above corollaries show that if

the uncorrelated Rician fading channels result in favorable

propagations, then the interference vanishes as N grows

unbounded for both MRT and RZF. In practice, this means

that those asymptotic values can only be achieved if some

UEs are dropped from service [10], [38]. From Corollaries 3

and 4, it also turns out that, as for Rayleigh fading channels

[7, Corollary 1], the asymptotic SINRs under RZF and MRT

are not necessarily the same. This is because the matrix Qj

with RZF depends on the correlation matrix Φjj through (27).

IV. ON THE EFFECT OF LOS COMPONENTS: A CASE STUDY

To get further insights on the effect of LoS components,

we consider the regime in which N and K grow to infinity

at the same pace and assume that the channel can be simply

modelled as:

hjlk =

{ √
1

1+κzjjk +
√

κ
1+κajjk l = j

√
αzjlk l 6= j

(53)

where α ∈ (0, 1] is the intercell interference factor and κ is

the Rician factor, which is assumed to be the same for all UEs

in cell j. Using the above model, we have that

φjlk =

{ 1
(1+κ)2 ν l = j
α

1+κν l 6= j
(54)
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ϑ = −N
K

κ

(1 + κ)

−
(
δ̃⋆
)2
λ− δ̃⋆

(
λ+ φ(1− 3K

N ) + κ
1+κ + K

N φ
2 1+κ

κ

)
+ φKN − φ2 1+κ

κ
K
N

λ2φ3(1 + δ̃⋆)3
(49)

with ν = ρtr

1+ρtrL
and L = α(L − 1) + 1

1+κ . We assume

that Hjj has orthogonal columns such that the LoS matrix

Hjj is unitary, 1
NH

H

jjHjj = κ
1+κIK . This is achieved if the

vectors ajjk are such that 1
N aHjjkajjk = 1 and 1

N aHjjiajjk = 0
∀i 6= k. As mentioned before, in practical networks this means

that some UEs must be dropped from service [10], [38].

Corollary 5 (MRC and MRT). Let Assumptions 1 – 2 hold

true. If the channel is modeled as in (53) and 1
NH

H

jjHjj =
κ

1+κIK ∀j, then γMRC
jk and γMRT

jk reduce both to

1

1
νNρdl

1+κ
τ + K

Nν

(
L1+κ

τ + 1
τ2

κ
1+κ

)
+ α

τ2

(
L− 1

1+κ

) (55)

=
1

L

Nρdl
1 + κ

τ︸ ︷︷ ︸
Noise

+
1

ρtr
A

︸ ︷︷ ︸
Imperfect CSI

+
K

N
LB

︸ ︷︷ ︸
Interference

+
α

τ2

(
L− 1

1 + κ

)

︸ ︷︷ ︸
Pilot Contamination

(56)

where ν = ρtr

1+ρtrL
and L = α(L − 1) + 1

1+κ and

τ =
1

1 + κ
+
κ

ν
(57)

A =

(
K

N
L+

1

Nρdl

)
1 + κ

τ
+
K

N

1

τ2
κ

1 + κ
(58)

B = L
1 + κ

τ
+

1

τ2
κ

1 + κ
. (59)

Proof: Consider the asymptotic results for MRT in (17). If

the channel is modeled as in (53) and 1
NH

H

jjHjj = κ
1+κIK ,

then θj
(
φjjk + 1

N h
H

jjkhjjk
)2

reduces to τ ν
1+κ whereas the

coherent interference becomes α2

τ
ν

1+κ (L − 1). On the other

hand, the non-coherent interference reduces to K
N

(
α(L− 1)+

1
1+κ+

1
τ

κ
(1+κ)2

)
. Putting these results together yields (55) from

which (56) follows. Notice that if κ = 0 then γMRC
jk and γMRT

jk

coincide with the expressions provided in [7, Cor. 2].

Corollary 6 (S-MMSE and RZF). Let Assumptions 1 – 2 hold

true. Denote δ̃⋆ the real positive solution of the following third-

order polynomial equation

λx3 + x2
(
2λ+ φ

(
1− K

N

))

+ x

(
λ+ φ

(
1− 2

K

N

)
+

κ

1 + κ

)
− φ

K

N
= 0 (60)

with λ = K
N

(
α(L − 1) + 1

1+κ − φ
)

and φ = ν
(1+κ)2 . Define

ϑ as in (49) on the top of the page and

∆ =

(
1− κ

1 + κ

N

Kφ

(
δ̃⋆
)2

(1 + δ̃⋆)2

)2

− λ2ϑ
N

K

(
δ̃⋆
)2
. (61)

Let δ⋆ = δ̃⋆

φ + 1−K/N
λ . If the channel is modeled as in (53)

and 1
NH

H

jjHjj =
κ

1+κIK ∀j, then γRZF
jk and γS−MMSE

jk reduce

both to

1

1
νNρdl

1+κ
X + s′ + α

τ2

(
L− 1

1+κ

) (62)

where X−1 = N
K

(
−1 +

1−κ(1+κ)
ν

N
K

(δ̃⋆)2

∆

)
1+κ(

1−λN
K

δ̃⋆

φ

)2 , s′ =

s

ψ(1−λN
K

δ̃⋆

φ
)2

with s
ψ

given in Appendix C, and

τ =
1

1 + κ
+
κ

ν

1

λδ⋆(1 + δ̃⋆)
. (63)

Proof: The proof sketch is reported in Appendix C.

The above results can be used to get instrumental in-

sights. Let’s consider for simplicity the asymptotic expression

provided in Corollary 5. As seen, the effective SNR, given

by νNρdl τ
1+κ , increases linearly with N as it happens for

uncorrelated Rayleigh fading channels [7, Corollary 2]. Also,

it increases with the Rician component κ as ν τ
1+κ ; notice that

τ increases as κ grows large. As for a Rayleigh model, the

channel estimation errors and interference vanish only if N
grows large. Indeed, if κ increases A tends to K

NL + 1
Nρdl

whereas B goes to L. On the other hand, the pilot contami-

nation term goes to zero with κ as 1/κ2 (since τ → κ/ν as

κ grows large). As for uncorrelated Rayleigh fading channels,

in the limiting case in which N → ∞ such that K/N → 0,

pilot contamination remains the only performance limitation.

Unlike in Rayleigh fading channels, however, it depends on

the Rician factor as shown below.

Corollary 7. If N → ∞ with K/N → 0, then γMRC
jk =

γMRT
jk = γS−MMSE

jk = γRZF
jk ≍ γ∞ with

γ∞ =
1

α
τ2

(
L− 1

1+κ

) =

(
1

1+κ + κ
ν

)2

α2(L − 1)
(64)

and the ultimately achievable rate is given by

R∞ = log2

(
1 + γ∞

)
= log2


1 +

(
1

1+κ + κ
ν

)2

α2(L− 1)


 . (65)

Proof: It follows from Corollaries 5 and 6 by taking the

limit N → ∞ with K/N → 0. Specifically, with S-MMSE

and RZF, if K/N → 0 then δ̃⋆ → 0 and δ⋆ = δ̃⋆

φ + 1−K/N
λ →

λ. Also, we have that X → 1 and s̄′ → 0. Moreover, τ in

(63) tends to 1
1+κ + κ

ν . This completes the proof.

Notice that if κ = 0 then R∞ = log2
(
1 + 1

α2(L−1)

)

coincides with the ultimately achievable rate provided in
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Fig. 1. SE per UE with MRC and S-MMSE as a function of the number of
antennas N for the simplified channel given in (53) with L = 4, K = 10,
α = 0.1, ρtr = 6 dB, ρ = 10 dB, and κ = 0 or 4.
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Fig. 2. Number of antennas needed with MRC and the simplified channel
given in (53) to achieve SE per UE of R bit/s/Hz/UE versus the Rician factor
κ with L = 4, K = 10, ρtr = 6 dB, ρ = 10 dB and α = 0.3.

[7, Eq. (32)]. On the other hand, if κ ≫ 1 we have that
1

1+κ + κ
ν ≈ 1+ρtrα(L−1)

ρtr κ since ν ≈ ρtr

1+ρtrα(L−1) and thus

R∞ ≈ log2

(
1 +

( 1

ρtrα
+ L− 1

)2 κ2

L− 1

)
(66)

scales logarithmically with κ as 2 log2(κ).
Before proceeding further, let’s us validate the accuracy

of the approximations provided in Corollaries 5 and 6. To

this end, we assume that the antenna array is uniform and

linear with half-wavelength antenna spacing and model ajjk

as ajjk =
[
1, e−iπ sin(ϑjjk), . . . , e−iπ(N−1) sin(ϑjjk)

]T
where

ϑjjk denotes the azimuth angle to UE k in any cell j. Follow-

ing [38], we assume that the each BS can create N orthogonal

beams with angles {ϑjjk} such sin(ϑjjk) = −1 + 2k−1
N

and assume that each one of the K UEs is randomly and

independently assigned to one of them.

Fig. 1 reports the average rate per UE of MRC and S-

MMSE as a function of N for L = 4, K = 10, α = 0.1,

ρtr = 6 dB, ρ = 10 dB, and κ = 0 or 4. Markers

are obtained using Monte-Carlo (MC) simulations whereas

the lines are obtained using the closed-form approximations

of Corollaries 5 and 6. As seen, the approximations match

perfectly with the MC simulations for any N . This proves
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that the asymptotic approximations are not only asymptotically

tight, but accurate even for networks of finite size. Both

schemes provide higher rates when κ = 4. As expected, S-

MMSE outperforms MRC. This is achieved at the price of a

higher computational complexity. With κ = 4, the gain of S-

MMSE is only 3−6%. This means that LoS components may

allow not only to achieve higher rates but also to use schemes

with lower complexity. As predicted by the analytical results,

R∞ increases as κ grows. With κ = 4, R∞ is increased by a

factor 1.65 compared to the Rayleigh fading case (i.e., κ = 0).

However, a larger number of antennas is needed to approach

R∞ when κ increases. With N = 500, the S-MMSE achieves

85% and 70% of R∞ with κ = 0 and 4, respectively.

Fig. 2 shows the number of antennas N that is needed with

MRC to achieve a given spectral efficiency of R bit/s/Hz per

UE. We consider L = 4, K = 10, ρtr = 6 dB, ρ = 10 dB and

an intercell interference factor α of 0.1 or 0.3. The curves are

obtained using the closed-form approximation of Corollary 5

and show the impact of the LoS components in reducing N .

Compared to the Rayleigh fading case (i.e., κ = 0), when

R = 2 bit/s/Hz, κ = 4 and α = 0.3, N can be roughly

reduced by a factor of 10. Fig. 3 illustrates the impact of the

LoS components when the intercell interference increases in

the same setting of Fig. 2 for R̄ = 1 bit/s/Hz. Compared to

the case with κ = 0 where an exponential increase of N is

observed as α grows, a relatively slow increase is observed

in the presence of LoS components. A Rician coefficient of

κ = 1/2 is enough to reduce the number of antennas of a

factor ranging from 1.25 to 4.5.

V. NUMERICAL VALIDATION OF THE ASYMPTOTIC

ANALYSIS

MC simulations are now used to validate the accuracy

of the above asymptotic analysis of Lemma 1 and The-

orem 2 for finite values of N and K . The Matlab code

available online at https://github.com/lucasanguinetti/ enables

further testing. Similar trends are obtained for the UL but

are omitted for space limitations. We consider a multicell

system with L = 4 cells, with each covering a square

area of 250 × 250 m. A wrap around topology is used to

https://github.com/lucasanguinetti/
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Fig. 4. SE per UE with MRT and RZF versus N when L = 4, K = 10,
and the Rician factor is the same for all UEs and equal to κ = 1/2 and 4.
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Fig. 5. SE per UE with MRT and RZF vs κ when L = 4, K = 10 and
N = 64 or 150.

simulate that all BSs receive equally much interference from

all directions. The parameter βjlk is modeled in decibels as

βjjlk = Υ − 10α log10
(xjlk

1 km

)
+ Ψjlk where xjlk [km] is the

distance between the transmitter and the receiver, the pathloss

exponent α = 3.7 determines how fast the signal power

decays with the distance, and Υ = −148 dB determines the

median channel gain at a reference distance of 1 km. Also,

Ψjlk ∼ N (0, σ2
sf) with σsf = 10 accounts for the shadow

fading. We assume that K = 10 UEs are randomly and

uniformly distributed in each cell, at distances larger than 35 m

from the BS. Results are averaged over 50 UE distributions.

We consider communication over a 20 MHz bandwidth with a

total receiver noise power of −94 dBm. The median SNR of

a UE at 35 m from its serving BS is 20.6 dB, while a UE in

any of the corners of a square cell gets −5.8 dB. We consider

a uniform linear array with half-wavelength antenna spacing

for which ajjk =
[
1, e−iπ sin(ϑjjk), . . . , e−iπ(N−1) sin(ϑjjk)

]T
.

The angles {ϑjjk} are randomly and independently chosen

in the interval [0, 2π]. For simplicity, the Rician factor is the

same for all UEs, i.e., κjk = κ ∀j, k.

Fig. 5 illustrates the average SE per UE when N grows large

with MRT and RZF. For completeness, comparisons are made

with M-MMSE precoding [5], [6]. The Rician factor for all

UEs is κ = 1/2 and 4; that is, the LoS vectors are respectively

−3 dB and 6 dB stronger than Rayleigh vectors. As seen,

the asymptotic results perfectly match the MC simulations.

RZF provides higher SE than MRT and achieves the same

performance with M-MMSE (for the considered setup) for

any value of N and κ. As κ increases, both RZF and MRT

provide better performance. This is further investigated for

N = 64 or 150 in Fig. 5. The performance gap between RZF

and MRT reduces in both cases quite rapidly as κ ≤ 20; this is

because, on average, the intra-cell interference reduces when

κ increases. However, the gap reduces much more slowly for

40 ≤ κ ≤ 100.

VI. CONCLUSIONS

We investigated the effect of uncorrelated Rician fading

channels on the UL and DL ergodic achievable rates of

MRT/MRC and RZF/S-MMSE in Massive MIMO under the

assumption of channel estimation errors and pilot contami-

nation. Recent results from random matrix theory were used

to find asymptotic approximations for S-MMSE/RZF that

depend only on the long-term channel statistics, the Rician

factors and the deterministic components. Numerical results

indicated that these approximations are asymptotically tight,

but also accurate for systems with finite dimensions. Applied

to practical networks, such results can be used to simulate

the network behavior without to carry out extensive Monte-

Carlo simulations and get important insights into the system

behavior, with respect to the LoS vectors, CSI quality and

induced interference. For a simplified channel model with

orthogonal LoS components across UEs, we analytically eval-

uated the impact of the Rician factor of each UE on both the

residual interference, induced by channel estimations errors,

and pilot contamination. Also, we determined numerically how

the number of antennas can be reduced for achieving a given

target rate.

To make the problem analytically more tractable, single-

cell processing and uncorrelated Rician fading channels were

only considered in this work. Spurred by the new results

in [5] (that disproved previous belief on the fundamental

limits of Massive MIMO), an important follow-up of this

work is to consider optimal M-MMSE combining/precoding

and spatially correlated Rician fading channels. This latter

case can potentially be addressed by extending the random

matrix theory tools developed in [37] but applied to the DL

of a single-cell multiuser large-scale MIMO network under

spatially correlated Rician fading, with a common spatial

channel correlation matrix among UEs.

APPENDIX A

ASYMPTOTIC ANALYSIS OF MRT

We start dividing the numerator and denominator of γdljk by

1/N . Then, we obtain

θjN |E{ 1
N hHjjkĥjjk}|2

1
Nρdl

+
L∑
l=1

K∑
i=1

θlNE{| 1N hHljkĥlli|2} − θjN |E{ 1
N hHjjkĥjjk}|2

.

(67)
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1) Signal Power: Using straightforward computations yields
1
N hHjjkĥjjk ≍ φjjk +

1
N h

H

jjkhjjk and

θjN ≍
(

1

K

K∑

k=1

(
φjjk +

1

N
h
H

jjkhjjk

))−1

. (68)

Therefore, we have that

θjN |E{ 1

N
hHjjkĥjjk}|2 ≍ θj

(
φjjk +

1

N
h
H

jjkhjjk

)2

(69)

with θj =
(

1
K

∑K
k=1(φjjk +

1
Nh

H

jjkhjjk)
)−1

.

2) Interference Power: We proceed computing the determin-

istic equivalent of the interference power. To begin with, we

rewrite it as follows:

L∑

l=1

K∑

i=1

θlNE{| 1
N

hHljkĥlli|2} − θjN |E{ 1

N
hHjjkĥjjk}|2

= s
(I)
jk + s

(P )
jk + θjNvar

[
1

N
hHjjkĥjjk

]
(70)

where s
(I)
jk accounts for the intracell and intercell interference:

s
(I)
jk =

L∑

l=1

θlN

K∑

i=1,i6=k

E{| 1
N

hHljkĥlli|2} (71)

and s
(P )
jk is due to pilot contamination:

s
(P )
jk =

L∑

l=1,l 6=j

θlNE

{
| 1
N

hHljkĥllk|2
}
. (72)

We start computing an asymptotic expression for s
(I)
jk . To this

end, we write s
(I)
jk as follows:

s
(I)
jk =

L∑

l=1,l 6=j

θlN

K∑

i=1,i6=k

E{| 1
N

hHljkĥlli|2}

+ θjN

K∑

i=1,i6=k

E{| 1
N

hHjjkĥjji|2}. (73)

Consider the first term in (73). Since ĥlli in (4) is independent

from hljk and E[hHljkhljk] = dljk , it easily follows that:

1

N2
|hHljkĥlli|2 ≍ 1

N2
tr
(
dljk

(
φlliIN + hllih

H

lli

))

≍ 1

N
dljk

(
φlli +

1

N
hllih

H

lli

)
. (74)

Therefore, we have that:

L∑

l=1,l 6=j

θlN

K∑

i=1,i6=k

E{| 1
N

hHljkĥlli|2}

≍ 1

N

L∑

l=1,l 6=j

K∑

i=1,i6=k

θldljk

(
φlli +

1

N
hllih

H

lli

)
. (75)

Consider the second term in (73) and observe that

| 1
N

hHjjkĥjji|2

≍ 1

N

(
djjk

1

N
ĥHjjiĥjji +

1

N
h
H

jjkĥjjiĥ
H
jjihjjk

)
(76)

≍ 1

N
djjk

(
φjji +

1

N
hjjih

H

jji

)

+
1

N

(
1

N
h
H

jjk

(
φjjiIN + hjjih

H

jji

)
hjjk

)
(77)

≍ 1

N
djjk

(
φjji +

1

N
hjjih

H

jji

)

+
1

N

(
1

N
φjjih

H

jjkhjjk

)
+

1

N

(
1

N
|hHjjihjjk|2

)
. (78)

From the above results, it follows that

θjN

K∑

i=1,i6=k

E{| 1
N

hHjjkĥjji|2} ≍ 1

N
θj

K∑

i=1,i6=k

djjk

(
φjji+

1

N
hjjih

H

jji

)

+
1

N
φjjih

H

jjkhjjk +
1

N
|hHjjihjjk |2. (80)

Putting (75) and (80) together yields:

s
(I)
jk ≍ 1

N

L∑

l=1

K∑

i=1,i6=k

θldljk

(
φlli +

1

N
hllih

H

lli

)

+
1

N2
θj

K∑

i=1,i6=k

φjjih
H

jjkhjjk + |hHjjihjjk|2 (81)

We now proceed considering the pilot contamination term

s
(P )
jk . Since ĥllk depends on hljk , we must proceed as follows.

Recall that ĥllk = hllk + αllk
(
ytr
lk − hjjk

)
and αllk =

dllk(
1
ρtr +

∑L
n=1 dlnk)

−1. Rewrite ĥllk as follows

ĥllk = hllk + αllk
(
ytr
lk − hljk + hljk − hjjk

)

=
̂̂
hllk + αllkhljk (82)

with
̂̂
hllk = hllk + αllk

(
ytr
jk − hljk − hjjk

)
= ĥllk −

αllkhljk . Using (82) we may write

1

N2
|hHljkĥllk|2 = α2

llk

∣∣∣∣
1

N
hHljkhljk

∣∣∣∣
2

+

∣∣∣∣
1

N
hHljk

̂̂
hllk

∣∣∣∣
2

+ 2αllkℜe
{

1

N2

̂̂
hllkhljkh

H
ljkhljk

}
. (83)

Observe that α2
llk

∣∣∣ 1N hHljkhljk

∣∣∣
2

≍ α2
llkd

2
ljk = φ2ljk. Since

̂̂
hllk is independent of hljk , we have that| 1N hHljk

̂̂
hllk|2 ≍

1
N dljk

(
1
N

̂̂
h
H

llk
̂̂
hllk

)
with

1

N
̂̂
h
H

llk
̂̂
hllk =

1

N
ĥHllkĥllk − αllk

1

N
hHljkĥllk

− αllk
1

N
ĥHllkhljk + α2

llk

1

N
hHljkhljk. (84)

Observe now that 1
N ĥHllkĥllk ≍ φllk +

1
N h

H

llkhllk whereas

1

N
hHljkĥllk ≍ αllkdljk (85)
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γuljk =
| 1N ĥHjjkQjĥjjk|2

E

{
L∑

l=1,l 6=j

K∑
i=1

| 1N ĥHjjkQjhjli|2 +
K∑

i=1,i6=k

| 1N ĥHjjkQjhjji|2 + | 1N ĥHjjkQjejjk|2 + 1
ρul

1
N ĥHjjkQjĥjjk

∣∣∣Ĥjj

} (79)

and 1
NhHljkhljk ≍ dljk. Putting all the above results together

yields

s
(P )
jk ≍

L∑

l=1,l 6=j

θlφ
2
ljk+

1

N

L∑

l=1,l 6=j

θldljk

(
φllk+

1

N
hllkh

H

llk

)
(86)

where we have neglected the term αllkd
2
ljk , which appears

only L−1 times. Combining the above results together yields

s
(I)
jk + s

(P )
jk ≍ 1

N

L∑

l=1

K∑

i=1

θldljk

(
φlli +

1

N
hllih

H

lli

)

+
1

N2
θj

K∑

i=1,i6=k

(
φjjih

H

jjkhjjk + |hHjjihjjk|2
)
+
∑

l 6=j

θlφ
2
ljk

(87)

where we have added 1
N θjdjjk

(
φjjk +

1
N hjjkh

H

jjk

)
, which

is negligible for large N . We are only left with

var
[

1
N hHjjkĥjjk

]
, which can be rewritten as:

var

[
1

N
hHjjkĥjjk

]
=E

{∣∣∣∣
1

N
hHjjkĥjjk

∣∣∣∣
2
}
−
∣∣∣∣E
{

1

N
hHjjkĥjjk

}∣∣∣∣
2

(88)

from which it is easily follows that var
[

1
N hHjjkĥjjk

]
≍ 0

since 1
NhHjjkĥjjk ≍ φjjk +

1
Nh

H

jjkhjjk .

APPENDIX B

ASYMPTOTIC ANALYSIS OF S-MMSE

We start by dividing the numerator and denominator of γuljk
by 1/N . Then, we obtain (79) on the top of this page.

B.1) Preliminaries: To begin with, we define Qjk as:

Qjk =


 1

N

∑

i6=k

ĥjjiĥ
H
jji + λjIN




−1

. (89)

Then, the following relations hold true:

[Q̃j ]kk =
1

λ
(
1 + ĥHjjkQjĥjjk

) (90)

Qj = Qjk − λj [Q̃j ]kkQjk
1

N
ĥjjkĥ

H
jjkQjk (91)

Qjĥjjk =
Qjkĥjjk

1 + ĥHjjkQjĥjjk
= λj [Q̃j]kkQjkĥjjk . (92)

These relations will be extensively used in the asymptotic

calculations of the SINR, where the replacement by Qjk

allows to ensure the dependence of the resolvent matrix from

ĥjjk . However, the direct replacement of the deterministic

equivalents associated with Qjk by those with Qj cannot be

performed in all cases - since we are dealing with non-centered

random variables - especially when quadratic forms are in-

volved. Some technical derivations are required to express all

the terms in terms of only the deterministic equivalents of Qj .

We shall also define the deterministic equivalents associated

with Qjk. Let δjk and δ̃jk be the solutions to the following

set of equations:

δjk =
1

N
tr

(
λj(1 + δ̃jk)IN +

1

N
H

[k]

jj

(
IK−1 + δjkΦ

[k]
jj

)−1

H
[k]H

jj

)−1

δ̃jk =
1

N
trΦ

[k]
jj


λj(IK−1 + δjkΦ

[k]
jj ) +

1

N

H
[k]H

jj H
[k]

jj

1 + δ̃jk




−1

where Φ
[k]
jj is Φjj with the k-th row and k-th column removed

and H
[k]

jj is Hjj after removal of the k-th column. The

following relations are also needed. For any N × N matrix,

B and N × 1 vector b with bounded norms, we have that

1

N
tr(BTjk) =

1

N
tr(BTj) +O(N−1) (93)

1√
N

bHTjkhjjk =
1√
N

bHTjhjjk

λj

[
T̃j

]
kk

(1 + φjjkδj)
+O(N−1)

(94)

[T̃j ]kk =
1

λj

(
1 + 1

N h
H

jjkTjkhjjk + δ̃jφjjk

) +O(N−1).

(95)

The above relations will be needed to express deterministic

equivalents involving Tjk in terms of Tj instead. We will

also require that:

(1 + δjφjjk)
−2 1

N
h
H

jjkTjhjjk =

(1 + δjφjjk)
−1 − λj [T̃j ]kk. (96)

B.2) Signal power: Applying the matrix inversion lemma

we may write:

1

N
ĥHjjkQjĥjjk = λj [Q̃j ]kk

1

N
ĥHjjkQjkĥjjk (99)

From (90), 1
N ĥjjkQjkĥjjk = 1

λj [Q̃j ]kk
−1. Using the fact that

[Q̃j ]kk ≍ [T̃j ]kk , we ultimately obtain:

1

N
ĥHjjkQjĥjjk ≍

(
1− λj [T̃j ]kk

)
(100)

and from the continuous mapping Theorem [12],

| 1N ĥHjjkQjĥjjk|2 ≍ (1 − λj [T̃j ]kk)
2.
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λ2j [T̃j ]
2
kk

∑

i6=k

E

{∣∣∣∣
1

N
h
H

jjkQjkhjli

∣∣∣∣
2
}

=
1

(1 + δjφjjk)2

∑

i6=k

E

{∣∣∣∣
1

N
h
H

jjkQjhjli

∣∣∣∣
2
}

− φjjk

(
1
N h

H

jjkTjhjjk

(1 + δjφjjk)2

)2∑

i6=k

1

N2
E
{
hHjliQ

2
jkhjli

}
+ o(1). (97)

s
(I)
jk,outer =

∑

l 6=j

∑

i6=k

E

{∣∣∣ 1N h
H

jjkQjhjli

∣∣∣
2
}

(1 + δjφjjk)2
+ φjjk


λ2j [T̃j ]

2
kk −

(
1
Nh

H

jjkTjhjjk

(1 + δjφjjk)2

)2


∑

i6=k

1

N2
E
{
hHjliQ

2
jhjli

}
+ o(1) (98)

B.3) Interference power: In the asymptotic regime, the

conditional expectation with respect to Ĥjj can be replaced

by the expectation. We thus consider computing the following

equivalent interference sjk = s
(I)
jk + s

(P )
jk + o(1) where

s
(I)
jk =

L∑

l=1

∑

i6=k

E

{∣∣∣∣
1

N
ĥHjjkQjhjli

∣∣∣∣
2
}

(101)

accounts for the intracell and intercell interference and

s
(P )
jk =

∑

l 6=j

E

{∣∣∣∣
1

N
ĥHjjkQjhjlk

∣∣∣∣
2
}

(102)

is due to pilot-sharing UEs. Let’s start with s
(P )
jk for which it

easily follows that:

s
(P )
jk =

∑

l 6=j

(
φjlkδjλj [T̃j ]kk

)2
+ o(1). (103)

The term s
(I)
jk is decomposed as

s
(I)
jk =

∑

l 6=j

∑

i6=k

E

{∣∣∣∣
1

N
ĥHjjkQjhjli

∣∣∣∣
2
}

+
∑

i6=k

E

{∣∣∣∣
1

N
ĥHjjkQjhjji

∣∣∣∣
2
}

, s
(I)
jk,outer + s

(I)
jk,inner (104)

where s
(I)
jk,outer and s

(I)
jk,inner represent the inter-cell and intra-

cell interference, respectively.

We start with s
(I)
jk,outer. By using Qjĥjjk =

λj [Q̃j ]kkQjkĥjjk and by taking the expectation over

ĥjjk yields

s
(I)
jk,outer = λ2j [T̃j ]

2
kk

∑

l 6=j

∑

i6=k

E

{∣∣∣∣
1

N
h
H

jjkQjkhjli

∣∣∣∣
2
}

+ λ2jφjjk [T̃j ]
2
kk

∑

l 6=j

∑

i6=k

E

{
1

N2
hHjliQ

2
jkhjli

}
+ o(1). (106)

In order to get simplified expressions, we need to work with

Qj instead of Qjk. As mentioned before, a direct replacement

of Qj with Qjk is not allowed since it induces a non-vanishing

error that needs to be evaluated beforehand. Hence, we use the

following identity

Qj = Qjk − λj [Q̃j ]kkQjk
1

N
ĥjjkĥ

H
jjkQjk (107)

to obtain

∑

i6=k

E

{∣∣∣∣
1

N
h
H

jjkQjhjli

∣∣∣∣
2
}

=
∑

i6=k

E

{∣∣∣∣
1

N
h
H

jjkQjkhjli

∣∣∣∣
2
}

+
∑

i6=k

λ2j [T̃j ]
2
kk

1

N4
E

{∣∣∣hHjjkQjkĥjjk

∣∣∣
2 ∣∣∣hHjliQjkĥjjk

∣∣∣
2
}

−
∑

i6=k

λj [T̃j ]kk
1

N3
E

{
h
H

jjkQjkĥjjkĥ
H
jjkQjkhjliĥ

H
jliQjkhjjk

}

−
∑

i6=k

λj [T̃j ]kk
1

N3
E

{
h
H

jjkQjkhjlih
H
jliQjkĥjjkĥ

H
jjkQjkhjjk

}

+ o(1) (108)

which reduces to

∑

i6=k

E

{∣∣∣∣
1

N
h
H

jjkQjhjli

∣∣∣∣
2
}

=
∑

i6=k

E

{∣∣∣∣
1

N
h
H

jjkQjkhjli

∣∣∣∣
2
}

− 2λj [T̃j ]kk
1

N
h
H

jjkTjkhjjkE

{∣∣∣∣
1

N
h
H

jjkQjkhjli

∣∣∣∣
2
}

+ λ2j [T̃j ]
2
kk

(
1

N
h
H

jjkTjkhjjk

)2
(
∑

i6=k

E

{∣∣∣∣
1

N
h
H

jjkQjkhjli

∣∣∣∣
2
}
+

+ φjjk
∑

i6=k

E

{∣∣∣∣
1

N
hHjliQ

2
jkhjli

∣∣∣∣
2
})

+ o(1)

=

(
1− λj [T̃j ]kk

1

N
h
H

jjkTjkhjjk

)2∑

i6=k

E

{∣∣∣∣
1

N
h
H

jjkQjkhjli

∣∣∣∣
2
}

+ λ2j [T̃j ]
2
kk

(
1

N
h
H

jjkTjkhjjk

)2∑

i6=k

E

{∣∣∣∣
1

N
hHjliQ

2
jkhjli

∣∣∣∣
2
}

+ o(1). (109)

By using (94) and (96), we obtain (97) on the top of this page.

By plugging (97) into (98) and replacing Qjk with Qj in the

second term (up to a vanishing error), we obtain (98) on the

top of this page. Similarly, we can show that s
(I)
jk,inner is given

by (105) on the top of next page.
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s
(I)
jk,inner =

∑

i6=k

E

{∣∣∣ 1N h
H

jjkQjhjji

∣∣∣
2
}

(1 + δjφjjk)2
+ φjjk


λ2j [T̃j ]

2
kk −

(
1
Nh

H

jjkTjhjjk

(1 + δjφjjk)2

)2

∑

i6=k

1

N2
E
{
hHjjiQ

2
jhjji

}
+ o(1) (105)

Consider the term
∑

i6=k E{| 1N h
H

jjkQjhjli|}2 in (98) for

l 6= j. By using the identity

Qj = Qji − λj [Q̃j ]ii
1

N
Qjiĥjjiĥ

H
jjiQji (110)

and replacing [Q̃j ]ii with [T̃j ]ii and 1
N ĥHjjiQjihjli with

δjφjli, we obtain:

∑

i6=k

E

∣∣∣hHjjkQjhjli

∣∣∣
2

=
∑

i6=k

E

{∣∣∣∣
1

N
h
H

jjkQjihjli

∣∣∣∣
2
}

−
∑

i6=k

λj [T̃j ]iiφjliδj
1

N2
E

{
h
H

jjkQjiĥjjih
H
jliQjihjjk

}

−
∑

i6=k

λj [T̃j ]iiφjliδj
1

N2
E

{
h
H

jjkQjihjliĥ
H
jjiQjihjjk

}

+
∑

i6=k

λ2j [T̃j ]
2
iiφ

2
jliδ

2
j

1

N2
E

{
h
H

jjkQjiĥjjiĥ
H
jjiQjihjjk

}

+ o(1). (111)

Computing the expectation over hjli and ĥjji yields

∑

i6=k

E

∣∣∣hHjjkQjhjli

∣∣∣
2

=

=
∑

i6=k

(
djli − 2λj [T̃j ]iiφ

2
jliδj + λ2j [T̃j ]

2
iiφ

2
jliδ

2
jφjji

)
×

1

N2
E

{
h
H

jjkQ
2
jihjjk

}
+

+
∑

i6=k

λ2j [T̃j ]
2
iiφ

2
jliδ

2
j

1

N2
E

{
h
H

jjkQjihjjih
H

jjiQjihjjk

}

+ o(1). (112)

In the first term of the above equation, Qji can be replaced

by Qj up to a vanishing error. However, this is not the case of

the second term, for which the replacement of Qji with Qj is

not allowed. To handle this term, we propose to work out the
1
N2

∑
i6=k φ

2
jliδ

2
j (1 + δjφjji)

−2
E{hHjjkQjhjjih

H

jjiQjhjjk}.

Using the relation Qj = Qji − λj [Q̃j ]iiQjiĥjjiĥ
H
jjiQji, we

obtain after some simplification:

1

N2

∑

i6=k

φ2jliδ
2
j (1 + δjφjji)

−2
E{hHjjkQjhjjih

H

jjiQjhjjk} =

1

N2

∑

i6=k

λ2j [T̃j ]
2
iiφ

2
jliδ

2
jE

{
h
H

jjkQjihjjih
H

jjiQjihjjk

}

+
1

N2

∑

i6=k

φjjiφ
2
jliδ

2
j

( 1
N h

H

jjiTjhjji)
2

(1 + δjφjji)4
+ o(1). (113)

By using this identity, the first term in s
(I)
jk,outer simplifies to:

1

N2

∑

i6=k

E

{∣∣∣ 1N h
H

jjkQjhjli

∣∣∣
2
}

(1 + δjφjjk)2

=
1

N2

∑

i6=k

φ2jliδ
2
j

E

{
h
H

jjkQjhjjih
H

jjiQjhjjk

}

(1 + δjφjjk)2(1 + δjφjji)2

+
∑

i6=k

E

{
1
N2h

H

jjkQ
2
jhjjk

}

(1 + δjφjjk)2

(
µjli − β̃jli

)
+ o(1) (114)

where µjli and γjli are defined in (40) and (41), respectively,

and

β̃jli = φ2jliδ
2
jλ

2
j [T̃jΦjT̃j ]ii−

− λ2jφ
2
jliδ

2
jφjji[T̃j ]

2
ii + φ2jliδ

2
jφjji

∣∣∣ 1N h
H

jjiTjhjji

∣∣∣
2

(1 + δjφjji)4
(115)

if l 6= j and

β̃jjk = λ2j [T̃jΦjjT̃j ]kk−

− λ2jφjjk [T̃j ]
2
kk + φjjk

∣∣∣ 1N h
H

jjkTjhjjk

∣∣∣
2

(1 + δjφjjk)2
. (116)

From [37, Corollaries 1 and 2], it follows that:

1

N2

∑

i6=k

φ2jliδ
2
j

E

{
h
H

jjkQjhjjih
H

jjiQjhjjk

}

(1 + δjφjjk)2(1 + δjφjji)2
=

λ2j [T̃jdiag
{
φ2jliδj

}K
i=1

T̃j ]kk − λ2j [T̃j ]
2
kkδ

2
jφ

2
jlk+

+ β̃jjk


1− Fj

∆j

1

N

∑

i6=k

γjli + νj
1

N

K∑

i=1

β̃jli




+ γjjk


1− Fj

∆j

1

N

K∑

i=1

β̃jli +
λ2j ϑ̃j

∆j

1

N

∑

i6=k

γjli




+ o(1) (120)

and

E

{
1
N h

H

jjkQ
2
jhjjk

}

(1 + δjφjjk)2
=

1− Fj
∆j

γjjk + νj β̃jjk + o(1) (121)
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φjjk


λ2j [T̃j ]

2
kk −

(
1
Nh

H

jjkTjhjjk

(1 + δjφjjk)2

)2

∑

i6=k

1

N2
E
{
hHjliQ

2
jhjli

}
=
(
λ2j [T̃jΦjjT̃j ]kk − β̃jjk

) 1

N

K∑

i=1

1− Fj
∆j

γjli

+
(
λ2j [T̃jΦjjT̃j ]kk − β̃jjk

)( 1

N

K∑

i=1

µjliνj

)
+ o(1). (117)

∑

i6=k

E

{∣∣∣∣
1

N
h
H

jjkQjhjji

∣∣∣∣
2
}

= λ2j
∑

i6=k

[T̃j ]
2
iiE

{∣∣∣∣
1

N
h
H

jjkQjihjji

∣∣∣∣
2
}

+
1

N

∑

i6=k

(
djji − φjji(1− λ2j [T̃j ]

2
ii)
)
E

{
1

N
h
H

jjkQ
2
jhjjk

}
+ o(1). (118)

∑

i6=k

E

∣∣∣∣
1

N
h
H

jjkQjhjji

∣∣∣∣
2

=
∑

i6=k

E

{∣∣∣ 1Nh
H

jjkQjhjji

∣∣∣
2
}

(1 + δjφjji)2

+
1

N

∑

i6=k

(
djji − φjji

(
1 + λ2j [T̃j ]

2
ii −

( 1
Nh

H

jjiTjhjji)
2

(1 + δjφjji)4

))
E

{
1

N
h
H

jjkQ
2
jhjjk

}
+ o(1) (119)

where ϑ̃j = 1
N tr

(
ΦjjT̃j

)2
. By plugging (120) and (121)

into (114), we thus obtain:

∑

i6=k

E

{∣∣∣∣
1

N
h
H

jjkQjhjli

∣∣∣∣
2
}

= λ2j [T̃jdiag
{
φ2jliδ

2
j

}
T̃j ]kk

− λ2j [T̃j ]
2
kkδ

2
jφ

2
jlk + β̃jjk

1− Fj
∆j

1

N

K∑

i=1

γjli

+ γjjkλ
2
j

ϑ̃j
∆j

1

N

K∑

i=1

γjli

+

(
1− Fj
∆j

γjjk + νj β̃jjk

)(
1

N

K∑

i=1

µjli

)
+ o(1). (122)

Consider now the second term 1
N2E

{
hHjliQ

2
jhjli

}
in (98).

By using the results in [37], it can be proved that:

∑

i6=k

1

N2
E
{
hHjliQ

2
jhjli

}
=

1

N

K∑

i=1

µjliνj

+ λ2j [T̃jΦjT̃j ]iiφ
2
jliδ

2
j νj

1− Fj
∆j

γjli + o(1) (124)

from which (117) follows. By summing (122) and (117) for

all l 6= j, we obtain:

s
(I)
jk,outer =

∑

l 6=j

λ2j [T̃jdiag
{
φ2jliδ

2
j

}
T̃j ]kk − λ2j [T̃j ]

2
kkδ

2
jφ

2
jlk

+
1

N

K∑

i=1

γjliζjk + ξjk

(
1

N

K∑

i=1

µjli

)
+ o(1). (125)

Let’s consider now the term s
(I)
jk,inner. We begin with

∑
i6=k E{| 1Nh

H

jjkQjhjji‖2}, which similar calculations allows

to write explicitly as (118). The first term reduces to

λ2j
∑

i6=k

[T̃j ]
2
iiE

{∣∣∣∣
1

N
h
H

jjkQjihjji

∣∣∣∣
2
}

=

=
∑

i6=k

E

{∣∣∣ 1N h
H

jjkQjhjji

∣∣∣
2
}

(1 + δjφjji)2

− 1

N

∑

i6=k

φjji

(
1
N h

H

jjiTjhjji

)2

(1 + δjφjji)4
E

{
1

N
h
H

jjkQ
2
jhjjk

}

+ o(1) (126)

such that (118) reduces to (119). Using standard calculations,

we can show that:

∑

i6=k

E

{∣∣∣ 1N h
H

jjkQjhjji

∣∣∣
2
}

(1 + δjφjji)2
=
(
λ2j [T̃

2
j ]kk − λ2j [T̃j ]

2
kk

)

+ β̃jjk
1− Fj
∆j

1

N

K∑

i=1

γjji + γjjk
λ2j ϑ̃j

∆j

1

N

K∑

i=1

γjji

+

(
1− Fj
∆j

γjjk + νjβjk

)(
1

N

K∑

i=1

µjji

)
+ o(1) (127)

and

E

{
1

N
hHjjiQ

2
jhjji

}
=
ϑj
∆j

(
djji − φjji + λ2j [T̃jΦjT̃j ]ii

)

+
1− Fj
∆j

[T̃j
1
NH

H

jjHjjT̃j ]ii

(1 + δ̃j)2
+ o(1) (128)
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φjjk


λ2j [T̃j ]

2
kk −

(
1
N h

H

jjkTjhjjk

(1 + δjφjjk)2

)2

∑

i6=k

1

N2
E
{
hHjjiQ

2
jhjji

}
=

=
(
λ2j [T̃jΦjT̃j ]kk − β̃jjk

)(1− Fj
∆j

1

N

K∑

i=1

νjγjji + νjµjji

)
+ o(1). (123)

where ϑj = 1
N tr

(
T2
j

)
. The second term in (105) can be

approximated as in (123) on the top of this page. Gathering

all the above results together, we eventually obtain:

s
(I)
jk,inner = λ2j

(
[T̃2

j ]kk − [T̃j ]
2
kk

)
+

1

N

K∑

i=1

µjjiξjk

+
1

N

K∑

i=1

γjjiζjk + o(1). (129)

APPENDIX C

PROOF OF COROLLARY 6

If the channel is modeled as in (53) and 1
NH

H

jjHjj =
κ

1+κIK , then from (19) we obtain that

λj = λ =
K

N

(
α(L− 1) +

1

1 + κ
− φ

)
(132)

and Φjj = φIK with φjjk
(a)
= φ = ν

(1+κ)2 , where (a) follows

from (54). Also, it turns out that δj = δ and δ̃j = δ̃ with

δ̃ = φ
K

N

(
λ+ λδ̃ + φ

(
1− K

N

)
+

κ

1 + κ

1

1 + δ̃

)−1

(133)

where we have used that (after some simple calculus) φδ =
δ̃+φ1−K/N

λ . From the identity in (133), it can be proved that

δ̃ is the real positive solution, say δ̃⋆, of the following third

order polynomial equation in (60).

Since δ̃⋆

φ = 1
N tr(T̃) and T̃ is diagonal with equal entries,

we have [T̃]k,k = N
K
δ̃⋆

φ such that (32) simplifies to

Fj = F =
κ

1 + κ

N

Kφ

(δ̃⋆)2

(1 + δ̃⋆)2
(134)

and ∆j in (33) reduces to (61) where ϑ = ϑj = 1
N tr

(
T2
j

)
.

To further expand ϑ, we use:

T2
j

(
λ(1 + δ̃⋆)IN +

1

N

HjjH
H

jj

1 + δ⋆φ

)
= Tj (135)

from which it follows that λ(1+ δ̃⋆)ϑ+ 1
N2

tr(H
H

jjT
2
jHjj)

1+δ⋆φ = δ⋆

or equivalently:

ϑ =
δ̃⋆

φλ(1 + δ̃⋆)
+

1− K
N

λ2(1 + δ̃⋆)
− N

K

(δ̃⋆)2

φ2
κ

(1 + κ)λ(1 + δ̃⋆)2

− 1

λ2
1− K

N

(1 + δ̃⋆)3
N

K

(δ̃⋆)2

φ

κ

1 + κ
. (136)

By using (60), we obtain

ϑ =
−N
K

κ
(1+κ)φ

(
λ(δ̃⋆)3 + (δ̃⋆)2(λ− φKN + φ)

)

φλ2(1 + δ̃⋆)3

+
δ̃⋆φ− κ

1+κ δ̃
⋆ + φ

φλ2(1 + δ̃⋆)3
. (137)

Putting all these results together, it follows that, if the

simplified model in (53) is adopted, the SINR asymptotic

approximations with RZF and S-MMSE reduce to

1
1

Nρdl
1
ψ

1

(1−λN
K

δ̃⋆

φ
)2

+ s

ψ(1−λN
K

δ̃⋆

φ
)2

+ Coherent Interf.
(138)

where we have used that φjlk = α
1+κν for l 6= j. Note that

quantities s and ψ refers to sjk and ψj used in Theorem 2. It

remains thus to compute s and ψ in the considered simplified

model. We begin by treating ψ. From (42), we obtain

ψ =

(
λ2
ϑ

φ
ϑ̃φ
N

K
+

1− F

∆φ

N

K
F

)−1

=

(
− 1

φ

N

K
+

1− F

∆φ

N

K

)−1

=
Kφ

N

(
−1 +

1

∆
− κ

1 + κ

N

Kφ

(δ̃⋆)2

(1 + δ̃⋆)2

)−1

=
Kν

N(1 + κ)2

(
−1 +

1

∆
− κN

νK

(δ̃⋆)2(1 + κ)

(1 + δ̃⋆)2

)−1

(139)

We now evaluate the interference term. Notice that ξjk = 1
ψ

and ζjk = λ2N
K

ϑ̃
φ∆ . Let d = 1

1+κ . Hence, after standard

calculus we obtain (130) on the top of next page from which

(131) follows.

The computation of the coherent interference requires some

preliminaries. From (60), we obtain

φK

N
(1 + δ̃⋆)2 = λδ̃⋆(1 + δ̃⋆)2 + (δ̃⋆)2φ+ δ̃⋆φ+

δ̃⋆κ

1 + κ
(140)

such that

φK

Nλ
= δ̃⋆ +

δ̃⋆

λ(1 + δ̃⋆)

(
φ+

κ
1+κ

δ̃⋆ + 1

)
. (141)

By using the identity φK
Nλ = φ

λ + δ̃⋆ − φδ⋆ yields φδ⋆ =
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s

ψ
= (

d

φ
− 1 + λ2

N

Kφ2
ϑ̃)

(
−1 +

1

∆

)
− F (d− φ)

φ∆
− F (L− 1)

∆

(
α

φ
− 2λα2(1 + κ)2δ⋆

N

K
δ̃⋆
)

+ (L− 1)

(
α

φ
− 2λα2(1 + κ)2δ⋆

N

K
δ̃⋆ + α2(1 + κ)2(δ⋆)2λ2

N

K
ϑ̃

)(
−1 +

1

∆

)
(130)

s

ψ
=

(
1 + κ− ν

ν
+ λ2

(
N

K

)2
(δ̃⋆)2

ν2
(1 + κ)4

)(
−1 +

1

∆

)
− 1 + κ− ν

ν2
κ(1 + κ)

∆

N

K

(δ̃⋆)2

(1 + δ̃⋆)2

+ (L− 1)

(
α(1 + κ)2

ν
− 2λα2(1 + κ)2δ⋆δ̃⋆

N

K
+ α2(1 + κ)2(δ⋆)2λ2

(
N

K

)2

(δ̃⋆)2

)(
− 1 +

1

∆

)

− (L− 1)

∆

κ(1 + κ)

ν

N

K

(δ̃⋆)2

(1 + δ̃⋆)2

(
α(1 + κ)2

ν
− 2λα2(1 + κ)2δ⋆δ̃⋆

N

K

)
(131)

φ

λ(1+δ̃⋆)
−

κ
1+κ

δ̃⋆

λ(1+δ̃)2
. By using these results, we get

∑

l 6=j

φ2ljkδ
2λ2l [T̃l]

2
kk

(
1− λl[T̃j ]kk

)−2

=

= (L− 1)α2(δ⋆)2φ2(1 + κ)2

(
1

λl[T̃j ]kk
− 1

)−2

= (L− 1)α2(1 + κ)2
(

1

φδ⋆
− K

Nλδ̃⋆δ⋆

)−2

=

(
L− 1

1 + κ

)
α

τ2
. (142)
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