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ABSTRACT

In this paper we investigate the performance- of maximum-distance-separable

codes with symbols from GF(q) when they are used for pure error detection or

for simultaneous error correction and detection. We show that these codes are

good for symbol error detection. Their probability of undetected error is upper

bounded by q-r and decreases monotonically as the symbol error probability c

decreases from (q-I)/q to 0, when: is the number of parity-check symbols of

a code.
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1. Introduction

ForntroTTing transmission errors in data communication systems, a linear 	 .

black code can be used in three different manners, namely: pure error detection,

pure error correction, and simultaneous error correction and detection [1,2]. 	 3

Error detection incorporated with automatic-repeat-request (ARQ) can provide

virtually error-free data transmission-[2]. In this paper we investigate the

performance of maximum-distance-separable codes when they are used for pure

error detection or for simultaneous error correction and detection.

An (n,k) linear code with symbols from a finite field of q elements, GF(q),

is called a maximum-distance-separable (MDS) code if its minimum distance d is

one greater than its number n-k of parity-check symbols [3,4], i.e.,

d-n-k+1:

An important property of MDS codes is that a shortened MDS code is also a MDS

code. The most important MDS codes are q-ary Reed-Solomon (RS) codes of length

n = q-1 [1,2,4,5] and the extended q-ary RS codes of length n = q+1 [4,6,7].

RS (or shortened RS) codes are widely used for error control in data communica-

tion and data storage systems. They can be used either for correcting random

symbol (or character) errors or for correcting multiple bursts of errors

In this paper we show that these codes are also very effective in detecting

errors.

Consider a q-ary (n,k) code C which is used for error detection on a

discrete memoryless channel (DMC) with q inputs and q outputs. We assume that

any symbol which is transmitted has a probability (1-£) of being received cor-

rectly and a probability c/(q-1) of being changed into each of the q-1 other

symbols. Suppose that a codeword v = (v D,v19 ... 9 vn-1 ) is transmitted. Let

r = (rD,rl,...,rn_1) be the corresponding received vector. Then the difference,

e = 7-7 = ( r0-vD , rl - vl ,.... rn-l-vn- 1 )	 (1)
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is the error pattern caused by the channel noise, where "-" denotes the subtrac-

tion defined on GF(q). From (1), we see that

-r- -v+e

where "+" denotes the addition defined on GF(q). If the error pattern a is a

nonzero codeword in C, then r is also a codeword but "rev. In this case, the

decoder assumes that -r is error-free and accepts r as the transmitted codeword

[1,2]. As a result, a decoding error is committed. Such an error pattern is

A	 said to be undetectable. If a is not a codeword, then r is not a codeword and

the decoder would be able to detect the existence of an error. Such an error

pattern is called a detectable error pattern. Let Pud (C,c) denote the probabi-

lity that the decoder fails to detect the existence of an error. This-probability

is called the probability of undetected error for C. This probability is nor-

mally used to measure the error detection performance of a code. For a code to

be good in error detection, this probability should be small for all c.

Let Cl denote the dual code of C. Let Ai and B  be the number of codewords

of weight i in C and C 1 respectively. The sets {Ai : 0<i<n} and {B i : 0<i<n}

are called the weight distributions (or spectra) of C and C1 respectively

[1,2,4,8]. The probability of undetected error for C can be expressed either in

terms of the weight distribution of C or in terms of the weight distribution of

C1 as follows:

Pud (C,E) _ I 
Ai(gel ).t(1_E)n-i	

(2)
i=1

- q-(n-k) i 
n
n B i (1 - q i ) i - (1-E) n 	(3)

From (2) and (3), we see that, to compute the exact probability of undetected

error for a linear code ( one needs to know either the weight distribution of

4	 C or the weight distribution of its dual Cl . Theoretically, we can compute the

3

61
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Wight distribution of C by examining its q k codewords or by examining the qn-k
t

codewords of its dual C4. For large n, k, n-k and q, the computation becomes

practically impossible. • Except for some short linear codes and a few small

classes of linear codes [1,2,4,8], the weight distribution for many known linear

nodes are still unknown. Consequently, it is very difficult, if not impossible,

to compute their probability of undetected error. Even if we know the weight

distribution of a code and are able to compute its probability of undetected

error, we still need a criterion to say whether the code is good or poor in

error detection.

Consider the ensemble r of all q-ary (n,k) linear codes. Letud(e)

denote the average probability of an undetected error over the ensemble r. It

has been proved [9] that

Pud(e) _ 11 - (1=e)kV(n-k)
	

(4)

for all n, k and a with 0<e<1. Therefore, there must be codes in r with Pud(C,E)

satisfying the following bound:

	

Pud (C,E) < 11 - (1-e)k]q-(n-k)
	

(5)

Since [1-( 1 -E) k] < 1, a weaker bound is that there exist codes in r such that

Pud(Cse) < q-(n-k)
	

(6)

For q=2, the bound given by (5) was first proved by Korzhik [10]. The proof of

the bound given by (5) is an existence proof and no general method has been

found for constructing codes satisfying the bound given by (5). Only a few

small classes of known binary codes [9,11-13] have been proved to satisfy the

weaker bound 2 -(n-k) . These are Hamming codes, distance-4 Hamming codes, double-

error-correcting and some triple-error-correcting primitive BCH codes. For q>2,

only a few RS codes of short length have been proved to satisfy the weaker

bound q-(n-k) [9].
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For a q-ary input and q-ary output OMC, the worst channel condition is

that a-(q-1)/q. In this case, each of thg q -symbol's from the code alphabet

occurs at the receiver with equal probability. Consequently [9],

Pud[C q ] = q-(n-k) - q-n . q-(n-k) .

I
In this paper, we only consider the case where O<e<(q-1)Jq. A q-ary (n,k) code

C is said to be good for error detection if

for 0<e<(q-1)/q and Pud(C,e) decreases monotonically as a decreases from (q-1)/q
#-

E	 to 0.

In this paper we investigate the error detection performance of MDS codes.

First we consider the case for which MDS codes are used only for pure error detec-

tion. We will show that all MDS code; are good for error detection. Then we

consider the case for which MDS codes are used for simultaneous error correction

and error detection. We will study their probability of undetected error after

error correction.

2. Probability of an Undetr 7ted Error for MDS Codes

In this section, we will show that the probability of undetected error for

a MDS code satisfies the upper bound q -(n-k) for 0<e<(q-1)/q ,and decreases

monotonically as a decreases from (q-1)/q to 0. Hence, the MDS codes are good

for error detection.

Consider a q-ary MDS (n,k) code C with minimum distance d=n-k+l. The number

of codewords of weight i is given by

t

	A 	 (n) i-d(-1)3(')gi-
3+1-d +	 i	 (-1) 3 (i) 	(7)

	

i	 i	
=0	 j	 3=i-d+1	 J

for d<i<n and A
i
 =0 for<i<d. The weight distribution of a MDS code was derived

independently by Assmus, Mattson, and Turyn [14]; Forney [15]; and Kasami, Lin,}
H
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and Peterson [6]. The expression for A i given by (7) can be rearranged into the

following form:

A	
( n ) q-(n-k) (4-1)

i + n^k(-1)i+j(i)(gn-k_qj)	 (8)=	 3	 }
3 0

for d<i<n. From (2) and (8) we can compute the probability Pud(C,e) of undetected

error for a MOS code C. However, in the following, we will derive a different

expression for P
1,
d (C,$) which is more convenient to work with.

Define

	

A(X,Y) _ I AixiYn-i	 (9)
i-d

with Ai given by (8). From (2) and (9) we see that

	P ud(Cl e) = A(q£1 , 1-e)	 (10)

Let

y = q - 1	 (11)

Then A(X,Y) can be put into the following form [see Appendix A for derivation]:

_A(X,Y) = q-(n-k) (Y
X+Y ) n + n	 1(i)(gn-k_gi)Xi(Y-X)n-i

i0

_ qn-kYn^	
(12)

It follows from (10) and (12) that we have the following expression for Pud(C,c):

_ -(n-k)	 n-k-1 n	 n-k i	 e i	 e n i
Pud (C ' E) - q	 {1 + i 0 ( i )(q	-q )(q-1 ) (i -	 11)

-

_qn-k
(1-E) n

1
	(13)

For the worst channel condition E = (q-1)/q, we have

Pud(C, 7ql) = 
q-(n-k) _ (1-e) n < 

q
•(n-k)	 (14)

Next we will show that Pud(C,e) decreases monotonically as a decreases from

(q-1)/q to 0. This is done by examining whether the derivative of Pud(C,E),

.
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is positive for 0<E< (q-1)/q. Fran (13), we have

Pud(C,e} = q-(n-k)	 1 n k i( i)W!

	

n_._k-gi)(E)1^1 	 }n- i

i0 Y	 Y

•qY 1 
nIk(n-

i}(i)(qn-k_qi)(£)i(1
i=0	 Y	 Y

+ n(1-e)n-1

q-(n- k) Y 1 n-kn(n-1i)(qi-k_gi)(E}i-1(1 - gE)n-i
{	 i-	 Y	 YiI

-qY 1 
n^k n

( 
i1)(gn-k-qi)(Y}i(1 _ qc)n-1-i

i=0

i n(1
-E)n-I

-(n-k) -1 n-k-1 	 n-k i+1 e i	 ge.n-1-i
= nq	 Y	 E (n-1)

i (q -q 	}(Y} (I - Yi
i-0

-q n-L-1(ni1)(gn-k-qi)(Y)i(1 _ gy)n-1-i

10
}

+ n(1_E)n-1

= nq
-(n-k)Y-1 _Yqn-k "• 1 (n-1)(E)i(1 _ c1e ) n-1-ij	

Y	 Yl	 i=o	 i

+ n(1_E)n-1

= n(1-c'n-1 _ 
n ”- 1(n-1)(e)i(1 _ qc )n-i-i

i=0 i Y	 Y

= n 
nIl 

("-1)(Y)i(1 - ^)n-1-i
i=n-k

From (15) we see that

1

(15)

d Pud (C,e) > 0

for 0<e<Y/q - (q-1)/q. Note that, from (15),

d P (C,e	 = 0ud	 ) IEU(q-l)/q

(16)
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From (14), (16) and (17), we conclude that Pud (C,e) for a q-ary (n,k) MDS code

sat4sffes the bound q-(n-k) and decreases monotonically as a decreases from

(q-1)/q to 0. Hence MD$ codes are good for error detection.

3. Probability of an Undetected Error after Error Correction for MDS Codes t

Consider a q-ary (n,k) code C with minimum distance d. Let t be a non-

negative integer such that t < d/2. Suppose that code C is used to correct all

error patterns with t or fewer symbol errors. Let P ud (C,t,e) denote the prob-

ability of undetected error after error correction. An error pattern is undetect-

able if it is it, a coset of weight t or less but not the coset leader [1,2].

Such an error pattern will cause a decoding error. In this section, we will in-

vestigate the error probability Pud (C,t,E) for a MDS code, and will show that

Pud (C,t,e) decreases monotonically as a decreases from (q-1)/q to 0. Note that

for t=0,

Pud(C909E)	 Pud(Cle)

Let Y = q-1. Let (Ai : 0<i<n} be the weight distribution of C. Define

the following polynomial:

A(X+Y+(Y-1)XY, 1+YXY) _ I Ah(X+Y+(Y-1)XY)n(1+YXY)n-h
	 (18)

h=d

If we expand each term in the summation of (18), A(X+Y+(Y-1)XY, 1+YXY) can be

put into the following form:

A(X+Y+(Y-1)XY, 1+yXY) _ I Qh (X)Yh	(19)
h-0

n
where Qh (X) 	 Qh XX R. MacWilliams [16] proved that Qh,t is the number

£=0	 '
of vectors of weight R in the cosets of weiyht h, excluding the coset leaders.

Let	
Ph(c) _ (1-e)nQh(Y	 T)	

(20)

1
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which is the probability that an undetectable error pattern in a cosec of

weight h occurs for 0<h<t. Then

t
Pud(C,t,e) 	 I Ph (e)	 (21)

hio

Now suppose that C is a q-ary (n,k) MDS code with minimum distance don-k+l

and weight distribution given by (8). It follows from (9), (12) and (18) that

A(X+Y+(Y-1)XY, 1+YXY)

= q-(n-k)((1+YX)n(:►+YY)n

k

n--1 t
+ i
	

ri)(qn-k_qi)[X+(l+(Y-1,n)-X-Y+XY)n-i

-.Q q.K'.(1+YXY)n}

= q-(n-k)(1+YX)n(1+YY)n

n=k-1 n
	 (n-k)+i	 n i	 i	 'n-i

+ ik0 (
i ) ( 1-q-	)(1-X) - [X+(1+(Y-1)X)Y] (1-Y)

(1+YXy)n	(22)

From (22), we find that

Qh(X) 
_ q-(n-k)(1+YX)n(h)Yh

n-k-1(n)(1-q-n+k+i)(1-X)n-i
i U	

i	 .'

min(i,h)	
h-j i n-i i-3	 j

jumax( ,h+i-n)

_ (h)YhXh

Since

(23)

we have

P
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Qh(X) (h )^Yhq-(n-k)(1+Yx)n Yhxh {

n-k-1	 min(i,h)	 1
+	 (.1)h-J(n- )( h)(1 -q-"k+')-x)n-iXi-jEl +(Y-1)xljl

i•O j=max(O,Li -n) 	 J

(24)

It follows from (20) and (24) that

Ph(e) 
_ (PI q-(n-k)Yh-eh(1-e)n-h

n-k-1 min(i,h)	 h-j{in h h 
-q 

-n+k+i
)(

 a i-j
(1 	eY) j(1 

g^ n i
+	 {-I}	 _j)(j)( 1 Y)	 -	 - 

Y )	 I
i=0 j-max{ ,h+i-n}

(25)
The summation

n-k-1	 mini,h)

i10 j-nax( ,h+i-n)

in (25) can be rewritten as

min(n- l,n-h) min(n k-1-1,h)

t=0	 j=0

where t - N. As a result, Ph (e) can be put into the following form:

Ph(e) _ (h)l q-(n-k)Yh_eh(1-e)n- h

min(n-k-l,n-h) n-h
	 e t	 e

+	 ( t )(Y) (1 - _qc )tI0
n h k
- - Rh,R(e)^ (26)

where

min(nk-l-R,h)	
h-j h	 -n+k+R+j	 e j ,

Rh ^ R(e) =	
i	

(-1)	 (j )(1-q	)(1 - y	 (1 -
q 	 h 3
Y ) -^ (27)

j 0

for 0<1<n-k.	 Combining (21) and (26), we have

F:

Pud(C,t,e) _	 (h)^q-(n-k)Yh-eh(1-e)n-h

h=0

1
1

`.

min(n-k-l,n-h) n-h
	 e t

+	 ( R )(Y) (1tI0 - 
gE n-h-t)	 Rh.R(e)] (28)
Y

It is easy to check that Pud (C,e) given by (13) can be obtained from Pud(C,t,e)

by setting t=0.	 For any t, we can compute the 7robability of undetected error

after error correction for a q-ary (n,k) MDS code for (28)•	 For the worst channel
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condition e - (q-1)/q, we have

	

Pud(C 't 'gq ) '	
(h) [q-(n-k)(q-1)h - e

h( 1-E)	 (29)
h=0

Next we will show that P ud(C,t,e) for a MOS code decreases monotonically from

Pud(C , t,q-q 1 ) as a decreases from (q-1)/q to 0. From (28), we can show [see

Appendix B] that

dn-1 	 o-1-t n-1-t F t	 e n-1-t-R
Pud(C't'e) - n( t )

let
t
 

-nn
- { t ){Y) ( i - ^)	 + Nt{c)^	 {30)
k

where

	

min(n-k-i,n--1-t) 
(n-	 LE)- z 	 C n-I-t-t

t-n+k+t

310 
(-1)30)(1 - Y)t -3 ( 1 - ^)3 ,	 (31j

and

NO(e) = 0 .

For t-0, it follows from (30) that

WE Pud (C,O,e) h nEl (n^1)(Y)t(i - 
Y 

) n-1-^ > 0	 (32)
lt-n k

for Ore<y/q•

Now we consider the case for which 0 <t<d/2. For d>3, we can show that

Nt(e) > 0	 (33;

for 0<e<Y/q [see Appendix C]. Consequently, it follows from ( 30) and ( 33) that,

for 63, 0<t<d/2 and 0<e<y/q,

11

	

We P
ud(C,t,e) > 0	 (34)

Combining (32) and (34), we have

	

T P
ud (C ' t,e) > 0 '	 {35)

for 0<t<d/2 and 0<e<(q-1)/4.	 . s

Summarizing the above results, we have the following theorem.

1
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Consider a q-ary (n,k) NOS code C with minimum distance

Let -t ­be - a- noun gative integer such that t<d/Z. suppose

the cue is used to correct t or fewer errors over a DMC with symbol

error probability e. Then the probability Pud(C,t,€) of undetected

error W-er decoding for the code decreases monotonically from.

P(C't1g-1 ) a t (h) [q-(n-k)(q-1)' - ch(1-E)n-h]
h=8 

as a decreases from (q-1)/q to 0.

4. Conclusion

In this paper we have investigated the error-detection performance of maximum-

distance-separable codes over a discrete memoryless channel with symbol error

probability e. We have shown that the probability of undetected error for these

codes, no matter for pure error detection or for simultaneous error correction and

detection, decreases ;onotonicaliy from the value at the worst channel condition.

C = (q-1)/q as a decreases from (q-1)/q to 0. This behavior indicates that maximum -

distance-separable codes are r `fective for pure error detection or simultaneous

error correction and detection.



ORIMNAL PACE 19
OF POOR QUALITY

13

APPENDIX A

Derivation of (12}

Substituting (8) into (9), we have

A X Y = n (n}q-(n-k) 
7i + n^k(_1)i+(i}(qn-k_gj) XiYn=i

i n-k+l	 J

-(n-k)	
n

i=n-k+1

9 (n-k) (YX+Y)n - n^k (^)(YX)'Yn-i + F(X,Y)^

=0

where

F(X,Y) _	 n	 n-k (-1)i+j(n)
(^)(gn-k_gj)XiYn-i

i=n-k+l j=0

Using the equality

(A-1)

(A-2)

we have

F(X,Y) =	 L	 n-k {-1)i+j(^)(^ J)(qn-k_gj)XiYn-i
i=n-k+1 j=0

= n^k (n)(qn-k_gj)Xj 	 (-1)i -j('_;)Xi- jY. j-(i-j)

=0 J	 i=n-k+l

n-k n n-k j Xj	
n-i	

(_1)I(n-j)XIyn-j-£

j=p J	 17-n- +1-j.

n-k-j
n-k (^)(qn-k_gj)Xj C(Y-X)n-j _	 (_1)I(n-j)XXYn-j -^,

jip	 `	 1=0

= n-k (^)(qn-k_gj)Xj(Y-X)n.-j

j=0

n-k n-k-
jf,-1)^(^)(n-j)(qn-k_gj)Xj+IYn-j-Z

j=0 Po

n-k i	 n-k	 ) i n-i
= n^k (^)(qn-k_gj)Xj(Y-X)n-j _ 	 ^p1)i-j(^)(^_j)(q	 -q^ X Y

Po 	 t-0	
(A-3

i
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Note that

j(
-1 )i_^(^}(i-j}qf =

Pi (0)
	 (i)Yi(A-4)

where Pi(z) is the Krawtchouk polynomiai [4, p. 151]. By letting q-1 in (A-4`)

which holds for any q, we have that

<_

(
-1) i-j

O(^ J) =	
0 for 1 _ i <_ n	

(A-5)
j=o	 1, for 1 - 0

It follows from (A-3), (A-4) and (A-5) that

F
(X,Y) = n^k (r^}(qn-k-g3)X3(Y-X)n-j + n^k (n)(YX)iYn-i _ qn-ky	 (A-6)

j=0	 i=0

Combining (A-1) and (A-6), we obtain the expression (12).

AI
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4APPENDIX B

'Derivation -of (30) 

_	
•

From (21), we have

P(C,t,E) z I -E Ph(E)
h=0

Using the expression of (26) for P h(E), we obtain

d Ph(E) 	
(h)hEh-l

(1
_E)n-h 

+ (h)(n-h)ch(1-
E)n-h-1

min(n-k-1 n-h)

+ (h) Y
	 ^I0'	 t(n-

h)
-1(1 - gE)n-h-tRh't(E)

_q
	 I

(1 _ qe)n-h-t-1Rh !^(E)
Y	 t=0	 '

min(n-k-l,n-h) n-h E t	 gE n-h-t d
+	

t10	
( t )(Y) (1 - Y )	 -E

 Rh,t(E)

Let

LO(h,E) = n(nhl)eh (1-E) n-1-h 	for h > 0

LO(-1,E) = 0

Then

(B-1;

(B-2)

(B-3)

dE P
h (E) 	 -LO(h-1,E) + LO(h,E)

+ (n) 1 min(n-k-l,n-h),(n-h)(E)t-I(1 _c^E)n-h-1-(t-1)R	 (E)
h Y	 t=1	

t Y	 Y	 h,t-1+1

R min(n-k-l,n-h-1)(n-h-
t)(nRh)()t(1 _ ge )n-h-l-tRh't(E)Y 

t=0

	

min(n-k-I,n-h) n-h E t 	 qE n-h-t d
+	

L-0	
( t )(Y) ( 1 - Y )	 eRh,t(e)

-LO(h-1,e) + LO(h,E)

+ ()(n-h) 	
min(n-k-2,n-h-1)(n-h-1)(Y 	

h,1+1(e)
 _ gE)n-h-l-tR

h ly	 t_o
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_q

lt 0	
t-1)(^)n(1 _ qc)n-h-l-tRh't(E) 1

Y	 J^

16

n ' min(n-k-1,n-h) n-h c !c -
	

n-h-L d
+ (h)	

L10	
t t )tY) tl	 )	 -& h,1

(B-4)

From (27) we can rewrite Rh,R (e ) as follows:

Rh t(c) = min(n-I-1,-j
(h)(1 - 

q-n+k+t+j)(1 _ L)j(1 - ^)h-j (8-5)
'	 j=0

Note that 
Rh,n-k(c)

 = 0. Then (B-4) can be rewritten as follows:

W P
h(c) = -LO(h-1,c) + LO(h,c)

n-1 min(n-k-1,n-1-h) n-1-h c is	 c n-I h-!c
- n( h	 ) (l - _)	 [9L Rh,t(E)

t=0

_ 7 Rh,^+i(01

n min(n-k-1,n-1-(h-1)) n-1-(h-1) c t	 ge n 1 (h-1)-t d
+ (h )

	

	 t	 !c	 ) tY) t l - Y )	 Vh91tc)
lc=0

(B-6)

From (27) and (B-5) we have that

q Rh ^ t(e) _ Rh^t+1(c)

_ _q 	 q-n+k+l^+j)(1 _Y) j (1 _Re)h-j
Y J -%#

_ 1 min (n-kil-R,,h)(_1)h-j(^)(1 -q-n+k+t+j+l)(1 _ Y) j ( l _ Le)h-j

Y	 J=O

min(n-k-l-k,h)	 - q-
_	 ^	 (_i)h-j(^)t1 - Y)j(1 	

)h-j	 (B-7)

1=o
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min(n-k-t,h)
Rhst(e) _ -	 {-1)h-3(3)j(1-q-n+k+t

+j)(1 _ 7)j -1 (1 - ^)h-j

j^0 

- g	 )(h^j)(1-4
min(n-k-l-t,h)

	h-j h	 -n+k+t+j 	 e j	 gE 
Y	 j^0	

(-1)	 (j	 )(1- Y) (1 - Y )
h-j-1

1 min(n-I t,h){-1)h-jh(h-1)(1_q-n+k+t+j)(1 _ E) j-1(1 - gE) h-J-	
j=0	

J-1	 Y	
Y

- 
g min(n-k-l-t,h) 	

h-j h-1 	 j	 E h- 1
Y	 1^0	

(-1) h( j )(1- q	 ){I -Y) (1-^-) J

h 
min(n-k-1^t,h-1)	

h-1-j h-1	 -n+k+l+L+j)(
1 - e) (1j	

E-) h
-1-j

J=O	
YY	

(-1)	 ( j )( 1 - q 	-

+ _qh min(n-k-I-t,h-1)(-1)h-1-j{h-1)(1 _ q-n+k+l+j)(1 _ E)j (1 _ gE)h-1-j
Y	 j=0	 J	 Y	 Y

min(n-k-14,h-1)	 h-1-j h-1	 s= h	 (-1)	 ( 
j

)(1-Y
E

)
j
 (1-^)

h-1-j 	(8-8)
j=0

It follows from (B-3), (B-6), (B-7) and (B-8) that

dE P
h (E) = -LO (h-1,e) + LO(h,c) + L1 (h-1,e) - L I (h ,c)	 (B-9)

where

n 1 min(n-k-l,n-1-h) n-1-h E s,	 % n l h t
L1 (h,E) = n( h )	

(n-
	 )iY) 

(1 - 9Y) - - - Mh't(E)

t=0
(B-10)

L1 (-1,$)	 0	 (B-11)

min(n-k-1-R,h)
Mh,t(E)1)h-j 0)(1- Y) J(1-y)h-J	 (B-12)

J=O

From (21) and (B-9), we obtain

{	 de Pud(C,t,e) = L O (t,e) - L1 (t,E)	 (B-13)

Combining (6-3) 9 (B-10), (B-12) and (B-13), we have that
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---^ Pud(CrtTE)_--^(n^l^ 
Et_ n t (n-11-t}(Y)t(1-_gY }n-1-t-1

1-n-k

nin(n-k-l,n-1-t) n-1-t E t	 gE n-1-t-1 t

(B-14)

Note that

0	 for 0 < t < n-k-t-1

Et -
 Mt,R(E)	 -	

(B-15)

1-n+k+t

-I-- 

(-1)j (^)(1 - W-3 (1 - )j , otherwise.
i=O Y	 Y

From (B-14) and (B-15), we obtain the expression of (30).



APPENDIX C
 .

Proof-of-(33)

For n-k-t<t<min(n-k-1,n-1-t) and 0<j<t-n+k+t, let

U
	

(C-1)t9t9^(^) _ (-I)^(n- 1^-t)t^)tY)t(1 - gE)n-1-t-t+^(i - Y)t'^ 

which is simply a term in the double summation of Nt(s) given by-(31).

Consequently,

min(n-k-1,n-1-t) t-n+k+t
N (e) _	 UtE)
t	 t=n-k-t	 i=0 t9t93

W21-1 min(n-k-2,n-2-t)

_	 E	 E	 (Ut,t92t:	 Ut,t+1921+1)
i=0	 t=n-k-t+2i

-

i9 Ut,min(r-k-19n-1-t),2i(e)
	 (C-2)

whe ,-e Lxj denotes the largestinteger not greater than x. In the following, we

want to show that, for 0<t<d/2, N t(e)>0. Then, from (30), de Pud(C,t,e) >0'

First, we note that

Ut,t,21(0 > 0	 (C-3)

for 0 < e < Y/q. For n-k-t+2i<1<min(n-k-1,n-1-t) and 0<i<(t-1)/2, we have

_ Dt 1+1 2i+lt£) 	 n-1-t-t t-2i , e.. 1

Ut,1,2i a	
t+1	 2i+1 Y 1- E

Y

(k-1 t
n-k-t q-1

k-1	 (C-4)
— q-1

for 0 < e < Y/q and 0 < t < d/2. For d > 3, since the code is a MDS code, we have

n-2 > k .
1	 -



ti

It follows from Corollary 7 [4, p. 321] that

From (C-4) and (C-5), we seethat

Uts.tsv (E) + ut,.t+1,2;+1(E) > 0 	 (C-6)

for 0 x E xy/q. It follows from (C-2), (C-3) and .(C-6) that

Nt(E) > 0

for 0 < E < Y!q

ORIGINAL•/mil..
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