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ON THE PROBABILITY OF UNDETECTED ERROR
FOR THE MAXIMUM DISTANCE SEPARABLE CODES*

Tadao Kasami Shu Lin
Osaka University University of Hawaii at Manoa
Toyonaka, JAPAN 560 Honolulu, Hawaii 96822
ABSTRACT

In this paper we investigate the performance: of maximum-distance-separable

codes with symbols from GF(q) when they are used for pure error detection or

for simultaneous error correction and detection. We show that these codes are

gcodb for symbol error detection. Their probability of undetected error is upper
bounded by q"r and decreases monotonically as the symbol error probabj’ﬁty €
decreases from (q-1)/q to 0, wher: -~ is the number of parity-check symbols of

a code.i _

*This research is partially supported by NASA Grant NAG5-234. !




1. Introduction 7
For controlling transmission errors in data comunication systems, a linear
block code can be used in three different manners, namely: pure error detection,

pure error correction, and simultaneous error correction and detection [1,2].

Error detection incorporated with aqtomatic-repeat-request (ARQ) can provide
Qirtuai]y error-free data tfansmission,[ZJ. In this paper we investigate tﬁe
performance of maximum-distance-separable codes wﬁen they are»used for pure
error detection or for simultaneous error correction and detection.

An (n,k) linear code with symbo]s from a finite field of q elemenrts, GF(q),
is called a maximum-distanée-separab]e (MDS) code if its minimum distance d is
one greater than its number n-k of parity-check symbols [3,4], i.e.,

d=n-k+1.
An important property of MDS codes is that a shortened MDS code is also a MDS
code. The most important MDS codes are g-ary Reed-Solomon (RS) codes of length
n = q-1 [1,2,4,5] and the extended q-ary RS codes of length n = q+l [4,6,7].
RS (or shortened RS) codes are widely used for error control in data communica-
“tion and data storage systems. They can be used either fdr correcting random
symbol (or character) errors or for correcting multiple bu;st§’of errors [1,21.
In this paper we show that these codes are also very effective in detecting
errors.

Consider a g-ary (n,k) code C which is used for error detection on a
discrete memoryless channel (DMC) with q inpups and q outputs. We assume that
any symbol which is transmitted has a probability (1-e) of being received cor-
rectly and a probability ¢/(q-1) of being changed into each of the g-1 other
symbols. Suppose that a codeword V = (VO’VI""’vn-I) is transmitted. Let

r -_(ro,rl,....rn_l) be the corresponding received vector. Then the difference,

e =r~y = (»rO-I-VO’rI-vl’... lrn_l-vn_l) (1)

4
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3
is the error pattern caused by the channel noise, where “- denotes the subtrac-
””tiéh definéd on GF(q). From (1), we see that
r=v+e
where "+" denotes the addition dafined on GF(q). If the error pattern e is a
nonzero codeword in C, then r is also a codeward but ¥#v. In this case, the
decoder assumes that r is error-free and accepts r as the transmitted codeword

[1,2]. As a result, a decoding error is coomitted. Such an error pattern is

said to be undetectable. If @ is not a codeword, then r is not a codeword and

the decoder would be able to detect the existence of an error. Such an error

pattern is called a detectable error pattern. Let Pud(c,e) denote the probabi-

lity that the decoder fails to detect the existence of an error. This probability
is called the probability of undetected error for C. This probability is nor-

mally used to measure the error detection performance of a code. For a code to
be good in error detection, this probability should be small for all e.
' Let C* denote the dual code of C. Let Ai and Bi be the number of codewords

of weight i in C and C* respectively. The sets {A;: O<i<n} and {B,: O<izn}

are called the weight distributions (or spectra) of C and ¢ respectively
[1,2,4,8]. The probability of undetected error for C can be gxpressed either in
terms of the weight distribution of C or in terms of the weight disiribution of

C! as follows:

n .
PualCe) = 1 Ay(Ep) (1-e)™ (2)
-(n-k) § ge i
= q"(n-k) DICICEE = RN U (3)

From (2) and (3), we see that, to compute the exact probability of undetected
error for a linear code ( one needs to know either the weight distribution of
C or the weight distribution of its dual C*. Theoretically, we can compute the

[4

- i
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wéight distribution of C by examining its q" codewords or hyé#mmining the q"°
“codewords of its dual C*. For large n, k, n-k and q, the coﬁﬁu;étién becomes
practically impossible. - Except for some short 1inear codes and a few small
classes of linear codes [1,2,4,8], the weight distribution for many known 1{near
codes are still unknown. Consequently, it is very difficult, if not impossible,
to compute their probability of undetected error. Even if we know the weight
distribution of a code and are able to compute its probability of undetected
error, we still need a criterion to say whether the code is good or poor in
error detection.

Consider the ensemble I of all q-aﬁy (n,k) iinear codes. Let F;;TET

denote the average probability of an undetected error over the ensemble I'. It

has been proved [9] that

Frg(e) = [1 - (1:6)¥1a7(MK) (4)

for all n, k and € with O<e<l. Therefore, there must be codes in I with Pud(c,e)

satisfying the following bound:
P a(Cs8) < [ - (1-e)k3q™(mK) (s)

Since [1-(1-e)k].5 1, a weaker bound is that there exist codes in T such that
P a(Cre) < a("K) (6)

For q=2, the bound given by (5) was first proved by Korzhik [10]. The proof of
the bound given by (5) is an existence proof ard no general method has been

found for constructing codes satisfying the bound given by (5). Only a few

small classes of known binary codes'[9,11-13] have been proved to satisfy the
weaker bound 2'("'k). These are Hamming codes, distance-4 Hamming codes, double-
error-correcting and some triple-error-correcting primitive BCH codes. For q>2,
only a few RS codes of short length have been proved to satisfy the weaker

bound q'("'k) [9]. '
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For a q-ary input and q-ary output DMC, the worst channel condition is

—that e=(q-1)/q. In this case, each of the q symbols from the code alphabet

occurs at the receiver with equal probability. Consequently [9],

Pud[c‘géll - q-(n-k) -q "= q-(n-k) .

In this paper, we only consider the case where 0<e<(q-1)/q. A g-ary (n,k) code
C is said to be good for error detection if

Pg(Ce) < q (M)

- for 0<e<(q-1)/q and Pud(c,e) decreases monotonically as e decreases from (g-1)/q

to 0.

In this paper we investigate the error detection performance of MDS codes.
First we consider the case for which MDS codes are used only for pure error detec-
tion. We will show that all MDS code. are good for error detection. Then we
consider the case for which MDS codes are used for simultaneous error correction
ﬁnd error detection. We will study their probability of undetected error after

error correction.

2. Probability of an Undetr-ted Error for MDS Codes

In this section, we will show that the probability of unqgtected error for
a MDS code satisfies the upper bound q'("'k) for Qggg(q-l)/qAand decreases
monotonically as e decreases from (q-1)/q to 0. Hence, the MDS codes are good
for error detection.

Consider a g-ary MDS (n,k) code € with minimum distance d=n-k+1. The number

of codewords of weight i is given by

n, |19 Jiy.i=j+1-d i j,i
A‘i = (1) ‘jzo(-l) (J.)q + 2 1(-1) (J) (7)

jei-d+

for d<i<n and A;=0 for J<i<d. The weight distribution of a MDS code was derived
independently by Assmus, Mattson, and Turyn [14]; Forney [15]; and Kasami, Lin, -
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and Peterson [6]. The expression for Ai given by (7) can be rearranged into the
following form:

- (" q“"""{ « 1)‘ : z (-0 j)} ()

for d<i<n. From (2) and (8) we can compute the probability Pud(c.e) of undetected
error for a MDS code C. Hcwever, in the following, we will derive 2 different
expression for Pud(é,s) which is more convenient tu work with.
Define
A(X,Y) = Z A Xy _ (9)

with Ai given by (8). From (2) and (9) we see that

P,q(Cse) = A(T-ET’ 1-¢) . (10)

Let
Yy=q-1. (11)
Then A{X,Y) can be put into the following form [see Appendix A for derivation]:

-k-1 .
AK,Y) = q'(“"‘){(vxw)" £ Y (Mgt (vt

i=0
n=-kyn )
- q ¥y } (12)

It follows from (10) and (12) that we have the following expression for Pud(C,e):
n-k-1
Pq(Cre) = q“""‘){ LG *ahgEpia - L

-g"K(1-¢)" } (13)
For the worst channel condition € = (gq-1)/q, we have
Pg(CED) = (K - (1) < g7("K) (14)

Next we will show that Pud(C,e) decreases monotonically as € decreases from

(q9-1)/q to 0. This is done by examining whether the derivative of Pud(c,e),
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is positive for O<e<(q-1)/q. From (13), we have

%E PUd(c’e) - q'(n-k) {.‘,'1 ni 1( )(qﬂ?k 1)(8)1411 s_)n-

i=0

n=-k
-y ,Eo""”‘?"“"'k ‘)(e) (1 - 2yl ‘]

+ n(l-e)"'1
n-k ,
- r(mif L T odcha el @' - 2o

n-k -
-t 3 e - )"'1"}

+ n(1-)™1
n-k-1 .
= nq-(n‘k)y‘l\ X (n;I)(qn-k‘qi+1)(—$')1(1 - g._Yg)n-l-i

-q ";'ﬁ;l("il)m"‘ & - 35)"‘1"]
+ n(l-e:)ﬂ'1
. nq-(n-k)Y;l{_an-k "-%—1 (";I)GE)i(l ) gg)n-l-i}
i=0 Y o Y
+ n(1-¢)™!

-k-1 .
(1™l I (&t - gy

"7 L - (15)
i=n-k
From (15) we see that
& PuglCoe) > 0 (16)

for O<e<y/q = (q-1)/q. Note that, from (15),

d
P (C, =0 (17
ae Pug(:e) e=(q-1)/q ,)

A

e A e 0
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From (14), (16) and (17), we conclude that Pud(c.e) for a gq-ary (n,k) MDS code
satisfies the bound’q‘(“'k) and decreases monotonically as e decreases from

(q-1)/q to 0. Hence MDS codes are good for error detection.

3. Probability of an Undetected Error after Error Correction for MDS Codes

Consider a gq-ary (n,k) code C with minimum distance 4. Let t be a non-
negative integer such that t < d/2. Suppose that code C is used to correct all
error patterns with t or fewer symbol errors. Let Pud(c,t.e) denote the prob-
ability of undetected error after error correction. An error pattern is undetect-
able if it is in a coset of weight t or less tut not the coset leader [1,2].

Such an error pattern will cause a decoding error. In this section, we will in-
vestigate the error probability Pud(c,t,e) for a MDS code, and will show that
Pud(c,t,e) decreases monotonically as e decreases from (q-l)/q to 0. Note that,
for t=0,

Pud(c,o,e) = Pud(c,e) .

Let v = q-1. Let {A,: O<i<n} be the weight distribution of C. Define

the following polynomial:

A(X+Y+(y-1)XY, 1+YXY) = hgd"h(x*Y*(*'l)XY)"(I*YXY)"'h . (18)

If we expand each term in the summation of (18), A(X+Y+(y-1)XY, 1+yXY) can be
put into the following form:
n
A(X#¥+(y=1)XY, 14yXY) = § Q, (X)Y" | (19)
h=0
4 3
where Qh(x) = LZO Qh’zx .
of vectors of weight £ in the cosets of weight h, excluding the coset leaders.

Let

MacWiiliams [16] proved that Q, is the number

Pple) = (1-€)"Qp (—rfy) (20)
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which {s the probability that an undetectable error pattern in a coset of

>ww;1§h£ h occurs for O<h<t. Then

t
Pud(cstﬁe) = hzoph(e) . (21)

Now suppose that C is a g-ary (n,k) MDS code with minimum distance d=n-k+l
and weight distribution given by (8). It follows from (9), (12) and (18} that
A(X+Yf(y-1)xv, 1+yXY)

= q'("’k){(1+YX)"(1+YY)"

n-k-1
s 3 M@k D1+ r-1)0Y]T (1-Xevern) ™

1=0
- § % o))

= ¢~ "K) ()M ()"

k-1 s . .
+ "igo M-~ ™Ky 1)k (1e(-1p0¥7 (1)

- (1+yx)" . (22)

From (22), we find that

0, () = 4~ ™K (ayn) Myt
-k-1 . .
. n 2 (?)(1-q'"+k“)(1-X)"'1 .

i=0

min(i,h)

h=j iy /n-iyyi=j j
-1 tyx -
j=max(g,h+i-n)( (32X T Hy-10X]

- (™" (23)
Since

MOED = Gdhd .

we have
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000 = (" "‘""(wﬂ" - "
S hekel min(,h)

L -1)*"%""‘)( YR 1>x1~"] |
i=0 Jamax(0,h+i-n)

(24)

+

It follows from (20) and (24) that

Ph(e) - (n){ q-(n"k) ;h_eh(l_e)n'h

n-k-1 min(i,h) hegnehy By on  =nkty eni=dpq _ £4d -4
+ -1 1- £)™(1 - & - "
%0 j-max(g L LA (25})
The summation
n-k-1 mingi.h)
=0 j=max( yh+i-n)
in (25) can be rewritten as %
min(n-k-l,n-h) min{n-k-1-2,h) %
_ 2=0 j=0
where £ = i-j. As a result, Ph(e) can be put into the following fonn; |
Ph(e) = (2){ q-(n'k)Yh-sh(l-e)n-h
min(n-k-1,n-h) b el h-g
L (@t - 8y o) (26)
where in( 1-0.h) .,
min{n-k-1-¢, . . .
Rled s 3 DR - ol -
for 0<f<n-k. Combining (21) and (26), we have
t
Pq(C.tuc) = hgot;,‘)[q""""Y"-e"u-e)""‘
min(n-k-1,n-h) . _ . _
€ _ 9eyn-h-2
L OOeta - R ) (28)

It is easy to check that Pud(c,e) given by (13) can be obtained from Pud(c,t,e)
by setting t=0. For any t, we can compute thr orobability of undetected error

after error correction for a g-ary (n,k) MDS code for (28). For the worst channel
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condition ¢ = (q-1)/a, we have
Pud(c't’g‘al) - hzo (?,) tq-(“-k)(f-\-l)h - eh(l-e)"'h} (29)

Next we will shzw that Pud(c.t.e) for a MDS code decreases monotonically from
Pud(c,t,ﬂ-;l) as ¢ decreases from (q-1)/q to 0. From (28), we can show [sae
Appenaix B] that

n-1-t
$e Pt = ahlE T T E - Tty @) o

where

m"n(N'k°lgﬂ"1“t) n=1l-t\ /oL
. 1oty oyfyq | QENN-l-ted
It - %

f=n-k-t
L-n+k+t
1 i -sta - g8, (31)

J=0

Ny (c)

and
No(e) =
For t=0, it follows from (30) that

 Lpy0.0 = z (h@ta - Tt (32)

for Q<e<y/q.
Now we consider the case for which O<t<d/2. For d>3, we can show that
Nt(e) >0 (33,

for O<e<y/q [see Appendix C]. Consequently, it follows fram (30) and (33) that,

for d>3, O<t<d/2 and O<e<y/q,

&P 4(Ctie) >0, (34)

Combining (32) and (34), we have

4 PuglCatie) > 0, (35)

for 0<t<d/2 and 0<e<(q-1)/q.

Sunmarizing the above results, we have the following theoreu.

T p————
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Theorem: Consider a g-ary (n,k) MDS code C with minimun distance

Tdwn=k+l. Let tbe & nonnegative integer such that t<d/Z. Suppose
the code is used to correct t or fewar errors over a DMC with symbol
error probability €. Then the probability Pud(c,t,e) of undetected

error after decoding fur the code decreases monotonically frcm

t
-1 -(n-k h h -h
e = | [ - e ]
as ¢ decreases from (q-1)/q to O.

4. Conclusion

In this paper we have investigated the error-detection performance of maximum-
distance-separable codes over a discrete memoryless channel with symbol error
probability €. We have shown that the probability of undetected error for these
codes, no matter for pure arror detection or for simultaneous error correction and
detection, decreases wonotonicaliy from the value at the worst channel condition. éf
e = (q-1)/q as € decreases from (a-1)/q to 0. This behavior indicates that maximun-
distance-separible codes are r“fective for pure error detection or simultanecus

error correction and detection.

A B s g i

-
-~

,
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- —Derivation of (12)

Substituting (8) into (9), we have

n -k .Ls o
e - F Qe ottt

i=n-k

- q“"""{ 1 Menhet s F(xx)}

i=n-k+1
_k . .
=f“*)bﬂWW'?%(phDWm’+ﬂkﬂ} (A-1)
":
where
n -
Fon = 1 (0ROl (A-2)
f=n-k+1 j=0

Using the equality

M= GddD .,

we héve
n n-k
Fon = 5 1 (G )(“'J)(q"'k g )xiyn-
i=n-k+1 j=0

ny ¢ n-K_ J xd v -y i-dn-i xi-jQD-j-(i-j)
JZ ( )(q ) 1-n§k+1( ) (1—3)

- n=k n-k_ J J nd _1\Rn-J zYn-j-i
gg (J)(q )X -E+1-j( 177X

- nk n n-k_ Jvyd [ (y_xyn-d _“'k'j _)%(-d .z n-j-2
3, G U e g

-k
< ], Qoo™

R S R TR iy
j=0 2=0

— Mg (-0 - fi 2 (DO ED D
. J=0 i=0 j=0 (A_3)
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Note that

Y=y =iy J - - (M i )
jgo (-1) 77 (GTy)e = Py(0) = (F)y (A-4)
where Pi(z) is the Krawtchouk polynomiai [4, p. 151]. B8y letting q=1 in (A-4)
which holds for any q, we have that _
i . 0, forl<i<n
f=j,nyn-jy _ ’ 212
(-1) (T3 = { (A-5)
:izo 4 1, fori=0

It follows from (A-3), (A-4) and (A-5) that

-k e : -k s
FLY) = 1 " -ad I (r-x)" + T O ok (as)
J=0 i=0

Combining (A-1) and (A-6), we obtain the expression (12).

,,,,,,,,
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Derivation of (30) | | | .
From (21), we have
4 pc,tie) = | S-p ;
aE L€} * hzoaz h(e) (B_°ll

Using the expression of (26) for Ph(e). we obtain

%E-Ph(e) = - (:)heh'l(l-e)n'h + (;:)(n-h)x—:h(l-e)"'h'1

min(n-k-l n-h)
ol

(n;h) (%)2.‘1(1 _H'Y_E_)n-h-zkh’z(e)

min(n-k-1,n-h) “hy R -h-2-1
-3 A (n-h-2) ("N E) (1 - BT Ry (e)

min(n-k-1,n-h) -h -h-2 d
S R U [C RS ha(e)} (8-2)

Let
_ Llhee) = a(hela-e)™ 1, forn> 0 (53)
Lo('lss) =0 '
Then
&P (e) = -Lolh-1,e) + Lo(h,e)
min(n-k-1,n-h) - “h-1-(2-1
+ ({,‘){l TR [C R e R~ Ll L NP
min(n-k-1,n-h-1) B el -h-1-% o
-1 B R a-STR ) -
min(n-k-1,n-h) = . _ o -2 d il,
+ L " Q-JTT TRy ,L(e)}
= Ly(h-1,€) + Ly(h,e) |
“min(n-k-2,n-h-1) . 2:1'
: (h)(n-h)[ N G T LT L NS |
|
()
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min(nok=1,n-h-1) L * )
T S CTCRCR g WE)
* min(n-k-1,n-h) __ he
R CME B LR @) (8-8)
From (27) we can rewrite Rh’z(s) as follows:
in(n-k-2,h) . - . s
Ra(®) =L DMy (g 18I T (o)

3=0
Note that R, (e} = 0. Then (B-4) can be rewritten as follows:

%E Pyle) = -Lo(h-1,€) + L(h.e)

min(n-k-1,n-1-h) _ . teheol
- n(1) IMEra - R e

1
°Y Rh,1!.+1(":)]

(n) min(n-k-1,n-1-(h-1))

+ G (1)@t gDt Lg (e

(8-6)

From (27) and (B-5) we have that

q -1
Y Rh,l(s) Y Rh,£+1(s)

min(n-kel-L.h)  hogihy s oonekeedy o 6ndoq o GEyh-d
=% Z (-1 (1 -q M1-3)7 (-0
1 min(n-k-l-l.h) h-i,h -ntk+e+i+1 _E j _QE h"j
-3 ) (-1"IE - -0 -5

in(n-k-1-%,h : j
itk )(-1)“‘3(2)(1-5)3(1-%,5-)"" (B-7)
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d L1 min(n-k-2,h) heghyspe  ~ntkHLH 51 hed
L W e R e )1-53 -5

min(n-k-1-2,h)
1

<o

(D" (h-3) (1™ (1 - £ (g - Syh-3T

min(n-k-2,h)
1

g L

(-0MIn(GTD (g R (1. £y371 (g dgyh-d

min(n-k-1-2,h)
)

<o

y (0PIl (1 - g (1 - £)i() L 25y-3-1

J=0 Y Y

min(n-k-1-2,h-1)
)

(-1)2-d (ol (g L gL () €3y _ g1
J Y Y

< |=r

, gh m1n(n-k—§-£,h-1)

<I8

_qyh=lejhely o ~nbkt+dy o €03 g _Geyh-1-]
P (0131 -q )(1-5701-%
in(n-k-1-2,h-1 . . .
- 29. )(-1)"‘1'3("‘.1)(1-E)Ju-ﬂé)"“'J (B-8)
j=0 R Y Y

It follows from (B-3), (B-6), (B-7) and (B-8) that
& Pule) = ~Lo(h-1,e) + Lylhse) + Ly(h-1,€) = Ly (hoe) (8-9)

where
min(n-k-1,n-1-h)

L(he) = n(" ] S TR Lt NG

w0 (8-10)
Ly(-1.e) = 0 , (B-11)
".n,z(E) _ min(ngk-l-l.h)(_l)h-j(g)u _5)5(1 _%g)h-j (B-12)
From (21) and (B-9), we obtain
%E P,a(Cstse) = Lolt,e) - L (tse) (B-13)

Combining (B-3), (B-10), (B-12) and (B-13), we have that




Ad, -1,) ¢t nel-t ety e\ nel-t=g
—3; ”ud(c'“)"“(nt){e‘,;’.E_k (=g - )(%_)77(1 -95-) B
in(n-k-1,n-1-t , .
 minlmkgtn )(“‘g“xs)*u-%)““T"‘te‘-nt.,(en}
2=0 (8-14)
Note that
-0, forO_glin-k-t-l s
et - M, () = o (8-15)
* i ﬂfﬂ (-1);5(:t)(1 -E)t'j(l -35-')j otherwise |
j= . J Y y'? :
From (B-14) and (B-15), we obtain the expression of (30).
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APPENDIX C
~ Proof-of (33} : .
For n-k-t<gcmin(n-k-1,n-1-t) and O<j<t-n+k+t, let

Up p.5(€) = CDIEHD @ -l gt (c-1)

which is simply a term in the double summation of Nt(e) given by (31).

Consequently,
(@) min{n-k-1,n-1-t) L-n+k+t Y ()
N,(e) = €
t g=n-k-t j:o tiz’j
lt72]-1 min(n-k-2,n-2-t)
R N R S N 21+1)
|_(t-1)/2]

AL Yemin(akelne1-6),21 () (c-2)

whee |x] denotes the Iétgest integer not greater than x.. In the following, we i
Want to show that, for O<t<d/2, Ny(€)>0. Then, from (30), &= P 4(C.t.c) >0.

First, we note that

1: 2,2i () >0 \ , (c-3)

for 0<e<y/q. For n-k-t+2i<g<min(n-k-1,n-1-t) and O<i<(t-1)/2, we have

Yeem, 2i+1(€) _n-1-t-g t-2i g _1 |
Ut ., 2](e) e+l 2+l y 1- %
(k-lzt

< Tnk-t q-1

k-1 i

<ol (c-4) |

for 0<e<y/q and 0<t<d/2. For d>3, since the code is a MDS code, we have

n-2>k.
) —




It follows from Corollary 7 [4, p. 321] that
-1>k.
From (C-4) and (C-5), we see that
Up,p,21(€) + “_1:,@1.21;\1(5) >0
for 0<exy/q. It follows from (C-2), (C-3) and (C-6) that
Nt(e) >0

for 0<e<vy/q.

o
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