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Robust Formation Control of Robot Manipulators
with Inter-agent Constraints over Undirected

Signed Networks
Pelin Şekercioğlu Bayu Jayawardhana Ioannis Sarras Antonio Lorı́a Julien Marzat

Abstract— We address the problem of distributed con-
trol of a network of cooperative and competitive robot
manipulators in end-effector coordinates. We propose a
distributed bipartite formation controller that guarantees
collision avoidance of the end-effectors. In the considered
setting two groups are formed and reach inter-group bi-
partite consensus or disagreement. On the other hand,
the end-effectors achieve intra-group formation. To ensure
that the end-effectors do not collide, we design gradient-
based control laws using barrier-Lyapunov functions. In
addition, the proposed controller ensures that the closed-
loop system is robust to external disturbances. The latter
are assumed to be generated by an exosystem, so they
are effectively rejected by an internal-model-based com-
pensator. More precisely, we establish asymptotic stability
of the bipartite formation manifold. Finally, we illustrate our
theoretical results via numerical simulations.

Index Terms— Formation consensus, signed networks,
robotic manipulators, barrier-Lyapunov functions.

I. INTRODUCTION

Formation control consists, roughly speaking, in making
a group of physical systems adopt a formation and remain
stable at an equilibrium, or move along a path, describing a
common trajectory. This problem has been extensively studied,
often relying on the bulk of literature on consensus control.
However, the greater part of the literature considers only
cooperative agents (in which case these form a network that
can be modeled by a graph containing only links with positive
weights) or considers linear models. Yet, robot manipulators
are inherently nonlinear and there are many scenarios in which
some agents may be competitive, so their interactions carry
negative weights. Beyond applications involving robot ma-
nipulators, other scenarii that pertain to coopetitive networks
include herding control [1], [2]; social-networks theory [3],
and aerospace applications [4].

The cooperative vs competitive nature of the links may be
analyzed using the formalism of signed networks [3], in which
the edges have both positive and negative weights. For some
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of such networks, called structurally balanced1, the achievable
goal is bipartite consensus [3], in which all the agents converge
to the same state in modulus but opposite in signs. See, e.g.,
[3], [5], [6], and [7].

In all of the previous references, however, generic first-,
second-, or higher-order linear models are used. These are
less suitable for robot manipulators, which are most commonly
modeled by the Euler-Lagrange equations. In that regard, the
literature on control of multi-agent Euler-Lagrange systems is
also rich, but most often only cooperative networks are consid-
ered. For instance, in [8], [9] the tracking-consensus problem
for mobile robots with nonholonomic constraints is addressed,
in [10] the formation control of flying spacecrafts, in [11] the
synchronization of multi-Lagrangian systems, and in [12]–[15]
the synchronization of multiple robot manipulators. Now in all
of these references, the synchronization problem is studied in
joint coordinates. Formation of manipulators in end-effector
coordinates is considered in [16]–[18]. Nonetheless, in all of
the previously cited references only networks of cooperative
agents are considered. For signed networks, the bipartite
consensus of networked robot manipulators is addressed, e.g.,
in [19]–[23], while the leader-follower bipartite consensus
is studied in [24]–[27] (in the latter parametric uncertainty
is also considered). In end-effectors coordinates the bipartite
formation-control problem is considered in [28].

Now, besides the two aspects previously described, which
relate to the network and systems’ model (i.e., the sign of the
interconnections and the agents’ dynamics), there are others
that must be taken into account in the control of multi-agent
robot systems. Two of these are the existence of constraints
and the effect of external disturbances. Considering that a
disturbance may be modeled by a multi-periodic signal [18]
an effective method to compensate for its effect is the internal-
model-based approach. See, e.g., [15], [18], [29]–[31] for
works on consensus among cooperative robots, and [22]–
[24] and [28] for works on coopetitive networks of robot
manipulators. Yet, none of the references cited above considers
the presence of constraints.

Collision avoidance and maintenance of information ex-
change objectives are typically expressed as inter-agent con-
straints and are commonly addressed using artificial potential

1A signed network is structurally balanced if all the nodes may be split
into two disjoint subsets, where agents cooperative with each other are in the
same subset and agents competitive with each other are in different ones [3].
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functions—see e.g., [32], [33] for single integrators, and
[34] for unicycles. Now, several articles address constrained
consensus problems for first-order systems [35], second-order
systems [36], and for underactuated UAVs [37], but only a
few works focus on constrained control problems for networks
containing competitive interactions. For instance, for first-
order systems, connectivity-constrained multi-swarm herding
of unicycle robots is studied in [1]; for second-order systems,
non-cooperative herding with connectivity maintenance is
achieved in [2], and bipartite flocking with collision avoidance
and connectivity maintenance is achieved in [38] using arti-
ficial potential functions. A barrier-Lyapunov-function-based
controller is proposed in [39], which is a preliminary version
of this paper, devoted to the constrained leaderless bipartite
formation problem over undirected signed networks of double
integrators. As a matter of fact, all of the references mentioned
above, in which competitive interactions are considered, con-
cern only first- and second-order integrators.

In this paper, we consider the distributed bipartite formation-
control problem of robot manipulators’ end-effectors under rel-
ative distance constraints and in the presence of disturbances.
We consider a networked system of cooperative-competitive
robot manipulators modeled by the Euler-Lagrange equations
and interconnected over a structurally balanced undirected
signed graph [3]. The desired formation goal is imposed on
the manipulators’ end-effectors. Such scenarios are motivated,
for example, by applications in industrial robotics where robots
share the same workspace but are assigned symmetric tasks by
the team, such as working on opposite surfaces of an object.
Ideally, the robot manipulators should occupy the minimum
space while evolving with guaranteed safety and increased
reactivity.

Relative to [16]–[18], our results apply to networks having
both cooperative and competitive interactions. Contrary to
[19]–[28], in which the bipartite consensus problem of robot
manipulators over signed networks is studied, we address
the problem under inter-agent constraints. We consider inter-
agent distance constraints on the end-effectors to ensure to
keep a minimum safety distance between any pair of in-
terconnected end-effectors to avoid collisions and maximum
distance maintenance to make certain the task requirements
for cooperative end-effectors are guaranteed. However, the
problem of avoiding link collisions is not addressed. Relative
to [1], [2], in which the control strategies rely on optimization
techniques and to [38], in which artificial potential functions
are used, we base our controller on the gradient of a barrier-
Lyapunov function. In contrast to [1], [2], our controller
applies to signed networks and in contrary to [38], a minimum
safety distance between agents is ensured. Relative to [39], we
consider Euler-Lagrange systems, not simple integrators, and
we establish robustness with respect to external perturbations.
To that end, we follow the frameworks of [15], [18], [29], to
use an internal model to reject the disturbances, but contrary to
these references, our work considers signed networks. Relative
to [22]–[24] and [28], in which the presence of disturbances
is considered, we also address minimum and maximum dis-
tance constraints on the end-effectors. Our control design

and analysis rely on the edge-based formulation for signed
networks [40], which allows to recast the problem into one of
stabilization of the origin in error coordinates. We establish
asymptotic stability of the bipartite formation manifold using
Lyapunov’s direct method.

Thus, relative to the existing literature, we contribute with
a robust bipartite formation control law that ensures that
the manipulator’s end-effectors achieve the desired formation
while avoiding inter-agent collisions and staying within a
maximum distance imposed by the task requirements. To the
best of our knowledge, similar results are not available in
the literature for robot manipulators containing competitive
interactions.

II. MODEL AND PROBLEM FORMULATION

We describe in detail every aspect of the problem of
bipartite formation of end-effectors with constraints and under
perturbations, and present the models that we use.

A. Agents’ dynamics

Consider a network of N n-degrees-of-freedom robot ma-
nipulators modeled by the Euler-Lagrange equations.

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +
∂

∂qi
Ui(qi) = τi + di, i ≤ N, (1)

where qi, q̇i, q̈i ∈ Rn are the generalized joint position,
velocity, and acceleration respectively, Mi(qi) ∈ Rn×n is the
inertia matrix, U : Rn → R is the potential energy function,
τi ∈ Rp is the control input and di ∈ Rn is an external
disturbance generated by an exosystem. As it is customary,
we assume the following.

Assumption 1: The following properties hold.

1. There exist ci and c̄i > 0 such that, ciI ≤Mi(qi) ≤ c̄iI
for all qi ∈ Rn.

2. The matrix Ṁi(qi)− 2Ci(qi, q̇i) is skew-symmetric.

3. The Coriolis matrix Ci(qi, q̇i) is uniformly bounded in
qi. Moreover |Ci(qi, q̇i)q̇i| ≤ kci |q̇i|2 for kci > 0.

As in [15] and [18], we consider that the external distur-
bances are modeled by

di = dM,i + Ji(qi)
>dE,i, (2)

where dM,i ∈ Rn , dE,i ∈ Rp and Ji(qi) ∈ Rn×p is
the Jacobian matrix. The disturbance di is generated by an
exosystem of the form

ẇM,i = SM,iwM,i, dM,i = CM,iwM,i, (3a)
ẇE,i = SE,iwE,i, dE,i = CE,iwE,i, i ≤ N (3b)

where wM,i, wE,i ∈ Rli , SM,i, SE,i ∈ Rli×li and
CM,i, CE,i ∈ Rn×li . As in [29], we assume the following.

Assumption 2: The exosystems SM,i and SE,i are assumed
to be neutrally stable, that is, all the eigenvalues of SM,i and
SE,i are different and lie on the imaginary axis, and they are
nonsingular. Moreover, they are assumed to be known.
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Such an assumption is realistic for various human-robot-
environment interactions because the disturbance is expressed
as a sum of sinusoidals—cf. [29], which is a truncated finite
Fourier approximation of general external bounded distur-
bances.

B. Problem statement

We define now the problem of bipartite formation of manip-
ulators’ end-effectors. Let xi ∈ Rp be the position of the ith
manipulator’s end-effector in the task space. The end-effector’s
position xi can be mapped to its generalized joint coordinates
via the nonlinear forward kinematics mapping [41]

xi = xi0 + hi(qi), (4)

where xi0 is the position of the manipulator’s base and
hi : Rn → Rp is the mapping from joint-space to the task
space. Differentiating (4) with respect to time, we obtain the
relation between the task-space velocity and joint velocity [41]

ẋi = Ji(qi)q̇i, Ji(qi) :=
∂hi(qi)

∂qi
q̇i, (5)

with Ji(qi) ∈ Rn×p the Jacobian matrix of the forward
kinematics.

The bipartite formation control problem consists in the
end-effectors’ positions of the cooperative agents reaching a
desired geometric shape around a consensus value, while the
end-effectors’ positions of non-cooperative agents converge
to another spatial configuration. The characteristics of the
formation shape are defined through the relative biases bi and
bj with respect to the consensus points. Hence, we define the
bipartite formation control objective as

lim
t→∞

x̄i(t)− sgn(aij)x̄j(t)→ 0, i, j ≤ N, (6)

where

x̄i := xi − bi, (7)

and aij ∈ R is the adjacency weight between the two agents.
In an all-cooperative-agents setting, consensus means that

all x̄i converge to the same value, but in this case, since some
robot manipulators are cooperative and others are competitive,
all of the end-effectors reach two symmetrical consensus
values. For the purpose of control design and analysis, this
boils down to making some synchronization errors to converge
to zero. These errors correspond to the edges on the graph and
are defined as

ēk := x̄i − sgn(aij)x̄j , k ≤M, (8)

where x̄i is defined in (7) and k denotes the index of the
interconnection between the ith and jth end-effectors. Since
aij is either positive or negative, the resulting network is
modeled by a signed graph [3], and we assume that the
following holds.

Assumption 3: The systems described in (1), which are
interconnected via inputs τi, form a structurally balanced (see
below), undirected, and connected signed graph.

Remark 1: Recall that a signed graph is structurally bal-
anced if it may be split into two disjoint sets of vertices
V1 and V2, where V1 ∪ V2 = V , V1 ∩ V2 = ∅ such that for
every i, j ∈ Vp, p ∈ {1, 2}, if aij ≥ 0, while for every
i ∈ Vp, j ∈ Vq , with p, q ∈ {1, 2}, p 6= q, if aij ≤ 0.
Otherwise, it is structurally unbalanced [3]. •

In addition, it is imposed that the controller ensure that the
end-effectors do not collide and remain within a maximum
distance imposed by the task requirements. This comes to
ensuring that for any pair of communicating nodes νi and
νj ∈ V , the corresponding positions remain in certain con-
straint sets, which are defined as follows. Let Em denote the
set of indices k corresponding to edges containing pairs of
cooperative agents, i.e., i, j ∈ Vl with l ∈ {1, 2}, δk := xi−xj .
In addition, for each k ≤ M , let Rk > 0 and ∆k > 0. Then,
we define

Ir := {δk ∈ Rn : |δk| < Rk, k ∈ Em} (9a)
Ic := {δk ∈ Rn : |δk| > ∆k k ≤M}, (9b)

where Ir is the set of proximity constraints and Ic is the set
of collision-avoidance constraints. Under these conditions, it
is required to design a distributed bipartite formation control
law of the form

χ̇i = f1i(ēk, qi, q̇i, χi)

τi = f2i(ēk, qi, q̇i, χi),

where χi is the disturbance compensator to be designed later,
to achieve bipartite formation of end-effectors, such that

lim
t→∞

ēk(t) = 0, lim
t→∞

q̇i(t) = 0, k ≤M, i ≤ N, (10)

and the manipulators’ end-effector’s trajectories satisfy the
proximity and collision-avoidance constraints. That is, it must
hold that δ(t) ∈ I for all t ≥ 0, with δ := [δ1 δ2 · · · δM ]>,
I := Ir ∩ Ic for cooperative agents and I := Ic for
competitive agents.

III. CONTROL DESIGN

We deal with the considered problem posed above as one
of stabilization of the origin in edge coordinates [40], [42],
which correspond exactly to the synchronization errors in (8).
In order to respect the inter-agent constraints the control input
is designed as the gradient of a so-called barrier-Lyapunov
function (BLF)—cf. [34], [42], [43]. Then, in order to cope
with disturbance, we use an internal model approach, similar
to [15], [18], [29]. Next, we discuss in more detail each aspect
of the control design, and we recall the definition of BLF for
convenience.

Definition 1: Consider the system ẋ = f(x) and let I
be an open set containing the origin. A BLF is a positive
definite C1 function W : I → R≥0, x 7→ W (x), such that
∇W (x)f(x) ≤ 0, where ∇W (x) := ∂V/∂x, and having the
property that W (x) → ∞, and ∇W (x) → ∞ as x → ∂I,
where ∂I denotes the boundary of I.
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A. Gradient-based control design

Let k ≤ M be arbitrarily fixed and consider the following
BLF in terms of the synchronization errors, Wk : R → R≥0,
defined as

Wk(s) =
1

2
[|s|2 +Bk(s)], (11)

where Bk(s) is the sum of two functions2 satisfying Definition
1, each of them encoding the constraints in (9), respectively.
More precisely, Bk(s) = 1

2 (1 + σk)Brk(s) + Bck(s), where
Bck(s)→∞ as |s| → ∆k and Brk(s)→∞ as |s| → Rk for
all k. In the latter, σk = 1 if k ∈ Em, i.e., if the interaction is
cooperative, and σk = −1 otherwise. Furthermore, Bk(s) is
non-negative, it satisfies Bk(0) = 0, and it tends to infinity as
|s| → ∆k for all edges and as |s| → Rk for k ∈ Em. However,
the constraints are imposed on the physical distance between
any two end-effectors, that is δk = xi−xj , which in function
of the synchronization errors ēk defined in (8) are given by

δk = ēk + b̄k, i, j ∈ Vp, (12)

for a pair of cooperative agents, and as

δk = ēk + b̄k − 2xj , i ∈ Vp, j ∈ Vq, (13)

for a pair of competitive agents, where p, q ∈ {1, 2}, p 6= q and
b̄k = bi − sgn(aij)bj . That is, in terms of the synchronization
errors, the constraint sets in (9) take the form

Ir = {ēk ∈ Rn : |ēxk + αk| < Rk, k ∈ Em}, (14a)
Ic = {ēk ∈ Rn : ∆k < |ēxk + αk|, k ≤M}, (14b)

where
αk := δk − ēk, ∀k ≤M. (15)

For the purpose of designing a gradient-based controller that
ensures that the constraints are satisfied, the BLF must be
such that Wk(ēk) = 0 if ēk = 0, but it must also hold that
Wk(ēk) → ∞ as |ēxk + αk| → ∆k or |ēxk + αk| → Rk.
Then, for the BLF to be effective both for cooperative and
competitive agents, we shift its minimum by introducing a
so-called gradient recentered barrier function [44]. We define

Ŵk(αk, ēk) := Wk(ēk + αk)−Wk(αk)− ∂Wk

∂s
(αk)ēk,

(16)

which has the desired properties by the definition of Wk

in (11), since it satisfies Ŵk(αk, 0) ≡ 0, ∇ēkŴk(αk, 0) ≡ 0,
where ∇ēkŴk = ∂Ŵk/∂ēk, and Ŵk(αk, ēk)→∞ as
|δk| → ∆k for all k ≤ M , and as |δk| → Rk for all k ∈ Em.
Also, we note that {ēk = 0} is a minimum of Ŵ (αk, ·) and,
as a matter of fact, it is also a unique minimum even though
Ŵ (αk, ·) has a second critical point, which we denote e∗k.
Then, defining Wk := {0, e∗k} for any k ≤M , we have

κ1

2
|ēk|2Wk

≤ Ŵk(αk, ēk) (17)

for all αk ∈ Rn and ēk such that ē ∈ I, where |ēk|Wk
:=

min{|ēk|, |ēk − e∗k|}.

2A particular choice for Bk(s) is given in Section V.

Based on Ŵk we define the gradient-based bipartite-
formation control law as

τ∗i =− k1iJi(qi)
>

[
M∑
k=1

[Es]ik∇ēkŴk +

M∑
k=1

[E]ik∇αkŴk

]

− k2i q̇i +
∂

∂qi
Ui(qi), (18)

where k1i > 0, k2i > 0 for all i ≤ N ,

E = E − Es, (19)

E is the incidence matrix of the cooperative version of the
considered network3, and Es the incidence matrix of the
considered signed network. We recall that Es describes the
interaction topology of the network and is defined as follows
for a structurally balanced signed network:

[Es]ik :=



+1, if vi is the initial node of the edge εk;
−1, if vi, vj are cooperative such that

vi, vj ∈ Vl, l ∈ {1, 2} and vi is the
terminal node of the edge εk;

+1, if vi, vj are competitive such that
vi ∈ Vp, vj ∈ Vq, p, q ∈ {1, 2}, p 6= q and
vi is the terminal node of the edge εk;

0, otherwise,

where εk = {vi, vj}, k ≤M, i, j ≤ N are arbitrarily oriented
edges and V1 and V2 are the two disjoint sets of vertices.

The first two terms in the control law in (18) are needed to
ensure the bipartite formation of end-effectors while respecting
the inter-agent constraints imposed on the task space. The
second term is needed specifically because of the use of
the gradient recentered barrier function and the presence of
competitive interactions between agents. The third term is
needed to control the joint velocity. It consists of a damping
term to stabilize the joint velocity at zero. The last term is
to compensate for the gravitational force. We show in the
next Section that the control law τ∗ in (18) achieves bipartite
formation and deals with inter-agent distance constraints for
the system (1), but only in the absence of disturbances, that
is, if di = 0. In the next Subsection, an internal model-based
approach is presented to cope with the disturbance.

B. Robust control redesign

In order to deal with the disturbances modeled by (2) and
(3), we design an estimator of di. For that, we use an internal
model-based approach [15], [18], [29]. Let

χ̇1i = AM,iχ1i −BM,iui, (20a)
χ̇2i = AE,iχ2i −BE,iJi(qi)ui, (20b)

where χ1i ∈ Rli , χ2i ∈ Rli , AM,i ∈ Rli×li , AE,i ∈
Rli×li , BM,i ∈ Rli×n, BE,i ∈ Rli×n, ui ∈ Rn is the
input to the internal model dynamics, which is defined later,
AM,i+A

>
M,i = 0, AE,i+A>E,i = 0 and the pairs (B>M,i, AM,i)

and (B>E,i, AE,i) are observable. We also assume, as in [15]

3A structurally balanced graph may be transformed into a traditional
cooperative one using the gauge transformation—see [3], [40].



IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, DOI: 10.1109/TCNS.2024.3462554 5

and [18], that the eigenvalues of the matrix SM,i in (3) and
AM,i and the eigenvalues of SE,i in (3) and AE,i are identical.
Under these conditions, there exist transformation matrices
TM,i ∈ Rli×pi and TE,i ∈ Rli×pi , such that—cf. [30, Section
4.2]

TM,iSM,i = AM,iTM,i, B>M,iTM,i + CM,i = 0 (21a)

TE,iSE,i = AE,iTE,i, B>E,iTE,i + CE,i = 0. (21b)

Then, we can rewrite (20) in the compact form as

χ̇i = Aiχi −Bi(qi)ui, (22)

where χi =
[
χ1i χ2i

]>
, Ai =

[
AM,i 0

0 AE,i

]
and

Bi(qi) =
[
BM,i Ji(qi)

>BE,i
]
.

Next, the control law is redesigned using χi, and the input
ui will be defined later, using the internal model. Then, we
define the following estimation error coordinates: χ̃i, for the
estimate of the disturbance, and d̃i, for the disturbance.

χ̃i = χi − Tiwi (23a)

d̃i = B>i (qi)χi + di, (23b)

where Ti =
[
TM,i TE,i

]
and wi =

[
wM,i wE,i

]>
. Taking

the derivative of (23a) and using (3) for (23b), we obtain

˙̃χi = χ̇i − Tiẇi
d̃i = Bi(qi)

>χi + Ciwi.

Replacing (22) in the first equation and using (21) in the
second, we obtain

˙̃χi = Aiχi −Bi(qi)ui − TiSiwi
= Aiχ̃i −Bi(qi)ui (24a)

d̃i = Bi(qi)
>χi −Bi(qi)>Tiwi

= Bi(qi)
>(χi − Tiwi) = Bi(qi)

>χ̃i. (24b)

The equations in (24) are important because they define a
passive map from ui to d̃i. To see that, consider the storage
function Hi(χ̃i) = 1

2 |χ̃i|
2. Its derivative gives

Ḣi(χ̃i) = χ̃>i ˙̃χi =
1

2
χ̃>i (Ai +A>i )χ̃i − χ̃>i Bi(qi)ui

= −χ̃>i Bi(qi)ui,

since Ai + A>i = 0. Thus, the system in (24) is lossless
(passive) from the input ui to the output d̃i = B>i χ̃i. We
use this observation in the control analysis.

Thus, to robustify the controller, the control law in (18) is
redesigned into

τi = τ∗i +B>i (qi)χi, (25)

where the last term counteracts the effect of external distur-
bances.

IV. STABILITY ANALYSIS

A. Asymptotic stability in the absence of disturbance

We analyze the stability of the bipartite formation manifold
for the closed-loop system (1) interconnected by the control
law (18). To that end, using the definition of the incidence
matrix, we represent the synchronization errors in (8) and αk
defined in (15), in the vector form

ē = [E>s ⊗ In]x̄, (26a)

α = [E> ⊗ In]x− [E>s ⊗ In]x̄. (26b)

Then, after (16), we define

W̄ (α, ē) =

M∑
k=1

Ŵk(αk, ēk). (27)

Finally, we see that the closed-loop system (1)-(18) in the
compact form is

q̈ =−M(q)−1
[
C(q, q̇)q̇ +K1J(q)>[Es ⊗ In]∇ēW̄ (α, ē)

+K1J(q)>[E⊗ In]∇αW̄ (α, ē) + [K2 ⊗ In]q̇
]
, (28)

where q = [qi], M(q) = blkdiag[Mi(qi)], C(q, q̇) =
blkdiag[Ci(qi, q̇i)], K1 = diag(k1i), K2 = diag(k2i) and
J(q)> = blkdiag[Ji(qi)

>], ∀i ≤ N .
Proposition 1: Consider N robot manipulators modeled by

(1), with di = 0 and satisfying the Assumptions 1 and 3, in
closed loop with the distributed control law (18), with k1i,
k2i > 0, for all i ≤ N and Ŵk as defined in (16). Then,
for any given formation shape reachable by the end-effectors,
the set {(ē, q̇) = (0, 0)} is asymptotically stable for almost
all initial conditions such that (ē(0), q̇(0)) ∈ I × RnN and
|αk(0)| > ∆k for any k ≤M . �

Proof: After Assumption 3, the considered graph is undi-
rected and connected, so it contains a spanning tree. Then,
as for the more ordinary scenario of consensus, the result
may be assessed by analyzing the dynamics of the agents that
belong to the spanning-tree—see [40], [42], [43]. To obtain the
closed-loop equations in spanning-tree coordinates, following
the latter, we first recall that

Es = [Ets Ecs ], (29)

where Ets ∈ RN×N−1 is the incidence matrix representing
the edges of the spanning tree, corresponding to the spanning-
tree graph Gt, and Ecs ∈ RN×M−(N−1) is the incidence
matrix representing the remaining edges, corresponding to
Gc := G\Gt. Consequently, after (26a) and (29), the errors
can be expressed as ē = [(E>ts x̄)> (E>cs x̄)>]>, which gives
ē := [ē>t ē>c ]>. Furthermore, for a structurally balanced
signed graph, there exists a matrix Rs such that

Es = EtsRs, (30)

where Rs := [IN−1 Ts] and Ts := (E>tsEts)
−1E>tsEcs—

see Proposition 1 in [39]. Notably, the following relationship
between the synchronization errors ē and the spanning-tree
errors ēt holds:

ē = [(EtsRs)
> ⊗ In]x̄ = [R>s ⊗ In]ēt, (31)
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so the bipartite formation objective (10) is achieved if ēt → 0
and q̇ → 0. On the other hand, a similar relation holds for α
defined in (26b):

α = [E> ⊗ In]x+ [E>s ⊗ In]b, (32)

where E is defined in (19). The matrix E corresponds only
to competitive edges. Thus, akin to (29), we can write
E = [Et Ec] and α = [α>t α>c ]>. Thus,

E = EtRs (33)

and

α = R>s
[
[E>t ⊗ In]x+ [E>ts ⊗ In]b

]
= [R>s ⊗ In]αt. (34)

Next, to express the control law in spanning-tree coordi-
nates, we introduce

W̃ (αt, ēt) := W̄ (R>s αt, R
>
s ēt). (35)

That is, in view of (31) and (34), W̃ (αt, ēt) denotes the same
quantity as the right-hand-side of (27), but in spanning-tree
coordinates, so W̃ maps It × RnN → RnN≥0 , where It :=
Irt ∩Ict for cooperative agents and It := Ict for competitive
agents, and

Irt := {ētk ∈ Rn : |[r>sk ⊗ In][ētk + αtk ]| < Rk , k ∈ Emt},
(36)

Ict := {ētk ∈ Rn : ∆k < |[r>sk ⊗ In][ētk + αtk ]|, k ≤ N − 1},
(37)

Emt denotes the set of indices k corresponding to the N − 1
edges of the spanning-tree graph containing pairs of coop-
erative agents, and rsk is the kth column of Rs. The set It
defines the constraints in spanning-tree coordinates. Using W̃ ,
we define the gradient-based control terms

∇ētW̃ ≡
∂W̄ (α, ē)>

∂ē

∂ē

∂ēt
= ∇ēW̄>[R>s ⊗ In],

∇αtW̃ ≡
∂W̄ (α, ē)>

∂α

∂α

∂αt
= ∇αW̄>[R>s ⊗ In]. (38)

Thus, in spanning-tree edge coordinates, Eq. (28) becomes

q̈ =−M(q)−1
[
C(q, q̇)q̇ +K1J(q)>[Ets ⊗ In]∇ētW̃ (αt, ēt)

+ K1J(q)>[Et ⊗ In]∇αtW̃ (αt, ēt) + [K2 ⊗ In]q̇
]
.

(39)

The rest of the proof consists in establishing asymptotic
stability of the origin {(ēt, q̇) = (0, 0)} and forward invariance
of the set It×RnN , for the trajectories of (39). First, consider
the Lyapunov function candidate

V (αt, ēt, q̇) = W̃ (αt, ēt) +
1

2
q̇>M(q)q̇, (40)

where M(q) = M(q)>. Also, we remark that V is pos-
itive definite in ēt and q̇, and bounded from above uni-
formly in αt. More precisely, there exist µ1 > 0 such that
µ1

[
|ēt|2 + |q̇|2

]
≤ V (αt, ēt, q̇), and V (αt, ēt, q̇) → 0 as

|ēt| → 0 and |q̇| → 0.
Now, its derivative satisfies

V̇ =∇ētW̃>[Ets ⊗ In]>Jq̇ +∇αtW̃>[Et ⊗ In]>Jq̇

+
1

2
q̇>Ṁ q̇ − q̇>C(q, q̇)q̇ − q̇>[K ⊗ In]q̇

− q̇>J(q)>[Ets ⊗ In]∇ētW̃ − q̇>J(q)>[Et ⊗ In]∇αtW̃

=− 1

2
q̇>
[
Ṁ − 2C(q, q̇)

]
q̇ − q̇>[K ⊗ In]q̇.

But since Ṁ − 2C(q, q̇) is skew-symmetric, we obtain

V̇ (αt, ēt, q̇) =− q̇>[K ⊗ In]q̇ ≤ 0, (41)

for all (ēt, q̇) ∈ It × RnN so the origin is stable and the
solutions are uniformly bounded. Next, we use LaSalle’s
invariance theorem. To that end, we first note that on the set
{q̇ ∈ RnN : V̇ = 0}, we have q̇ = 0, and consequently, q̈ = 0.
In view of (5), it follows that ẋ = 0 because ẋ = J(q)q̇. In
turn, since all the functions on the right-hand-side of (39) are
continuous, we have

J(q)>[Ets ⊗ In]∇ētW̃ + J(q)>[Et ⊗ In]∇αtW̃ = 0. (42)

On the one hand, after (16), we have

∇αtW̃ = ∇ētW̃ −
∂

∂αt

{
∂W

∂αt
(αt)

}
ēt, (43)

and, because α = [E> ⊗ In]x − [E>s ⊗ In]x̄, then α̇ =
[E ⊗ In]>ẋ and α̇t = [Et ⊗ In]>ẋ. Thus, α̇t = 0, which
is equivalent to αt ≡ const on {V̇ = 0}. In turn, the last
term of the right-hand-side of (43) equals to zero. Then, from
(42) and using (19), J(q)>[(Ets + Et − Ets) ⊗ In]∇ētW̃ =
J(q)>[Et ⊗ In]∇ētW̃ = 0. Now, since Et is full rank
(because it corresponds to the incidence matrix of a spanning
tree) it follows that ∇ētW̃ = 0, which holds if and only if
ēt ∈ Wt, where Wt = {0, e∗t } and e∗t is the saddle point of
W̃ . Therefore, the solutions converge to the set Wt × {0}.
However, since e∗t is a saddle point of W̃ , the set of initial
conditions generating solutions that converge to (e∗t , 0) has
zero Lebesgue measure. Thus, almost all initial conditions
generate trajectories that converge to the origin. Asymptotic
stability follows.

Next, we show that asymptotic stability holds for almost all
initial conditions in It × RnN . To that end, we first remark
that, from (36), ēt ∈ It implies ē ∈ I, so we must show that
It × RnN is forward invariant. To that end, for any r and
ε ≥ 0, let us define

Dr,ε := {q̇ ∈ Br, ēt ∈ Iε},

where Iε = Icε ∩ Irε for cooperative agents and Iε = Icε
for competitive agents, while Iεr := {ētk ∈ Rn : |ētk +
αtk | < Rk − ε, k ∈ Emt}, Iεc := {ētk ∈ Rn : ∆k + ε <
|ētk + αtk |, k ≤ N − 1}. From the definition of W̃ (αt, ēt),
V (αt, ēt, q̇) is positive definite on Iε for all ēt ∈ Iε, q̇ ∈
RnN and for all ε. From (41), we have |ēt(t)|2 + |q̇(t)|2 ≤
1
µ1
V (αt(0), ēt(0), q̇(0)) then

(ēt(0), q̇(0)) ∈ Dr,ε ⇒ (ēt(t), q̇(t)) ∈ D′, (44)

where

D′ :=

{
(ēt, q̇) ∈ It × RnN : V (αt, ēt, q̇) ≤ γr,ε

}
,
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and

γr,ε := sup
(ēt,q̇)∈Dr,ε
αt∈RnN

√
V (αt, ēt, q̇)

µ1
.

Note that γr,ε is well defined because V is uniformly bounded
in αt and Dr,ε is bounded. After LaSalle’s invariance principle,
we conclude that all the trajectories contained in D′ converge
to the set Wt × {0}. After (44), that is all the trajectories
starting in Dr,ε. This holds for any r > 0 arbitrarily large and
ε > 0 arbitrarily small. Thus, again because Wt = {0, e∗t },
and e∗t is a saddle point, we conclude that the origin is
asymptotically stable for almost all trajectories starting in
It × RnN . �

B. Asymptotic stability in the presence of disturbance

Now we analyze the system (1) in the presence of distur-
bances and driven by the control law (25), where χi is defined
by (22), with ui = q̇i. We have the following.

Proposition 2: Consider N robot manipulators modeled by
(1) and satisfying the Assumptions 1 and 3 in closed-loop
with the distributed controller defined by (25), (18), and (22),
with ui = q̇i and k1i, k2i > 0, for all i ≤ N . Then, for any
given formation shape reachable by the end-effectors, the set
{(ē, q̇) = (0, 0)} is asymptotically stable for almost all initial
conditions such that (ē(0), q̇(0)) ∈ I×RnN and |αk(0)| > ∆k

for any k ≤M . �

Proof: As for Proposition 1 the statement follows if we
establish asymptotic stability of the origin in spanning-tree
coordinates and forward invariance of It × RnN .

First, proceeding as in Section IV-A, we obtain that the
closed-loop equations now read

q̈ =−M(q)−1
[
C(q, q̇)q̇ +K1J(q)>[Ets ⊗ In]∇ētW̃ (αt, ēt)

+K1J(q)>[Et ⊗ In]∇αtW̃ (αt, ēt) + [K2 ⊗ In]q̇

−[B(q)⊗ In]>χ− d
]
, (45)

where d := col[di], i ≤ N .
Next, we consider the Lyapunov function candidate

V (αt, ēt, q̇, χ̃) = W̃ (αt, ēt) +
1

2

[
q̇>M(q)q̇ + |χ̃|2

]
. (46)

The derivative of (46) gives

V̇ =∇ētW̃>[Ets ⊗ In]>J(q)q̇ +∇αtW̃>[Et ⊗ In]>J(q)q̇

+
1

2
q̇>Ṁ q̇ − q̇>C(q, q̇)q̇ − q̇>[K ⊗ In]q̇

− q̇>J(q)>
[
[Ets ⊗ In]∇ētW̃ + [Et ⊗ In]∇αtW̃

]
− χ̃>[B(q)⊗ In]u+ q̇>[B(q)⊗ In]>χ+ q̇>d, (47)

where we used (23) to obtain

V̇ =− χ̃>[B(q)⊗ In]u+
1

2
q̇>
[
Ṁ − 2C(q, q̇)

]
q̇

+ q̇>[B(q)⊗ In]>χ− q̇>[K ⊗ In]q̇

+ q̇>
[
d̃− [B(q)⊗ In]>χ

]
=− q̇>[K ⊗ In]q̇ ≤ 0, (48)

for which we used the skew symmetry of Ṁ − 2C(q, q̇) and
u = q̇. Note that on the set {q̇ ∈ RnN : V̇ = 0}, we have
q̇ = 0 and q̈ = 0. In turn, after (45), we have

K1J(q)>[Ets ⊗ In]∇ētW̃ +K1J(q)>[Et ⊗ In]∇αtW̃
−[B(q)⊗ In]>χ− d = 0. (49)

As in the Proof of Proposition 1, we have ẋ = 0 and
α̇t = 0 on {V̇ = 0}. Consequently, αt is constant and, after
(43), ∇αtW̃ = ∇ētW̃ . Then, from (49) and (19), we obtain
K1J(q)>[Et⊗In]∇ētW̃ − [B(q)⊗In]>χ−d = 0. Replacing
the estimation error coordinates in (23b) in the latter equation,
we obtain

K1J(q)>[Et ⊗ In]∇ētW̃ − [B(q)⊗ In]>χ

−
[
d̃− [B(q)⊗ In]>χ

]
= 0.

so K1J(q)>[Et ⊗ In]∇ētW̃ − d̃ = 0. Then, replacing (24b)
in the previous equation, we obtain

K1J(q)>[Et ⊗ In]∇ētW̃ = [B(q)⊗ In]>χ̃. (50)

Differentiating on both sides of the latter, we obtain

K1J(q)>[Et ⊗ In]
∂2W̃

∂ē2
t

˙̄et +K1J̇(q)>[Et ⊗ In]∇ētW̃

= [B(q)⊗ In]> ˙̃χ+ [Ḃ(q)⊗ In]>χ̃.

As ˙̄et = E>tsJq̇ = 0, J̇(q) = ∂J(q)
∂q q̇ = 0 and

Ḃ(q) = ∂B(q)
∂q q̇ = 0, we have [B(q) ⊗ In]> ˙̃χ = 0.

Then, replacing (22) in the latter, we obtain [B(q) ⊗
In]> [[A⊗ In]χ̃− [B(q)⊗ In]u] =

[
[B(q)>A]⊗ In

]
χ̃ = 0,

since u = q̇ = 0. Differentiating the latter again, we have

[
[B(q)>A]⊗ In

]
˙̃χ =

[
[B(q)>A2]⊗ In

]
χ̃ = 0[

[B(q)>A2]⊗ In
]

˙̃χ =
[
[B(q)>A3]⊗ In

]
χ̃ = 0

...[
[B(q)>Ali−1]⊗ In

]
˙̃χ =

[
[B(q)>Ali ]⊗ In

]
χ̃ = 0.

(51)

Next, let

p(λ) = λli + cli−1
λli−1 + · · ·+ c1λ+ c0 (52)

denote the characteristic polynomial of A. On the one hand,
after the Cayley-Hamilton Theorem p(A) = 0. Therefore,
1
c0
B(q)>[p(A)⊗ In]χ̃ = 0, that is,

− 1

c0

[
B(q)>

[
Ali + cli−1A

li−1 + · · ·+ c1A
]
⊗ In

]
χ̃

= [B(q)⊗ In]>χ̃. (53)

On the other hand, the equations in (51) continue to hold if
the left-hand sides are multiplied by the coefficients cp with
p ≤ li. Therefore, by observing that cli = 1,[
B(q)>

[
Ali + cli−1A

li−1 + · · ·+ c2A
2 + c1A

]
⊗ In

]
χ̃ = 0.

From the latter and (53), we conclude that [B(q)⊗In]>χ̃ = 0.
In turn, from (50) we have J(q)>[Et ⊗ In]∇ētW̃ = 0. The
rest of the proof follows as for Proposition 1. �
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Fig. 1. An undirected signed network of 6 robot manipulators. The
black lines (e2 and e5) represent cooperative edges, and the red lines
the competitive edges.

V. SIMULATION RESULTS

We provide a numerical example to show the performance
of our control laws, first the one in (18) in the absence
of disturbance and then the one in (25) in the presence of
disturbance. For that, we consider a system of N = 6 two-link
robot manipulators interconnected over a structurally balanced
undirected signed network, modeled by a graph as the one
depicted in Figure 1. For the corresponding graph, we define
the orientation of the seven edges as e1 = ν1+ν2, e2 = ν1−ν3,
e3 = ν1 + ν4, e4 = ν2 + ν5, e5 = ν2 − ν6, e6 = ν3 + ν4,
and e7 = ν5 + ν6. The set of nodes may be split into two
disjoint subgroups as V1 = {ν1, ν3, ν5} and V2 = {ν2, ν4, ν6},
so the network is structurally balanced. From (29), the edges
ei, i ≤ 5 correspond to the edges of the spanning tree, and
the remaining edges, e6 and e7, correspond to the cycles. The
corresponding incidence matrix is given by

Es =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 −1 0 0 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 −1 0 1

 .
Each manipulator is modeled by the Euler-Lagrange equations
in (1), with inertia and Coriolis matrices given by

Mi(qi) =

[
αi + 2βi cos(q2i) δi + βi cos(q2i)
δi + βi cos(q2i) δi

]
,

Ci(qi, q̇i) = δi

[
− sin(q2i)q̇2i − sin(q2i)(q̇1i + q̇2i)
− sin(q2i)q̇1i 0

]
,

where αi = l22im2i+l
2
1i(m1i+m2i), βi = l1i l2im2i and δi =

l22im2i with l1i , l2i and m1i ,m2i are the length and the mass
of links 1 and 2. The physical parameters are m1 = 1.2kg,
m2 = 1kg, and l1 = l2 = 1m for all i ≤ N . The kinematic
model for each manipulator is given by

xi =

[
l1 cos(qi1) + l2 cos(q1i + q2i)
l1 sin(qi1) + l2 sin(q1i + q2i)

]
+ xi0 ,

and the Jacobian matrix

Ji(qi) =

[
−l1 sin(qi1)− l2 sin(q1i + q2i) −l2 sin(q1i + q2i)
l1 cos(qi1) + l2 cos(q1i + q2i) l2 cos(q1i + q2i)

]
.

First, consider the system (1), where di = 0 for all i ≤ N ,
with the bipartite formation control law (18), where k1i = 20,
k2i = 15 for all i ≤ N and the barrier-Lyapunov function in
(16), with Brk(s) = ln

(
R2
k

R2
k−|s|2

)
, Bck(s) = ln

(
|s|2

|s|2−∆2
k

)
.

The bases of six robot manipulators are located at x10
=

[0, 0.5]>, x20
= [2.5, 0]>, x30

= [−1, 0]>, x40
=

[0, −2]>, x50 = [−3, 0.5]>, x60 = [2, −2]>. The initial
conditions for each agent are q1(0) = [π, π/3]>, q2(0) =
[2π/3, π/3]>, q3(0) = [−π, π/3]>, q4(0) = [−π/2, 0]>,
q5(0) = [π, π/3]>, q6(0) = [0, π/3]>, q̇1(0) = q̇2(0) =

Fig. 2. Bipartite formation of system (1) with control input (18) on joint
trajectories.

Fig. 3. Bipartite formation of system (1) with control input (18) on joint
velocities.

q̇3(0) = q̇4(0) = q̇5(0) = q̇6(0) = [0, 0]>, with q = [q1, q2]>

and q̇ = [q̇1, q̇2]> and the relative displacements of the end-
effectors are b1 = [0, 0.4]>, b2 = [−0.4, 0]>, b3 = [0.4, 0]>,
b4 = [0, −0.4]>, b5 = [−0.4, 0]>, b6 = [0.4, 0]>, with
b = [bx, by]>. The constraint sets are ∆k = 0.2m for all edges
and the maximum distance constraints for the two cooperative
edges e2 and e5 are given as R2 = 2.5m and R5 = 3.5m.

Fig. 4. Evolution of the manipulators’ end-effector from the initial
positions (o) to the final positions (*). Each group of end-effectors forms
a triangle around the symmetric consensus points +.

The joint positions and velocities are depicted in Figures
2 and 3, respectively, and all velocities converge to zero.
The paths of each end-effector up to bipartite formation are
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Fig. 5. Trajectories of the norm of inter-agent distances with control
input (18). The black dashed line is the minimum distance constraint for
a pair of end-effectors corresponding to each edge, and the red and
green dashed lines are the maximum distance constraints for the edges
e2 and e5, respectively.
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Fig. 6. Final positions of the manipulators and their end-effector.

depicted in Figure 4, and their final configuration is depicted
in Figure 64. Moreover, it is clear from Figure 5 that the
minimum safety distance between each pair of end-effectors
is respected. In addition, for the two cooperative edges, e2 and
e5, the maximum distance between the end-effectors is also
respected. Thus, collision avoidance and maximum distance
maintenance among the manipulators’ end-effectors are both
guaranteed.

In a second run of simulations, we consider the system (1),
where di 6= 0 and with the robust bipartite formation control
law in (25). We take the same initial conditions as before. Let
k1i = 200 and k2i = 300 for all i ≤ N . The matrices in (3)
of the exosystem generating the disturbance are given as

SMi
= SEi =

[
0 1
−1 0

]
, CMi

= CEi =

[
1 0
0 1

]
.

The matrices of the internal model in (22) are given as

AMi
=

[
0 1
−1 0

]
, AEi =

[
0 π/2
−π/2 0

]
,

BMi =

[
1 0
0 1

]
, BEi =

[
1 0
0 1

]
.

4A video of the simulation is available at: http://tinyurl.com/
simulationRM.

Fig. 7. Bipartite formation of system (1) with control input (25) on joint
trajectories.

Fig. 8. Bipartite formation of system (1) with control input (25) on joint
velocities.

-5 -4 -3 -2 -1 0 1 2 3 4
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-3

-2

-1

0

1

Fig. 9. Evolution of the manipulators’ end-effector from the initial
positions (o) to the final positions (*). Each group of end-effectors forms
a triangle around the symmetric consensus points.

The joint positions and velocities are depicted in Figures
7 and 8, respectively, and all velocities converge to zero.
The paths of each end-effector up to bipartite formation are
depicted in Figure 9. Their final configuration is the same as
in Figure 6. Moreover, it is clear from Figure 10 that collision
avoidance and maximum distance maintenance are guaranteed
among the manipulators’ end-effectors.

VI. CONCLUSIONS

We addressed the problem of constrained bipartite for-
mation of cooperative-competitive robot manipulators’ end-
effectors, modeled by Euler-Lagrange equations. We consid-
ered a structurally balanced and undirected signed graph. First,
we presented a bipartite formation control law based on the

news.google.com
http://tinyurl.com/simulationRM
news.google.com
http://tinyurl.com/simulationRM
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Fig. 10. Trajectories of the norm of inter-agent distances with control
input (25). The black dashed line is the minimum distance constraint,
and the red dashed line is the maximum distance constraint for end-
effectors.

gradient of a barrier-Lyapunov function that guarantees that
end-effectors do not collide and stay within the maximum
distance imposed by the task requirements. Then, in order
to deal with perturbed robot manipulators, we robustified our
controller with an internal model-based approach to reject
disturbances. We established the asymptotic stability of the
bipartite formation manifold both in the absence and the
presence of disturbance. Further research aims to extend these
results to consider general directed signed networks, as well
as guaranteeing collision avoidance among links.
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[39] P. Şekercioğlu, I. Sarras, A. Lorı́a, E. Panteley, and J. Marzat, “Bipartite
formation over undirected signed networks with collision avoidance,” in
Proc. IEEE Conf. on Dec. and Control, Singapore, 2023, pp. 1438–1443.

[40] M. Du, B. Ma, and D. Meng, “Edge convergence problems on signed
networks,” IEEE Trans. on Cybernetics, vol. 49, no. 11, pp. 4029–4041,
2018.

[41] R. Murray, Z. Li, and S. Sastry, A mathematical introduction to robotic
manipulation. CRC Press, 1994.

[42] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.

[43] E. Restrepo-Ochoa, “Coordination control of autonomous robotic multi-
agent systems under constraints,” Ph.D. dissertation, Univ Paris-
Saclay, Gif sur Yvette, France, 2021, https://tel.archives-ouvertes.fr/tel-
03537341.

[44] A. G. Wills and W. P. Heath, “A recentred barrier for constrained
receding horizon control,” in Proc. American Control Conf., vol. 5, 2002,
pp. 4177–4182.
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