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Abstract

We consider power allocation for an access-controlledstratter with energy harvesting capability based on
causal observations of the channel fading state. We asshahé¢he system operates in a time-slotted fashion and
the channel gain in each slot is a random variable which ispeddent across slots. Further, we assume that the
transmitter is solely powered by a renewable energy soundetlze energy harvesting process can practically be
predicted. With the additional access control for the tnaitter and the maximum power constraint, we formulate
the stochastic optimization problem of maximizing the aghble rate as a Markov decision process (MDP) with
continuous state. To efficiently solve the problem, we defineapproximate value function based on a piecewise
linear fit in terms of the battery state. We show that with tippraximate value function, the update in each
iteration consists of a group of convex problems with a cardus parameter. Moreover, we derive the optimal
solution to these convex problems in closed-form. Furthwer,propose power allocation algorithms for both the
finite- and infinite-horizon cases, whose computational glemity is significantly lower than that of the standard
discrete MDP method but with improved performance. Extamgd the case of a general payoff function and
imperfect energy prediction is also considered. Finalipwuation results demonstrate that the proposed algosthm

closely approach the optimal performance.
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I. INTRODUCTION

The utilization of renewable energy is an important chanastic of the green wireless communication
systems([[1]. Renewable energy powered transmitters caepieykd for wireless sensor networks or cellu-
lar networks, reducing the reliance on traditional bag®and prolonging the transmitter’s lifetime [2][3].
However, the fluctuation of the energy harvesting togethdr the variation of the channel fading brings
many challenges to the design of energy-harvesting conuation systemd [4][5].

Wireless transmission schemes for energy-harvestingrdters have been investigated by a number
of recent works|[[6][7][8][9]. In order to achieve the optihtaroughput, a “shortest path” based energy
scheduling algorithm was proposed lin [6] for a static chamrnth finite battery capacity and non-causal
energy harvesting state. The authors [df [7] discussed an MidBel for the case when the energy
harvesting and channel fading are known causally and tlsame maximum power constraint. A staircase
water-filling algorithm was proposed inl[7] for the case whble battery capacity is infinite, and the
energy harvesting and fading channel states are known aesatly. With a finite battery capacity and
non-causal energy harvesting and fading channel stateate-filling procedure was studied inl [8], and
with an additional maximum power constraint a dynamic wiétkémg algorithm was proposed in[9]. The
authors of [[10] developed an online approximately optimgbathm based on Lyapunov optimization,
which is designed to maximize a utility function, based oa tumber of packet transmissions in energy
harvesting networks. In_[11], using the discrete MDP modetginforcement learning based approach
was used to optimize the number of packet transmissionsouitthe prior knowledge of the statistics
of the energy harvesting process and the channel fadinggegsod he authors of [12] considered a static
channel with causal knowledge of the stationary Poissonggreerival process and gave an MDP-based
solution to maximize the average throughput with uncoms#c transmission power. On the other hand,
the throughput optimization problem with causal inforroaton the energy harvesting state and the fading
channel state, and under the maximum power constraint,imeno@en. In this paper, we will tackle this
problem.

Specifically, we first consider the power allocation for aoess-controlled transmitter, which is powered
by a renewable energy source and equipped with a finite-tgplaattery and has a maximum power
constraint. The channel fading is assumed to be a randorabkarin a slot and is independent across
different slots. For energy harvesting, we first assumeitltain be predicted accurately for the scheduling

period, which can be realized in practi¢e [[13][14], and tkeer introduce the prediction error variables.



Furthermore, we assume that a control center can tempoiugpend the transmitter’'s access due to
channel congestion. Such channel access control for thenigter is modeled as a first-order Markov
process. Under the above setting, this paper finds the appaitedy optimal power allocation for both
the finite- and infinite-horizon cases.

To obtain the power allocation, we formulate the stochagptimization problem as a discrete-time and
continuous-state Markov decision process (MDP), with thective of maximizing the sum of the payoff
in the current slot and the discounted expected payoffsariture slots, where the payoff function is the
achievable channel rate. Since the state variables inguitie battery state and the channel state in the
MDP problem are continuous, to avoid the prohibitively hggmplexity for updating the value function
caused by the continuous states, this paper introduces@onxamate value function. We show that the
approximate value function is concave and non-decreasirnfpe variable corresponding to the energy
stored in the battery, which further enables the approx@nvalue function be updated in closed-form.
This is then used to find the approximately optimal solutiérihe power allocation for both the finite-
and infinite-horizon cases.

The proposed algorithms provide approximate solutionspsghperformances are lower bounded by
the standard discrete MDP method. Also, to obtain the swlutive solve at mosP(By,../d - C') convex
optimization problems wher#,,.. is the battery capacity, is the approximation precision, ardd is the
length of horizon for the finite-horizon case or the maximuwmiber of iterations for the infinite-horizon
case. In particular, for the infinite-horizon case, giveroavergence tolerance, the a-converged solution
can be obtained withid®(log, «) iterations, wherey is the discount factor.

The remainder of the paper is organized as follows. In Sediipwe describe the system model,
formulate the energy scheduling problem as a continuaats-MDP problem and define the value function.
In Section Ill, we define an approximate value function andvprthat the approximate value function
is non-decreasing and concave with respect to the contmbatiery state. In Section IV, we derive
the optimal closed-form procedure for updating the appnate value function and develop the power
allocation algorithms for both finite- and infinite-horizeases. The proposed algorithms are extended to
deal with the model with a general payoff function and impetfenergy prediction in Section V. Section

VI provides simulation results and Section VIl concludes gaper.
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Fig. 1. The system block diagram.

[I. PROBLEM FORMULATION

A. System Model

We consider a point-to-point communication system with tna@smitter and one receiver, as shown
in Fig.[d. We assume a slow fading channel model where thenetagain is constant for a coherence
time of 7. (corresponding to a time slot) and changes independentsaclots. The signal model for

slot & is given by
Yp = Hyxp + wy, (1)

wherey, € C’- is the received signalg;, € C’- is the transmitted signak/, € C is the channel gain in
slot k¥ andw;, € C** is the additive white Gaussian noise consisting”f(0, 1) elements.

At the beginning of each slot, the transmitter is informedhaf channel access statds € {0, 1} for the
current slot from the control center, whefig = 0 indicates that the channel access is not permitted for slot
k while A, = 1 indicates otherwise. We assume thgt follows a stationary first-order Markov process,
whose transition probabilities are given ag &y, =0| Ay, =1) = ¢ and P(Ay 1 =0 | Ay =0) = .

If A, = 0, then the transmit power in slétis p, = 0. On the other hand, ifl, = 1, then the transmitter

needs to decide its transmit power.

The transmitter is powered by an energy harvesting devige,a@solar panel, and a battery. The battery,



which buffers the harvested energy, has a finite capacitypteéd byb,... Since the energy harvesting
process is steady or can be well predicted, we assume thah#drgy harvested over the néxtslots can
be non-causally known, denoted @s(the causal energy harvesting model will be considered oti@e
V). We assume;, = |H,|? is independent across slots (i.i.d. wh&n= co).

In slot k£, the transmitter transmits at a power levelypf(p, = 0 if Ax = 0), which is constrained by

the maximum transmission powey,.. and the available energy,, i.e.,
0 < pr < min {Prax, b/ T} - (2)
The battery level at the beginning of slbt+ 1 is given as
b1 = min {buax, b + e — piTe} )
with the constraint that the battery level is non-negativedil slots, i.e.,
by >0 . (4)

Further, the transmitter receives a payofp, 1) based on the transmission power and channel gain. In
this paper, we use the achievable channel rate as the pagaff;(p, h) = log(1 + ph). Also, in Section
V, we consider a general payoff functiotip, 2) which is continuous, non-decreasing, and concave with

respect top given h.

B. Problem Formulation

We assume that, can be predicted non-causally while all other variablesary known causally
to the transmitter (we will relax this assumption in Sectddrnwhere we assume thai, is predicted
with a random error:;,). Denote H = [hy, hy, ..., hi], A = [A1, Ay, ..., Ag], and a discount factor
v € [0,1]. We assume that all the side information, e.g., the digiobs of all random variables and
the predictions of the harvested energy, is known beforditaeslot. Then the power allocation policy
P = {pe(T'y) | k= 1,2,...,K} needs to be calculated to maximize the expected total paydffie
next K slots, wherel',, = (b, hi, A;,) consists of the observations available at the beginnindatfis
Sinceb, andhy, are continuous variables, it is not possible to stBran a look-up table. Instead, we only
store some of the intermediate results, i.e., the apprdaeiveue function introduced in Section Ill, in an

efficient way, and then calculate the power allocation whgms observed. Specifically, at the beginning



of slot k&, givenI',, if channel access is permitted, i.el, = 1, the transmitter calculate the power level
pr. And if the channel access is not permitted, i, = 0, thenp, = 0. To that end, we formulate the

following optimization problem for defining the optimal po}

K
P* £ arg 0 max {EHA[Z'Yk Mog(1 +pk(Fk)hk)}} , (5)
’ k=1

subject to the constraints ial(2)] (3), aind (4) fo=1,2,... K.

Note that by [(B), the battery levé}, forms a continuous-state first-order Markov chain, wheitbas
channel access statg, is a discrete-state Markov chain by assumption. Then, wecoawvert the problem
in (B) to its equivalent MDP recursive form [15] in terms oethalue functionwhich represents the total
payoff received in the current slot and expected to be redein the future slots.

Specifically, in the MDP model we treat the battery lekend the channel access statgi.e., (b, A),
as the state, the channklas the observation, and the transmit poweas the decision. Then, the state
space become§) < b < by} x {0,1}; and the corresponding decision spaceDigh) = {0 < p <
min{b/T., pmax } } @ndDy = {0}, corresponding tod = 1 and A = 0, respectively. The value function is
then recursively defined as

v*(be, Ar) £ By, max {log(1 + pr(T)hs) + VUk(bk,pk(Fk),Ak)}] k=12,...,K, (6)

pr(Tk)ED A, (br)

where
u* (b, P, Ar) £ Eay g pa, [0°T (min{bmax, b + €6 — o2}, Arar) ] (7)
and
VL (b, A) = 0, for all b € [0, b, A € {0,1} . ®)

Note that,v*(by, As.) represents the expected maximum discounted payoff betaletk and K given
the side informatiorb, and A,. Due to the causality and the backward recursion, the oagend’;, in
slot £ does not affect the value function for slot- 1. Also, whenA, = 1, given the value function for
slot £ + 1, the optimal power allocation for sldt can be obtained by

pp(Cy) = arg max {log (1 + phy) +~yu (bk,p, )} ; %)
pED A, (bk)



whereu* (b, p, A) is calculated usind{7). Moreover, wheh, = 0, we always have

[1l. A PPROXIMATE VALUE FUNCTION

By recursively computing the value functiefi(b, A) defined in[(6), in theory we can obtain the optimal
solution to [9) for eaclt € {1,2,..., K}. However, a closed-form expression fdi(b, A) is hard to obtain
when K is large, e.g./X > 3. A typical approach is to quantize the continuous variabbes, /) to finite
number of discrete levels, i.e., to convert the originalgbe to a discrete MDP problern [15]. However,
with such discretization, solving the corresponding aiseMDP problem involves an exhaustive search
on D, (b) for all discretizedh, and we can only obtain discrete power levels.

In order to efficiently solve the MDP problem and obtain thextomious power allocation, in this
section, we will define an approximate value function by gsirpiecewise linear approximation based on
some discrete samples §f*(B, A) | B € {0,6,25,...,bma}, A € {0,1}} whered is an approximation
precision. This approximate value function is shown to becawe and non-decreasing in the variable
corresponding to the energy stored in the battery, makiagtitimal power allocation problem ih](9) (or

(18)) a convex optimization problem.

A. Value Function Approximation

With an approximation precision parameterwe define a piecewise linear approximation operator:

L [vF(b, A), 0] £ v*([b/5]6, A) + %(v’f(wéw, A) —o*([b/6]6,A)), b€ 0,bmax] ,  (11)

and £ [v5 (b, A), 6] £ v(byax, A) for any b > byax, as shown in Figl13.
Initially, we define

WE (b, A) 2 £ [05(b, A),6] (12)

which is a linear approximation to” (b, A). Then, recursively fronk = K — 1 to k = 1, we use the
approximate value function to replace the original valuection in [7), i.e.,v*(b, A) + WF(b, A), and
define

U (br, iy Ak) = Eag,ya, (W (min{bmas, b + ex — prTe}, Apr)] - (13)



By settingu® (b, pr, Ar) < U*(bg, pi, Ax) in @), we further define

V*(bg, Ax) £ Ep, max ) {log(1 + pr(Tk) i) +~U* (bg, pi(Tr), Ak)}] : (14)

Pre(T'k)ED A, (by

Finally, we write the approximation value function as
WEb,A) 2L [V’“(b, A), 0] . (15)

Note that, in [IB){(I5), we made the substitutiarigb, A) < WF(b, A) and u”* (b, pr, Ax) in (@) and
(), respectively. Thus we can treat the approximate valnetion Wk (b, A) £ £ [V¥(b, A), 6], which is
updated by[(I3)E(15), as an approximation to the value fanat* (b, A), which is updated by[{6J(7).
We consider the approximation errgi/* (b, A) — v¥(b, A)|| at slotk (or iterationi = K —k + 1). In

each iteration, the error is produced by the piecewise linpproximation in[(15) and propagated through
solving the problem in((14). Then, at the end of each iterati® total error accumulated by the obtained
approximate value function is the sum of the newly produaedreand the discounted propagated error,
growing with the iteration number. Since the update rulesbfath v*(b, A) and Wk (b, A) start from the
same initial value functiom’ (b, A), then the total error in théth iteration (we use the subscrifif) to

denote the-th iteration, which represents sléf — 7 + 1) can be bounded by

W32 (b, A) — 0D (b, A)lmax < > 7 ¢5(0) (16)

j=1
where

(5) 2 ") @ _ o) @
G2 max (VOB - WA} = VO A) WG Al A7)

is the new error produced bl (15) in theth iteration.
With the approximate value function for each skgtwhen A = 1, the power allocation givelr can

be obtained by

pp(T') = arg max {log(1+ ph) + AU (b, p, 1} . (18)
p€D1(b)

Define Bs = {0,6,24,...,bmax . Note that the approximate value function is linearly resed from
the sample sefV*(b, A) | b € Bs} andWk(b, A) = V*(b, A) for all b € Bs. We can consider the standard
dynamic programing with the discretized state space as ciadpmse of the update rules in {18)415).

Then, the performance achieved with the approximate valoetion can be characterized as follows.



Proposition 1: The approximate value function obtained by recursivelyisgl (13)-[15) is no less than
the discrete value function obtained by the standard dymgmigramming method with the state space
Bs x {0,1} where¢ is the approximate precision.

Proof: Given the discrete state spaBg x {0,1}, sinceW”(B, A) = V@(B, A) forany B x A €
Bs x {0,1}, the standard dynamic programming follows the same upddéein (13)-[15) but with a
discrete feasible power allocation set for the optimizapooblem in [(I#), which is a subset 6f;(b). B

Moreover, in the standard discrete dynamic programmingdiseretize all continuous variables, i.e.,
by, hi, ex, pe, and then perform the dynamic programming with an exhaes@arch om, for all possible
combinations of(by, hy); while with the proposed approximate value function, weyodiscretize the

battery staté, and then obtain the approximate value function for eachrelizedb, in closed-form.

B. Concavity of Approximate Value Function

In (I3)-(18), we note that the approximate value functiomased on the solution to an optimization
problem [(1#). To facilitate solvingd_(14), in this subsentiave will show that the approximate value
function Wk(b, A) given in [I5) is concave fob < b < by given A € {0,1}. Then [I#) is a convex
optimization problem giver andb.

First, we introduce the following lemma, which can be eastywn and illustrated in Fidl 2.

Lemma 1:If a function f(z) € R (xr € & C R) is non-decreasing, for any € X, f(min{z,2'})
is also non-decreasing. Further, if the non-decreasingtitum f(z) is concave, thery(min{z,2'}) is
concave forz € X U [2/, 00).

We have the following non-decreasing propertylVgf (b, A).

Proposition 2: For anyk € {1,2,..., K — 1}, if the approximate value functiod’;™* (b, A) is non-
decreasing with respect toc [0, b,..] given A € {0, 1}, so isWE(b, A).

Proof: If W} (b, A) is non-decreasing with respectice [0, by, for A € {0, 1}, by Lemmél, we
have thatiV; ! (min{bya.y, b}, A) is also non-decreasing with respecthta [0, +c0). Then, we have that
U*(b,p, A), which is a linear combination of the terms of the fon“(min{bmax, b+ ex — T}, A),
is also non-decreasing with respectite [0, b,,.x], givenp and A.

Given any battery leveh € [0, b,,.x), channel fadingh, the powerp, such thatp, € D4(b), ande > 0
such thath + € < b, We have

Po € DA(b+ E) , (19)
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Fig. 2. lllustration of Lemm&ll.
and
log(1 + poh) +~U" (b, po, A) < log(1 + poh) +~U"(b + €, po, A) (20)
< max {log( (14 ph) +yUR(b + ¢, p, A} (22)

pED 4 (b+e)

Since V*(b, A) is a non-negative linear combination of the terms of the fonax,cp , 4 {log (1+
ph) + U*(b,p, A)}, V¥(b, A) is non-decreasing with respect & [0, by.x]. Then, by [I5), we have that
WE(b, A) is also non-decreasing with respectit@ [0, byax)- [

The next result is on the concavity &fF (b, A).

Proposition 3: For any k € {1,2,..., K}, if the approximate value functio/;*!(b, A) is non-
decreasing and concave with respect to [0, b.x] given A € {0,1}, so isWE(b, A).

Proof: SinceW} (b, A) is non-decreasing and concave with respeétdg|0, b,,..] given A € {0, 1},
by Lemmell, we havélVF ™ (min{bu.y, b}, A) is non-decreasing and concave with respedt o0 given
A € {0,1}. Sinceb + e — pT. is a linear combination of and p, then W (min{byax, b + ¢ — pT.}, A)
is jointly concave with respect tb and p. Moreover, it follows that/*(b, p, A) is also jointly concave
with respect tob andp given A € {0, 1}[16].

Since the feasible domai4(b) is different underA = 0 and A = 1. We consider the two cases

separately.
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When A = 0, sinceD, = 0, v*(b,0) can be written as
VE®D,0) = Ey, [wk(b,o,oﬂ . (22)

Since U*(b,p, A) is concave with respect th € [0, by, givenp and A € {0,1}, so isV¥*(b,0) [16].
Then, by [Ib),WE(b,0) is non-decreasing with respect &ae [0, byax)-

When A = 1, the feasible domain of the objective function [ (6) is givey C = {(b,p) : 0< b <
bmax, 0 < p < min{b/T., pmax } }. It can be verified thaf is a convex set. Then, for anfy,, p1), (bs, p2) €
C, their convex combinatiolb, + by, Op; + Op,) € C, whered € [0,1] andf = 1 — 6.

Moreover, sinceD;(b,), D;(by) are non-empty, we can denote

= log(1 + ph k 1 23
D1 argperg%cl){ og(1 + ph) +~U" (b, p, )}, (23)
and
= log(1 + ph Uk (by,p, 1)} . 24
P2 argperg%){ og(1 + ph) +yU" (b, p, )} (24)
Then

max { log(1 + ph) + YU (b, + 0by, p, 1)}
pED1(0b1+0b2)

< log(1+ (Op1 + Op2)h) + U (0by + Oby, Op1 + Opa, 1)
S 910g(1 +plh) + élOg(l +p2h) + eka—i_l(blaplv 1) + éleH_l(b%pZ) 1) (25)
= 0(log(1 + p1h) + YU (b1, p1, 1)) + 0 (log(1 + p2h) + YU (ba, pa, 1))

=0 max {log(l + ph) + AU (by, p, 1)} + 6 max {log(l + ph) + AU (by, p, 1)} . (26)

peD1(b1) pED2(b2)

where [25) follows from the joint concavity, anld {26) follsvfrom the definitions in((23) and (24).
Therefore, we have thahax,cp, ) { log(1 + ph) + ~U*(b,p,1)} is concave with respect tb €

[0, bax)- By (@4) and [(Ib), we further havid’F(b, 1) is concave with respect o€ [0, byax] [16]. [
From Propositions]2 arid 3, we have thaltiif *'(b, A) is non-decreasing and concave sdli§(b, A) for

anyk € {1,2,..., K —1}. Sincelog(1 + ph) is non-decreasing and concave with respect 0[0, byax],

it is easily verified by [(B) thatV (b, A) = VX (b, A) = v(b, A) is also non-decreasing and concave

with respect ta € [0, bi,ax| given A. By induction, we obtain the following theorem.

Theorem 1:For k = 1,2,..., K, the approximate value functioW’%(b, A) is non-decreasing and
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concave with respect toc [0, b,.x] given A € {0, 1}. Further, the problem in_(14) is a convex optimization
problem givernb € [0, by.,] and A € {0, 1}.

Since bothV® (b, A) and Wd(i)(b, A) are concave and non-decreasing, where K — k + 1 is the
iteration number, we can further bound the approximatioaret,(§) in (I7) as follows.

Proposition 4: For any iterationi, given A, we have
0 <e(6) <2V@(5,A) — V(25 A) —VD(0, A) . (27)

Proof: By Theorem[IL, V) (b, A) is non-decreasing and concave with respecb tgiven A. As
illustrated in Fig[B, forb € [0, ], the value of’ (b, A) is smaller than the value on line (*) but larger
than Wé(")(b, A), and therefore the distance between the value on line (*) lé(iéa(b, A) can also be
considered as an upper bound on the approximation error,Ji€(b, A) — Wéi)(b, A) for b € [0,9].

According to the second-order derivative property of thecawe function, we have that

VO((n+1)8,A4) = VO (ns, A) — (VO((n+2)8, A) — VO ((n +1)5, A))

>V ((n+2)5,4) = VO((n+1)8, 4) = (VO ((n +3)5,4) = VO ((n +2)5, 4)) (28)

for alln > 0. Then, we further have that< ¢;(6) < max{2V (5, A)—V @ (25, A)—V (0, A), 2V (25, A)—
V@ (36, A) — VO, A),---} = 2V0(5,A) — VD26, A) — VO(0, A), wheree;(6) = |[VP (b, A) —

W (b, A)lloo- 0
VO (b, A
V@) (b, A)
VAR5 A = - - - - oo : *
204 - W, 4)
‘ \
V@O, A)| - - - - - - - : |
2V (5, A) — V) (25, A) | | ‘
R AR | !
T ‘
|

€0 : | :
I : I
| |
I I I

| } | .

V(©(0,4) 0 5 20 35 Y

Fig. 3. The piecewise linear approximation of the value fiomcand the approximation error bound.
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IV. POWER ALLOCATION WITH PREFECTENERGY PREDICTION

Note that in [I#), we need to solve the following optimizatiproblem for a givenB € B; and
Ae{0,1}:
p'(h) =arg max {log(l+p(h)h)+ YU*(B,p(h), A)}, h>0. (29)

p(h)€DA(B

When A = 0, p*(h) = 0. On the other hand, wheaA = 1, we will obtain the optimal solutiop*(/) in
closed-form.

Since the approximate value functiéfy ™ (b, A) in (I5) is a piecewise linear function éfgiven A,
it follows that U*(B,p,1) in (I3) is also a piecewise linear function with respecptgiven B, which
is differentiable everywhere except &t = {p | p = (B + ex — By)/T., By € B;}. By Theoren(lL and
Lemmall,U*(B,p,1) is also concave and non-decreasing with respegt to

Since U*(B,p, 1) is a piecewise linear function, we dendfe2 {py,pi,...,py} as the set of the
non-differentiable points, wheng = 0, pxy = min{pnax, B/1.}, andp;, (0 < i < N) is thei-th smallest
element in7NDy(B)\ {po, pn}. Also, we denotéV = {w, ws, ..., wy} as the set of the corresponding

slopes, wherey; is the slope of the segmeft;_1, p;|, given by

‘ )

Eq 1{Vk+1([min{bmax, B+e.—piT.}/0]6,A)

— V(| min{buax, B + ex — p10}/8] 6, A)} : (30)
which is derived from[(13) and_(15). Hence, the derivativé/6f B, p, 1) for p € D, (B)\ Z is

w(p) = w;, if p€ (pim1,pi) - (31)

SinceU*(b, p, A) is concave and non-decreasing with respecp,tave haved > wy > w; > ... > wy.
Fig.[4 is a sketch of the stair-case functiafp).
In this section we first obtain the closed-form solution [f8)(2and then use it to obtain the optimal

power allocation for both finite- and infinite-horizon cases

A. The Optimal Solution t¢29)

In this subsection, for simplicity, we drop the supersckipand denote the objective function in{29)

as

gn(p) £ log(1 + ph) +~U(B,p,1), p € Di(B) . (32)
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Fig. 4. The derivative ol/* (B, p, 1) with respect top.

We note thaty,(p) is differentiable forp € D;(B) \ Z with

1
C1/h+p

91(p) +w(p) . (33)

On the other hand, at the non-differentiable pointg ithe right-derivative and the left-derivative gf(p)

can be written as
1

gn(p") = Thip +uw(p’) (34)
and

gh(p7) = 1/h1+p +uw(pT) (35)
respectively.

Theorem 2:The optimal solution to[(29) is given by

p

Sl le[d o A0 feo)i=12,. . N1
1 1 1 :
Di EE(_w. _pz7_w__pz)m[07+oo)7'£:]-a2a7N_]-
*h — 1+1 7 , 36
p*(h) . L. (36)
h€< w1 panO)
PN 7 €10, == —pn)

wherepy, = 0 andpy = min{pu.x, B/7.}.

In Fig.[3 we give a sketch of*(h). To prove Theorem]2, we first give the necessary and sufficient

conditions for the optimal solutiop* as follows [16].

Lemma 2:p* is the optimal solution to (29) giveh, if and only if,
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Fig. 5. The optimal solutiop™(h).

1) g,(p") <0< g, (p""), wheng, (07) > 0 and g;, (min{ B/T, pmax}~) < 0;

2) p* = min{B/T., pmax}, Wheng, (min{B/T¢, pmax} ) > 0;

3) p* =0, wheng} (07) <0.
Note that, Condition 1 corresponds to the case thas in the interior of D;(B). In this case, the left-
derivative and the right-derivative should have opposgesor be both zero at* so that the increasing
and decreasing gf both lead to the decreasing of the objective function. Coodi2 and Condition 3
correspond to the cases thdtis on each side of the boundary D% (B), where the objective function
is non-decreasing and non-increasing foryalt D, (B), respectively.

The following proposition gives a sufficient condition fdret optimality ofp*(h) given B.

Proposition 5: Given anyB € B;, for h > 0, if the energy schedulg*(h) € intD,(B) satisfies

R whenp*(h) € intDy(B) \ Z,

1 1 1 1 *

CwEr )T h
thenp*(h) is the optimal solution ta (29).
Proof: Substituting [(3I7) into[(34)-(35), we havg (p*(h)*) =0 or ¢'(p*(h)~) = 0 whenp*(h) € Z,
and g, (p* (h)*) = ¢'(p"(h)~) = 0 whenp*(h) € intDy (B) \ . Sincegy(p* (h)*) < g (p"(h)~), we have
gn(p*(h)*) <0 < g5,(p*(h)~). Moreover, sincegy,(p) is concave, we have < g, (p*(h)~) < ¢,(0~) and
¢, (min{pmax, B/T.}7) < g;,(p*(h)™) < 0. By Lemmal2 (Condition 1), we conclude the optimality.m
Then it is easy to verify that fof € [~ —p;, —5- —pi1] N[0, +00),i =1,2,..., N —1, the solution

given by [36) satisfies the optimality condition in Propisit3.



16

For ; € (—-1

— piy =7 —pi) N[0,+00),i =1,2,..., N — 1, we use the next proposition to prove

Wi41

the optimality of [36).
Proposition 6: For any non-differentiable point; € Z\ {po, px }, p; is the optimal solution td (29) for

any ; € (—-

Proof: From (34)435).,(p;") and g (p; ) are functions of} for a givenp;. If (——

Wi41

ws

pi) N [0,+00) is not empty, it is easy to verify that = g;,(p;”) > g;,(p;*) when; = —L — p;, and
9n(p7) > gh(p) and gy, (p) < 0 whenj = —A— — p;. Since giverp;, g;,(p; ) andgj,(p;") increase as

; decreases, then decreasipdrom — - — p; t0 max{0, —=— — p;}, we haveg; (p;) > 0 > g;,(p;") for

all + € (—wil — Dis _E —pi) N[0, +oo). By Lemmall the proposmon follows. [ |
Proposition§ 5 anfl 6 obtain the optimal solution foe [~ — py, —5-] N [0, 00). For otherh > 0,
using Conditions 2 and 3 in Lemnla 2, we can prove the optignafit(38) as follows.
Proposition 7: 1) For anyh such that% > —wil, the optimal solution i9*(h) = 0;
2) For anyh such that) < ; < —-- — py, the optimal solutiorp* () = px.
Proof: Note that, since/(B,p, 1) is non-increasing with respect i@ we have—wl1 > 0. When

= —4-, itis easy to verify thay; (07) = 0. Sinceg;,(0") is also a function of; which decreases as

>

increases, we have for afy> —_-, g;(0") < 0. By Condition 3 in Lemm&2, we must haye(h) = 0

for any  such that; > —-- > 0. Similarly, we may also verify that for any < — - —px, g,(py) > 0.

By Condition 2 in Lemmal2, we must hay&(h) = py for any i such that) < < —ur — PN [ |
Note that, givenB € Bs, p*(h) is a piecewise function in closed-form. Théﬂ?(B, A) can be efficiently

evaluated as

VE(B,1) = Ehk{ log(1 + p*(h) i) +AU*(B, p* (h), 1)} : (38)
and
VE(B,0) = Ehk{ log(1) +~U*(B, 0, 0)} — U*(B,0,0) , (39)
where
UM(B,p,0) = Y PrApy = A'| Ay = 0) [WfT (min{buax, B+ ex — pT.}, A')] . (40)
A’=0,1

B. Calculating the Approximate Value Function

In order to obtain the power allocation, we need to compugeaghproximate value function given by

[@3)-5) fork =1,2,..., K (K = oo for infinite-horizon case). Then, when the observation &ilable,
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we solve the problem given i (1L8).

1) Finite K: We first consider the finite-horizon case whéfas finite, we assume that the distributions
of channel fading are independent across slots but not s&dlysidentical.

The power allocation consists of two phases. In the first@has recursively compute the approximate
value function fromk = K to k& = 1, following (I3)-(15). Specifically, in thé-th iteration, we obtain
W (b, A) for slotk = K —i+1 as follows. Based ofi’{""" (b, A) obtained in the previous iteration (or
the initial function for the first iteration), for each € Bs and A = {0, 1}, we obtain the piecewise linear
functionU® (B, p, A) by specifying the set§ andW. Then, we usd(36) to obtajr(h) and use[(38)E(39)
to updateV' ) (B, A) for all B € Bs and A = {0, 1}. With the set{V)(B, A) | B € B;, A = {0,1}}, the
approximate value functioW(;(i)(b, A) can be obtained using (15) and we store the cIosed-W;{f"ﬁ(b, A)
in a look-up table. Note that the above first phase should beptzied before the first slot.

The second phase is performed at the beginning of each sicg, the observation becomes available.
This phase is to solve the problem given in](18) using (36kc8izally, at the beginning of slot,
the transmitter observes the system state, i.e., the chaoness statel, the channel gairk, and the
current battery state. When A = 0, the transmitter keeps silent. Otherwise, the transmidgreves the
approximate value functioV’**(b, A) (i.e., Wé(K_"_l)(b, A)) from the look-up table and then calculate
the power allocation using (B6).

The entire computational procedure for the finite-horizasecis summarized in Algorithm 1.
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Algorithm 1 - Finite-Horizon Power Allocation

1. Inputs
Distributions of H, A; value ofe, for k=1,2,..., K
The approximation precisiofl > 0 and the discount factoy € [0, 1].
2. Phase-l: Compute the approximate value function upd#tine calculation)
FOR k=K TO 1
* Calculate V*(B, h, A) for B € Bs, A € {0,1} using [36) and[{38)-(39)
ComputeWk (b, A) from V*(B, A) using [I5) and store it
ENDFOR
3;  Phase-Il: Power Allocation (online calculation)
FORkE=1TO K
Get the observations;, = (b, hi, Ak)
RetrieveWW (b, A) and calculate/* (by,, p, Ay) using [IB)
Calculatep* (hy) using [36)
ENDFOR

Remark 1:If the observations can be predicted in a scheduling pekipde., H, E, and A are known

in advance, we can rewrite](5) as follows

pk,k:1,2,...,K

K
P* =arg max { Z Aplog(1 +pkhk)} , (41)
k=1

subject to the constraints ial(2), (48), and (4) foe= 1,2,..., K.

We note that in the above case all the observations are ngalba known in advance and the problem
in (41) is a convex optimization problem. Instead of the gieneonvex solver, there is also an efficient
dynamic water-filling algorithm proposed in![9], for solgn{41) optimally. Moreover, sincd_(#1) is a
special case of the stochastic case, Algorithm 1 is alsoicgippé and would approach the optimal
performance as the dynamic water-filling algorithm when- 0. Specifically, the use of Algorithm
1 or the dynamic water-filling algorithm strikes a balanceasen the performance and the computational
complexity.

2) Infinite K: In the infinite-horizon case, althoughk is infinite, the number of the iterations in the
first phase is not infinite since the approximate value famctvill converge. Moreover, since we have
assumed that, is static andh, is i.i.d., the converged approximate value function can ipectly used

in (I8) to obtain the power allocation with the observationshe second phase, for all slots.
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We denote
7:; . W5(b7 A) — W(S(bv A) (42)

as the value function update operatorinl (13)+(15): basealgimen value functioﬂ%”(b, A), it solves[([14)
to obtainV’ (B, p, A) for B € B;, and then generates the new approximate value funwgfﬁl)(b, A)

by (I58). Then we can write
W (6, 4) 2 T W06, A)], b€ [0, b 43)

Note that7, is the standard Bellman operator corresponding to[{6)-(f)omt the value function approx-
imation, i.e.,0 = 0 [15].

Then the computational procedure for the infinite-horizasecis summarized in Algorithm 2.

Algorithm 2 - Infinite-Horizon Power Allocation

1. Inputs
Distributions ofh, A; value ofe
The approximation precisiof > 0, the discount factory € (0, 1), and the termination condition.
2.  Phase-l Approximate value function update (offline ckaton)
1+ 0
REPEAT
() W) = T[w v, )]
14 1+1
UNTIL W (b, A) — WD (b, A)||se < a
Wi (b, A) «— W (b, A)
3:  Phase-Il Power Allocation (online calculation)
AT THE BEGINNING OF EACH SLOT
Get the observations = (b, h, A)
RetrieveW; (b, A) and calculate/* (b, p, A) using [1B)
Calculatep* (h) using [36)

To show the convergence of the approximate value functiatatgy we first note that, by repeatedly

performing7, on any initial value function, a converged value functiom ¢ obtained as follows$ [15]:

Vb, A AT T [v(l)(b, A)} = T [Um(b, A)]. (44)
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Extending the convergence @ to 75, we introduce the following lemma. The proof is given in Appg&
A.
Lemma 3:The operator7; has the~y-contraction property, i.e., for any two function§(b, A) and

Vs(b, A), we have
175 Vil A)| = T5 [ Valb. A)| e < AIV3(5, 4) = Va(b, A) | - (45)
It then follows that
Iz w6 )] = T W6 Al < 71T W00, A)] W0l @6)

ie., Ty [W(l)(b, A)} converges ag increases. Moreover, the error between the converged xppate
value function and*(b, A) is bounded as follows.

Theorem 3:If ||7} [Wé(l)(b, A)} — Tt [Wé(l)(b, A)] |lc < a, then the error between*(b, A) and
W (b, A) is bounded by

Yo+ ||QU*(57 A) — U<07 A) — U*(257 A)HOO

W57 (b, 4) = v (b, A) | < —

(47)

Proof: The proof is provided in Appendix B. [ |

Note that, Algorithms 1 and 2 have both the offline calculatgart and the online calculation part.
During offline calculation, we evaluate* (B, A) for eachB € B; in each iteration, i.e., SO (By,../0)
convex optimization problems in each iteration. Specifycabther than using an exhaustive search for
each combination of the discretizé®, ) (H is the discretized channel gain) as done by the standard
discrete MDP method, the proposed algorithms Usé (36) tulzakV* (B, A) for eachB € B; directly.
Moreover, for the infinite case, by Lemrhh 3, theonverged approximate value function can be obtained
within O(log, «) iterations. On the other hand, during online calculatioe, netrieve Wy (b, A) (or
W;(b, A)) from the look-up table and then ude {36) to compute the padlecation for the specific
observation(by, hy, Ay).

Moreover, the proposed algorithms calculate the powecatlon based on the continuous battery state
and channel gain, and the obtained power allocation is aatirmious. Thus it provides higher precision
for both offline calculation and online calculation than ttaventional discrete MDP method, especially
when the discretization step is large. Finally, as shownreictiSn VI, a better performance can be achieved

by the proposed algorithm with a lower computational comipfecompared with the conventional discrete
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MDP method.

V. POWER ALLOCATION WITH IMPERFECTENERGY PREDICTION

Although energy harvesting is usually predictable, thesg mxist a non-negligible prediction error in
practice. In this section, we treat the case of imperfectggnkarvesting prediction where the prediction
error is an i.i.d. random variable. We also consider a gémargoff functionr(p, A), which is continuous,
non-decreasing and concave with respect iven A € {0, 1}.

In this general model, we assume the energy harvesting ggamnsisting of a deterministic pa#t
and a stochastic patt,. The deterministic process, in practice is obtained from the prediction using
historic observations, e.g., by averaging the historicsusament with the weather adjustment.

With the prediction error, the problem formulation is moelifias follows:

b1 = min {bmax, b + e + e, — e} (48)
and
K
* A k—1
P s arg max {EH,E,A[ZV T(pk(rk)ahk)]} : (49)

k=1
subject to the constraints il (2L] (4), and1(48), for=1,2,..., K, where E £ [z}, ¢, ..., ex]. Accord-

ingly, sincee; is a random variable, the (approximate) value function tpdales in [¥) and[{13) are

changed to

uF(br, pr, Ag) 2 ey A4, [Uk+1(miﬂ{bmax, b + e+, — pi1e}, Ak+1)] ; (50)
and

U* (bi, iy Ak) = Bey a4, W5 (0in{bima, b + ex + 26 — piTe}, Aryr)] (51)
respectively.

Obviously, since(p, A) is continuous, non-decreasing and concave with respecgteen A, and the
expectation with respect tg, in (50) and [511) preserves the concavity and the non-deogasoperties,
we can extend the analysis in Section Ill to the case with greetal payoff function and imperfect energy
prediction, obtaining the same concavity and non-deangagioperties.

However, note that, the optimal solutipn(4) in (38) is based on the facts that (b, p, A) is a piecewise

linear function andr(p, k) = log(1 + ph), which are no longer valid with the general payoff function
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and/or imperfect energy prediction. Then, in Algorithmsrid &, the steps marked by (*), which aim
to solve the problem in (14), need to be modified accordinigiyparticular, we now need to use some

standard convex solver to numerically solizel(14).

VI. SIMULATION RESULTS

We use the payoff function(p,h) = log(1l + ph). We assume that the channel fadihg is an
i.i.d. random variable following the Rayleigh distributiovith the parameter. We first assume that
the harvested energy can be perfectly predicted. For tmertrdter, we set the maximum transmission
power asp...x = 6 units per slot, the battery capacity &s., = 15 units, and the initial battery level
as by = 2 units. Further, we set the probability of the channel acsespension ag = ¢ = 0.1, the
approximate precision of the approximating value function dsand 0.1, and the convergence error
tolerance for the infinite-horizon case as= 0.0001.

We first evaluate the performance of the proposed algoritkimscomparison, we consider three simple
power allocation methods, tlggeedy policy the balanced policyand the standard discrete MDP method.
The greedy policy tries to allocate as much power as possildach slot subject to the energy availability.
On the other hand, the balanced policy tries to allocate ataohpower in each slot, e.g., the mean value
of the harvested energy. Moreover, for the standard disdvi P method, we discretize the battery level,
the channel gain, and the transmission power with the sameson factord, and then perform the
dynamic programming algorithm and the value iteration atgm on the discrete state space for the
finite- and infinite-horizon cases, respectively.

For the finite-horizon case, we sét = 30, v = 1, ando = 0.7,0.8,0.9,1.0, 1.1, 1.2. We randomly
generate the prediction valug following a positive truncated-Gaussian distribution twthe variance
of 2. We consider two typical scenarios, anergy-constrained scenarisith the mean of the harvested
energy of2, and apower-constrained scenariwith the mean of the harvested energy4oin the energy-
constrained scenario, the average harvested energy is loweh than the maximum transmission power
and the energy schedule is mainly constrained by the enegglakility. On the other hand, in the power-
constrained scenario, the average harvested energy appsoto the maximum transmission power and
this constraint dominates the energy scheduling. For be¢harios, we compare the performance of the
proposed algorithm with the standard discrete MDP methuoel greedy policy and the balanced policy,
averaged oveR x 10° realizations in Fig[16 and Fid. 7, respectively. Although wannot obtain the

optimal performance, we utilize the error bound given[in)(a6d [2T) as an upper-bound of the optimal
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Fig. 6. Performance comparisons in the energy-constrascedario for the finite-horizon case.

performance. Also, the performance obtained by the standecrete MDP method can serve as the
lower-bound.

It can be seen from Fid.] 6 and Fig. 7 that for= 1, the performance of the proposed algorithm
tightly approaches the upper-bound of the optimal perfoireain both scenarios while there is a gap
between the proposed algorithm and the standard discrete MBthod. It is mainly because that the
discrete MDP method discretizes all continuous variabtes Gauses some non-negligible error with the
large discretization step. For= 0.1, both the proposed algorithm and the standard discrete MBtihad
achieve the comparable performance, but their computgticomplexities are not comparable, e.g., the
exhaustive search is involved in the latter. The greedy atahiced policies both have significantly inferior
performances. Moreover, we note that the total rate ineseas the Rayleigh parametelincreases and
the rate in the energy-constrained scenario is higher thamnim the power-constrained scenario.

For the infinite-horizon case, we set= 0.85, ¢, = 3, ando = 0.7,0.8,0.9,1.0,1.1, 1.2. Similar to
the finite-horizon case, we evaluate the performance faowarpower allocation policies, averaged over
2 x 108 realizations. The performance comparisons for variousgpaailocation policies are shown in
Fig.[8. Moreover, the convergence behavior of the propogatithm is also shown in Fid.]9 for = 1

and~y = 0.8,0.85,0.9.
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Similar to the finite-horizon case, it is seen from Hig. 8 tha® proposed algorithm has the best
performance, tightly approaching the upper-bound of thiemag performance. We note that the standard
discrete MDP method with a discretization stepjof 0.1 performs worse than the proposed algorithm.
Further, the approximation gap is slightly higher in thenité case as compared to that in the finite case.
Moreover, we see that the greedy approach has the worstrperiice. In addition, it is seen from Fig. 9
that the discount factor affects the convergence speedahygzad in Section IV. Also, in the simulations for
~ = 0.8,0.85,0.9, the proposed algorithm converges within aroddd40 and 70 iterations, respectively.

We next evaluate the impact of the imperfect prediction revde consider the finite-horizon case
and setk = 10, vy = 1,¢, =35, 0 =1,¢q =1—¢ = 0, andd = 0.1. In this scenario, we only
consider the impact of the imperfect prediction and we asstimt the channel fading is known and
the energy prediction error follows the discrete uniformtdlbution between-v andv with the step of
0.1. The total payoff obtained by the proposed algorithm withiszd information and the water-filling
based algorithm in[9] with non-causal information is comguhin Fig.[10, over different prediction error
rangesv = 0,0.5,1,1.5,2,2.5. It is seen from Fig[ 10 that as decreases, the performance gap of the

two algorithms with and without non-causal information &ses and approaches zero.
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VIlI. CONCLUSIONS

We have considered the problem of optimal power allocat@mrah access-controlled transmitter with
energy harvesting capability, operating in time-slotteshion with causal knowledge of the channel state
and the energy harvesting state. The energy harvestingggsds a sum of a deterministic non-causal
estimate and a random causal prediction error. This proldeimrmulated as a Markov decision process
with continuous state. To efficiently solve this problem fmyth the finite- and infinite-horizon cases,
we have introduced the approximate value function and deeel efficient algorithms for obtaining the
approximately optimal solutions. The proposed algoritlprevide an approximately optimal continuous
power allocation, whose performance is better than thaiodt by the standard discrete MDP method,
in a computationally efficient manner. Simulation resulésndnstrate that the proposed algorithms can

closely approach the optimal performance for both the firated infinite-horizon cases.

APPENDIX A

PROOF OFLEMMA

It is known that7,, which is the operator in the standard value iteration dligior, is a~y-contraction

[15]. Denoting(b*, A*) 2 arg ||T; [Vl(b, A)} - T [Vg(b, A)} o, for any (Bo, Ao) and (B, + 6, Ay) where
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Bo, By + 6 € Bs, Ay € {0, 1}, we have that
76 [ (Bo. 40) = To V2] (Bo 4o)| < | (To 1A = s3] ) & 4%) (52)
and
T[] (Bo + 6, A0) = T[] (Bo + 6, 40)| < | (T3] - T [Wa] ), 4%)] - (53)

Note that, given a value functioW (b, A), s [V} (b, A) is the piecewise linear function reconstructed
from the sample sef7, [V] (B,A) | B € Bs}, as in [1b). SinceB,, By + § € Bs, then for anyb €
[Bo, By + 6], we have

T[] 6 4) - T[54
< max {}%M (By, A) — T[VZ](BO,A)},}%[V@(BOM,A)-%{%](BOM,A)‘}
= max { |To[Vi] (Bo, 4) = T [Va] (Bo, )| | T [Vi] (Bo + 6. 4) - To W] (Bo +8,4)| b (89)

Since B, and A are arbitrarily chosen fron;/ max{Bs} and{0, 1}, respectively, we have

1T [Vib, )] = T va(e, )]

<max { |5 Vi| (Bo, 4o) = To V2 (Bo, o), | o [Vi] (Bo + 6, 4o) = Ts[va (Bo + 6, 40)| }  (85)

<|(%[v] - m[va] ), 40| (56)
=|IT5|Vi(b, 4)] = T Va(b, 4)) Il (57)
<IVa(5, 4) = Valb 4| (58)

where [Bb) follows from[(54),[(56) follows front (52)-(63)na@ (57) follows the definition ofv*, A*).

APPENDIX B

PROOF OFTHEOREM[3

Denotef(b, A) = v*(b, A) — Ts [v*(b, A)]. By Lemmal3, we have

W (b, A) — v*(b, A)||

= [|[WP (b, A) + WV (b, A) — WV (b, A) — 0¥ (b, A)][w
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< W57 (b, A) = WD (b, Al oo + W5 (0, A) = 07 (b, A) o

= 175 [ W37 (6, 4)] = Ta [ W36 )| oo + 1175 | W37 (6, )] = Ts v (b, )| = B(b. A |
—H%W@ A)| = T WD 0, )] lloo + 1175 | W32 (b, A)| = T5 [0 (5, )]l + 1186, A)] |
< AW (0, A) = WD (b, A)l oo + AI[WR (5, A) + 07 (b, Al + 118D, A)l | (59)

where [[59) follows they-contraction of the operatof;.
From (59), we have

INWE (b, A) = WD (b, Ao + |15, A)]] oo

W (b, A) = v* (b, Ao <
1—7

_ 7+ 118, Al
<ot

(60)

Also, since the only difference betwe@i and 7, is the approximation process, then we haié, A) =
v (b, A) — T [U*(b, A)} = " (b, A) — 5[75 [0 (b, A)] ,5] = o' (b A) — L [v*(b, A), 5]. Using Proposition

4, we have
1B(b; A)lloe < [[207(6, A) — v(0, A) — v*(20, A)[|oo < |[v7(6, A) — v7(0, A)[|oo - (61)

Therefore, [[6D) can be further written as

ya + [[20%(5, A) — v(0, A) — v*(26, A)]| 0 .

W57 () = v (0)l e < e

(62)
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