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Abstract—Single-photon lidar detection data in applications can
show different characteristics: sparse count data and strong noise
count data with low signal-to-background ratio (SBR), making it
difficult to accurately reconstruct depth and intensity information.
The existing statistical-based algorithms can achieve reconstruc-
tion, but they may lack compatibility for sparse counting and
strong noise counting cases which will switch to each other in
practical applications. In this paper, an adaptive photon count
reconstruction algorithm for sparse count and strong noise count
data with low SBR is proposed based on the difference in temporal
distribution characteristics between the echo and noise count data.
The aggregation characteristic of echo count data in time dimension
is proposed to adaptively separate the echo and noise regions in the
histogram to reduce the noise interference, and based on the rela-
tive difference between count levels in the time neighborhood, an
objective function is constructed to reconstruct depth and intensity
using optimization. The reconstruction results based on simulated
and experimental data confirm that the reconstruction accuracies
under both sparse counting and strong noise counting cases are
effectively improved under low SBR conditions. Compared with
the state-of-the-art algorithms, the depth absolute error is reduced
by nearly 50 %, the edge error is reduced by an order of magnitude
and the proportion of correctly reconstructed pixels reaches 90 %
when SBR = 0.1. It shows the potential of the proposed algorithm
for improving target recognition ability and all-day imaging.

Index Terms—Photon count reconstruction, low SBR, sparse
counting, strong noise, single-photon LiDAR.

1. INTRODUCTION

S A non-contact active detection technique, single-photon
LiDAR can obtain the depth and intensity information
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of the target and has been widely used in various detection
scenarios, including natural environment monitoring [1], geo-
graphic mapping [2], [3], and autonomous driving [4], [5]. A
single-photon LiDAR system functions by emitting laser pulses
and capturing the photons reflected from the target using a com-
bination of a time-correlated single photon counting (TCSPC)
module and a single-photon detector, such as a single-photon
avalanche diode (SPAD). This system is capable of responding
to photon-level energy and recording the arrival time of each de-
tected photon. By accumulating detection results from multiple
laser pulses, a photon response count histogram is generated.
The positions and amplitudes of the target echo counts in the
histogram correspond to the target’s depth and reflectivity. By
extracting these positions and amplitudes for each pixel, depth
and intensity images of the detected scene can be reconstructed.
However, single-photon LiDAR often encounters challenging
low signal-to-background ratio (SBR) scenarios in real-world
applications. These include the sparse counting case—where
over 95% of histogram time bins are empty, and some pixels
lack any echo counts [6]—commonly observed when acquisition
times are reduced [7] or in long-range, low-reflectivity imaging
[8], [9], [10]. Another scenario is the strong noise counting case,
where echo counts are submerged by numerous noise counts
[11], often due to high ambient light levels in daytime detection
[12], [13]. In such cases, echo counts are insufficient while
noise counts dominate the histogram, making it challenging
to accurately reconstruct depth and intensity information [14],
[15]. Traditional methods, such as cross-correlation [16] and
maximum likelihood (ML) [17], are capable of reconstructing
target depth information but become ineffective under low SBR
conditions, as they do not account for spatial correlation [18].
Consequently, several photon-efficient algorithms have been
developed to enable reconstruction using only a few photons.
For sparse counting case, Kirmani et al. [17] proposed the
early first-photon imaging algorithm, which enables image re-
construction using only the first detected photon at each pixel,
indicating that sparse reconstruction can be solved by intro-
ducing local spatial correlation between pixels. Morris et al.
[44] developed and demonstrated imaging techniques capa-
ble of functioning with a minimal number of echo photons,
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underscoring the feasibility and practicality of achieving effi-
cient imaging even with a limited photon count. Shin et al. [19]
proposed a sparse regularization-based reconstruction algorithm
based on the first photon imaging algorithm and achieved imag-
ing using the SPAD array when the average photon per pixel is 1,
which provides critical theoretical insights that have advanced
sparse reconstruction methods. Altmann et al. [20] integrated
Bayesian estimation into image reconstruction, modeling pixel
correlations as prior distributions and proposing a hierarchical
Bayesian reconstruction framework based on the photon Poisson
statistical model, which achieves robust reconstructions under
challenging conditions with average echo counts per pixel be-
low one. Tachella et al. [6], [21] developed a Bayesian-based
sparse reconstruction algorithm using a reversible jump MCMC
approach that incorporates an area interaction prior to enhance
local spatial correlations, further pushing the boundaries of
sparse counting reconstruction. Recently, neural network-based
sparse reconstruction techniques have emerged rapidly. Lin-
dell et al. [16] explored a 3D imaging method that fuses data
from single-photon sensors with deep learning. Tachella et
al. [45] proposed a real-time imaging algorithm called RT3D.
Peng et al. [46], [47] developed a photon-efficient 3D imaging
method using non-local neural networks, specifically tailored for
3D imaging under low-photon-count conditions. These neural
network-based methods are characterized by their ability to
rapidly reconstruct scenes.

For strong noise counting case, Rapp et al. [22] introduced
the unmixing algorithm (UA), which uses a sliding window
to identify echo count clusters in the histogram, effectively
separating echo and noise regions and minimizing noise interfer-
ence. By incorporating spatial correlations between depth and
intensity, the UA algorithm achieves reconstruction in strong
noise cases with an SBR of 0.04, establishing it as one of
the leading reconstruction methods [23]. Halimi et al. [18],
[24] proposed the MNR3D algorithm, which models multi-
scale correlations across time and spatial domains as prior
information and employs a hierarchical Bayesian strategy for
reconstruction in strong backscatter noise environments. Wang
et al. [25] developed a photon count imaging algorithm based
on empirical depth error correction, enabling high-flux imaging.
Gupta et al. [43] introduced a technique for improving depth
measurement accuracy in high ambient noise environments by
asynchronously collecting photons to average pile-up distortions
across multiple acquisition cycles. Lee et al. [48] proposed
an innovative multi-photon cooperative processing technique,
which significantly improves imaging quality and resolution
under strong noise conditions by processing photon information
from multiple pixels simultaneously.

These reconstruction algorithms for sparse counting rely
on the sparsity of count data and do not actively suppress
noise counts during echo position estimation. As a result, their
efficiency and accuracy significantly decline in strong noise
conditions due to interference from abundant noise counts. In
contrast, reconstruction algorithms for strong noise cases typi-
cally suppress noise counts before estimating the echo position
and incorporate prior information about spatial correlations and
noise level distributions, enabling joint optimization of depth and

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 10, 2024

intensity, which improves reconstruction in noisy environments.
However, in sparse counting scenarios, where only a few photons
are detected and echo photons are scarce or absent, noise sup-
pression methods may fail to effectively separate echo and noise
regions in the histogram. This issue is particularly pronounced
when the signal-to-background ratio (SBR) is low and the count
difference between echo and noise is minimal, making accurate
echo position estimation challenging. Consequently, these chal-
lenges make accurate echo position estimation difficult under
varying detection conditions, and existing algorithms struggle
to be compatible with both sparse counting and strong noise
counting scenarios.

In general, these algorithms typically rely on the impulse
response function (IRF) and Poisson statistical model of photon
arrivals for image reconstruction, while accounting for spatial
correlations between pixels [19], [20], [26]. Although effective,
these methods assume the count data closely follow the Pois-
son distribution and require a significant intensity difference
between target and background to avoid depth and intensity
estimation bias under low SBR conditions. However, in strong
noise scenarios, dead time in detectors leads to photon loss,
causing histograms to deviate from the Poisson model [28],
[29], [30], which introduces reconstruction errors. Additionally,
many of these algorithms depend on user-defined parameters and
hand-crafted priors [31], such as noise rate and thresholds, which
need to be manually adjusted according to different detection
scenarios to obtain better reconstruction results. This reliance
limits the algorithm’s adaptability and compatibility with both
sparse counting and strong noise counting cases.

To improve the compatibility and accuracy of reconstruction
algorithms under sparse count and strong noise count conditions
with low signal-to-background ratio (SBR < 1) [22], we propose
an adaptive photon count reconstruction algorithm. This algo-
rithm incorporates an automatic parameter setting mechanism,
eliminating the need for manual tuning across various detec-
tion scenarios and counting conditions. The proposed method
directly estimates the echo position and reconstructs depth and
intensity images based on the temporal distribution of histogram
counts, without relying on prior distribution or the Poisson
statistical model, this approach results in higher reconstruction
accuracy. The core ideas of the proposed algorithm include: (1)
A novel method for separating echo and noise: Since the echo
signal is concentrated within a time range corresponding to the
pulse width near the true depth, we introduce a count aggregation
method to adaptively separate echo and noise regions in the
histogram. The number of empty bins surrounding each bin is
quantified and fed into a decay exponential function to derive the
aggregation parameter. A lower count of empty bins indicates
stronger aggregation. Regions where the aggregation parameter
exceeds a predefined threshold are classified as potential echo
regions, while those below the threshold are designated as noise
and excluded. This method enables effective separation of echo
and noise regions in both sparse and strong noise counting cases.
(2) A new depth optimization method: An objective function
is formulated based on the degree of count differences within
the time neighborhood. The count differences between each bin
and its neighboring bins are modeled using a Gaussian function.
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Fig. 1.  The overall flow chart of the proposed algorithm.

Depth and intensity are then reconstructed pixel by pixel through
optimization.

Simulation and experimental data demonstrate that the pro-
posed algorithm significantly improves reconstruction accuracy
in both sparse and strong noise counting scenarios under low
SBR conditions. Compared to state-of-the-art methods, the algo-
rithm reduces the absolute reconstruction depth error by nearly
50% in both counting cases, while the reconstruction error at
edges and fine details is reduced by an order of magnitude. These
improvements are highly advantageous for target recognition
[32] and all-day imaging applications.

A. Main Contributions

1) Adaptive Separation of Noise and Echo Regions: This
study introduces the aggregation parameter, using a unified
framework to separate noise and echo regions under both sparse
and strong noise counting conditions. The aggregation parame-
ter is derived from the temporal distribution characteristics of the
count data, enabling precise extraction of potential echo regions
from the histogram in diverse detection scenarios.

2) Depth Optimization Based on the Degree of Count Dif-
ferences Within the Time Neighborhood: The proposed echo
localization method leverages the inherent concentration of
echo counts. By formulating the objective function for depth
optimization solely based on count differences within the time
neighborhood, this approach eliminates the need for prior mod-
els of photon count data. This reduces errors that may arise
from discrepancies between the prior model and real-world
conditions, thereby enhancing reconstruction accuracy.

B. Outline

Section II explains the overall flow of the reconstruction
algorithm and its implementation method. Section III evaluates
the performance of the proposed algorithm for both sparse

and strong noise counting cases using simulation and real ex-
perimental data. Section IV provides the conclusions, while
Section V discusses the limitations of the proposed algorithm
and suggests future research directions.

II. ALGORITHM

Fig. 1 illustrates the overall flowchart of the proposed algo-
rithm. The process starts with histogram enhancement, where
spatial correlation between pixels is utilized to improve the
echo count data. In the second step, the aggregation parameter
is defined based on count aggregation in the time dimension,
enabling the adaptive separation of echo and noise regions within
the histogram. The third step involves formulating an optimiza-
tion model that quantifies the total degree of count differences
within the time neighborhood, facilitating pixel-by-pixel depth
reconstruction. Finally, the echo counts are extracted pixel by
pixel using the reconstructed depth information, which is then
used to reconstruct the intensity image. The visualization of
each step in Fig. 1 is provided in Section I of the supplemental
material, offering a clear illustration of how each step contributes
to the overall reconstruction process.

A. Histogram Enhancement

For sparse count data with low SBR, the echo counts are
sparse, and some pixels may not register any detected photons.
For strong noise count data with low SBR, the echo counts are
obscured by noise. Estimating the echo position based solely on
the histogram of a single pixel leads to inaccurate results in both
scenarios. Therefore, a histogram enhancement method based on
Gaussian weighting, as described in [33] and [34], is proposed
to supplement and enhance the echo counts in the histogram
during the processing of each pixel. The weight of each pixel is
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defined as follows:

w(y ) = exp{—[(i - P+ (=3 ow)} (7,5) € Sp(ij)
Spa) = {(x,y) €{1,...,Nr} x {1,...,Nc} :
li —a| < N/2,|j —y| < N/2} ()

Where Sp ; ;) is the set of spatial neighborhood pixels of pixel
(i,j), the spatial neighborhood is set to be a N x N square area.
The o,,>0 is the pixel weight adjustment parameter, Nr and Nc
represent the number of rows and columns in the scene image,
respectively.

Assum that the photon detection period is T7r =
{1,2,3,...,T}, and the raw histogram at pixel (i,j) is y; j) =
{vajeteTr (i,j) e {l,...,Nr} x{1,...,Nc}}. The
enhanced histogram at pixel (i), Y{; jy ; is defined as follows:

>

(#,3")€SD (i, 5)

Yiigye = Wit 5y~ Y(ig) ot 2

Due to the discrete nature of the counts, the accumulated count
values are rounded to the nearest integer.

B. Adaptive Separation of Noise and Echo Regions

The echo counts are primarily concentrated within the time
range corresponding to the pulse width, indicating a more ag-
gregated distribution. In contrast, noise counts are randomly
distributed throughout the entire detection period. Unlike the
UA algorithm [22], which simply employs a sliding window to
filter out regions with fewer counts and identify echo clusters,
our method introduces an aggregation parameter to quantify
count aggregation along the time dimension. This allows for
the separation of noise and echo regions, with potential echo
regions being extracted based on a threshold for the aggregation
parameter. Only the counts within these extracted echo regions
are processed, thus reducing noise interference and minimizing
the data to be handled.

The aggregation parameter quantifies the count aggregation
at a specific bin by assessing the number of empty bins (i.e.,
bins without counts) in its vicinity. The fewer the empty bins,
the more aggregated the counts are. However, in scenarios with
strong noise counts, the aggregation of counts may not be
effectively distinguished by the number of empty bins due to
the high noise volume. To address this, the count threshold is
adaptively determined based on the distribution characteristics
of the count data, enabling the removal of most non-zero noise
counts. Subsequently, analyzing the number of empty bins in the
vicinity can be effectively applied in both sparse and high noise
counting scenarios. This methodology facilitates the adaptive
separation of echo and noise regions within a unified framework,
efficiently handling both cases.

1) Adaptively Obtaining the Count Threshold: Given the
disparate count distributions in sparse and strong noise counting
scenarios—where sparse counting results in many empty bins
and strong noise counting exhibits numerous non-zero count—
the count threshold is adaptively obtained. This is achieved by
analyzing the most frequently occurring count value within a
sliding window, with counts at empty bins considered as zero.
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Fig. 2. Adaptive obtaining of the count threshold using a sliding window. (a)

and (b) Illustrate the count thresholds for sparse and strong noise counting cases,
respectively. The red line represents the count threshold for each bin, with counts
less than or equal to this threshold treated as zero (shown as black lines). The
blue lines correspond to counts exceeding the threshold.

This method ensures that the count threshold approximately
reflects the local noise level while maintaining a sufficiently
low value in the echo regions to preserve echo counts.

The sliding window traverses the histogram to determine the
count threshold for each bin. Bins with count values less than or
equal to their respective thresholds are subsequently considered
empty bins in the calculation of aggregation parameters. The
width of the sliding window, 7w, must be greater than the
pulse width, Tp, to prevent the count threshold from being set
too high in the echo region, which could lead to echo counts
being erroneously identified as zero. However, 7w should not be
excessively large, as this would hinder the accurate reflection of
noise levels across different regions of the histogram. Therefore,
Tw is set in accordance with the pulse width 7p, with the fixed
relationship 7w = 2-Tp. As a result, there is no need for manual
adjustment of Tiv. The impact of this fixed relationship on recon-
struction accuracy is discussed in Section V of the supplemental
material.

Based on the above, the adaptive obtaining of the count
threshold is defined as follows:

ThrZerog ).
= arg max histogram({Y(; j) x|k € Wn;})

T T
Wntz{t—2w,...,t,t+1,...,t+2w} 3)

Where T'hrZero; ;. represents the count threshold at the
t-th bin, Wn; represents the bins contained within the sliding
window when its center is at the #-th bin, histogram(.) rep-
resents the statistical count of the occurrences of count values,
arg max histogram(.) represents obtaining the most frequently
occurring count value within the window.

As illustrated in Fig. 2, for sparse counting cases, most of the
bins are empty, resulting in the count threshold remaining zero,
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asindicated by the red line in Fig. 2(a). In contrast, in strong noise
counting cases, the count threshold is influenced by the noise
count data and is predominantly non-zero, as shown by the red
line in Fig. 2(b). Consequently, the ThrZero method has no effect
on sparse counting scenarios but can provide some indication
of noise levels in situations with strong noise. In this study,
it is assumed that pile-up effects have been mitigated during
data processing. However, the proposed count threshold method
demonstrates potential for mitigating pile-up effects in count
data under strong noise conditions, as discussed in Section X of
the supplemental material.

2) Obtaining the Aggregation Parameters of the Counts:
After applying the count threshold ThrZero, sparse count data re-
main largely unaffected, while strong noise count data becomes
sparser. As a result, the count aggregation characteristics are
effectively reflected by the number of empty bins in both cases.
The histogram is subsequently traversed again using the sliding
window (with the same width, 7w) to quantify the number of
empty bins in the vicinity of each bin.

To establish a unified analysis framework for both sparse
and strong noise counting scenarios, the number of empty bins
is incorporated into a decaying exponential function, which
quantifies and normalizes the count aggregation characteristics.
The aggregation parameter (normalized) Apn; ;) is defined as
follows:
ke%nt }/(i’j)’k

Tw

Apn jy.e = Apigy.e/ max({Apg ) elk = 1,2,...,T}) (4

Where Nzerog ;) represents the number of empty bins
contained in the sliding window when its center is at the #-th
bin, and crg > Odenotes the sensitivity adjustment parameter for
the number of empty bins. Larger values of « can highlight
differences in the aggregation characteristics of counts across
different time regions, a more detailed analysis of oy is provided
in Section V of the supplemental material. Once an appropriate
o is set, manual adjustment is unnecessary across different
scenes and SBR conditions.

The aggregation parameters incorporate both the count level
and the time aggregation characteristics, making them more
robust under varying noise conditions. The count level term,
(> kewn, Y(i,j).k)/Tw, can highlight the echo region when the
echo count level is high, while the time aggregation character-
istic term,exp(—ag - Nzero(; ;)), becomes more significant
when the echo count level is weak. As observed from (4), the
aggregation parameter is large when there are fewer empty
bins or when the count level is high, indicating stronger count
aggregation characteristics.

3) Separating the Echo and Noise Regions: Since the count
aggregation in the echo region tends to be stronger than that in the
noise region, the separation of echo and noise regions is achieved
by setting a threshold for the aggregation parameters. Regions
where the aggregation parameters exceed this threshold are iden-
tified as potential echo regions, while those below the threshold
are considered noise regions. Given that the pulse width is much
shorter than the detection period, most counts in the histogram

Apii jyi = -exp(—ap - Nzerog jy 1)
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(a) — Aggregation parameters
- - ThrApn

~ noise counts
— possible echo counts

(b) Echo region

Fig. 3. The echo and noise regions are separated based on the aggregation
parameters. (a) illustrates the aggregation parameters Apn and its threshold
ThrApn, and (b) shows the separation of potential echo counts (green lines)
and noise counts (red lines) according to the aggregation parameters. The time
interval between the dotted lines represents the region that potentially contains
the echo counts.

originate from noise photons, resulting in generally lower ag-
gregation levels for noise bins and higher levels for echo bins.
As the aggregation parameters are normalized (with a maximum
value of 1), the threshold is set to 1/2. This ensures that regions
with relatively strong aggregation are included, minimizing the
risk of missing true echo regions under low SBR conditions.
The impact of this threshold setting on reconstruction results is
discussed in Section V of the supplemental material.
The threshold T'hr Apn; ;)is:

ThrApn ;) = max(Apn j)/2 = 1/2 5)

To achieve regions separation, the detection period 7r is di-
vided evenly into several non-overlapping time intervals, Tr =
UlS:1 T*. The length of each time interval, Lg,;, is determined
by considering both the pulse width 7p and the variations in the
noise count level. Specifically, L,;, must be greater than Tp to
ensure it encompasses all echo counts. However, L,; should
not be too large, as this would include an excessive amount of
noise counts, potentially affecting the accuracy of echo position
estimation and increasing the computational burden. To mitigate
this, the length of the time interval, Lg,;, is set according to
a fixed relationship with the pulse width Tp: Ly, = 15-Tp.
This eliminates the need for manual adjustment of L, across
different scenarios. A more detailed analysis of the impact of
this fixed relationship on the reconstruction results is provided
in Section V of the supplemental material.

After dividing the detection period, the histogram Y/; ;) and
the normalized aggregation parameters Apn ; ;) are also divided
into several parts accordingly:

S

l l l
U Y(::,j)’y(q‘,,j) = {Y(i,j),klk eT }
=1

Yiig) =

Apn ;) = U Apnii’j),Apnﬁi’j) = {Apn(i,j),k\k S Tl} (6)
=1

As illustrated in Fig. 3, the separation of noise and echo
regions is performed adaptively based on the aggregation pa-
rameter. The time intervals that are likely to contain echo counts
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are identified and extracted as potential echo regions. The set
of echo regions for a given pixel (,j), denoted as V/; ;), can be
derived as follows:

In|3t, € T'n,
Viig) = (7N
(7) Apnlr > ThrApng ;),n =1,2,...

(#:5)ta

In the subsequent processing steps, only the counts within the
extracted potential echo regions, Y{; ;) t € T 1, € Vi gy
are considered. This method effectively removes the majority
of the noise counts, thereby reducing the data that needs to
be processed. Furthermore, it enables sparse reconstruction al-
gorithms to better handle cases with strong noise counting, as
further discussed in Section VI of the supplemental material.

C. Reconstruction Method

To accommodate both sparse and strong noise counting sce-
narios, the echo position is directly estimated based on the dis-
tribution differences between echo and noise counts in the time
dimension. So based on the degree of count differences within
the time neighborhood, an objective function is constructed to
optimize the depth pixel by pixel. Concurrently, the intensity
image is reconstructed by extracting the echo counts for each
pixel.

1) Depth Reconstruction: Echo counts are predominantly
distributed within the time range of the pulse width, while
noise count levels generally exhibit minimal variation or remain
constant over short time intervals. Therefore, abrupt changes in
count levels within a short time neighborhood can be attributed
to echo counts, in other words, the echo counts have a stronger
degree of difference relative to other counts in the time interval.
By analyzing the total degree of count differences within the time
interval, the echo position can be effectively estimated, thereby
facilitating accurate reconstruction without the need for external
prior information.

However, due to the inherent randomness of single-photon
detection, the count values in the histogram are subject to random
fluctuations. These fluctuations can obscure the measurement
of count differences, especially under low SBR conditions,
making it insufficient to rely solely on the difference between
two count values. To address this, the count level is initially
estimated by smoothing the histogram, which reduces random
fluctuations and captures the overall trend in the count data. Both
the count value and count level are subsequently integrated into
a Gaussian function to quantify and normalize the degree of
count difference. This quantification serves as a standard for
determining the echo position within the time interval. The total
degree of count differences within the time interval is then used
as the objective function for pixel-by-pixel depth optimization.

a) Count level obtaining: Given that multiple potential
echo regions may be identified (due to ThrApn < 1) and noise
counts may still persist within these regions, the aggregation
parameter is employed to further enhance the counts. This
enhancement serves to make the potential echo counts more
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distinguishable, thereby highlighting them against the back-

ground noise. Counts with aggregation parameters exceeding

the threshold are enhanced, while others remain unchanged.
The enhanced histogram Y'en ; ;) is defined as follows:

i/(Z‘J‘%t + Apn(iﬁj)vt : Y(i,j),t; Apn(ivj))t

Yeng =12 ThrApn; j ()

Yii g0 Apng gy < ThrApng ;)

The count level is defined as the average of the counts within a
short, adjacent time range, akin to downsampling or smoothing
the data. This process mitigates the effects of random fluctua-
tions in the count data and emphasizes the underlying trend in
the count variations. The count level at ¢-th bin at pixel (i),
denoted as fi(;,5),¢, 18 defined as follows:

1
PGt = 7 Z Yen( ) Wpr =
p keWp,

T T
{t—;,...,t,t+1,...,t+2p} )

Where Wp,represents the bins contained in the time range
adjacent to the z-th bin.

As with the division of the detection period, the count level
is divided accordingly:

keTh

S
pag = U e nl = g (10)
=1

b) The degree of count difference: To fully utilize both the
relative magnitude and the trend of changes between counts, the
count values and count levels within the time interval are consid-
ered simultaneously. The deviation between these two metrics is
then used to define the degree of count difference. To establish a
standardized measurement, this deviation is incorporated into a
Gaussian function. The degree of count difference between ¢.-th
count value and ¢,-th count level in the /-th time interval at pixel
(i), denoted as Dpl(i’j))tc)to, is defined as:

Dl jyaun, = L= (1= Apng jy.1,)

2
(Ye”l(i,mc - “l(i,j),to)

Ost

cexp | —

1=1,2,...,s (11)

Where o4>0 is the deviation-sensitive adjustment param-
eter. The impact of this parameter on the reconstruction re-
sults is discussed in Section V of the supplemental material,
which shows that o, is a non-sensitive parameter. Furthermore,
the(1 — Apn(; ;)¢ ) term in the formula serves an important
function in addressing scenarios where multiple bins within
the time interval exhibit high aggregation parameters. In such
cases, these bins may all correspond to potential echo locations,
leading to similar count levels. Consequently, the degree of
count differences between these bins may be low, potentially
affecting the accuracy of measuring the total degree of count
differences for the true echo counts within the time interval.
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Fig. 4. The degree of count differences between the count value Yen and the
count level g in the /-th time interval.

When the aggregation at the 7,-th bin of the time interval is high,
the(1 — Apn; j)¢,) term in the formula diminishes, leading
to an increase in the degree of count differencerl(i’ iterts”
Therefore, the(1 — Apn; ;),) term is crucial in mitigating the
mutual influence of counts with high aggregation parameters,
thereby ensuring more accurate echo position determination.

As shown in Fig. 4, for each bin within the time interval, the
degree of count differences between that bin and all other bins
can be determined.

c) Objective function: The total degree of count differ-
ences is defined as the product of the degree of count differences
within the given time interval (i.e., the potential echo region). It
serves as the objective function for optimizing depth estimation.

As discussed previously, the length of the time interval Ly,
is set to L,y = 15 - T'p. This length is sufficient to encompass
all the echo counts and also includes enough noise count bins
to serve as bins with low degrees of count differences, thereby
enhancing the prominence of the echo counts in the output of the
objective function. Additionally, the degree of count difference
relative to a count’s own position is not considered and is set to
1 in the objective function formulation. The objective function
in the [-th time interval, denoted as T Dpl(i,j% £ is defined as
follows:

5ub Lsub
TDp (,9)ste H Dp('La] te,to - H
to=1 to=1
toFte toFEte
2
(Yen!. . pb.
— (1= Apngjy,) - exp | ——— Ik ()]
Ost
te=1,2,. .. Lowp:l=1,2,....s (12)

Where the objective function 7' Dpl(i, it € (0, 1)represents
the total degree of count differences of the 7.-th count in the /-th
time interval of the histogram at pixel (i,j), and the bin position
with highest TDp is used as the estimation of the echo position.

d) Depth optimization: To ensure smooth transitions be-
tween depth values in the reconstructed image, a variation term
(TV) is introduced. This term helps guide the depth range of the
current pixel based on the depths of adjacent pixels that have

already been reconstructed (i.e., the left and top neighboring
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pixels when reconstruction is performed column-wise). The TV
term used in the subsequent optimization is defined as follows:

- \/(Zéi,j),tc

ST -c/2

TV(l-

~ 2 ~ 2
i.0) ke = Zj-1)" + (% )0, — ZG-1))

l
2y te = Ui te (13)

Where Z; ;_1)and Z(;_1 jrepresent the depth estimates of the
left and top pixels, respectively, 7 is the time length of the bin,
and c is the speed of light.

The echo position is estimated only within the extracted
potential echo regions V; ;). The optimization formulation for
the echo position s as follows: equation (14) shown at the bottom
of the next page

Where ! “hﬁ’ denotes the time interval which contains the echo

and tc‘(“?s) denotes the bin position of the echo peak in this time
interval. Therefore, the absolute bin position of the echo peak is
fecho — (leChO — 1) - Lgyp + tc<9, and depth estimation at the

(7)) 7 V() (i,9)°
pixel (i) is as follows:

iy e/

Under low SBR conditions, the proposed depth optimization
method outperforms ML-based optimization in terms of recon-
struction accuracy. For further details, please refer to Section VII
of the supplemental material.

2) Intensity Reconstruction: The echo intensity at each pixel
is estimated based on the reconstructed depth information. The
counts in a time range with pulse width length adjacent to
the echo peak position are extracted and summed, and the
other counts in the time interval are used to estimate the noise
level. The average single-pulse echo counts are then utilized
for intensity estimation. Specifically, incorporating the Gaussian
weights from the spatial neighborhood pixels introduced earlier,
the intensity is estimated as follows:

Iii gy =
echo

(i,5)
Y(w)

lecho

(l o Tp
('L ])t Lsupr—Tp

N
M-S0y Zj’:l Wy

Ztcewptcecho Zt ¢W;D,tho
(i,5) (i,

(16)

Where 1, (i,5) denotes the reconstructed intensity at pixel (i,j)
and M denotes the number of pulses accumulated at pixel (i,j)
during the detection.

III. SIMULATION RESULTS

Simulation data for both sparse and strong noise counting
cases, as well as real experimental datasets, are utilized to
evaluate the performance of the proposed algorithm. Addition-
ally, the algorithm is also compared with several state-of-the-art
reconstruction algorithms to assess the improvements in recon-
struction accuracy.

A. Evaluation Metrics

For the reconstructed depth image, the overall reconstruction
error is evaluated using Depth Absolute Error (DAE), Root Mean
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Square Error (RMSE), and True Percentage (True pct) (i.e., the
percentage of pixels satisfying a given depth absolute error) [24].
Additionally, Soft Edge Error (SEE) [35], [36] is employed
to assess reconstruction accuracy of edges and details within
the scene. The Multi-Scale Structural Similarity Index Measure
(MS-SSIM) [37] is utilized to measure the structural similarity
between the reconstructed depth image and the reference depth
image. For the reconstructed intensity image, the Log Mean
Squared Error (log MSE, abbreviated as MSE) [22] is used to
evaluate the reconstruction performance. The definitions of these
quantitative metrics are as follows:

Nr Nc

1 .
DAE = —— ;; 126.9) = 2.9)] an
1 Nr Nec R 2
RMSE = \/m Do 2, B — 2aq)” (8)
1
SEE = . min |ZZ‘" _2i7'|
|Edge(z)| (i,j)gc:lge(z) (@.3') €V 5 ) )
19)
1 Nr Nc 9
MSE =10-logyg | 55 > >, Uiy — L)
i=1j=1
(20)

Where Nrand Nc s the size of image, 2(; j) and Z(; ;)represent
the reference depth and reconstructed depth at the pixel (i),
respectively. Edge(z) is the set of edge pixels in reference depth
image, |Edge(z)| is the total number of pixels in Edge(z), and
v(i,j) represents the spatial neighborhood of pixel (i,j) in Edge(z).
The I(; jy and I(; jyrepresent the reference intensity and recon-
structed intensity at the pixel (i,j), respectively.

B. Simulated Data

The scenes Art, Bowling, and Reindeer from the Middlebury
dataset [38], [39] are utilized to generate the simulated data.
Among these, the Art scene is highly detailed, representing
a complex scene; the Bowling scene exhibits smooth, planar
surface characteristics, representing a simpler scene; while the
Reindeer scene offers a moderate level of complexity. The depth
and intensity reference images for these scenes are shown in
Fig. 5. Each simulation scene has an image resolution of 278
x 348 pixels. The histogram for each pixel contains 1024 bins,
with a detection period of 100 ns and a laser pulse width of 0.27
ns.

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 10, 2024
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Fig.5. Reference depth and intensity images for the art, bowling, and reindeer
scenes. The top row displays the reference depth images, while the bottom row
shows the reference intensity images.
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The simulated data are generated by combining the reference
image and the average photon number. The grayscale image pro-
vided by the dataset is used to represent the scene’s reflectivity
image. The echo count at each pixel is set to be proportional to
the corresponding reflectivity, thereby generating the reference
intensity, as previously used in [22]. A Gaussian pulse shape with
a specified mean of 2-z; j)/(c-7) and variance o = Tp/2 is used
to simulate the impulse response of the system. The amplitude
of the pulse is set equal to the intensity, and the average counting
rate is obtained by summing the system’s impulse response
and the noise counting rate. Subsequently, the count data are
generated using the Poisson statistical model of arriving photon
[40].

Additional simulation reconstruction results for other scenes
will be provided in Section III of the supplemental material,
which includes four additional scenes from the Middlebury
dataset [38], [39], as well as three scenes from the NYU RGB-D
v2 dataset [42].

C. Results on Simulated Data

In the following, the simulated data for sparse counting
and strong noise counting cases are reconstructed separately
to analyze the adaptability of the proposed algorithm to both
scenarios. The proposed algorithm is quantitatively compared
with the classical ML [17], Shin [19], UA [22], ManiPoP [6],
[21], and CASPI [48] algorithms under varying SBR conditions
to evaluate reconstruction performance. For comparisons with
other recent related works, please refer to Section IV of the sup-
plemental material. The proposed algorithm uses the following
parameters in all reconstruction tests: ap = 0.8, N=3, 04 =1,
and Tw and L,,; have fixed relationships with the pulse width 7p:

(lff’;;’,tcff’;)o) = arg min(— log TDpl(?,j),tc +5- T‘/(lifj),tc)

(lnste)

3 Lsup
= arg mln{—ztoil
(Inste) toFte

ln S ‘/v(%]),tc = ].,2,... ;Lsub

n

(Yen j ,tc’“lﬁj ,to)2
log [1 — (1= Apngij.,) - exp (— v )} +ﬂ'TVé7j>,tc}

(14)
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Reconstruction images and absolute error images of depth and intensity for the art, bowling, and reindeer scenes under sparse counting cases, with Sppp

set to 0.1 and 0.8, and corresponding SBR set to 0.1 and 1. (a) shows the reconstructed depth images, and the absolute error images of the proposed algorithm,
while (b) shows the reconstructed intensity images, and the absolute error images of the proposed algorithm.

Tw = 2-Tp, Lgyp, = 15-Tp. Furthermore, no manual adjustment
of these parameters is required across different scenes and SBR
conditions.

1) Reconstruction Results for Sparse Counting Case: To an-
alyze the reconstruction performance in the sparse counting case,
where more than 95% of the bins in the histogram are empty
and some pixels lack echo count data [6], the average signal
photons per pixel (Sppp) is set to 0.1 (SBR = 0.1). Additionally,
to further evaluate reconstruction performance when the echo

count is slightly higher, simulation data with Sppp = 0.8 (SBR
= 1) are also used for reconstruction.

The reconstruction results of the scene depth image are shown
in Fig. 6(a). The traditional ML algorithm has a high requirement
for SBR and needs more echo photons to achieve better results,
leading to reconstructed images that are noisy and lack all detail
information in the scene. The Shin algorithm is significantly
affected by noise, rendering depth reconstruction completely
invalid when Sppp is low. The UA algorithm effectively reduces
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TABLE I
QUANTITATIVE COMPARISON ON ART, BOWLING, AND REINDEER SCENES IN THE SPARSE COUNTING CASE WITH DIFFERENT LEVELS OF SPPP AND SBR

SBR=0.1/1=0.1

SBR=0.8/0.8=1

DAE RMSE SEE MS- True MSE DAE RMSE SEE MS- True MSE
(m) (m) (m) SSIM pet (dB) (m) (m) (m) SSIM pct (dB)
Art
ML 42355 57142 0.6126 0.0007 0.0611 -30.77 2.6360 4.4487 0.0594 0.0088 0.3852  -48.59
Shin 49175 49311 4.8140 0.1070 0 -39.30 0.7887 1.2662 0.6733 0.0769 0.3990 -54.67
UA 0.1580 0.4079 0.1233 0.1503 0.3952 -50.59 0.0424 0.0779 0.0210 0.8359 0.7257 -59.79
ManiPoP  1.8279 1.8427 1.6815 0 0 1.1228 1.4643 1.0572 0 0.4058 X
CASPI 0.4081 1.8231 0.1133 0.0665 0.8661 0.0173  0.0495 0.0037 0.9658 0.9552 X
Proposed  0.0488 0.1871  0.0095 0.7835 0.8496  -51.65 0.0211  0.0519 0.0045 0.9603 0.9456  -60.81
Bowling
ML 42606 5.8527 0.5030 0.0002 0.0616 -30.77 2.6622 4.5919 0.0520 0.0029 0.3961 -48.51
Shin 52176 52297 49786 0.1037 0 -39.24 0.9532  1.4920 0.5538 0.0214 0.4164 -54.60
UA 0.1400 0.3632 0.0583 0.1423 0.4974 -50.86 0.0199 0.0604 0.0157 0.9215 0.9267 -60.32
ManiPoP 15112 1.5307 1.4217 0 0 0.7776 ~ 1.1278 0.6010 0 0.5159 X
CASPI  0.1908 1.2677 0.1236 0.1100  0.9483 0.0124  0.0425 0.0034 0.9816 0.9843 X
Proposed  0.0275 0.0778 0.0101 0.8576 0.9338 -51.57 0.0163  0.0495 0.0044 0.9464 0.9799 -60.72
Reindeer
ML 4.2368 5.7498 0.6147 0 0.0626  -30.75 27312 4.5670 0.0984 0.0042 0.3733 -48.50
Shin 5.0365 5.0607 5.0653 0.0260 0 -39.20 1.4035 2.1641 0.9319 0.0231 0.3987 -54.58
UA 0.2177 0.5749 0.2346 0.0727 0.5085 -50.06 0.0474 03124 0.0164 0.6891 0.8429 -57.98
ManiPoP 17145 1.7277 1.6420 0 0 1.0462 1.3712 0.6728 0 0.4134 X
CASPI 0.7786 2.6144 0.1929 0.0272 0.8500 0.0287 0.3979 0.0039 0.6213 0.9775 X
Proposed  0.0404  0.2612  0.0087 0.6701  0.8886 -51.42 0.0175  0.0399  0.0040 0.9456 0.9616  -60.95

noise and limits error through smoothing operations. However,
excessive smoothing occurs when echo count data is insufficient,
resulting in large reconstruction errors at the edges and details.
The ManiPoP algorithm requires a high number of echo photons
and fails to reconstruct images when the SBR is low, resulting
in many empty pixels (white areas) in the reconstructed images.
The CASPI algorithm demonstrates the capability to achieve
overall complete reconstruction, but some areas in the scene
exhibit reconstruction failures, particularly around the edges of
objects. The proposed algorithm achieves effective reconstruc-
tion even when Sppp is low, retaining most target details and
edges, and the reconstruction of details improves further as Sppp
increases. As shown in the absolute error images, the overall
error of the proposed algorithm is low and the reconstruction
errors are primarily concentrated in very narrow areas along the
edges of the target, demonstrating that the proposed algorithm
reduces reconstruction error caused by abrupt depth changes at
edges.

The reconstruction results of the scene intensity image are
shown in Fig. 6(b). The traditional ML method estimates echo
intensity by summing the counts near the echo position, causing
the reconstructed intensity to fluctuate with noise counts. The
Shin and ManiPoP algorithms fail to reconstruct the intensity
image when echo count data are insufficient. While the UA
algorithm can effectively reconstruct the intensity image under
low SBR, but the images are blurred due to the smoothing oper-
ation. The intensity image reconstruction effect of the proposed
algorithm is better than that of the Shin and ManiPoP algorithms

and comparable to that of the UA algorithm, with relatively better
performance in capturing details and edges. Intensity recon-
struction comparison with CASPI was not conducted because
its intensity does not represent the photon counts from a single
pulse.

Quantitative comparison: Table 1 presents the evaluation
metrics corresponding to the reconstructed images in Fig. 6. The
MSE is calculated based on the reconstructed intensity images,
while the other evaluation metrics are calculated based on the
reconstructed depth images (this applies to subsequent tables as
well).

For the Art scene, the proposed algorithm’s reconstruction
metrics outperform CASPI in low SBR conditions. The SEE
values are an order of magnitude lower compared to other
algorithms, indicating a significantly better preservation of scene
detail. Furthermore, the True pct (with an absolute error range
set to 0.05 m) for the proposed algorithm is also significantly
higher compared to other methods, demonstrating that the re-
constructed image has fewer anomalous pixels. The UA al-
gorithm reduces errors through smoothing operations, but this
smoothing also causes blurring of edges in the reconstructed
images, leading to a higher SEE. The MS-SSIM value for the
proposed algorithm remains high even under SBR = 0.1 (0.1/1),
substantially surpassing other algorithms, which highlights its
robust performance under photon-scarce conditions. As SBR
increases to 1 (0.8/0.8), the MS-SSIM value of the proposed
algorithm approaches 1, indicating improved preservation of
scene structure, and to some extent, a better subjective similarity
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to the reference image. Regarding the MSE of the reconstructed
intensity images, the proposed algorithm performs comparably
to the UA algorithm and outperforms both the Shin and ManiPoP
algorithms.

For the Bowling scene, which features few details and edges
with most areas consisting of slowly changing planes, the UA
algorithm addresses noise pixels with abrupt depth changes
through smoothing. However, the proposed algorithm achieves
even lower reconstruction errors, particularly when SBR = 0.1
(0.1/1). The DAE and RMSE values are significantly lower
than those of the UA algorithm, indicating that the proposed
algorithm not only provides superior detail reconstruction but
also maintains smooth reconstruction for planar areas. Addi-
tionally, when SBR = 0.1 (0.1/0.1), the TruePct of the proposed
algorithm is already close to 1, indicating that it accurately
reconstructs the majority of pixels even under low echo counts.
This highlights the proposed algorithm’s capability to handle
photon scarcity and noise interference effectively.

For the Reindeer scene, where some details exhibit minimal
contrast with the background, there is a higher risk of detail loss.
The smoothing operation employed by the UA algorithm results
in the complete removal of the head model on the right side of the
scene, leading to a large SEE. In contrast, the proposed algorithm
effectively reconstructs the scene’s detail information, achieving
lower reconstruction errors and outperforming all other methods
across the evaluation metrics.

2) Reconstruction Results for Strong Noise Counting Case:
To analyze the reconstruction effect in strong noise counting
cases [11], [22], the Sppp is set to 2 (SBR = 0.01). Additionally,
simulation data with Sppp = 2 (SBR = 0.04) are used to fur-
ther evaluate reconstruction performance under slightly reduced
noise conditions.

The reconstruction results of the scene depth image are shown
in Fig. 7(a). In the case of strong noise count, the ML algorithm
produces results heavily corrupted by noise, while the ManiPoP
algorithm fails to reconstruct most pixels. The reconstructed
depth of the Shin algorithm is entirely outside the true depth
range of the scene. The UA algorithm shows improved recon-
struction due to the increased number of echo photons; however,
it still exhibits substantial reconstruction errors at the edges.
For instance, in the Reindeer scene, the UA algorithm only
produces a blurred representation of the reindeer toy on the
left. Additionally, the UA algorithm struggles to distinguish
between the head model and the backdrop on the right side,
leading to a loss of the target. In contrast, the CASPI and
proposed algorithm successfully reconstructs both areas with
high accuracy, demonstrating lower edge error and enhanced
capability to differentiate targets with similar depth. However,
the CASPI algorithm still exhibits some reconstruction failures
at the edges of objects in the reconstructed images

The intensity image reconstruction results of the scene are
shown in Fig. 7(b). The traditional ML method fails completely
due to the excessive noise counts in the histogram., This re-
sults in reconstructed intensity values that are disproportion-
ately influenced by the noise level and exceeds the reference
intensity range. The reconstructed intensity images produced by
the Shin algorithm are highly blurred and overlaid with noise.
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The ManiPoP algorithm yields intensity images with significant
areas left empty. The proposed algorithm performs comparably
to the UA algorithm, with the reconstruction of details and edges
showing relatively better results

Quantitative comparison: Table II presents the evaluation
metrics corresponding to the reconstructed images in Fig. 7. In
the strong noise counting case, the proposed algorithm exhibits
superior performance in almost all evaluation metrics except
for MSE when SBR is low, indicating a significant overall im-
provement in performance. While the CASPI algorithm shows
slight improvements in some metrics compared to the proposed
algorithm at SBR = 2/50, it has a significantly longer runtime,
taking several hours to complete the reconstruction of a single
image. For a more detailed analysis of the CASPI algorithm
in comparison with the proposed algorithm, please refer to
Sections IV and IX of the supplemental material. This suggests
a comprehensive improvement in performance by the proposed
algorithm, demonstrating the proposed algorithm’s effectiveness
in managing strong noise conditions. Additionally, the increase
in echo count data has led to improved evaluation metrics for
the reconstruction results compared to the sparse counting case.

3) Performance Evaluation: This section evaluates the re-
construction performance of the proposed algorithm using sim-
ulated data across various SBR conditions. The scenes including
Art, Bowling, and Reindeer (size 278 x 348 x 1024) are used for
analysis. The SBRissetto {0.1, 1, 1.5,2}, and the corresponding
Sppp under each SBR condition is set to {0.1, 0.2, 0.4, 0.8,
1.6, 3.2, 6.4, 10} [22]. The evaluation metrics curves, as shown
in Fig. 8, illustrate the trend in the reconstruction accuracy of
the proposed algorithm across different SBR conditions over a
wide range of Sppp. This allows for a comprehensive analysis of
the algorithm’s performance across various Sppp intervals and
SBR conditions. To better visualize the trend in reconstruction
metrics, Fig. 8 displays averaged metrics across the three scenes.
More granular scene comparisons are provided in Section VIII
of supplemental material.

The DAE curves of the reconstructed depth image, as shown in
Fig. 8(a), show that as Sppp increases, the DAE of all algorithms
decreases and eventually stabilizes. However, the DAE of the
proposed algorithm is reduced by nearly 50% than the other al-
gorithms when Sppp is lower, it shows the proposed algorithm’s
superior performance in maintaining low overall reconstruction
error even with insufficient echo count data. The trend of the
RMSE curves, as shown in Fig. 8(b), exhibit a similar trend.

The SEE curves of the reconstructed depth image, as shown
in Fig. 8(c), show that the SEEs of these algorithms decrease as
Sppp increases, indicating that the reconstruction effect for the
edges is improved with the increase of echo counts. Notably, the
proposed algorithm shows a marked improvement, with SEE
values being an order of magnitude lower compared to other
algorithms at lower Sppp values. This highlights the proposed
algorithm’s exceptional capability in preserving structural de-
tails and edge integrity, even under conditions of insufficient
echo counts.

The MS-SSIM curves of the reconstructed depth image, as
shown in Fig. 8(d), show that the MS-SSIMs of both the pro-
posed algorithm and the UA algorithm increase rapidly with the
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Fig. 7. Reconstructed images and absolute error images of depth and intensity for art, bowling and reindeer scenes in the strong noise counting cases, with Sppp
set to 2 and the corresponding SBR set to 0.01 and 0.04. (a) shows the reconstructed depth images and the absolute error images, while (b) shows the reconstructed

intensity images and the absolute error images.

increase of Sppp and eventually converge to 1. However, the
proposed algorithm consistently outperforms the UA algorithm,
especially when the Sppp and SBR are low, while the MS-SSIMs
of other algorithms are always at a lower level. This indicates
superior structural preservation by the proposed algorithm under
conditions of low SBR and insufficient echo counts.

The True pct curves of the reconstructed depth image, as
shown in Fig. 8(e), show that the proposed algorithm already
achieves a True pct of 90% even when echo counts are extremely
low (Sppp = 0.1), which is significantly higher compared to
other algorithms.

The MSE curves of the reconstructed intensity image, as
shown in Fig. 8(f)), show that the reconstruction effect for
intensity image of proposed algorithm is comparable to that

of the UA algorithm and superior to the Shin and ManiPoP
algorithms.

All evaluation metrics improve and converge as the Sppp
increases. Notably, the proposed algorithm significantly outper-
forms the other algorithms, particularly under low Sppp and low
SBR conditions. This indicates the proposed algorithm’s excep-
tional reconstruction performance under conditions of limited
echo photons and low SBR.

D. Results on Real Experimental Dataset

In order to compare and verify the reconstruction effect of the
proposed algorithm on the real-world scene, we further evaluate
the proposed algorithm on the real experimental dataset provided
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TABLE II

QUANTITATIVE COMPARISON ON ART, BOWLING, AND REINDEER SCENES IN THE STRONG NOISE COUNT CASE WITH DIFFERENT LEVELS OF SPPP AND SBR

SBR =2/200 =0.01

SBR =2/50 =0.04

DAE RMSE SEE MS- True MSE DAE RMSE SEE MS- True MSE
(m) (m) (m) SSIM pct (dB) (m) (m) (m) SSIM pet (dB)
Art
ML 48614 64714 03184 0.0036 0.1731 -13.97 3.8858 5.7789 0.1285 0.0033 0.3328 -25.93
Shin 5.6016 5.6058 5.4549 0.1220 0 -32.55 53760 53803 5.2459 0.1612 0 -55.79
UA 0.0802 0.1257 0.0307 0.4123 0.5665 -65.31 0.0477 0.0932 0.0217 0.7261 0.7247 -67.93
ManiPoP  1.8279 1.8427 1.6815 0 0 X 1.4861 1.6842 1.4391 0 0.2112 X
CASPI 0.2842  1.7397 0.0775 0.0909  0.9369 X 0.0169 0.0737 0.0037 0.9677 0.9595 X
Proposed  0.0256  0.0701  0.0044 0.9186 0.9274  -62.67 0.0195  0.0530 0.0038 0.9555 0.9509 -64.07
Bowling
ML 5.0813 6.7091 0.2996 0.0017 0.1736 -13.96 4.0049 5.9486 0.1583 0.0017 0.3409 -25.93
Shin 59197 59237 5.7424 0.1742 0 -32.48 5.6918  5.6949 54941 0.1460 0 -56.07
UA 0.0508 0.1104 0.0331 0.6995 0.7030 -67.80 0.0203  0.0814 0.0151 0.8768 09152 -71.44
ManiPoP  1.5112 1.5307 1.4217 0 0 X 1.1245 13543 0.9233 0 0.2969 X
CASPI 02715 1.7204 0.0394 03029 0.9653 X 0.0129 0.0811 0.0035 0.9643 0.9855 X
Proposed  0.0174  0.0577 _ 0.0041  0.9265 0.9698 -63.52 0.0145 0.0491 0.0039 0.9506 0.9816 -64.82
Reindeer
ML 48382 6.4860 0.3463 0.0014 0.1904 -13.94 3.9673 5.8627 0.1667 0.0018 0.3324 -25.95
Shin 5.7154 57185 5.6359 0.1331 0 -32.48 5.4885 5.4927 5.4358 0.1272 0 -56.06
UA 0.0659 0.1534 0.0276  0.5300 0.6870 -63.31 0.0357 0.1045 0.0157 0.6505 0.8212 -67.36
ManiPoP  1.6191 1.6877 1.6371 0 0.0670 X 1.4286 1.6030 1.3496 0 0.1979  -53.88
CASPI 0.4951 23115 0.3374 0.0509 0.9272 X 0.0408 0.4801 0.0047 0.5392 0.9748 X
Proposed  0.0195  0.0527  0.0042  0.9117  0.9466  -63.03 0.0166  0.0422  0.0037 0.9423 0.9621 -64.45
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Fig. 8.
the Art, Bowling, and Reindeer scenes.

Performance evaluation for simulated data with SBR values of {0.1, 1, 1.5, 2} across varying Sppp. The metric curves represent averaged results across
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Fig. 9. Reconstructed images of the real experimental scene from [16].
(a) shows the original point clouds and visible grayscale images of the scenes.
(b) shows the reconstructed depth images of the indoor lamp scene (sparse
counting case). (c) shows the reconstructed depth images of the outdoor stairs
scene under strong ambient light (strong noise counting case).

in [16] and [41]. When reconstructing real scenes, the proposed
algorithm utilizes the same parameters as those applied in the
simulation data tests described above.

In the dataset provided by [16], the indoor lamp scene is
selected to represent the sparse count case (satisfies the sparse
counting condition [6]), and the outdoor stairs scene with strong
ambient light is used to represent strong noise counting case
(strong noise environment [11], [16]). The count data cubes
have the resolution of 256 x 256 x 1536, Fig. 9 shows the
raw point clouds, visible greyscale images and the reconstructed
depth images of the lamp and stairs scenes. Since the grayscale
images in the dataset do not serve as intensity references, we
did not perform intensity image reconstruction. Therefore, the
reconstruction results are not quantitatively analyzed due to the
lack of reference images in the dataset.

As shown in the lamp scene, there is lots of noise in the
reconstruction results of ML algorithm, and the results of Shin
algorithm are blurred and lose most of the detail information.
The UA algorithm successfully reconstructs most of the lamp’s
structure, but it fails to fully capture the profile of the ring area.
The reconstruction result of the ManiPoP algorithm contains
many pixels that failed to be reconstructed. In contrast, the
proposed algorithm reconstructs the lamp and its bracket more
completely, preserving clear edge features.

In the stairs scene, the detection data includes a significant
amount of strong ambient light noise counts. While the ManiPoP
algorithm manages to reveal some scene features, many pixels
remain unreconstructed. In contrast, the proposed algorithm
effectively reconstructs the scene, preserving the structural in-
tegrity and details, whereas the other algorithms fail to pro-
duce effective reconstructions, highlighting the robustness and
efficacy of the proposed method in handling real-world noisy
conditions.

The proposed algorithm achieves accurate depth reconstruc-
tion in both real scenes, demonstrating its adaptability to sparse
count and strong noise count data, as well as its higher accuracy
compared to other methods.

In addition, the experimental data of the Mannequin scene
provided by [41], which includes high SBR baseline data, is used
for quantitative analysis of reconstruction effects. The count
data cubes have a resolution of 1000 x 1000 x 12500, and the
reference images (baseline images) are generated from the high
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Fig. 10. Reconstructed images and absolute error images of the mannequin
scene from [41]. The top row displays the depth baseline and reconstructed depth
images, while the bottom row shows the intensity baseline and reconstructed
intensity images.

Abs Error

TABLE III
QUANTITATIVE COMPARISON ON MANNEQUIN SCENE WITH

DAE RMSE SEE  MS-  True  MSE
(m) (m) (m) SSIM pet (dB)
Mannequin
ML 25904 40710 05962 00250 04027 -29.49
Shin  2.6242 26715 23807 05669 0 -57.38
UA 01692 1.0239 09862 04583 09468 -54.80
1\}/){231 27462 34935 41728 0.0369 03828 -42.45
P ;230 0.0281 0.1834 0.2088 09770 0.9810 -58.38

SBR detection data of the scene. The reconstruction results are
presented in Fig. 10, and the corresponding evaluation metrics
are presented in Table III. The reconstruction results of the
traditional ML algorithm exhibit significant noise, particularly
in areas of the mannequin’s clothing where reflectivity is low,
leading to nearly complete failure in depth reconstruction and
resulting in large DAE and RMSE values. The Shin algorithm
reconstructs depth beyond the mannequin’s range, resulting in
high overall error. The ManiPoP algorithm produces reconstruc-
tion results with large blank areas (white areas), particularly
failing in low reflectivity clothing areas. The UA algorithm
achieves better reconstruction accuracy than the aforementioned
algorithms; however, there are noticeable false plaques in low
reflectivity and edge areas within the depth image, contributing
to larger overall and edge errors. In contrast, the proposed
algorithm effectively reconstructs the depth image, achieving
complete reconstruction in low reflectivity areas, resulting in
lower DAE and RMSE values, and achieves clear and continuous
edge reconstruction, as indicated by lower SEE values. This
demonstrates the algorithm’s improved robustness and precision
in challenging conditions.

For intensity image reconstruction, traditional methods re-
lying on photon counts are severely affected by noise. While
the other algorithms show similar results, and the proposed
algorithm achieves slightly better MSE.

IV. CONCLUSION

In this paper, an adaptive photon count reconstruction algo-
rithm is proposed for sparse and strong noise count data with
low SBR. The algorithm introduces a histogram enhancement
method based on Gaussian weighting, which complements the
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echo count data and improves reconstruction accuracy, particu-
larly at scene edges. Given that echo counts are primarily aggre-
gated within a time range corresponding to the pulse width, an
aggregation parameter is proposed to enable adaptive separation
of echo and noise regions. To ensure compatibility and accuracy
in both sparse and strong noise counting scenarios, the objective
function is constructed based on the degree of count differences,
enabling pixel-wise optimization of both depth and intensity
without requiring external prior information. The proposed al-
gorithm demonstrates significant performance improvements
across simulated and real experimental datasets. Specifically,
when both Sppp and SBR are low, the algorithm reduces over-
all reconstruction errors by approximately 50%. It achieves a
high proportion of correctly reconstructed pixels—up to 90%
when Sppp is as low as 0.1 (SBR = 0.1)—and reduces edge
reconstruction errors by an order of magnitude compared with
existing methods. This demonstrates the superior performance
of the proposed algorithm in preserving structural integrity and
reducing reconstruction errors for count data under low SBR
conditions. Furthermore, robust experimental results validate
the algorithm’s efficacy in real-world scenarios, underscoring its
practical applicability and reliability in diverse and challenging
environments. The algorithm shows great potential for improv-
ing long-range detection, low-reflectivity detection, foliage tar-
get detection, all-day detection, and underwater target detection.

V. FUTURE WORK

The proposed algorithm yields effective reconstruction re-
sults; however, its runtime performance requires further opti-
mization. As indicated by the runtime comparisons in Section IX
of the supplemental material, the proposed algorithm’s runtime
is approximately 1.8 times that of the UA algorithm and signifi-
cantly lags behind neural network-based approaches in terms of
reconstruction time. This discrepancy arises from the fact that
the algorithm has not yet been optimized for parallel computa-
tion. The use of a sliding window to traverse the histogram twice
at each pixel is computationally intensive. To address this, future
work will explore parallel computing techniques, as the process-
ing of different sections of the histogram data is independent and
could be significantly accelerated through parallelization. More-
over, our current method focuses on localizing a single echo by
identifying the depth value that maximizes the objective function
during optimization. However, since the optimization formula is
designed based on the degree of count differences within the time
neighborhood, echoes within their neighborhoods tend to exhibit
higher count levels or temporal clustering compared to noise.
This characteristic suggests that the optimization formula could
potentially identify multiple echoes simultaneously. Therefore,
future research will focus on optimizing depth reconstruction
for scenarios involving multiple echo returns, building on the
current objective function formulation.
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