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Abstract

We consider power allocation for an access-controlled transmitter with energy harvesting capability based on

causal observations of the channel fading state. We assume that the system operates in a time-slotted fashion and

the channel gain in each slot is a random variable which is independent across slots. Further, we assume that the

transmitter is solely powered by a renewable energy source and the energy harvesting process can practically be

predicted. With the additional access control for the transmitter and the maximum power constraint, we formulate

the stochastic optimization problem of maximizing the achievable rate as a Markov decision process (MDP) with

continuous state. To efficiently solve the problem, we definean approximate value function based on a piecewise

linear fit in terms of the battery state. We show that with the approximate value function, the update in each

iteration consists of a group of convex problems with a continuous parameter. Moreover, we derive the optimal

solution to these convex problems in closed-form. Further,we propose power allocation algorithms for both the

finite- and infinite-horizon cases, whose computational complexity is significantly lower than that of the standard

discrete MDP method but with improved performance. Extension to the case of a general payoff function and

imperfect energy prediction is also considered. Finally, simulation results demonstrate that the proposed algorithms

closely approach the optimal performance.
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I. INTRODUCTION

The utilization of renewable energy is an important characteristic of the green wireless communication

systems [1]. Renewable energy powered transmitters can be deployed for wireless sensor networks or cellu-

lar networks, reducing the reliance on traditional batteries and prolonging the transmitter’s lifetime [2][3].

However, the fluctuation of the energy harvesting together with the variation of the channel fading brings

many challenges to the design of energy-harvesting communication systems [4][5].

Wireless transmission schemes for energy-harvesting transmitters have been investigated by a number

of recent works [6][7][8][9]. In order to achieve the optimal throughput, a “shortest path” based energy

scheduling algorithm was proposed in [6] for a static channel with finite battery capacity and non-causal

energy harvesting state. The authors of [7] discussed an MDPmodel for the case when the energy

harvesting and channel fading are known causally and there is no maximum power constraint. A staircase

water-filling algorithm was proposed in [7] for the case whenthe battery capacity is infinite, and the

energy harvesting and fading channel states are known non-causally. With a finite battery capacity and

non-causal energy harvesting and fading channel states, a water-filling procedure was studied in [8], and

with an additional maximum power constraint a dynamic water-filling algorithm was proposed in [9]. The

authors of [10] developed an online approximately optimal algorithm based on Lyapunov optimization,

which is designed to maximize a utility function, based on the number of packet transmissions in energy

harvesting networks. In [11], using the discrete MDP model,a reinforcement learning based approach

was used to optimize the number of packet transmissions without the prior knowledge of the statistics

of the energy harvesting process and the channel fading process. The authors of [12] considered a static

channel with causal knowledge of the stationary Poisson energy arrival process and gave an MDP-based

solution to maximize the average throughput with unconstrained transmission power. On the other hand,

the throughput optimization problem with causal information on the energy harvesting state and the fading

channel state, and under the maximum power constraint, remains open. In this paper, we will tackle this

problem.

Specifically, we first consider the power allocation for an access-controlled transmitter, which is powered

by a renewable energy source and equipped with a finite-capacity battery and has a maximum power

constraint. The channel fading is assumed to be a random variable in a slot and is independent across

different slots. For energy harvesting, we first assume thatit can be predicted accurately for the scheduling

period, which can be realized in practice [13][14], and thenlater introduce the prediction error variables.
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Furthermore, we assume that a control center can temporarily suspend the transmitter’s access due to

channel congestion. Such channel access control for the transmitter is modeled as a first-order Markov

process. Under the above setting, this paper finds the approximately optimal power allocation for both

the finite- and infinite-horizon cases.

To obtain the power allocation, we formulate the stochasticoptimization problem as a discrete-time and

continuous-state Markov decision process (MDP), with the objective of maximizing the sum of the payoff

in the current slot and the discounted expected payoffs in the future slots, where the payoff function is the

achievable channel rate. Since the state variables including the battery state and the channel state in the

MDP problem are continuous, to avoid the prohibitively highcomplexity for updating the value function

caused by the continuous states, this paper introduces an approximate value function. We show that the

approximate value function is concave and non-decreasing in the variable corresponding to the energy

stored in the battery, which further enables the approximate value function be updated in closed-form.

This is then used to find the approximately optimal solution of the power allocation for both the finite-

and infinite-horizon cases.

The proposed algorithms provide approximate solutions, whose performances are lower bounded by

the standard discrete MDP method. Also, to obtain the solution, we solve at mostO(Bmax/δ ·C) convex

optimization problems whereBmax is the battery capacity,δ is the approximation precision, andC is the

length of horizon for the finite-horizon case or the maximum number of iterations for the infinite-horizon

case. In particular, for the infinite-horizon case, given a convergence toleranceα, theα-converged solution

can be obtained withinO(logγ α) iterations, whereγ is the discount factor.

The remainder of the paper is organized as follows. In Section II, we describe the system model,

formulate the energy scheduling problem as a continuous-state MDP problem and define the value function.

In Section III, we define an approximate value function and prove that the approximate value function

is non-decreasing and concave with respect to the continuous battery state. In Section IV, we derive

the optimal closed-form procedure for updating the approximate value function and develop the power

allocation algorithms for both finite- and infinite-horizoncases. The proposed algorithms are extended to

deal with the model with a general payoff function and imperfect energy prediction in Section V. Section

VI provides simulation results and Section VII concludes the paper.
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Fig. 1. The system block diagram.

II. PROBLEM FORMULATION

A. System Model

We consider a point-to-point communication system with onetransmitter and one receiver, as shown

in Fig. 1. We assume a slow fading channel model where the channel gain is constant for a coherence

time of Tc (corresponding to a time slot) and changes independently across slots. The signal model for

slot k is given by

yk = Hkxk +wk, (1)

whereyk ∈ CTc is the received signal,xk ∈ CTc is the transmitted signal,Hk ∈ C is the channel gain in

slot k andwk ∈ C
Tc is the additive white Gaussian noise consisting ofCN(0, 1) elements.

At the beginning of each slot, the transmitter is informed ofthe channel access statusAk ∈ {0, 1} for the

current slot from the control center, whereAk = 0 indicates that the channel access is not permitted for slot

k while Ak = 1 indicates otherwise. We assume thatAk follows a stationary first-order Markov process,

whose transition probabilities are given as Pr(Ak+1 = 0 | Ak = 1) = qk and Pr(Ak+1 = 0 | Ak = 0) = q̃k.

If Ak = 0, then the transmit power in slotk is pk = 0. On the other hand, ifAk = 1, then the transmitter

needs to decide its transmit powerpk.

The transmitter is powered by an energy harvesting device, e.g., a solar panel, and a battery. The battery,
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which buffers the harvested energy, has a finite capacity, denoted bybmax. Since the energy harvesting

process is steady or can be well predicted, we assume that theenergy harvested over the nextK slots can

be non-causally known, denoted asek (the causal energy harvesting model will be considered in Section

V). We assumehk , |Hk|
2 is independent across slots (i.i.d. whenK =∞).

In slot k, the transmitter transmits at a power level ofpk (pk = 0 if Ak = 0), which is constrained by

the maximum transmission powerpmax and the available energybk, i.e.,

0 ≤ pk ≤ min
{

pmax, bk/Tc

}

. (2)

The battery level at the beginning of slotk + 1 is given as

bk+1 = min
{

bmax, bk + ek − pkTc

}

, (3)

with the constraint that the battery level is non-negative for all slots, i.e.,

bk ≥ 0 . (4)

Further, the transmitter receives a payoffr(p, h) based on the transmission power and channel gain. In

this paper, we use the achievable channel rate as the payoff,i.e., r(p, h) = log(1 + ph). Also, in Section

V, we consider a general payoff functionr(p, h) which is continuous, non-decreasing, and concave with

respect top givenh.

B. Problem Formulation

We assume thatek can be predicted non-causally while all other variables areonly known causally

to the transmitter (we will relax this assumption in SectionV where we assume thatek is predicted

with a random errorεk). DenoteH , [h1, h2, . . . , hK ], A , [A1, A2, . . . , AK ], and a discount factor

γ ∈ [0, 1]. We assume that all the side information, e.g., the distributions of all random variables and

the predictions of the harvested energy, is known before thefirst slot. Then the power allocation policy

P , {pk(Γk) | k = 1, 2, . . . , K} needs to be calculated to maximize the expected total payoffin the

next K slots, whereΓk , (bk, hk, Ak) consists of the observations available at the beginning of slot k.

Sincebk andhk are continuous variables, it is not possible to storeP in a look-up table. Instead, we only

store some of the intermediate results, i.e., the approximate value function introduced in Section III, in an

efficient way, and then calculate the power allocation whenΓk is observed. Specifically, at the beginning
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of slot k, givenΓk, if channel access is permitted, i.e.,Ak = 1, the transmitter calculate the power level

pk. And if the channel access is not permitted, i.e.,Ak = 0, thenpk = 0. To that end, we formulate the

following optimization problem for defining the optimal policy

P∗ , arg max
pk(·),k=1,2,...,K

{

EH ,A

[

K
∑

k=1

γk−1 log(1 + pk(Γk)hk)
]}

, (5)

subject to the constraints in (2), (3), and (4) fork = 1, 2, . . . , K.

Note that by (3), the battery levelbk forms a continuous-state first-order Markov chain, whereasthe

channel access stateAk is a discrete-state Markov chain by assumption. Then, we canconvert the problem

in (5) to its equivalent MDP recursive form [15] in terms of the value function, which represents the total

payoff received in the current slot and expected to be received in the future slots.

Specifically, in the MDP model we treat the battery levelb and the channel access stateA, i.e., (b, A),

as the state, the channelh as the observation, and the transmit powerp as the decision. Then, the state

space becomes{0 ≤ b ≤ bmax} × {0, 1}; and the corresponding decision space isD1(b) = {0 ≤ p ≤

min{b/Tc, pmax}} andD0 = {0}, corresponding toA = 1 andA = 0, respectively. The value function is

then recursively defined as

vk(bk, Ak) , Ehk

[

max
pk(Γk)∈DAk

(bk)

{

log(1 + pk(Γk)hk) + γuk(bk, pk(Γk), Ak)
}

]

, k = 1, 2, . . . , K , (6)

where

uk(bk, pk, Ak) , EAk+1|Ak

[

vk+1(min{bmax, bk + ek − pkTc}, Ak+1)
]

, (7)

and

vK+1(b, A) = 0, for all b ∈ [0, bmax], A ∈ {0, 1} . (8)

Note that,vk(bk, Ak) represents the expected maximum discounted payoff betweenslotsk andK given

the side informationbk andAk. Due to the causality and the backward recursion, the observation Γk in

slot k does not affect the value function for slotk + 1. Also, whenAk = 1, given the value function for

slot k + 1, the optimal power allocation for slotk can be obtained by

p∗k(Γk) = arg max
p∈DAk

(bk)

{

log(1 + phk) + γuk(bk, p, 1)
}

, (9)
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whereuk(b, p, A) is calculated using (7). Moreover, whenAk = 0, we always have

p∗k(Γk) = 0 . (10)

III. A PPROXIMATE VALUE FUNCTION

By recursively computing the value functionvk(b, A) defined in (6), in theory we can obtain the optimal

solution to (9) for eachk ∈ {1, 2, . . . , K}. However, a closed-form expression forvk(b, A) is hard to obtain

whenK is large, e.g.,K ≥ 3. A typical approach is to quantize the continuous variables(b, p, h) to finite

number of discrete levels, i.e., to convert the original problem to a discrete MDP problem [15]. However,

with such discretization, solving the corresponding discrete MDP problem involves an exhaustive search

onD1(b) for all discretizedh, and we can only obtain discrete power levels.

In order to efficiently solve the MDP problem and obtain the continuous power allocation, in this

section, we will define an approximate value function by using a piecewise linear approximation based on

some discrete samples of{vk(B,A) | B ∈ {0, δ, 2δ, . . . , bmax}, A ∈ {0, 1}} whereδ is an approximation

precision. This approximate value function is shown to be concave and non-decreasing in the variable

corresponding to the energy stored in the battery, making the optimal power allocation problem in (9) (or

(18)) a convex optimization problem.

A. Value Function Approximation

With an approximation precision parameterδ, we define a piecewise linear approximation operator:

L
[

vk(b, A), δ
]

, vk(⌊b/δ⌋δ, A) +
b− ⌊b/δ⌋δ

δ

(

vk(⌈b/δ⌉δ, A)− vk(⌊b/δ⌋δ, A)
)

, b ∈ [0, bmax] , (11)

andL
[

vK(b, A), δ
]

, v(bmax, A) for any b > bmax, as shown in Fig. 3.

Initially, we define

WK
δ (b, A) , L

[

vK(b, A), δ
]

, (12)

which is a linear approximation tovK(b, A). Then, recursively fromk = K − 1 to k = 1, we use the

approximate value function to replace the original value function in (7), i.e.,vk(b, A) ← W k
δ (b, A), and

define

Uk(bk, pk, Ak) , EAk+1|Ak

[

W k+1
δ (min{bmax, bk + ek − pkTc}, Ak+1)

]

. (13)
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By settinguk(bk, pk, Ak)← Uk(bk, pk, Ak) in (6), we further define

V k(bk, Ak) , Ehk

[

max
pk(Γk)∈DAk

(bk)

{

log(1 + pk(Γk)hk) + γUk(bk, pk(Γk), Ak)
}

]

. (14)

Finally, we write the approximation value function as

W k
δ (b, A) , L

[

V k(b, A), δ
]

. (15)

Note that, in (13)-(15), we made the substitutionsvk(b, A) ← W k
δ (b, A) and uk(bk, pk, Ak) in (7) and

(6), respectively. Thus we can treat the approximate value functionW k
δ (b, A) , L

[

V k(b, A), δ
]

, which is

updated by (13)-(15), as an approximation to the value function vk(b, A), which is updated by (6)-(7).

We consider the approximation error||W k
δ (b, A)− vk(b, A)||∞ at slotk (or iterationi = K− k+1). In

each iteration, the error is produced by the piecewise linear approximation in (15) and propagated through

solving the problem in (14). Then, at the end of each iteration the total error accumulated by the obtained

approximate value function is the sum of the newly produced error and the discounted propagated error,

growing with the iteration number. Since the update rules for both vk(b, A) andW k
δ (b, A) start from the

same initial value functionvK(b, A), then the total error in thei-th iteration (we use the subscript(i) to

denote thei-th iteration, which represents slotK − i+ 1) can be bounded by

||W
(i)
δ (b, A)− v(i)(b, A)||max ≤

i
∑

j=1

γi−jǫj(δ) (16)

where

ǫj(δ) , max
b∈[0,bmax],A∈{0,1}

{V (j)(b, A)−W
(j)
δ (b, A)} = ||V (j)(b, A)−W

(j)
δ (b, A)||∞ (17)

is the new error produced by (15) in thej-th iteration.

With the approximate value function for each slotk, whenA = 1, the power allocation givenΓ can

be obtained by

p∗k(Γ) = arg max
p∈D1(b)

{

log(1 + ph) + γUk(b, p, 1)
}

. (18)

DefineBδ , {0, δ, 2δ, . . . , bmax}. Note that the approximate value function is linearly recovered from

the sample set{V k(b, A) | b ∈ Bδ} andW k
δ (b, A) = V k(b, A) for all b ∈ Bδ. We can consider the standard

dynamic programing with the discretized state space as a special case of the update rules in (13)-(15).

Then, the performance achieved with the approximate value function can be characterized as follows.
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Proposition 1: The approximate value function obtained by recursively solving (13)-(15) is no less than

the discrete value function obtained by the standard dynamic programming method with the state space

Bδ × {0, 1} whereδ is the approximate precision.

Proof: Given the discrete state spaceBδ × {0, 1}, sinceW (i)
δ (B,A) = V (i)(B,A) for anyB × A ∈

Bδ × {0, 1}, the standard dynamic programming follows the same update rule in (13)-(15) but with a

discrete feasible power allocation set for the optimization problem in (14), which is a subset ofD1(b).

Moreover, in the standard discrete dynamic programming, wediscretize all continuous variables, i.e.,

bk, hk, ek, pk, and then perform the dynamic programming with an exhaustive search onpk for all possible

combinations of(bk, hk); while with the proposed approximate value function, we only discretize the

battery statebk and then obtain the approximate value function for each discretizedbk in closed-form.

B. Concavity of Approximate Value Function

In (13)-(15), we note that the approximate value function isbased on the solution to an optimization

problem (14). To facilitate solving (14), in this subsection, we will show that the approximate value

function W k
δ (b, A) given in (15) is concave for0 ≤ b ≤ bmax given A ∈ {0, 1}. Then (14) is a convex

optimization problem givenh andb.

First, we introduce the following lemma, which can be easilyshown and illustrated in Fig. 2.

Lemma 1: If a function f(x) ∈ R (x ∈ X ⊆ R) is non-decreasing, for anyx′ ∈ X , f(min{x, x′})

is also non-decreasing. Further, if the non-decreasing function f(x) is concave, thenf(min{x, x′}) is

concave forx ∈ X ∪ [x′,∞).

We have the following non-decreasing property ofW k
δ (b, A).

Proposition 2: For anyk ∈ {1, 2, . . . , K − 1}, if the approximate value functionW k+1
δ (b, A) is non-

decreasing with respect tob ∈ [0, bmax] givenA ∈ {0, 1}, so isW k
δ (b, A).

Proof: If W k+1
δ (b, A) is non-decreasing with respect tob ∈ [0, bmax] for A ∈ {0, 1}, by Lemma 1, we

have thatW k+1
δ (min{bmax, b}, A) is also non-decreasing with respect tob ∈ [0,+∞). Then, we have that

Uk(b, p, A), which is a linear combination of the terms of the formW k+1
δ (min{bmax, b+ ek − pkTc}, A),

is also non-decreasing with respect tob ∈ [0, bmax], givenp andA.

Given any battery levelb ∈ [0, bmax), channel fadingh, the powerp0 such thatp0 ∈ DA(b), andǫ > 0

such thatb+ ǫ ≤ bmax, we have

p0 ∈ DA(b+ ǫ) , (19)
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Fig. 2. Illustration of Lemma 1.

and

log(1 + p0h) + γUk(b, p0, A) ≤ log(1 + p0h) + γUk(b+ ǫ, p0, A) (20)

≤ max
p∈DA(b+ǫ)

{

log(1 + ph) + γUk(b+ ǫ, p, A)
}

. (21)

SinceV k(b, A) is a non-negative linear combination of the terms of the formmaxp∈DA(b)

{

log(1 +

ph) + Uk(b, p, A)
}

, V k(b, A) is non-decreasing with respect tob ∈ [0, bmax]. Then, by (15), we have that

W k
δ (b, A) is also non-decreasing with respect tob ∈ [0, bmax].

The next result is on the concavity ofW k
δ (b, A).

Proposition 3: For any k ∈ {1, 2, . . . , K}, if the approximate value functionW k+1
δ (b, A) is non-

decreasing and concave with respect tob ∈ [0, bmax] givenA ∈ {0, 1}, so isW k
δ (b, A).

Proof: SinceW k+1
δ (b, A) is non-decreasing and concave with respect tob ∈ [0, bmax] givenA ∈ {0, 1},

by Lemma 1, we haveW k+1
δ (min{bmax, b}, A) is non-decreasing and concave with respect tob ≥ 0 given

A ∈ {0, 1}. Sinceb+ e− pTc is a linear combination ofb andp, thenW k+1
δ (min{bmax, b+ e− pTc}, A)

is jointly concave with respect tob and p. Moreover, it follows thatUk(b, p, A) is also jointly concave

with respect tob andp givenA ∈ {0, 1}[16].

Since the feasible domainDA(b) is different underA = 0 and A = 1. We consider the two cases

separately.
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WhenA = 0, sinceD0 = 0, vk(b, 0) can be written as

V k(b, 0) = Ehk

[

γUk(b, 0, 0)
]

. (22)

SinceUk(b, p, A) is concave with respect tob ∈ [0, bmax] given p andA ∈ {0, 1}, so isV k(b, 0) [16].

Then, by (15),W k
δ (b, 0) is non-decreasing with respect tob ∈ [0, bmax].

WhenA = 1, the feasible domain of the objective function in (6) is given by C , {(b, p) : 0 ≤ b ≤

bmax, 0 ≤ p ≤ min{b/Tc, pmax}}. It can be verified thatC is a convex set. Then, for any(b1, p1), (b2, p2) ∈

C, their convex combination(θb1 + θ̄b2, θp1 + θ̄p2) ∈ C, whereθ ∈ [0, 1] and θ̄ , 1− θ.

Moreover, sinceD1(b1),D1(b2) are non-empty, we can denote

p1 = arg max
p∈D1(b1)

{

log(1 + ph) + γUk(b1, p, 1)
}

, (23)

and

p2 = arg max
p∈D1(b2)

{

log(1 + ph) + γUk(b2, p, 1)
}

. (24)

Then

max
p∈D1(θb1+θ̄b2)

{

log(1 + ph) + γUk+1(θb1 + θ̄b2, p, 1)
}

≤ log(1 + (θp1 + θ̄p2)h) + γUk+1(θb1 + θ̄b2, θp1 + θ̄p2, 1)

≤ θ log(1 + p1h) + θ̄ log(1 + p2h) + θγUk+1(b1, p1, 1) + θ̄γUk+1(b2, p2, 1) (25)

= θ
(

log(1 + p1h) + γUk+1(b1, p1, 1)
)

+ θ̄
(

log(1 + p2h) + γUk+1(b2, p2, 1)
)

= θ max
p∈D1(b1)

{

log(1 + ph) + γUk+1(b1, p, 1)
}

+ θ̄ max
p∈D2(b2)

{

log(1 + ph) + γUk+1(b2, p, 1)
}

, (26)

where (25) follows from the joint concavity, and (26) follows from the definitions in (23) and (24).

Therefore, we have thatmaxp∈D1(b)

{

log(1 + ph) + γUk+1(b, p, 1)
}

is concave with respect tob ∈

[0, bmax]. By (14) and (15), we further haveW k
δ (b, 1) is concave with respect tob ∈ [0, bmax] [16].

From Propositions 2 and 3, we have that ifW k+1
δ (b, A) is non-decreasing and concave so isW k

δ (b, A) for

anyk ∈ {1, 2, . . . , K − 1}. Sincelog(1+ ph) is non-decreasing and concave with respect tob ∈ [0, bmax],

it is easily verified by (6) thatWK
δ (b, A) = V K(b, A) = vK(b, A) is also non-decreasing and concave

with respect tob ∈ [0, bmax] givenA. By induction, we obtain the following theorem.

Theorem 1:For k = 1, 2, . . . , K, the approximate value functionW k
δ (b, A) is non-decreasing and
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concave with respect tob ∈ [0, bmax] givenA ∈ {0, 1}. Further, the problem in (14) is a convex optimization

problem givenb ∈ [0, bmax] andA ∈ {0, 1}.

Since bothV (i)(b, A) and W
(i)
δ (b, A) are concave and non-decreasing, wherei = K − k + 1 is the

iteration number, we can further bound the approximation error ǫi(δ) in (17) as follows.

Proposition 4: For any iterationi, givenA, we have

0 ≤ ǫi(δ) ≤ 2V (i)(δ, A)− V (i)(2δ, A)− V (i)(0, A) . (27)

Proof: By Theorem 1,V (i)(b, A) is non-decreasing and concave with respect tob given A. As

illustrated in Fig. 3, forb ∈ [0, δ], the value ofV (i)(b, A) is smaller than the value on line (*) but larger

than W
(i)
δ (b, A), and therefore the distance between the value on line (*) andW

(i)
δ (b, A) can also be

considered as an upper bound on the approximation error, i.e., V (i)(b, A) − W
(i)
δ (b, A) for b ∈ [0, δ].

According to the second-order derivative property of the concave function, we have that

V (i)((n+ 1)δ, A)− V (i)(nδ, A)− (V (i)((n + 2)δ, A)− V (i)((n+ 1)δ, A))

≥V (i)((n+ 2)δ, A)− V (i)((n+ 1)δ, A)− (V (i)((n+ 3)δ, A)− V (i)((n+ 2)δ, A)) (28)

for all n ≥ 0. Then, we further have that0 ≤ ǫi(δ) ≤ max{2V (i)(δ, A)−V (i)(2δ, A)−V (i)(0, A), 2V (i)(2δ, A)−

V (i)(3δ, A) − V (i)(δ, A), · · · } = 2V (i)(δ, A) − V (i)(2δ, A) − V (i)(0, A), where ǫi(δ) = ||V (i)(b, A) −

W
(i)
δ (b, A)||∞.

b

V (i)(b, A)

V (i)(b, A)

δ

V (i)(δ, A)

2V (i)(δ, A)− V (i)(2δ, A)

V (i)(2δ, A)

2δ 3δ0V (i)(0, A)

W
(i)
δ

(b, A)

0 ≤ V (i)(b, A)−W
(i)
δ

(b, A) ≤ ǫi(δ) ≤ ǫ0

ǫ0

(∗)

Fig. 3. The piecewise linear approximation of the value function and the approximation error bound.
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IV. POWER ALLOCATION WITH PREFECT ENERGY PREDICTION

Note that in (14), we need to solve the following optimization problem for a givenB ∈ Bδ and

A ∈ {0, 1}:

p∗(h) = arg max
p(h)∈DA(B)

{

log(1 + p(h)h) + γUk(B, p(h), A)
}

, h ≥ 0 . (29)

WhenA = 0, p∗(h) = 0. On the other hand, whenA = 1, we will obtain the optimal solutionp∗(h) in

closed-form.

Since the approximate value functionW k+1
δ (b, A) in (15) is a piecewise linear function ofb givenA,

it follows that Uk(B, p, 1) in (13) is also a piecewise linear function with respect top given B, which

is differentiable everywhere except atJ , {p | p = (B + ek − B0)/Tc, B0 ∈ Bδ}. By Theorem 1 and

Lemma 1,Uk(B, p, 1) is also concave and non-decreasing with respect top.

SinceUk(B, p, 1) is a piecewise linear function, we denoteI , {p0, p1, . . . , pN} as the set of the

non-differentiable points, wherep0 = 0, pN = min{pmax, B/Tc}, andpi, (0 < i < N) is the i-th smallest

element inJ ∩D1(B)\{p0, pN}. Also, we denoteW = {w1, w2, . . . , wN} as the set of the corresponding

slopes, wherewi is the slope of the segment[pi−1, pi], given by

wi , −
γTc

δ
EA | 1

{

V k+1(⌈min{bmax, B + ek − piTc}/δ⌉ δ, A)

− V k+1(⌊min{bmax, B + ek − piTc}/δ⌋ δ, A)
}

, (30)

which is derived from (13) and (15). Hence, the derivative ofUk(B, p, 1) for p ∈ D1(B) \ I is

w(p) = wi, if p ∈ (pi−1, pi) . (31)

SinceUk(b, p, A) is concave and non-decreasing with respect top, we have0 ≥ w0 > w1 > . . . > wN .

Fig. 4 is a sketch of the stair-case functionw(p).

In this section we first obtain the closed-form solution to (29), and then use it to obtain the optimal

power allocation for both finite- and infinite-horizon cases.

A. The Optimal Solution to(29)

In this subsection, for simplicity, we drop the superscriptk and denote the objective function in (29)

as

gh(p) , log(1 + ph) + γU(B, p, 1), p ∈ D1(B) . (32)
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pp0 p1 p3p2

w1

w2

w3

w0

p4

w(p)

0

Fig. 4. The derivative ofUk(B, p, 1) with respect top.

We note thatgh(p) is differentiable forp ∈ D1(B) \ I with

g′h(p) =
1

1/h+ p
+ w(p) . (33)

On the other hand, at the non-differentiable points inI, the right-derivative and the left-derivative ofgh(p)

can be written as

g′h(p
+) ,

1

1/h+ p
+ w(p+) , (34)

and

g′h(p
−) ,

1

1/h+ p
+ w(p−) , (35)

respectively.

Theorem 2:The optimal solution to (29) is given by

p∗(h) =



































− 1
wi
− 1

h
1
h
∈ [− 1

wi
− pi,−

1
wi
− pi−1] ∩ [0,+∞), i = 1, 2, . . . , N − 1

pi
1
h
∈ (− 1

wi+1
− pi,−

1
wi
− pi) ∩ [0,+∞), i = 1, 2, . . . , N − 1

0 1
h
∈ (− 1

w1
− p0,∞)

pN
1
h
∈ [0,− 1

wN

− pN)

, (36)

wherep0 = 0 andpN = min{pmax, B/Tc}.

In Fig. 5 we give a sketch ofp∗(h). To prove Theorem 2, we first give the necessary and sufficient

conditions for the optimal solutionp∗ as follows [16].

Lemma 2:p∗ is the optimal solution to (29) givenh, if and only if,
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p∗

1/h

p0

p1

pN

p2

p3

−

1

w2

− p1−

1

w1

− p1 −

1

w2

− p2−
1

w1

− p0−

1

wN

− pN

Fig. 5. The optimal solutionp∗(h).

1) g′h(p
∗+) ≤ 0 ≤ g′h(p

∗−), wheng′h(0
+) > 0 andg′h(min{B/Tc, pmax}

−) < 0;

2) p∗ = min{B/Tc, pmax}, wheng′h(min{B/Tc, pmax}
−) ≥ 0;

3) p∗ = 0, wheng′h(0
+) ≤ 0.

Note that, Condition 1 corresponds to the case thatp∗ is in the interior ofD1(B). In this case, the left-

derivative and the right-derivative should have opposite signs or be both zero atp∗ so that the increasing

and decreasing ofp both lead to the decreasing of the objective function. Condition 2 and Condition 3

correspond to the cases thatp∗ is on each side of the boundary ofD1(B), where the objective function

is non-decreasing and non-increasing for allp ∈ D1(B), respectively.

The following proposition gives a sufficient condition for the optimality ofp∗(h) givenB.

Proposition 5: Given anyB ∈ Bδ, for h ≥ 0, if the energy schedulep∗(h) ∈ intD1(B) satisfies

p∗(h) =







− 1
w(p∗(h))

− 1
h
, whenp∗(h) ∈ intD1(B) \ I,

− 1
w(p∗(h)−)

− 1
h

or − 1
w(p∗(h)+)

− 1
h
, whenp∗(h) ∈ I,

(37)

thenp∗(h) is the optimal solution to (29).

Proof: Substituting (37) into (34)-(35), we haveg′h(p
∗(h)+) = 0 or g′(p∗(h)−) = 0 whenp∗(h) ∈ I,

andg′h(p
∗(h)+) = g′(p∗(h)−) = 0 whenp∗(h) ∈ intD1(B) \ I. Sinceg′h(p

∗(h)+) ≤ g′h(p
∗(h)−), we have

g′h(p
∗(h)+) ≤ 0 ≤ g′h(p

∗(h)−). Moreover, sincegh(p) is concave, we have0 ≤ g′h(p
∗(h)−) < g′h(0

−) and

g′h(min{pmax, B/Tc}
−) < g′h(p

∗(h)+) ≤ 0. By Lemma 2 (Condition 1), we conclude the optimality.

Then it is easy to verify that for1
h
∈ [− 1

wi
−pi,−

1
wi
−pi−1]∩ [0,+∞), i = 1, 2, . . . , N −1, the solution

given by (36) satisfies the optimality condition in Proposition 5.
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For 1
h
∈ (− 1

wi+1
− pi,−

1
wi
− pi) ∩ [0,+∞), i = 1, 2, . . . , N − 1, we use the next proposition to prove

the optimality of (36).

Proposition 6: For any non-differentiable pointpi ∈ I \ {p0, pN}, pi is the optimal solution to (29) for

any 1
h
∈ (− 1

wi+1
− pi,−

1
wi
− pi) ∩ [0,+∞).

Proof: From (34)-(35),g′h(p
+
i ) andg′h(p

−
i ) are functions of1

h
for a givenpi. If (− 1

wi+1
− pi,−

1
wi
−

pi) ∩ [0,+∞) is not empty, it is easy to verify that0 = g′h(pi
−) > g′h(pi

+) when 1
h
= − 1

wi
− pi, and

g′h(p
−
i ) > g′h(p

+
i ) andg′h+(pi) ≤ 0 when 1

h
= − 1

wi+1
− pi. Since givenpi, g′h(p

−
i ) andg′h(p

+
i ) increase as

1
h

decreases, then decreasing1
h

from − 1
wi
− pi to max{0,− 1

wi+1
− pi}, we haveg′h(p

−
i ) ≥ 0 ≥ g′h(p

+
i ) for

all 1
h
∈ (− 1

wi+1
− pi,−

1
wi
− pi) ∩ [0,+∞). By Lemma 2, the proposition follows.

Propositions 5 and 6 obtain the optimal solution for1
h
∈ [− 1

wN

− pN ,−
1
w1
] ∩ [0,∞). For otherh ≥ 0,

using Conditions 2 and 3 in Lemma 2, we can prove the optimality of (36) as follows.

Proposition 7: 1) For anyh such that1
h
≥ − 1

w1
, the optimal solution isp∗(h) = 0;

2) For anyh such that0 ≤ 1
h
≤ − 1

wN

− pN , the optimal solutionp∗(h) = pN .

Proof: Note that, sinceU(B, p, 1) is non-increasing with respect top, we have− 1
w1
≥ 0. When

1
h
= − 1

w1
, it is easy to verify thatg′h(0

+) = 0. Sinceg′h(0
+) is also a function of1

h
which decreases as1

h

increases, we have for any1
h
≥ − 1

w1
, g′h(0

+) ≤ 0. By Condition 3 in Lemma 2, we must havep∗(h) = 0

for anyh such that1
h
≥ − 1

w1
≥ 0. Similarly, we may also verify that for any1

h
≤ − 1

wN
−pN , g′h(p

−
N) ≥ 0.

By Condition 2 in Lemma 2, we must havep∗(h) = pN for any h such that0 ≤ 1
h
≤ − 1

wN
− pN .

Note that, givenB ∈ Bδ, p∗(h) is a piecewise function in closed-form. Then,V k(B,A) can be efficiently

evaluated as

V k(B, 1) = Ehk

{

log(1 + p∗(hk)hk) + γUk(B, p∗(hk), 1)
}

, (38)

and

V k(B, 0) = Ehk

{

log(1) + γUk(B, 0, 0)
}

= Uk(B, 0, 0) , (39)

where

Uk(B, p, 0) =
∑

A′=0,1

Pr(Ak+1 = A′ | Ak = 0)
[

W k+1
δ (min{bmax, B + ek − pTc}, A

′)
]

. (40)

B. Calculating the Approximate Value Function

In order to obtain the power allocation, we need to compute the approximate value function given by

(13)-(15) fork = 1, 2, . . . , K (K =∞ for infinite-horizon case). Then, when the observation is available,
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we solve the problem given in (18).

1) FiniteK: We first consider the finite-horizon case whereK is finite, we assume that the distributions

of channel fading are independent across slots but not necessarily identical.

The power allocation consists of two phases. In the first phase, we recursively compute the approximate

value function fromk = K to k = 1, following (13)-(15). Specifically, in thei-th iteration, we obtain

W
(i)
δ (b, A) for slot k = K− i+1 as follows. Based onW (i−1)

δ (b, A) obtained in the previous iteration (or

the initial function for the first iteration), for eachB ∈ Bδ andA = {0, 1}, we obtain the piecewise linear

functionU (i)(B, p, A) by specifying the setsI andW. Then, we use (36) to obtainp∗(h) and use (38)-(39)

to updateV (i)(B,A) for all B ∈ Bδ andA = {0, 1}. With the set{V (i)(B,A) | B ∈ Bδ, A = {0, 1}}, the

approximate value functionW (i)
δ (b, A) can be obtained using (15) and we store the closed-formW

(i)
δ (b, A)

in a look-up table. Note that the above first phase should be completed before the first slot.

The second phase is performed at the beginning of each slot, once the observation becomes available.

This phase is to solve the problem given in (18) using (36). Specifically, at the beginning of slotk,

the transmitter observes the system state, i.e., the channel access stateA, the channel gainh, and the

current battery stateb. WhenA = 0, the transmitter keeps silent. Otherwise, the transmitterretrieves the

approximate value functionW k+1
δ (b, A) (i.e., W (K−i−1)

δ (b, A)) from the look-up table and then calculate

the power allocation using (36).

The entire computational procedure for the finite-horizon case is summarized in Algorithm 1.
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Algorithm 1 - Finite-Horizon Power Allocation

1: Inputs

Distributions ofH, A; value ofek for k = 1, 2, . . . ,K

The approximation precisionδ > 0 and the discount factorγ ∈ [0, 1].

2: Phase-I: Compute the approximate value function update (offline calculation)

FOR k = K TO 1

(*) CalculateV k(B, h,A) for B ∈ Bδ, A ∈ {0, 1} using (36) and (38)-(39)

ComputeW k

δ
(b, A) from V k(B,A) using (15) and store it

ENDFOR

3; Phase-II: Power Allocation (online calculation)

FOR k = 1 TO K

Get the observationsΓk = (bk, hk, Ak)

RetrieveW k+1
δ

(b, A) and calculateUk(bk, p, Ak) using (13)

Calculatep∗(hk) using (36)

ENDFOR

Remark 1: If the observations can be predicted in a scheduling periodK, i.e.,H, E, andA are known

in advance, we can rewrite (5) as follows

P∗ = arg max
pk,k=1,2,...,K

{

K
∑

k=1

Ak log(1 + pkhk)
}

, (41)

subject to the constraints in (2), (48), and (4) fork = 1, 2, . . . , K.

We note that in the above case all the observations are non-causally known in advance and the problem

in (41) is a convex optimization problem. Instead of the generic convex solver, there is also an efficient

dynamic water-filling algorithm proposed in [9], for solving (41) optimally. Moreover, since (41) is a

special case of the stochastic case, Algorithm 1 is also applicable and would approach the optimal

performance as the dynamic water-filling algorithm whenδ → 0. Specifically, the use of Algorithm

1 or the dynamic water-filling algorithm strikes a balance between the performance and the computational

complexity.

2) Infinite K: In the infinite-horizon case, althoughK is infinite, the number of the iterations in the

first phase is not infinite since the approximate value function will converge. Moreover, since we have

assumed thatek is static andhk is i.i.d., the converged approximate value function can be directly used

in (18) to obtain the power allocation with the observationsin the second phase, for all slots.
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We denote

Tδ : Wδ(b, A)→Wδ(b, A) (42)

as the value function update operator in (13)-(15): based ona given value functionW (i)
δ (b, A), it solves (14)

to obtainV (i)(B, p, A) for B ∈ Bδ, and then generates the new approximate value functionW
(i+1)
δ (b, A)

by (15). Then we can write

W
(i+1)
δ (b, A) , Tδ

[

W
(i)
δ (b, A)

]

, b ∈ [0, bmax] . (43)

Note thatT0 is the standard Bellman operator corresponding to (6)-(7) without the value function approx-

imation, i.e.,δ = 0 [15].

Then the computational procedure for the infinite-horizon case is summarized in Algorithm 2.

Algorithm 2 - Infinite-Horizon Power Allocation

1: Inputs

Distributions ofh, A; value ofe

The approximation precisionδ > 0, the discount factorγ ∈ (0, 1), and the termination conditionα.

2: Phase-I Approximate value function update (offline calculation)

i← 0

REPEAT

(*) W
(i+1)
δ

(b, A) = Tδ

[

W
(i)
δ

(b, A)
]

i← i+ 1

UNTIL ||W (i)
δ

(b, A)−W
(i−1)
δ

(b, A)||∞ ≤ α

W ∗

δ
(b, A)← W

(i)
δ

(b, A)

3: Phase-II Power Allocation (online calculation)

AT THE BEGINNING OF EACH SLOT

Get the observationsΓ = (b, h, A)

RetrieveW ∗

δ
(b, A) and calculateU∗(b, p, A) using (13)

Calculatep∗(h) using (36)

To show the convergence of the approximate value function update, we first note that, by repeatedly

performingT0 on any initial value function, a converged value function can be obtained as follows [15]:

v∗(b, A) , T0 · T0 · . . .
[

v(1)(b, A)
]

= T ∞
0

[

v(1)(b, A)
]

. (44)
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Extending the convergence ofT0 to Tδ, we introduce the following lemma. The proof is given in Appendix

A.

Lemma 3:The operatorTδ has theγ-contraction property, i.e., for any two functionsV1(b, A) and

V2(b, A), we have

||Tδ

[

V1(b, A)
]

− Tδ

[

V2(b, A)
]

||∞ ≤ γ||V1(b, A)− V2(b, A)||∞ . (45)

It then follows that

||T i+1
δ

[

W
(1)
δ (b, A)

]

− T i
δ

[

W
(1)
δ (b, A)

]

||∞ ≤ γi||Tδ

[

W
(1)
δ (b, A)

]

−W
(1)
δ (b, A)||∞ , (46)

i.e., T i
δ

[

W (1)(b, A)
]

converges asi increases. Moreover, the error between the converged approximate

value function andv∗(b, A) is bounded as follows.

Theorem 3:If ||T i
δ

[

W
(1)
δ (b, A)

]

− T i−1
δ

[

W
(1)
δ (b, A)

]

||∞ ≤ α, then the error betweenv∗(b, A) and

W
(i)
δ (b, A) is bounded by

||W
(i)
δ (b, A)− v∗(b, A)||∞ ≤

γα + ||2v∗(δ, A)− v(0, A)− v∗(2δ, A)||∞
1− γ

. (47)

Proof: The proof is provided in Appendix B.

Note that, Algorithms 1 and 2 have both the offline calculation part and the online calculation part.

During offline calculation, we evaluateV k(B,A) for eachB ∈ Bδ in each iteration, i.e., solveO(Bmax/δ)

convex optimization problems in each iteration. Specifically, rather than using an exhaustive search for

each combination of the discretized(B,H) (H is the discretized channel gain) as done by the standard

discrete MDP method, the proposed algorithms use (36) to calculateV k(B,A) for eachB ∈ Bδ directly.

Moreover, for the infinite case, by Lemma 3, theα-converged approximate value function can be obtained

within O(logγ α) iterations. On the other hand, during online calculation, we retrieveW k+1
δ (b, A) (or

W ∗
δ (b, A)) from the look-up table and then use (36) to compute the powerallocation for the specific

observation(bk, hk, Ak).

Moreover, the proposed algorithms calculate the power allocation based on the continuous battery state

and channel gain, and the obtained power allocation is also continuous. Thus it provides higher precision

for both offline calculation and online calculation than theconventional discrete MDP method, especially

when the discretization step is large. Finally, as shown in Section VI, a better performance can be achieved

by the proposed algorithm with a lower computational complexity compared with the conventional discrete
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MDP method.

V. POWER ALLOCATION WITH IMPERFECTENERGY PREDICTION

Although energy harvesting is usually predictable, there may exist a non-negligible prediction error in

practice. In this section, we treat the case of imperfect energy harvesting prediction where the prediction

error is an i.i.d. random variable. We also consider a general payoff functionr(p, A), which is continuous,

non-decreasing and concave with respect top givenA ∈ {0, 1}.

In this general model, we assume the energy harvesting process consisting of a deterministic partek

and a stochastic partεk. The deterministic processek in practice is obtained from the prediction using

historic observations, e.g., by averaging the historic measurement with the weather adjustment.

With the prediction error, the problem formulation is modified as follows:

bk+1 = min
{

bmax, bk + ek + εk − pkTc

}

, (48)

and

P∗ , arg max
pk(·),k=1,2,...,K

{

EH,E,A

[

K
∑

k=1

γk−1r(pk(Γk), hk)
]}

, (49)

subject to the constraints in (2), (4), and (48), fork = 1, 2, . . . , K, whereE , [ε1, ε2, . . . , εK ]. Accord-

ingly, sinceεk is a random variable, the (approximate) value function update rules in (7) and (13) are

changed to

uk(bk, pk, Ak) , Eεk,Ak+1|Ak

[

vk+1(min{bmax, bk + ek + εk − pkTc}, Ak+1)
]

, (50)

and

Uk(bk, pk, Ak) , Eεk,Ak+1|Ak

[

W k+1
δ (min{bmax, bk + ek + εk − pkTc}, Ak+1)

]

, (51)

respectively.

Obviously, sincer(p, A) is continuous, non-decreasing and concave with respect top givenA, and the

expectation with respect toεk in (50) and (51) preserves the concavity and the non-decreasing properties,

we can extend the analysis in Section III to the case with the general payoff function and imperfect energy

prediction, obtaining the same concavity and non-decreasing properties.

However, note that, the optimal solutionp∗(h) in (36) is based on the facts thatUk(b, p, A) is a piecewise

linear function andr(p, h) = log(1 + ph), which are no longer valid with the general payoff function
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and/or imperfect energy prediction. Then, in Algorithms 1 and 2, the steps marked by (*), which aim

to solve the problem in (14), need to be modified accordingly.In particular, we now need to use some

standard convex solver to numerically solve (14).

VI. SIMULATION RESULTS

We use the payoff functionr(p, h) = log(1 + ph). We assume that the channel fadinghk is an

i.i.d. random variable following the Rayleigh distribution with the parameterσ. We first assume that

the harvested energy can be perfectly predicted. For the transmitter, we set the maximum transmission

power aspmax = 6 units per slot, the battery capacity asbmax = 15 units, and the initial battery level

as b0 = 2 units. Further, we set the probability of the channel accesssuspension asq = q̂ = 0.1, the

approximate precisionδ of the approximating value function as1 and 0.1, and the convergence error

tolerance for the infinite-horizon case asα = 0.0001.

We first evaluate the performance of the proposed algorithms. For comparison, we consider three simple

power allocation methods, thegreedy policy, thebalanced policy, and the standard discrete MDP method.

The greedy policy tries to allocate as much power as possiblein each slot subject to the energy availability.

On the other hand, the balanced policy tries to allocate a constant power in each slot, e.g., the mean value

of the harvested energy. Moreover, for the standard discrete MDP method, we discretize the battery level,

the channel gain, and the transmission power with the same precision factorδ, and then perform the

dynamic programming algorithm and the value iteration algorithm on the discrete state space for the

finite- and infinite-horizon cases, respectively.

For the finite-horizon case, we setK = 30, γ = 1, andσ = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2. We randomly

generate the prediction valueek following a positive truncated-Gaussian distribution with the variance

of 2. We consider two typical scenarios, anenergy-constrained scenariowith the mean of the harvested

energy of2, and apower-constrained scenariowith the mean of the harvested energy of4. In the energy-

constrained scenario, the average harvested energy is muchlower than the maximum transmission power

and the energy schedule is mainly constrained by the energy availability. On the other hand, in the power-

constrained scenario, the average harvested energy approaches to the maximum transmission power and

this constraint dominates the energy scheduling. For both scenarios, we compare the performance of the

proposed algorithm with the standard discrete MDP method, the greedy policy and the balanced policy,

averaged over2 × 106 realizations in Fig. 6 and Fig. 7, respectively. Although wecannot obtain the

optimal performance, we utilize the error bound given in (16) and (27) as an upper-bound of the optimal
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Fig. 6. Performance comparisons in the energy-constrainedscenario for the finite-horizon case.

performance. Also, the performance obtained by the standard discrete MDP method can serve as the

lower-bound.

It can be seen from Fig. 6 and Fig. 7 that forδ = 1, the performance of the proposed algorithm

tightly approaches the upper-bound of the optimal performance in both scenarios while there is a gap

between the proposed algorithm and the standard discrete MDP method. It is mainly because that the

discrete MDP method discretizes all continuous variables and causes some non-negligible error with the

large discretization step. Forδ = 0.1, both the proposed algorithm and the standard discrete MDP method

achieve the comparable performance, but their computational complexities are not comparable, e.g., the

exhaustive search is involved in the latter. The greedy and balanced policies both have significantly inferior

performances. Moreover, we note that the total rate increases as the Rayleigh parameterσ increases and

the rate in the energy-constrained scenario is higher than that in the power-constrained scenario.

For the infinite-horizon case, we setγ = 0.85, ek = 3, andσ = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2. Similar to

the finite-horizon case, we evaluate the performance for various power allocation policies, averaged over

2 × 106 realizations. The performance comparisons for various power allocation policies are shown in

Fig. 8. Moreover, the convergence behavior of the proposed algorithm is also shown in Fig. 9 forσ = 1

andγ = 0.8, 0.85, 0.9.
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Similar to the finite-horizon case, it is seen from Fig. 8 thatthe proposed algorithm has the best

performance, tightly approaching the upper-bound of the optimal performance. We note that the standard

discrete MDP method with a discretization step ofδ = 0.1 performs worse than the proposed algorithm.

Further, the approximation gap is slightly higher in the infinite case as compared to that in the finite case.

Moreover, we see that the greedy approach has the worst performance. In addition, it is seen from Fig. 9

that the discount factor affects the convergence speed, as analyzed in Section IV. Also, in the simulations for

γ = 0.8, 0.85, 0.9, the proposed algorithm converges within around30, 40 and70 iterations, respectively.

We next evaluate the impact of the imperfect prediction error. We consider the finite-horizon case

and setK = 10, γ = 1, ek = 3.5, σ = 1, q = 1 − q̂ = 0, and δ = 0.1. In this scenario, we only

consider the impact of the imperfect prediction and we assume that the channel fading is known and

the energy prediction error follows the discrete uniform distribution between−v and v with the step of

0.1. The total payoff obtained by the proposed algorithm with causal information and the water-filling

based algorithm in [9] with non-causal information is compared in Fig. 10, over different prediction error

rangesv = 0, 0.5, 1, 1.5, 2, 2.5. It is seen from Fig. 10 that asv decreases, the performance gap of the

two algorithms with and without non-causal information decreases and approaches zero.



26

0 0.5 1 1.5 2 2.5
1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

Error range v

C
ha

nn
el

 r
at

e 
(n

at
s)

 

 

WF w/ noncausal information
Proposed algorithm
Greedy policy
Balanced policy

Fig. 10. Performance comparisons for the finite-horizon case with different prediction error ranges.

VII. CONCLUSIONS

We have considered the problem of optimal power allocation for an access-controlled transmitter with

energy harvesting capability, operating in time-slotted fashion with causal knowledge of the channel state

and the energy harvesting state. The energy harvesting process is a sum of a deterministic non-causal

estimate and a random causal prediction error. This problemis formulated as a Markov decision process

with continuous state. To efficiently solve this problem forboth the finite- and infinite-horizon cases,

we have introduced the approximate value function and developed efficient algorithms for obtaining the

approximately optimal solutions. The proposed algorithmsprovide an approximately optimal continuous

power allocation, whose performance is better than that obtained by the standard discrete MDP method,

in a computationally efficient manner. Simulation results demonstrate that the proposed algorithms can

closely approach the optimal performance for both the finite- and infinite-horizon cases.

APPENDIX A

PROOF OFLEMMA 3

It is known thatT0, which is the operator in the standard value iteration algorithm, is aγ-contraction

[15]. Denoting(b∗, A∗) , arg ||T0

[

V1(b, A)
]

−T0

[

V2(b, A)
]

||∞, for any (B0, A0) and(B0 + δ, A0) where
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B0, B0 + δ ∈ Bδ, A0 ∈ {0, 1}, we have that

∣

∣

∣
T0

[
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]

(B0, A0)− T0

[
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∣

∣

(
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])
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∣

∣
(52)

and

∣

∣

∣
T0

[

V1
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(B0 + δ, A0)− T0

[

V2

]

(B0 + δ, A0)
∣

∣

∣
≤

∣

∣

∣

(
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[

V1
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(b∗, A∗)
∣

∣

∣
. (53)

Note that, given a value functionV (b, A), Tδ
[

V
]

(b, A) is the piecewise linear function reconstructed

from the sample set{T0
[

V
]

(B,A) | B ∈ Bδ}, as in (15). SinceB0, B0 + δ ∈ Bδ, then for anyb ∈

[B0, B0 + δ], we have
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∣

∣
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SinceB0 andA are arbitrarily chosen fromBδ/max{Bδ} and{0, 1}, respectively, we have

||Tδ

[
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=||Tδ

[

V1(b, A)
]

− Tδ

[

V2(b, A)
]

||∞ (57)

≤γ||V1(b, A)− V2(b, A)||∞ (58)

where (55) follows from (54), (56) follows from (52)-(53), and (57) follows the definition of(b∗, A∗).

APPENDIX B

PROOF OFTHEOREM 3

Denoteβ(b, A) , v∗(b, A)− Tδ

[

v∗(b, A)
]

. By Lemma 3, we have

||W
(i)
δ (b, A)− v∗(b, A)||∞

= ||W
(i)
δ (b, A) +W

(i+1)
δ (b, A)−W

(i+1)
δ (b, A)− v∗(b, A)||∞



28

≤ ||W
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δ (b, A) + v∗(b, A)||∞ + ||β(b, A)||∞ (59)

where (59) follows theγ-contraction of the operatorTδ.

From (59), we have

||W
(i)
δ (b, A)− v∗(b, A)||∞ ≤

γ||W
(i)
δ (b, A)−W

(i−1)
δ (b, A)||∞ + ||β(b, A)||∞
1− γ

≤
γα + ||β(b, A)||∞

1− γ
(60)

Also, since the only difference betweenTδ andT0 is the approximation process, then we haveβ(b, A) =

v∗(b, A) − Tδ

[

v∗(b, A)
]

= v∗(b, A) − L
[

T0 [v
∗(b, A)] , δ

]

= v∗(b, A) − L
[

v∗(b, A), δ
]

. Using Proposition

4, we have

||β(b, A)||∞ ≤ ||2v
∗(δ, A)− v(0, A)− v∗(2δ, A)||∞ ≤ ||v

∗(δ, A)− v∗(0, A)||∞ . (61)

Therefore, (60) can be further written as

||W
(i)
δ (b)− v∗(b)||∞ ≤

γα+ ||2v∗(δ, A)− v(0, A)− v∗(2δ, A)||∞
1− γ

. (62)
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