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On the Calculation of the Incomplete MGF
with Applications to Wireless Communications

F.J. Lopez-Martinez, J.M. Romero-Jerez and J.F. Paris

Abstract— The incomplete moment generating function
(IMGF) has paramount relevance in communication theory,
since it appears in a plethora of scenarios when analyzing
the performance of communication systems. We here present a
general method for calculating the IMGF of any arbitrary fading
distribution. Then, we provide exact closed-form expressions for
the IMGF of the very general κ-µ shadowed fading model,
which includes the popular κ-µ, η-µ, Rician shadowed and other
classical models as particular cases. We illustrate the practical
applicability of this result by analyzing several scenarios of
interest in wireless communications: (1) Physical layer security in
the presence of an eavesdropper, (2) Outage probability analysis
with interference and background noise, (3) Channel capacity
with side information at the transmitter and the receiver, and (4)
Average bit-error rate with adaptive modulation, when the fading
on the desired link can be modeled by any of the aforementioned
distributions.

Index Terms—Fading channels, κ-µ shadowed fading, moment
generating function, physical layer security, secrecy capacity,
outage probability, channel capacity, bit error rate.

I. I NTRODUCTION

THE moment generating function (MGF) has played a
pivotal role in communication theory for decades, as a

tool for evaluating the performance of communication systems
in very different scenarios [1–4]. The MGF of the signal-to-
noise ratio (SNR)γ, defined as the Laplace transform of the
Probability Density Function (PDF) ofγ, is well-known for
most popular fading distributions [5–7] and hence enables for a
simple characterization of the performance metrics of interest
in closed-form.

A more general function extensively used in communication
theory is the so-called incomplete MGF (IMGF), also referred
to as truncated MGF, or interval MGF. This function has an
additional degree of freedom by allowing the lower (or equiva-
lently, upper) limit of the integral in the Laplace transform, say
ζ, to be greater than zero (or equivalently, lower than∞), and
also appears when characterizing the performance in a number
of scenarios of interest: order statistics [8–11], symbol and bit
error rate calculation with multiantenna reception [12, 13],
capacity analysis in fading channels [2], outage probability
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analysis in cellular systems [14, 15], adaptive scheduling
techniques [16], cognitive relay networks [17] or physical
layer security [18]. Despite its usefulness, to the best of our
knowledge the expressions of the IMGF are largely unknown
for fading distributions other than the classical ones: Rayleigh,
Rice, Nakagami-m and Hoyt. In fact, a general and systematic
way to find analytical expressions for the IMGF does not
yet exist, thus requiring the use of state-of-the-art numerical
techniques for its evaluation [2].

Thence, there is a twofold motivation for this paper from a
purely communication-theoretic perspective: first, we present
a general theory for deriving the IMGF of the SNR for an
arbitrary distribution. Specifically, we show that the IMGFof
any fading distribution is given in terms of an inverse Laplace
transform of a shifted version of the MGF scaled by the
Laplace domain variable. This implies that the IMGF should
have a similar functional form as the cumulative distribution
function (CDF). Secondly, we exemplify the usefulness of this
result by deriving a closed-form expression for the IMGF of
theκ-µ shadowed distribution [7, 19], which includes popular
fading distributions such asκ-µ, η-µ [20, 21] or Rician-
shadowed [22] as particular cases, and for all of which the
IMGF had not been previously reported.

In order to illustrate its practical applicability, we introduce
several scenarios of interest in wireless communications:As
a main application, we focus on a physical-layer security
set-up on which two legitimate peers (Alice and Bob) wish
to communicate in the presence of an external eavesdropper
(Eve). The characterization of the maximum rate at which
a secure communication can be attained, i.e. thesecrecy

capacity CS , is a classical problem [23, 24] in communication
theory. Remarkably, the research on physical-layer security of
communication systems operating in the presence of fading
has been boosted in the last years ever since the original works
in [25, 26]. The fact that Eve and Bob observe independent
fading realizations adds an additional layer of security to
communication compared to the conventional set-up for the
Gaussian wiretap channel [24]. Hence, a secure communica-
tion is feasible even when the average SNR at Bob is lower
than the average SNR at Eve.

In the literature, there is a great interest on understanding
how the consideration of more sophisticated fading models
than Rayleigh may impact the secrecy performance attending
to different metrics: the outage probability of secrecy capacity
(OPSC), the probability of strictly-positive secrecy capacity
(SPSC) or the average secrecy capacity (ASC). Specifically,
fading models such as Nakagami-m [27], Rician [28], Weibull
[29], two-wave with diffuse power [30], Nakagami-q [31]

http://arxiv.org/abs/1606.05127v2


2 SUBMITTED FOR PUBLICATION, 2016

or κ-µ [32] have been considered. However, the statistical
characterization of the OPSC in a tractable form is often
unfeasible due to the involved mathematical derivations. Thus,
approximations are usually required for evaluating the OPSC
[30, 32], being only possible the calculation of the SPSC in
closed-form [28, 29, 32].

Very recent works have proposed novel approaches to
deriving the secrecy performance metrics in a general way: in
[33], a duality between the OPSC and the outage probability
analysis in the presence of interference and background noise
was presented, which greatly simplifies the analysis of the
OPSC calculation for an arbitrary choice of fading distribu-
tions for the desired and eavesdropper links. In [34], a unified
MGF approach to the analysis of physical-layer security in
wireless systems was introduced, allowing for a numerical
evaluation of the secrecy performance metrics for arbitrary
fading distributions.

As we will later see, the practical application of our results
allows that the OPSC can be evaluated directly by specializing
the IMGF of the SNR at Bob at some specific values. Thus,
the OPSC (and hence the SPSC as a special case) can be
evaluated in closed-form provided that such IMGF is given in
closed-form. This is exemplified for the very general case of
the κ-µ shadowed distribution [7].

We also illustrate how the IMGF can be used to obtain other
performance metrics in relevant scenarios in communication
theory which, despite looking rather dissimilar at a first glance,
they all require for the computation of the IMGF. The first one
of these additional scenarios is the outage probability analysis
of wireless communications systems affected by interference
and background noise. As previously stated, this problem was
recently shown to be mathematically equivalent to the OPSC
in [33]; thus, the outage probability in this scenario will also
be expressed in terms of the IMGF under the same conditions
assumed when computing the OPSC. The second additional
scenario is related to the analysis of the channel capacity when
side information is available at both the transmitter and the
receiver sides [35]. According to the framework introducedin
[2], the capacity in this scenario can be expressed in terms
of the IMGF. Finally, we also analyze a classical performance
metric in communication theory, which is the average bit-error
rate (ABER) with adaptive modulation [36]. The ABER in this
scenario underarbitrary fading is also given in terms of the
IMGF of the fading distribution.

The remainder of this paper is structured as follows: in Sec-
tion II, the main mathematical contributions of this paper are
presented, within the most relevant is a general way to deriving
the IMGF of any arbitrary fading distribution. Closed-form
expressions for the IMGF of theκ-µ shadowed distribution are
also given, as well as for all the special cases included therein
(κ-µ, η-µ, Rician shadowed, Rician, Nakagami-m, Nakagami-
q, Rayleigh and one-sided Gaussian). Then, in Section III
these mathematical results are used to present an IMGF-based
approach to the physical-layer security analysis in wireless
systems. Section IV is devoted to illustrate how additional
scenarios of interest in wireless communications can also be
analyzed by using the IMGF. Numerical results are given
in Section V, whereas the main conclusions are outlined in

Section VI.

II. M ATHEMATICAL RESULTS

Definition 1 (Lower IMGF): Let X be a non-negative ran-
dom variable andζ a non-negative real number, the lower
IMGF of X is defined as

Ml
X(s, ζ) ,

∫ ζ

0

esxfX (x) dx. (1)

Definition 2 (Upper IMGF): Let X be a non-negative ran-
dom variable andζ a non-negative real number, the upper
IMGF of X is defined as

Mu
X(s, ζ) ,

∫ ∞

ζ

esxfX (x) dx. (2)

Obviously, the MGF ofX is obtained from these IMGFs as
MX(s) = Ml

X(s,∞) = Mu
X(s, 0). Both incomplete IMGFs

are easily related through the following equation

Mu
X (s, ζ) = MX (s)−Ml

X (s, ζ) , (3)

In the following Lemma, we present a general expression for
the IMGF of an arbitrarily distributed non-negative random
variable.

Lemma 1: Let X be a non-negative random variable with
MGFMγ(s). Its lower IMGFs can be computed by the inverse
Laplace transform of the scaled-shifted MGF, i.e.

Ml
X (s, ζ) = L−1

{
1

p
MX (s− p) ; p, z = ζ

}

, (4)

where L{h (z) ; z, p} ,
∫∞

0
e−pzh (z)dz represents the

Laplace transform from thez-domain to thep-domain, and
L−1 {H (z) ; p, z} the inverse Laplace transform from the
p-domain to thez-domain.

Proof: Let us consider the upper IMGF in (1) as a
function of the upper integration limit, i.e.

Λ(z) =

∫ z

0

esxfX (x) dx. (5)

The Laplace transform ofΛ(z) in the p-domain can be
expressed as

L{Λ (z) ; z, p} = L
{∫ z

0

esxfX (x) dx; z, p

}

=
1

p
L{eszfX (z) ; z, p}

=
1

p
L{fX (x) ; z, p− s} =

1

p
MX (s− p) ,

(6)
where both the definite integral property and the modulation
property of the Laplace transform have been applied in order
to complete the proof.

This Lemma provides a general way of computing the
IMGF of any fading distribution in terms of the conventional
MGF. Interestingly, (4) involves an inverse Laplace transform
of a shifted version of the MGF, scaled by the Laplace
domain variablep. Thus, it is expectable that the IMGF has a
functional form similar to the CDF, since the CDF arises as a



LOPEZ-MARTINEZ et. al: ON THE CALCULATION OF THE INCOMPLETE MGF WITH APPLICATION TO PHYSICAL LAYER SECURITY 3

particular case of the lower IMGF when evaluated ins = 0,
i.e.

FX(ζ) = Ml
X(0, ζ). (7)

This result also suggests that the IMGF ofany distribution
for which either the CDF or the MGF are not available
in closed-form, will not be likely to have a closed-form
expression. Otherwise, we would be finding an expression for
such CDF or MGF as a special case. This is the case of some
relevant fading distributions in the literature like Durgin and
Rappaport’s Two-Wave with Diffuse Power (TWDP) fading
model [37], or the Beckmann distribution [38, 39]. The CDF
for these distributions is only available in integral form,but
their MGFs have a closed-form expression [4, 5]. Another
valid example is the Lognormal distribution, for which the
CDF has a closed-form expression in terms of the Gaussian
Q-function, but its MGF has been largely unknown [40].

As consequences of Lemma 1, the IMGF of any non-
negative RV can be obtained in a very general form by an
inverse Laplace transform operation over the MGF. As we
will now show, this Laplace transform can be computed in
closed-form for a number of fading distributions of interest.
In the following corollaries (and summarized in Table I),
we derive closed-form expressions for the IMGF of theκ-µ
shadowed distribution and the special cases included therein,
namely the Rician shadowed,κ-µ and η-µ distributions. All
these expressions are new in the literature to the best of our
knowledge.

Corollary 1: Let γ be a κ-µ shadowed random variable
with E {γ} = γ̄, and non-negative real shape parametersκ, µ
andm, i.e, γ ∼ Sκµm(γ;κ, µ,m)1 [7]. Then, its lower IMGF
is given in the first entry of Table I, whereΦ2(·) is the bivariate
confluent hypergeometric function defined in [41, eq. 9.261.2].

Proof: For the sake of clarity let us write the MGF of the
κ-µ shadowed distribution as follows

Mγ (s) = (−1)µA(s− a)m−µ(s− b)−m







A =
µµmm (1 + κ)µ

γ̄µ (µκ+m)
m

a =
µ (1 + κ)

γ̄

b =
µ (1 + κ)

γ̄

m

µκ+m

. (8)

In order to apply Lemma 1, the scaled-shifted MGF ofγ is
first expressed as follows

1

p
Mγ (s− p) =

A(−1)µ

p
(s− p− a)m−µ(s− p− b)−m

=
A

p
(p− s+ a)m−µ(p− s+ b)−m

=
A

p1+µ

(

1−
(
s− a

p

))m−µ(

1−
(
s− b

p

))−m

=
A

p1+µ

(

1−
(
s− a

p

))−(µ−m)(

1−
(
s− b

p

))−m

.

(9)

1The symbol∼ reads asstatistically distributed as.

To perform the inverse Laplace transform the following pair
can be considered [42, pp. 290]

L
{

xγ−1Φ
(n)
2 (β1, ..., βn; γ;λ1x, ..., λnx) ;x, p

}

=

=
Γ (γ)

pγ

(

1− λ1

p

)−β1

...

(

1− λn

p

)−βn

,

Re {γ} > 0,Re {p} > max {0,Re {λ1} , ...,Re {λn}} .
(10)

Joining (9), (10) and Lemma 1 the proof is completed.

It must be noted that the IMGF here obtained has the same
functional form as the CDF given in [7, eq. 6]; thus, evaluating
the IMGF has the same complexity as evaluating the CDF.

Corollary 2: Let γ be a Rician shadowed random variable
with E {γ} = γ̄, and non-negative real shape parametersK
andm, i.e, γ ∼ SKm(γ;K,m) [22]. Then, its lower IMGF is
given in the second entry of Table I.

Proof: Specializing the results for theκ-µ shadowed
distribution for µ = 1, the IMGF for the Rician-shadowed
case is obtained withK = κ.

Again, the IMGF of the Rician Shadowed distribution has
the same functional form as its CDF [43]. We must note that
for the case ofm ∈ Z, we have thatΦ2(1 − m,m; 2; ·, ·)
function reduces to a finite sum of Laguerre polynomials
[43, eq. 4]; similarly, form being a positive half integer,
thenΦ2(1 −m,m; 2; ·, ·) function reduces to a finite sum of
Kummer hypergeometric functions, modified Bessel functions
and Marcum-Q functions [43, eq. 7].

Corollary 3: Let γ be a κ-µ random variable with
E {γ} = γ̄ and non-negative real shape parametersκ andµ,
i.e, γ ∼ Sκµ(γ;κ, µ) [20]. Then, its lower IMGF is given in
the third entry of Table I, whereQµ is the generalized Marcum
Q function ofµ-th order [5].

Proof: Using the MGF of aκ-µ distributed RVγ in [6],
and according to Lemma 1, the lower IMGF can be expressed
as

Ml
γ (s, z) = L−1

{
1
pMγ(s− p); p, z

}

= L−1
{

1
p

µµ(1+κ)µ

(µ(1+κ)−γ̄s+γ̄p)µ exp
(

µκγ̄s−µκγ̄p
µ(1+κ)−γ̄s+γ̄p

)

; p, z
}

,

(11)

After some algebra, the terms in (11) can be conveniently
rearranged so the inverse Laplace transform has the following
form:

Ml
γ (s, z) = exp (−µκ)

(
µ(1+κ)

γ̄

)µ

exp
((

s− µ(1+κ)
γ̄

)

z
)

×

L−1

{

1
pµ+1

1

1−(µ(1+κ)
γ̄

−s)/p
exp

(
1
p
µ2κ(1+κ)

γ̄

)

; p, z

}

,

(12)

This inverse Laplace transform can be calculated in terms of
the bivariate confluent hypergeometric functionΦ3(·) defined
in [41, eq. 9.261.3] by using the transform pair in [44, 4.24.9].
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This yields

Ml
γ (s, z) =

µµ(1+κ)µzµ

Γ(µ+1)γ̄µ exp (κµ) exp
((

s− µ(1+κ)
γ̄

)

z
)

×Φ3

(

1, µ+ 1;
(

µ(1+κ)
γ̄ − s

)

z, µ
2κ(1+κ)

γ̄ z
)

,

(13)

Finally, we make use of the existing connection between
the Φ3(1, µ + 1; a; b) function and the generalized Marcum
Q-function, which holds forµ ∈ R. Adapting [45, eq. 34] to
the specific case here addressed, we have

Φ3 (1, µ+ 1; a, b)

Γ(µ+ 1)
= exp

(
a+ b

a

)
a−µ

[

1−Qµ

(√

2 b
a ,
√
2a

)]

.

(14)

Combining this equation with (13) yields the final expression
given in the third entry of Table I. This completes the proof.

Note that the IMGF is given in terms of the well-known
MarcumQ-function, just like the CDF of theκ-µ distribution
originally derived by Yacoub [20].

Corollary 4: Let γ be a η-µ random variable with
E {γ} = γ̄ and non-negative real shape parametersη andµ,
i.e, γ ∼ Sηµ(γ; η, µ) [20]. Then, its lower IMGF is given in
the fourth entry of Table I.

Proof: Leveraging the recent connection between theκ-µ
shadowed distribution and theη-µ distribution [21], the IMGF
of theη-µ power envelope in format 1 is obtained2 by setting
the parameters of theκ-µ shadowed distribution toµ = 2µ,
κ = 1−η

2η andm = µ.

This expression is coincident with the one obtained in [45],
and also has the same complexity as the original CDF for the
η-µ distribution derived in [46] .

III. A PPLICATION TO PHYSICAL LAYER SECURITY

A. Single-antenna scenario

Aided by the previous mathematical results, we will now
show how the IMGF can be used to directly analyze the
performance in wireless scenarios. Specifically, we aim to de-
termine the physical layer security of a wireless link between
two legitimate peers (Alice and Bob) in the presence of an
external eavesdropper (Eve) [25, 26]. We first consider that
Bob, Eve and Alice are equipped with single-antenna devices;
the inclusion of multiple antennas at Bob or Eve will be later
discussed in this section. Depending on the characteristics of
the propagation environment, random fluctuations affecting the
desired and wiretap links need to be modeled with a specific
distribution.

The performance in this scenario can be characterized by
the secrecy capacityCS , defined as

CS , Cb − Ce = log2

(
1 + γb
1 + γe

)

> 0, (15)

where γb and γe are the instantaneous SNRs at Bob and
Eve, respectively, andCb andCe denote the capacities of the

2According to the original definition in [20], this format implies thatη ∈

[0,∞)

communication links between Alice and Bob, and between
Alice and Eve, respectively.

In many cases, Eve’s channel state information (CSI) is
not available at Alice and hence information-theoretic security
cannot be guaranteed. This may be the case on which Eve
is a passive eavesdropper, and hence Alice has no way to
have access to Eve’s CSI. Conversely, perfect knowledge of
Bob’s CSI by Alice can be assumed. Thus, Alice selects a
constant secrecy rateRS for transmission; in this situation,
the outage probability of the secrecy capacity (OPSC) gives
the probability that communication at a certain secrecy rate
RS > 0 cannot be securely attained. This metric is computed
as follows

PRS
, Pr {CS 6 RS} = Pr

{

γb 6
(
2RS − 1

)
(

2RS

2RS − 1
γe + 1

)}

(16)

= 1− Pr {CS > RS} . (17)

The probability of strictly positive secrecy capacity can be
obtained as a particular case of (16) by settingRS = 0.

Finally, another secrecy performance metric of interest is
theǫ-outage secrecy capacityCǫ. This is defined as the largest
secrecy rateRS for which the OPSC satisfies (PRS

≤ ǫ), with
0 ≤ ǫ ≤ 1. For a certainǫ, this metric is computed as

Cǫ , sup
RS :PRS

≤ǫ
{RS} , (18)

We will first assume that the fading experienced by the
eavesdropper can be modeled by theκ-µ shadowed distribu-
tion, i.e.γe ∼ Sκµm(γe;κ, µ,m). This distribution [7] is well
suited to model both line-of sight (LOS) and non-LOS (NLOS)
scenarios, and also includes most popular fading distributions
in the literature as special cases. We will also consider that
the fading severity parametersµ andm take integer values3,
which allows for a simpler mathematical tractability.

With this only restriction, and forany arbitrary fading
distribution at the legitimate link between Alice and Bob, the
OPSC can be computed using the following Lemma:

Lemma 2: Let us consider the communication between two
legitimate peers A and B in the presence of an external
eavesdropper E. Letγb and γe be the instantaneous SNRs
at B and E, respectively, and̄γb and γ̄e the average SNRs
at B and E, respectively. Ifγe ∼ Sκµm(γe;κe, µe,me) with
{µ,m} ∈ Z

+, then for any finite rateRS ≥ 0 the OPSC can

3This can be justified as follows: the parameterµ in the κ-µ distribution
introduced by Yacoub [20] was defined as the number of clusters of multipath
waves propagating in a certain environment; thus, according to this definition
the consideration of integerµ is related to the physical model for theκ-µ
distribution. Equivalently, the restriction ofm to take integer values does
not have a major impact unless the LOS component is affected by heavy
shadowing (i.e. very low values ofm). In practice, this restriction has a
negligible effect, and specially when theκ-µ shadowed distribution is used
to approximate theκ-µ distribution in a more tractable form [47].
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be expressed in terms of the IMGF ofγb as

PRS
=

M∑

i=0

Cie
αβi

mi−1∑

r=0

r∑

k=0

(−αβi)
r

k!(r−k)!

∂kMu
γb

(s,z)

∂sk

∣
∣
∣
∣s=−βi
z=α

+Ml
γb
(0, 2RS − 1)

=

M∑

i=0

Cie
αβi

mi−1∑

r=0

r∑

k=0

(−αβi)
r

k!(r−k)!

∂kMu
γb

(s,z)

∂sk

∣
∣
∣
∣s=−βi
z=α

+ Fγb
(α) .

(19)

whereFγb
(·) is the CDF ofγb, α = 2RS−1, βi = 1/(2RSΩi),

and the parametersM , mi, Ωi andCi are related toκ, µ, m
and γ̄e as described in Table II in Appendix B.

Proof: See Appendix A.

Expression (35) yields the OPSC in any scenario on which
the eavesdropper’s fading channel can be modeled with the
κ-µ shadowed distribution, forany arbitrary choice of the
fading distribution for the legitimate channel. Thence, wecan
use the results in Table I combined with (3) to derive analytical
expressions for the secrecy performance in those scenarioson
which the fading at the desired link can be modeled by the
generalκ-µ shadowed distribution, or any of the particular
cases included therein. Note that there is no need to restrict the
parametersµ andm of the legitimate channel to take integer
values, as the IMGF derived in Table I holds for any{µ,m} ∈
R.

In some scenarios, Eve may only have access to signals
arriving from NLOS paths [48, 49]. Under this premise, we
can assume that the eavesdropper link can be modeled by
the Rayleigh distribution. This leadsγe to be exponentially
distributed with average SNR̄γe, i.e.γe ∼ Exp(γ̄e). Thus, the
following corollary arises as a special case of Lemma 2.

Corollary 5: Let us consider the communication between
two legitimate peers A and B in the presence of an external
eavesdropper E. Letγb andγe be the instantaneous SNRs at
B and E, respectively, and̄γb and γ̄e the average SNRs at B
and E, respectively. Ifγe ∼ Exp(γ̄e), then for any finite rate
RS ≥ 0 the OPSC can be expressed in terms of the IMGF of
γb as

PRS
=Ml

γb
(0, 2RS − 1) + e

2RS −1

2RS γ̄e Mu
γb

(

− 1

2RS γ̄e
, 2RS − 1

)

=Fγb

(
2RS − 1

)
+ e

2RS −1

2RS γ̄e Mu
γb

(

− 1

2RS γ̄e
, 2RS − 1

)

,

(20)

whereFγb
(·) is the CDF ofγb.

Proof: Following the same derivation in Appendix A and
settingκ = 0 andµ = 1 yields the desired result.

Note that these results provide a systematic way to derive
the OPSC for any arbitrary fading distribution in the legitimate
link, provided that the IMGF of the SNR at Bob is known.
We must also note the OPSC forγ̄b ≫ γ̄e does not depend
on the distribution ofγe, but only on the distribution ofγb
and the average SNR at Evēγe [31]. Thus, the consideration
of Rayleigh fading for the eavesdropper link as performed

in Corollary 5 has a negligible effect in practice, while
simplifying the analysis.

If now assuming Rayleigh fading also for the legitimate
channel, the OPSC expression in (20) reduces to the one orig-
inally calculated in [25]. This can be checked by settingκ = 0
andµ = 1 in the IMGF of theκ-µ distribution in the third
entry of Table I. Using the equivalenceQ1(0,

√
2x) = e−x

given in [5, eq. 4.45], and after some manipulations we obtain

PRS
= 1− e

−
2RS −1

γ̄b

γ̄b
γ̄b + 2RS γ̄e

. (21)

B. Extension to the multi-antenna scenario

In the previous analysis, we have explicitly assumed that
all the agents in the system are equipped with single-antenna
devices. We here show that the extension for the case on which
Eve and Bob are multi-antenna devices can be straightfor-
wardly carried out.

First, note that in the derivation carried out in Appendix A
in order to prove Lemma 2, there is neither any restriction
related to the number of antennas used by Bob, nor related
to the combining strategy carried out. Hence, Lemma 2 can
be applied as is for a multi-antenna configuration at Bob.
In this case, the only requirement to derive the OPSC is to
determine the IMGF of the SNR after combining. For instance,
if maximal ratio combining (MRC) is used by Bob we have
that γb =

∑NB

i=1 γbi and

Mu
γb
(s, z) =

NB∏

i=1

Mu
γbi

(si, zi) , (22)

where NB is the number of receive antennas at Bob,γbi
denote the per-branch instantaneous SNRs, and independence
between receive branches has been considered.

When assuming multiple antennas at Eve with i.i.d.
branches underκ-µ shadowed fading, the extension is also
straightforward when considering that Eve performs MRC
reception in order to maximize the receive SNR; since the
sum ofNE i.i.d. κ-µ shadowed random variables is alsoκ-µ
shadowed-distributed withµeq = NE · µ, meq = NE ·m and
γe = NE · γe, the OPSC in the multiantenna scenario can be
expressed as in Lemma 2.

IV. OTHER APPLICATIONS

A. Outage probability analysis with interference and back-

ground noise

The performance characterization of wireless communica-
tion systems in the presence of interference is a very important
problem in communication theory, ever since the advent of
digital cellular systems, whose performance is known to
be limited by the interference received from nearby cells.
Let us denote asγd the instantaneous SNR at the intended
receiver, and let us denote asγi the aggregate instantaneous
interference-to-noise ratio corresponding to the set of interfer-
ing signals affecting the receiver.

The outage probability in this scenario, defined as the
probability that the signal-to-noise plus interference ratio is
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below a given thresholdγth, can be calculated as

OPNI = Pr {γd 6 γth (γi + 1)} , (23)

As pointed out in [33], expressions (23) and (16) are for-
mally equivalent, up to some scaling of the random variables
and settingγth = 2RS − 1. This means that both OPNI and
PRS

will have the same functional form for the same choice
of distributions.

The derivation of the outage probability of communication
systems in the presence of interference and background noise
in a κ-µ shadowed/κ-µ shadowed scenario, which is an open
problem in the literature, is directly obtained by using the
IMGF given in the first entry of Table I, under the same con-
ditions assumed in Section III. Recent results in the literature
arise as special cases [50].

B. Channel capacity with side information at the transmitter

and the receiver

Let us now consider the scenario on which a transmitter,
subject to an average transmit power constraint, communicates
with a receiver through a fading channel. Assuming perfect
channel knowledge at both the transmitter and receiver sides,
the transmitter can optimally adapt its power and rate. The
Shannon capacity in this scenario is known to be given by the
following expression [35],

C =

∫ ∞

0

log

(
γ

γ0

)

fγ(γ)dγ, (24)

where a normalized bandwidthB = 1 was assumed for
simplicity. In (24), γ is the instantaneous SNR andγ0 is a
cut-off SNR determined by the average power constraint. An
alternative expression for this capacity was proposed in [2] in
terms of theEi-transform, which makes use of the exponential
integral functionEi(·) as integration kernel, yielding

C =
1

log(2)

∫ ∞

0

Ei(−x) exp(x)Ψ(x, γ0)dx, (25)

where the ancillary functionΨ(x, γ0) is defined as

Ψ(x, γ0) , Mu
γ

(
x

γ0
, x

)

+
1

γ0

∂Mu
γ (s, z)

∂s

∣
∣
∣
∣s=

x
γ0

z=x

. (26)

Thus, equation (25) provides an alternative way of comput-
ing the capacity in this scenario for an arbitrary distribution of
the SNR, in terms of the IMGF and its first derivative. Using
the expressions for the IMGF derived in Table I, capacity
results are obtained for theκ-µ shadowed fading channels,
and all the special cases included therein. These results are
also new in the literature.

C. Average bit-error rate with adaptive modulation

Adaptive modulation makes use of channel knowledge at the
transmitter side in order to optimally design system parameters
such as constellation size, transmit power, coding rates and
schemes, and many others [36]. One extended alternative is the
design of the constellation size and power in order to maximize
the average throughput, for a certain instantaneous bit-error

rate (BER) constraint. In this scenario, the average BERP̄b

of adaptive modulation withM -QAM is well approximated
using [36, eq. 9.7] and [36, eq. 9.72], as

P̄b ≈

N−1∑

j=1

kj
∫ γj

γj−1
0.2 exp

(

−1.5 γ

2kj−1

)

fγ (γ)dγ

N−1∑

j=1

kj
∫ γj

γj−1
fγ (γ) dγ

, (27)

whereγ represents the instantaneous SNR,γ̄ is the average
SNR,N is the number of fading regions,{γj} are the SNR
switching thresholds andkj is the number of bits per complex
symbol employed whenγj−1 ≤ γ < γj . Note that the
denominator in (27) represents the exact average spectral
efficiency and, for convenience,γN−1 , ∞. Using the IMGF
of γ, the following closed-form expression is obtained as

P̄b ≈
0.2

N−1∑

j=1

kj

{

Ml
γ(− 1.5

2kj−1
, γj−1)−Ml

γ(− 1.5

2kj−1
, γj)

}

N−1∑

j=1

kj
{
Ml

γ(0, γj−1)−Ml
γ(0, γj)

}

≈
0.2

N−1∑

j=1

kj

{

Ml
γ(− 1.5

2kj−1
, γj−1)−Ml

γ(− 1.5

2kj−1
, γj)

}

N−1∑

j=1

kj {Fγ(γj−1)− Fγ(γj)}
.

(28)

Therefore, the average BER in this scenario forany fading
distribution can be easily obtained by evaluating a finite num-
ber of terms involving the IMGF. More specifically, closed-
form results new in the literature can be obtained for the case
of the κ-µ shadowed fading distribution and special cases.

V. NUMERICAL RESULTS

In this section we provide numerical results for some of the
practical scenarios previously analyzed. Specifically, wefocus
on the outage probability of the secrecy capacity studied in
Section III under different fading scenarios. We assume that
Bob and Eve are only equipped with one antenna, and for the
eavesdropper’s channel we setκ = 0 andµ = 1. The effect
of system parameters on theǫ-outage secrecy capacity is also
investigated. All the results shown here have been analytically
obtained by the direct evaluation of the expressions developed
in this paper: Additionally, Monte Carlo simulations have been
performed to validate the derived expressions, and are also
presented in all figures, showing an excellent agreement with
the analytical results. Details on how to compute the confluent
bivariate functionΦ2 are given in [7, App. E].

In Figs. 1-5, the OPSC is represented considering different
fading models as a function of the average SNR at Bobγ̄b, for
different sets of values of the fading parameters. We assume
in these figures that the normalized rate threshold value used
to declare an outage isRS = 0.1, and an average SNR at Eve
γ̄e = 15 dB.

Figs. 1 and 2, show results for theκ-µ shadowed fading
considering, respectively, small (κ = 1.5) and large (κ = 10)
LOS components in the received wave clusters for different
values of theµ parameter and also considering light (m = 12)
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Fig. 1. Outage probability of secrecy capacity underκ-µ shadowed fading as
a function ofγ̄b, for different values ofm andµ. Parameter values:κ = 1.5,
γ̄e = 15 dB andRS = 0.1.
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Fig. 2. Outage probability of secrecy capacity underκ-µ shadowed fading as
a function ofγ̄b, for different values ofm andµ. Parameter values:κ = 10,
γ̄e = 15 dB andRS = 0.1.

or heavy (m = 0.5) shadowing for the LOS components. As
expected, as the fading parameterµ increases, the diversity
gain increases too, resulting in a higher slope of the curves
in the high SNR regime, and with diminishing returns as
µ increases. Note thatµ represents the number of received
wave clusters when it takes an integer value. It can also be
observed that the performance is always better when the LOS
components are lightly shadowed, and this improvement is
much more noticeable for large LOS components.

The impact of shadowed LOS components on performance
can be observed in Fig. 3, where the outage probability of the
secrecy capacity under Rician shadowed fading is presented
for different values of them and K parameters. It can be
observed that it is more beneficial for the performance to have
small LOS components (K = 1.5) if they are affected by
heavy shadowing. Conversely, if the shadowing is mild, large
LOS components always yield a lower outage probability. This
appreciation can be confirmed by observing the results in Fig.
4, which depicts the outage probability underκ-µ fading, i.e.,
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Fig. 3. Outage probability of secrecy capacity under Ricianshadowed fading
as a function ofγ̄b, for different values ofK and m. Parameter values:
γ̄e = 15 dB andRS = 0.1.
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Fig. 4. Outage probability of secrecy capacity underκ-µ fading as a function
of γ̄b, for different values ofκ and µ. Parameter values:̄γe = 15 dB and
RS = 0.1.

when the LOS components do not experience any shadowing.
Fig. 5 presents results for theη-µ fading, i.e.. in a NLOS

scenario on which the in-phase and quadrature components of
the scattered waves are not necessarily equally distributed. We
consider format 1 of this distribution, for whichη represents
the scattered-wave power ratio between the in-phase and
quadrature components of each cluster of multipath, and the
number of multipath clusters, whenµ is a semi-integer, is
represented by2µ . It can be observed that, when the in-phase
and quadrature components are highly imbalanced (η = 0.04),
the performance is poorer. On the other hand, increasing the
number of multipath clusters have always a beneficial impact
on performance, as the instantaneous received signal poweris
smoothed.

Fig. 6 shows the normalizedǫ-outage secrecy capacityCǫ

underκ-µ shadowed fading as a function ofγ̄b, where the
capacity normalization has been computed with respect to the
capacity of an AWGN channel with SNR equal toγ̄b. We have
assumedm = 2 and an average SNR at Eve ofγ̄e = −10 dB.
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Fig. 5. Outage probability of secrecy capacity underη-µ fading as a function
of γ̄b, for different values ofη and µ. Parameter values:̄γe = 15 dB and
RS = 0.1.
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Fig. 6. Normalizedǫ-outage secrecy capacityCǫ underκ-µ shadowed fading
as a function of̄γb. Parameter values;m = 2, γ̄e = −10 dB.

The corresponding results forη-µ fading are presented in Fig.
7, also forγ̄e = −10 dB. In both figures it can be observed that
when the outage probability is set to a high value (ǫ = 0.8),
better channel conditions (i.e.µ = 6, κ = 10 for κ-µ shadowed
fading andµ = 4, η = 0.9 for η-µ fading) yield a lowerǫ-
outage capacity. Conversely, better channel conditions results
in a higher capacity for lower values ofǫ. Further insight can
be obtained from Fig. 8, where it is shown the normalized
ǫ-outage secrecy capacityCǫ underκ-µ fading as a function
of the outage probabilityǫ and for different average SNRs at
Eve, assuming an average SNR of 10 dB at the desired link.
We observe that higher outage probabilityǫ leads to higher
Cǫ, having an important influence the average SNR of the
eavesdropper’s channel. It can also be observed that, as the
channel conditions improve, the normalizedǫ-outage secrecy
capacity tends to one for all values of the outage probability
for low values ofγ̄e.

Note that wireless communication over fading channels
does not require necessarily the average SNR of the channel
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Fig. 7. Normalizedǫ-outage secrecy capacityCǫ under η-µ fading as a
function of γ̄b. Parameter valuēγe = −10 dB.
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Fig. 8. Normalizedǫ-outage secrecy capacityCǫ under κ-µ fading as a
function of ǫ. Parameter valueγb = 10 dB.

between Alice and Bob to be greater than the average SNR
of the channel between Alice and Eve, since there is certain
probability that the instantaneous SNR of the main channel
being higher than the instantaneous SNR of the eavesdropper’s
channel (γb > γe) even whenγ̄b < γ̄e. In fact, there is a
trade off between the outage probability of the secrecy capacity
Pr {CS ≤ RS} and theǫ-outage secrecy capacityCǫ, where
a higherCǫ corresponds to a higher outage probabilityǫ, and
viceversa. For that reason, results in Figs. 6, 7 and 8 show
that the normalized outage secrecy capacity may have non-
zero values even when̄γb ≤ γ̄e (for high values ofǫ).

VI. CONCLUSIONS

A fundamental connection between the incomplete MGF of
a positive random variable and its complete MGF has been
presented. The main takeaway is that the IMGF is expected
to have a similar functional form as the CDF, and hence
its evaluation should not require any additional complexity.
Using this novel connection, closed-form expressions for the
IMGF of the κ-µ shadowed distribution (and all the special
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cases included therein) have been derived for the first time
in the literature. This has enabled us to introduce a new
framework for the analysis of the physical layer security in
scenarios on which the desired link is affected by any arbitrary
fading distribution, and the eavesdropper’s link undergoesκ-µ
shadowed fading.

We hope that the results in this paper may facilitate the
performance evaluation for more practical setups related to
physical layer security, such as those using artificial noise
transmission or the collaboration of a friendly jammer, and,
in general for all the situations and scenarios on which the
IMGF makes appearances.
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APPENDIX A
PROOF OFLEMMA 2

From the definition of OPSC in (16), the probability of
achieving a successful secure communication is given by

Pr {CS > RS} = Pr

{

γe <
1

2RS
(1 + γb)− 1

}

. (29)

Note thatγe only takes non-negative values; hence, for this
condition to occur in (29), then the inequalityγb ≥ 2RS − 1
must be satisfied, i.e.

Pr

{

γe <
1

2RS
(1 + γb)− 1|γb < 2RS − 1

}

= 0. (30)

Therefore we can write

Pr {CS > RS} =

∫ ∞

2RS−1

fγb
(x)

(
∫ 1

2RS
(1+x)−1

0

fγe
(y)dy

)

dx

=

∫ ∞

2RS−1

fγb
(x)Fγe

(
1

2RS
(1 + x)− 1

)

dx,

(31)

whereFX(·) andfX(·) are the CDF and PDF of the random
variableX , respectively.

Let us first assume that the fading experienced by the
eavesdropper’s is modeled by thκ-µ shadowed distribution
[7]. For integer values ofµ and m, the CDF of theκ-µ
shadowed distribution can be expressed as a mixture of gamma
distributions as described in Appendix B, as follows:

Fγe
(γe) = 1−

M∑

i=0

Cie
−

γ
Ωi

mi−1∑

r=0

1

r!

(
γ

Ωi

)r

, (32)

Plugging (32) in (31) yields

Pr {CS > RS} = 1− Fγb
(2RS − 1)−

M∑

i=0

Ci exp

(

−1− 2RS

2RS Ω̄i

)

×
∫ ∞

2RS−1

fγb
(x)e

− x

2RS Ω̄i

mi−1∑

r=0

1

r!

(
1 + x− 2RS

2RSΩi

)r

dx

︸ ︷︷ ︸

I

,

(33)

where the parametersM , mi, Ci andΩi are defined in Table
II in the Appendix B in terms of the parametersκ, µ, m andγe
of the eavesdropper’s fading distribution. Using the binomial
expansion, and definingα = 2RS − 1, βi = 1/(2RSΩi), the
integral termI can be reexpressed as

I =

mi−1∑

r=0

r∑

k=0

(−α)r−k

k!(r − k)!
βr
i

∫ ∞

α

xkfγb
(x)e−βixdx,

=

mi−1∑

i=0

r∑

k=0

αr−k

k!(r − k)!
βr
i

∂kMu
γb
(s, z)

∂sk

∣
∣
∣
∣s=−βi
z=α

(34)

where the general derivative property in the transform domain
was used, in order to identify thekth derivative of the IMGF.
Finally, using (34) in (33) and (16) yields

PRS
=

M∑

i=0

Cie
αβi

mi−1∑

r=0

r∑

k=0

(−αβi)
r

k!(r−k)!

∂kMu
γb
(s, z)

∂sk

∣
∣
∣
∣s=−βi
z=α

+ Fγb
(α) .

(35)

This completes the proof.

APPENDIX B
CDF OF THEκ-µ SHADOWED DISTRIBUTION FOR INTEGER

FADING PARAMETERS

The CDF of theκ-µ shadowed fading model was originally
given in [7] as

Fγ(γ) =
µµ−1mm (1 + κ)

µ

Γ(µ)γ̄µ (µκ+m)m
zµ×

Φ2

(

µ−m,m; 1 + µ;−µ(1+κ)
γ̄ γ,−µ(1+κ)

γ̄
m

µκ+mγ
)

.

(36)

If the fading parametersµ andm take integer values, this
CDF can be expressed as a finite mixture of squared Nakagami
distributions, i.e. as a finite sum of exponentials and powers
[47]. Manipulating the expressions in [47], we can compactly
express the CDF as

Fγ(γ) = 1−
M∑

i=0

Cie
−

γ
Ωi

mi−1∑

r=0

1

r!

(
γ

Ωi

)r

, (37)

where the parametersmi, M andΩi are expressed in Table
II in terms of the parameters of theκ-µ shadowed distribution,
namelyκ, µ, m and γ̄.
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TABLE I
LOWER IMGFS FOR THEκ-µ SHADOWED FADING MODEL AND PARTICULAR CASES INCLUDED THEREIN. UPPERIMGFS CAN BE OBTAINED USING THE

MGFS GIVEN IN [6, 7, 22] AND RESTATED IN THE TABLE, AND THEN USING (3).

Fading model IMGF Ml
γ(s, z) and MGFMγ(s)

κ-µ shadowed Ml
γ(s, z) =

µµ−1mm(1+κ)µ

Γ(µ)γ̄µ(µκ+m)m
zµ ×Φ2

(

µ−m,m; 1 + µ;
(

s−
µ(1+κ)

γ̄

)

z,
(

s−
µ(1+κ)

γ̄
m

µκ+m

)

z
)

Mγ(s) =
(−µ)µmm(1+κ)µ

γ̄µ(µκ+m)m

(

s−
µ(1+κ)

γ̄

)m−µ

(

s−
µ(1+κ)

γ̄
m

µκ+m

)m

Rician shadowed Ml
γ(s, z) =

mm(1+K)
γ̄(K+m)m

z ×Φ2

(

1−m,m; 2;
(

s−
(1+K)

γ̄

)

z,
(

s−
(1+K)

γ̄
m

K+m

)

z
)

Mγ(s) = −
mm(1+K)
γ̄(K+m)m

(

s−
(1+K)

γ̄

)m−1

(

s−
(1+K)

γ̄
m

K+m

)m

κ-µ Ml
γ(s, z) =

µµ(1+κ)µ

(µ(1+κ)−γ̄s)µ
exp

(

µκγ̄s
µ(1+κ)−γ̄s

)

×

[

1−Qµ

(

√

2µκ
µ(1+κ)

µ(1+κ)−γ̄s
,

√

2
(
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− s
)

z

)]

Mγ(s) =
µµ(1+κ)µ

(µ(1+κ)−γ̄s)µ
exp

(

µκγ̄s
µ(1+κ)−γ̄s

)

η-µ Ml
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µ2µ−1

2Γ(2µ)γ̄2µ

(

(1+η)2

η
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)µ

TABLE II
PARAMETER VALUES FOR THEκ-µ SHADOWED DISTRIBUTION WITH INTEGERµ AND m,

Caseµ > m Caseµ ≤ m

M = µ M = m− µ+ 1

Ci =















0 i = 0

(−1)m
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]m [
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{
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, 0 ≤ i ≤ µ−m
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m
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µ(1+κ)
µ−m < i ≤ µ

Ωi =
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{

µ−m − i+ 1, 0 ≤ i ≤ µ−m

µ− i+ 1 µ−m < i ≤ µ
mi = m− i
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