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Abstract
The recent explosion in procurement and availability of high-dimensional gene- and protein-
expression profile datasets for cancer diagnostics has necessitated the development of sophisticated
machine learning tools with which to analyze them. While some investigators are focused on
identifying informative genes and proteins that play a role in specific diseases, other researchers have
attempted instead to use patients based on their expression profiles to prognosticate disease status.
A major limitation in the ability to accurate classify these high-dimensional datasets stems from the
‘curse of dimensionality’, occurring in situations where the number of genes or peptides significantly
exceeds the total number of patient samples. Previous attempts at dealing with this issue have mostly
centered on the use of a dimensionality reduction (DR) scheme, Principal Component Analysis
(PCA), to obtain a low-dimensional projection of the high-dimensional data. However, linear PCA
and other linear DR methods, which rely on Euclidean distances to estimate object similarity, do not
account for the inherent underlying nonlinear structure associated with most biomedical data. While
some researchers have begun to explore nonlinear DR methods for computer vision problems such
as face detection and recognition, to the best of our knowledge, few such attempts have been made
for classification and visualization of high-dimensional biomedical data. The motivation behind this
work is to identify the appropriate DR methods for analysis of high-dimensional gene- and protein-
expression studies. Towards this end, we empirically and rigorously compare three nonlinear
(Isomap, Locally Linear Embedding, Laplacian Eigenmaps) and three linear DR schemes (PCA,
Linear Discriminant Analysis, Multidimensional Scaling) with the intent of determining a reduced
subspace representation in which the individual object classes are more easily discriminable. Owing
to the to the inherent nonlinear structure of gene- and protein-expression studies, our claim is that
the nonlinear DR methods provide a more truthful low-dimensional representation of the data
compared to the linear DR schemes. Evaluation of the DR schemes was done by (i) assessing the
discriminability of two supervised classifiers (Support Vector Machine and C4.5 Decision Trees) in
the different low-dimensional data embeddings and (ii) 5 cluster validity measures to evaluate the
size, distance and tightness of object aggregates in the low-dimensional space. For each of the 7
evaluation measures considered, statistically significant improvement in the quality of the
embeddings across 10 cancer datasets via the use of 3 nonlinear DR schemes over 3 linear DR
techniques was observed. Similar trends were observed when linear and nonlinear DR was applied
to the high-dimensional data following feature pruning to isolate the most informative features.
Qualitative evaluation of the low-dimensional data embedding obtained via the 6 DR methods further
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suggests that the nonlinear schemes are better able to identify potential novel classes (e.g. cancer
subtypes) within the data.

Index Terms
Dimensionality reduction; bioinformatics; data clustering; data visualization; machine learning;
manifold learning; nonlinear dimensionality reduction; gene expression; proteomics; prostate cancer;
lung cancer; ovarian cancer; principal component analysis; linear discriminant analysis;
multidimensional scaling; Isomap; locally linear embedding; laplacian eigenmaps; classification;
support vector machine; decision trees; LLE; PCA

I. Introduction
GENE- and protein-expression profiling have emerged as promising new methods for disease
prognostication [1], [2], [3]. Attempts at analyzing several thousand dimensional gene- and
protein- profiles have been primarily motivated by two factors; (a) identification of individual
informative genes and proteins responsible for disease characterization [4], [5], [6], [7], and
(b) to classify patients into different disease cohorts [8], [9], [10], [11], [12], [13], [14]. Several
researchers involved in the latter area have attempted to use different classification methods
to stratify patients based on their gene- and protein-expression profiles into different categories
[8], [9], [10], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27]. While the
availability of studies continues to grow, most protein- and gene-expression databases contain
no more than a few thousand patient samples. Thus, the task of stratifying these patients based
on the gene/protein profile is subject to the ‘curse of dimensionality’ problem [28], [29], owing
to the relatively small number of patient samples compared to the size of the feature space.
Classification of the new unseen test samples is thus poor due to the sparseness of data in the
high-dimensional feature space. Additionally, many of the features within the expression
profile may be non-informative or redundant, providing little additional class discriminatory
information [11], [12] while increasing computing time and classifier complexity. In order to
bridge the gap between the number of patient samples and gene/peptide features and overcome
the curse of dimensionality problem, researchers have proposed (a) feature selection, and (b)
dimensionality reduction to reduce the size of the feature space.

Feature selection refers to the identification of the most informative features and have been
commonly utilized to precede classification in gene- and protein-expression studies [11],
[14], [30]. However, since a typical gene or protein microarray records expressions from
thousands of genes or proteins, the cost of finding an optimal informative subset from several
million possible combinations becomes a near intractable problem. Further, genes or peptides
that were pruned during the feature selection process may be significant in stratifying intra-
class subtypes.

Dimensionality reduction (DR) refers to a class of methods that transforms the high-
dimensional data into a reduced subspace to represent data in far fewer dimensions. In Principal
Component Analysis (PCA), a linear DR method, the reduced dimensional data is arranged
along the principal eigenvectors, which represent the direction along which the greatest
variability of the data occurs [31]. Note that unlike with feature selection, the samples in the
transformed embedding subspace no longer represent specific gene-and protein-expressions
from the original high-dimensional space, but rather encapsulate data similarities in low-
dimensional space. Even though the objects in the transformed embedding space are divorced
from their original biological meaning, the organization and arrangement of the patient samples
in low-dimensional embedding space lends itself to data visualization and classification. Thus,
if two patient samples from a specific disease cohort are mapped adjacent to each other in an
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embedding space derived from their respective high-dimensional expression profiles, then it
suggests that the two patients have a similar disease condition. By exploiting the entire high-
dimensional space, DR methods, unlike feature selection, offer the opportunity to stratify the
data into subclasses (e.g. novel cancer subtypes).

The most popular method for DR for bioinformatics related aplications has been PCA [3],
[32], [33], [34], [35], [36], [37], [38]. Originally developed by Hotelling [39], PCA finds
orthogonal eigenvectors along which the greatest amount of variability in the data lies. The
underlying intuition behind PCA is that the data is linear and that the embedded eigenvectors
represent low-dimensional projections of linear relationships between data points in high-
dimensional space. Linear Discriminant Analysis (LDA) [31], also known as Fisher
Discriminant Analysis, is another linear DR scheme which incorporates data label information
to find data projections that separate the data into distinct clusters. Multidimensional Scaling
(MDS) [40] reduces data dimensionality by preserving the least squares Euclidean distance in
the low-dimensional space. Classifier performance with linear DR schemes for biomedical data
has been a mixed bag. Dawson et al. [34] found that there were biologically significant elements
of the gene expression profile that were not seen with linear MDS. Ye et al. [29] found that
LDA gave poor results in distinguishing disease classes on a cohort of 9 gene expression
studies. Truntzer et al. [35] also found limited use of LDA and PCA for classifying gene- and
protein-expression profiles of a diffuse large b-cell lymphoma dataset since the classes
appeared to be linearly inseparable. The afore-mentioned results appear to suggest that
biomedical data has a nonlinear underlying structure [34], [35] and that DR methods that do
not impose linear constraints in computing the data projection might be more appropriate
compared to PCA, MDS, and LDA for classification and visualization of data classes in gene-
and protein-expression profiles.

Recently, nonlinear DR methods such as Spectral Clustering [41], Isometric mapping (Isomap)
[42], Locally Linear Embedding (LLE) [43], and Laplacian Eigenmaps (LEM) [44] have been
developed to reduce data dimensionality without assuming a Euclidean relationship between
data samples in the high-dimensional space. Shi and Malik’s Spectral Clustering algorithm
(also known as Graph Embedding [41]) builds upon graph theory to partition the graph into
clusters and separate accordingly. Madabhushi et al. [45] demonstrated the use of graph
embedding to detect the presence of new tissue classes on high-dimensional prostate MRI
studies. The utility of this scheme has also recently been demonstrated in distinguishing
between cancerous and benign magnetic resonance spectra (MRS) in the prostate [46] and in
discriminating between different cancer grades on digitized tissue histopathology [47], [48].
Tenenbaum (Isomap) [42] presented the Isomap algorithm for nonlinear DR and described the
term ‘manifold’ for machine learning as a nonlinear surface embedded in high-dimensional
space along which dissimilarities between data points are best represented. The Isomap
algorithm estimates geodesic distances, defined as the distance between two points along the
manifold, and preserves the nonlinear geodesic distances (as opposed to Euclidean distances
used in linear methods) while projecting the data onto a low-dimensional space. Locally linear
embedding proposed by Roweis and Saul [43] uses local weights to preserve local geometry
in order to find the global nonlinear manifold structure of the data. The geodesic distance
between data points is approximated by assuming that the data is locally linear. Recently,
Belkin et al. presented the Laplacian Eigenmaps algorithm [44], which like Spectral Clustering,
Isomap, and LLE, makes local connections, but uses the Laplacian to simplify determination
of the locality preserving weights used to obtain the low-dimensional data embeddings. Graph
Emedding, LLE, Isomaps, and LEM, all aim to nonlinearly project the high-dimensional data
in such a way that 2 objects xa and xb that lie adjacent to each other on the manifold are adjacent
to each other in the low-dimensional embedding space, and likewise, 2 objects that are distant
from each other on the manifold are far apart in the low-dimensional embedding space. As
previously demonstrated by Tenenbaum [42], Figure 1 reveals the limitations of using a linear
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DR for highly nonlinear data. Figure 1 shows the embedding of the swiss roll dataset shown
in Figure 1(a) obtained by a linear DR method (MDS) in Figure 1(b) and a nonlinear DR scheme
(LEM) in Figure 1(c). MDS, which preserves Euclidean distances, is unable to capture the non-
linear manifold structure of the swiss roll, but LEM is capable of learning the shape of the
manifold and representing points in the low-dimensional embedding by estimating geodesic
distances. Thus, while MDS (Figure 1(b)) shows overlap between the two classes that lie along
the swiss roll, LEM (Figure 1(c)) provides an unraveled swiss roll that separates the data classes
in two-dimensional embedding space.

While PCA remains the most popular DR method for bioinformatics related applications
[32], [34], [35], [36], [37], [38], nonlinear DR methods have begun to gain popularity [3],
[30], [45], [49]. Liu et al. [30] found high classification accuracy in the use of kernel PCA
(non-linear variant of PCA) for gene expression datasets while Weng [49] recommended the
use of Isomap for medical data analysis. Shi and Chen [3] found that LLE outperformed PCA
in classifying 3 gene expression cancer studies. Dawson et al. [34] compared Isomap, PCA,
and linear MDS for oligonucleotide datasets, and Nilsson et al. [50] compared Isomap with
MDS in terms of their ability to reveal structures in microarray data. In these and other related
studies [3], [34], [49], [50], the nonlinear methods were found to outperform linear DR
schemes. While several researchers have performed comparative studies of classifier methods
[51], [52], [53] to determine the optimal scheme for various applications, to the best of our
knowledge, no comprehensive comparative study of different nonlinear and linear DR schemes
in terms of their ability to discriminate between samples has been attempted thus far.

The primary motivation of this work is to systematically and quantitatively compare and
evaluate the performance of 6 DR methods; three linear methods (PCA, LDA [31], linear MDS
[40]) and three nonlinear DR methods (Isomap [42], LLE [43], and LEM [44]) in terms of their
ability to faithfully represent the underlying structure of biomedical data. A total of 10 different
binary-class gene- and protein-expression studies corresponding to prostate, lung, breast,
gliomal and ovarian cancers, as well as leukemia and lymphoma are considered in this
comparative study. Low-dimensional data embeddings of the cancer studies obtained from
each of the 6 DR methods are evaluated in two ways. Firstly, the low-dimensional data
embeddings for each dataset are compared in terms of classifier accuracy evaluated via a
support vector machine (SVM) and a decision tree (C4.5) classifier. The intuition behind the
use of classifiers is that if the embedding produced by a particular DR method accurately
captures the structure of the data manifold, then xa, xb, belonging to different classes in the
high-dimensional dataset D, will have low-dimensional embedding coordinates Gφ(xa),
Gφ(xb) far apart from each other. Thus, if the underlying structure of the data has been faithfully
reconstructed by the DR method, then the task of discriminating between objects from different
classes becomes trivial (ie. a linear classifier would suffice). Note that a more complex classifier
with a nonlinear separating hyperplane could potentially distinguish objects from different
classes in an embedding space that does not represent a faithful reconstruction of the original
multidimensional manifold. However, the emphasis in this work is not in identifying the
optimal classification scheme, but rather to identify the DR method that can provide the optimal
low-dimensional representations so that the task of discriminating different object classes
becomes trivial. The role of classifiers in this work only serves to quantitatively evaluate the
quality of the data embeddings. In addition to the use of 2 classifiers, we also consider 5
different cluster measures to evaluate the low-dimensional data representation. The intuition
behind the use of the cluster validity measures is that in the optimal low-dimensional data
representation, objects xa ∈ D with associated class label Y(xa) = +1 and all objects xb ∈ D,
Y (xb) = −1 will form 2 distinct, tight, and well separated clusters.

The organization of the rest of this paper is as follows. In Section II is provided an overview
of the 6 DR methods compared in this paper. In Section III the experimental setup for

Lee et al. Page 4

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2008 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



quantitatively comparing the linear and nonlinear DR schemes is described. Quantitative and
qualitative results and accompanying discussion is presented in Section IV. Finally, concluding
remarks are presented in Section V.

II. Overview of Dimensionality Reduction Methods
A. Terminology

A total of ten binary gene- and protein-expression and 1 multi-class dataset Dj, j ∈ {1, 2, …,
11}, were considered in this study. Each Dj = {x1, x2, …, xn} is represented by an n × M
dimensional matrix of n samples xi, i ∈ {1, 2, …, n}. Each xi ∈ Dj has an associated class label
Y (xi) ∈ {+1, −1} and an M-dimensional feature vector F(xi) = [fu(xi)|u ∈ {1, 2, …, M}], where
fu(xi) represents the gene- or protein-expression values associated with xi. Following
application of DR methods f, where φ ∈ {PCA, LDA, MDS, ISO, LLE, LEM}, the individual
data points xi ∈ D are represented by an m-dimensional embedding vector

, where  represents the embedding coordinate along the
principal eigenvectors of xi in m-dimensional embedding space. Table I lists notation and
symbols used frequently in this paper.

B. Linear Dimensionality Reduction Methods
1) Principal Component Analysis (PCA)—PCA is widely used to visualize high-
dimensional data and discern relationships by finding orthogonal axes that contain the greatest
amount of variance in the data [39]. These orthogonal eigenvectors corresponding to the largest
eigenvalues are called ‘principal components’ and are obtained in the following manner. Each
data point xi ∈ D is first centered by subtracting the mean of all the features for each observation
xi from its original feature value fu(xi) as shown in Equation 1.

(1)

for u ∈ {1, 2, …, M}. From feature values f̄u(xi) for each xi ∈ D, a new n × M matrix  is
constructed. The matrix  is then decomposed into corresponding singular values as shown in
Equation 2.

(2)

where via singular value decomposition, an n × n diagonal matrix λ containing the eigenvalues
of the principal components and an m × n left singular matrix U and M × n matrix V are obtained.
The eigenvalues in λ represent the amount of variance for each eigenvector

 in matrix VT and are used to rank the corresponding eigenvectors in the
order of greatest variance. Thus, the first m eigenvectors are obtained, as they contain the most
variance in the data while the remaining eigenvectors are discarded so each data sample xi ∈
D is now described by an m-dimensional embedding vector GPC A(xi).

2) Linear Discriminant Analysis (LDA)—LDA [31] takes into account class labels to find
eigenvectors that can discriminate between two classes {+1, −1} in a dataset. The intra-class
scatter matrix SW and inter-class scatter matrix SB [31] are computed from the sample means

for data clusters +1 and −1, giving  and  respectively, where
for xa ∈ D, Y (xa) = +1 and for xb ∈ D, Y(xb) = −1. Note that both μ + and μ− are m-dimensional
vectors. From the sample means,
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(3)

and

(4)

are calculated. SW and SB are then used to create the eigenvectors by singular value
decomposition (Equation 5).

(5)

As with PCA, each data point xi ∈ D is now represented by a m-dimensional vector GLDA(xi)
corresponding to the m largest eigenvalues in λ. While LDA has often been used as both a DR
method and a classifier, it is limited in handling sparse data and for datasets where the Gaussian
distribution assumption is not valid [29].

3) Classical Multidimensional Scaling (MDS)—MDS [40] is implemented as a linear
method that preserves the Euclidean geometry between each pair of m-dimensional points xa,
xb ∈ D, which is arranged into a symmetric n × n distance matrix Γ as shown in Equation 6.

(6)

where ||·||2 represents the Euclidean norm. MDS finds optimal positions for the data points
xa, xb in m-dimensional space through minimization of the least squares error in the input
pairwise Euclidean distances between xa and xb [40]. Note that classical MDS differs from
nonlinear variants of MDS such as non-metric MDS [40], which do not preserve input
Euclidean distances.

C. Nonlinear Dimensionality Reduction Methods
1) Isometric Mapping (Isomap (ISO))—The Isomap algorithm [42] modifies classical
MDS to handle nonlinearities in the data through the use of a neighborhood mapping. By
creating linear connections from each point xi ∈ D to its κ closest neighbors in Euclidean space,
a manifold representation of the data is constructed, κ being a user-defined parameter.
Nonlinear connections between points outside of the κ neighborhood are approximated by
calculating the shortest distance between two points xa, xb ∈ D along the paths in the
neighborhood map, where a, b ∈ {1, 2, …, n}. Thus, new geodesic distances (distances
measured along the surface of the manifold) are calculated and arranged in an n × n pairwise
distance matrix Δ, where Δ(xa, xb) contains the nonlinear geodesic distances between xa, xb ∈
D. The matrix Δ is then given as an input to the classical MDS algorithm from which each data
point xi ∈ D, i ∈{1, 2, …, n}, is represented by its m-dimensional embedding vector
GISO(xi).

2) Locally Linear Embedding (LLE)—LLE [43], like the Isomap algorithm [42] utilizes
a neighborhood map connecting each data sample xi to its κ nearest neighbors in Euclidean
space. However, instead of calculating manifold distances, LLE describes each xi in terms of
its κ closest neighbors xa. Thus, for each xi, an M × κ matrix  containing the centered features
f̂u(xa) = fu(xa) − fu(xi) is obtained. To describe the local geometry for each xi, linear coefficients
accounting for the location of xi relative to each xa can be optimized by solving for the κ
dimensional weight vector w(xi, xa) via the linear system
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(7)

where ℐ is a column vector of ones of length κ. From each of n weight matrices w, the n × n
matrix, W, stores the linear coefficients of each xi and xa in W(xi, xa) and W(xi, xb) = 0, where
xb are not among the κ nearest neighbors of xi ∈ D. A cost matrix χ is then computed from the
weight matrix W as

(8)

where I is an n × n identity matrix. Singular value decomposition is used to obtain the m-
dimensional embedding vector GLLE(xi) and for each xi ∈ D from cost matrix χ.

3) Laplacian Eigenmaps (LEM)—The Laplacian Eigenmaps [44] algorithm, similar to
LLE and Isomap, establishes a locally linear mapping by connecting each point xi ∈ D to its
κ nearest neighbors. Weights are assigned between each pair of points to form an n × n
symmetrical weight matrix W ̃, where weights W ̃ (xi, xa) = 1, when xa is a κ nearest neighbor
of each xi ∈ D, and W ̃ (xi, xb) = 0, when xb represent is not a κ nearest neighbor of xi ∈ D.

From weight matrix W ̃ and a diagonal matrix of column sums , for all i∈
{1, 2, …, n}, a symmetric, positive semi-definite matrix L called the Laplacian is calculated
as

(9)

Singular value decomposition (Equation 2) is then used to obtain the m-dimensional embedding
vector GLEM(xi) for each xi ∈D from the Laplacian L.

III. Experimental Design
The organization of this section is as follows. In Section III A, we provide a description of
datasets followed by brief outline of methodology in Section III B. In Sections III C and III D,
we briefly describe the different qualitative and quantitative evaluation measures we use for
comparing the performance of the DR methods.

A. Description of Datasets
A total of ten publicly available binary-class [1], [7], [8], [16], [17], [19], [24], [25], [26],
[54] and 1 multi-class dataset [32] corresponding to high-dimensional gene- and protein-
expression studies1 were acquired for the purposes of this study. The two-class datasets
correspond to gene- and protein-expression profiles of normal and cancerous samples for breast
[7], colon [16], lung [26], ovarian [19], and prostate [17] cancer, leukemia [1], [32], lymphoma
[8], [25], and glioma studies [24]. The multi-class dataset comprises 5 subtypes of leukemia.
The size of the datasets range from 30 to 253 patient samples, with the number of corresponding
features ranging from 791 to 54675 genes or peptides. Table II provides a description of all
the datasets that we considered including a description of the data classes and the originating
study for these datasets. Note that for each study, the number of patient samples is significantly
smaller than the dimensionality of the feature space. No preprocessing or normalization of any
kind was performed on the original feature space prior to dimensionality reduction. An
experiment was however performed to compare DR performance with and without feature
pruning on the original high-dimensional studies.
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B. Brief Outline of Methodology
Our methodology for investigating the embedded data representation given by DR is comprised
of 4 main steps described briefly below and illustrated in the flowchart in Figure 2.

Step 1) Dimensionality Reduction—To evaluate and compare the low-dimensional data
embeddings, we reduced the dimensionality of M-dimensional xi ∈ Dj, j ∈ {1, 2, …, 11}, via
6 DR methods φ ∈{PCA, LDA, MDS, ISO, LLE, LEM}. The resulting m-dimensional
embedding vectors Gφ(xi) now represent the low-dimensional signatures for each xi ∈ Dj and
for each method φ. Additionally, we obtain m-dimensional embedding vectors for feature
pruned samples xi ∈ Dj, j ∈ {1, 2, …, 11}, containing M ̂ < M dimensional samples xi, for each
method φ.

Step 2) Qualitative Evaluation for Novel Class Detection—In order to evaluate the
presence of possible sub-clusters within the data, the dominant embedding coordinates

, for each method φ, and xi ∈ D were plotted against each other. The
graphical plots reveal the m-dimensional embedding representations of the high-dimensional
data via each of the 6 DR methods. On the eigenplots obtained for each DR scheme, potential
subclasses are visually identified.

Step 3) Quantitative Evaluation of DR performance via Classifier Accuracy—To
evaluate the quality of the DR embeddings, two classifiers are trained using the low-
dimensional embedding vector Gφ(xi), for φ ∈{PCA, LDA, MDS, ISO, LLE, LEM}, and xi ∈

D. For each D, the samples xi ∈ D are divided into a training set  and a testing set .

Samples  will be used to train an SVM and decision tree (C4.5) classifier
 in the embedding space defined by embedding coordinates Gφ (xa), φ ∈ {PCA,

LDA, MDS, ISO, LLE, LEM} to distinguish between the different classes. Once the classifiers
have been trained, they will be applied to predict class labels ,

 ∈ {+1, −1} for all  for method φ. The classifier predictions
,  are compared against the true object label Y (xb) for xb ∈ D to

estimate the classifier accuracy, recorded for each DR scheme. The same procedure is repeated
using the feature pruned samples xi ∈ D with M ̂ < M dimensionality, following DR.

Step 4) Quantitative Evaluation of DR performance via Cluster Validity Measures
—To compare the size, tightness, and separation of class clusters from different DR methods,
we first normalize the embedding space obtained via each of 6 DR methods φ ∈ {PCA, LDA,
MDS, ISO, LLE, LEM}. In this normalized embedding space, we calculate centroids G ̃φ,+ and
G ̃φ,− corresponding to the +1 and −1 classes. From the centroids G ̃φ,+ and G ̃φ,−, we measure
the separation between clusters as well as the tightness of each cluster by measuring the
distances of each xi ∈ D to the corresponding class centroid. The same procedure is repeated
following feature pruning.

C. Detailed Description of Experimental Design
1) Feature Pruning—A feature pruning step is employed to identify a set of informative
features F̂(xi) = [fû(xi)|û ∈ {1, 2, …, M ̂}] where M ̂ < M for each xi ∈ D. The aim of feature
pruning is to compare whether the trends in performance of the 6 DR methods considered in
this study is similar when considering all features F(xi) and when considering only the most
informative features F̂(xi). The feature pruning method based on t-statistics and described in
[1], [15] was considered. For all xi ∈ D and for a specific gene- or protein-expression feature
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u ∈ {1, 2, …, M}, the mean  and variance  of the expression levels for the +1
or −1 class were computed. Hence

(10)

(11)

The values of  were then used to calculate the information content of each
gene or protein expression feature as

(12)

The different features are then ranked in descending order based on their information content
. The top 10 percentile of most informative features fû, û ∈ {1,2,…,M ̂}, where M ̂ < M,

are used to compute a second set of embeddings for each Dj, j ∈ {1,2,…, 11} and φ ∈ {PCA,
LDA, MDS, ISO, LLE, LEM}.

2) Qualitative Evaluation to Identify Novel Subclasses—The linear and nonlinear DR
methods were evaluated in terms of their ability to identify new subclasses within the data. The
3 dominant eigenvalues , and  are plotted against each other, for φ ∈ {PCA,
LDA, MDS, ISO, LLE, LEM}, and for all xi ∈ D. The 3D space of embedding coordinates
Gφ (xi), for all xi ∈ D, were visually inspected for (a) distinct clusters within the dominant +1,
−1 classes and (b) distinct clusters that appear to be far removed from the cluster centers
Gφ,+ and Gφ,−. Since the ground truth for newly identified subclasses within the binary-class
datasets was unavailable, we also compared the 6 DR schemes on a multi-class Acute
Lymphoblastic Leukemia dataset [32], which is comprised of 5 known subclasses.

3) Quantitative Evaluation to Measure Class Discriminability—In this section, we
describe in greater detail the different performance measures used for evaluating the efficacy
of DR methods.

a) Dimensionality Reduction Comparison via Classifier Accuracy: The accuracy of 2
classifiers (Linear Support Vector Machines and C4.5 Decision Trees) was used to
quantitatively evaluate G(xi), xi ∈ D on 11 datasets Dj, j ∈ {1,2,…,11}, using the class labels
provided. Both classifiers considered, Support Vector Machines (SVMs) and C4.5 Decision

Trees require the use of a training set  to construct a prediction model for new data and a

testing set . Each classifier was first trained by using labeled instances in , where for each

, Y (xa) ∈ {+1,−1}. The classifier training is done separately for each DR method φ ∈
{PCA, LDA, MDS, ISO, LLE, LEM}. To train the classifiers, we randomly set aside 1/3 of the

samples in  for training, and the remaining 2/3 samples in  were used for testing. The 3-
fold cross validation method was then used to determine the optimal classifier parameters. The
classifier outputs , , where , was compared
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against the true object label Y (xb) ∈ {+1,−1}, Subsequently, accuracy, defined as the ratio of
the number of objects , correctly labeled by the classifier to the total number of tested
objects in each . Below we provide a brief description of the 2 classifiers considered in this
study.

i. Support Vector Machines (SVMs): Support vector machines (SVMs) were first introduced
by Vladimir Vapnik [55] and are based on the structural risk minimization (SRM) principle
from statistical learning theory. The SVM attempts to minimize a bound on the generalization
error (error made on test data). SVM-based techniques focus on “borderline” training examples
(or support vectors) that are most difficult to classify. The SVM projects the input training data

Gφ(xi), for , onto a higher-dimensional space using the linear kernel defined in
Equation 13 as

(13)

where b is the bias estimated on the training set . The general form of the SVM is given
by

(14)

where xβ, for β ∈ {1, 2, …, ns} denotes the number of support vectors and the model parameter
ξ is obtained by maximizing the following objective function.

(15)

subject to the constraint  and 0 ≤ ξβ ≤ ω, where β, γ ∈ {1, 2, …, ns}, and where
the parameter ω controls the trade-off between the empirical risk (training errors) and model
complexity.

Additionally, a one-against-all SVM scheme was implemented for the multi-class case [14].
For this scheme, a binary classifier is built for each class to separate one class from all the other

classes. Again, 1/3 of the samples from each class are randomly selected for training set 
and the predictions are made on the remaining 2/3 of the samples in . Each of the 5 binary
classifiers make a prediction as to whether each xa ∈ Dj belongs to the target class. In the ideal
case, only the binary classifier trained to identify Y (xa) as the target class should output a value
of 1 and the other 4 classifiers would output 0. If so, xa is said to have been correctly classified.
If not, xa is randomly assigned one of the 5 class labels. If the randomly assigned class label
is not its true class label, xa is said to have been mis-classified. Otherwise, it is determined to
have been correctly classified.

ii. C4.5 Decision Trees (C4.5): A special type of classifier is the decision tree, which is trained
using an iterative selection of individual features fu(xa) that are the most salient at the each
node in the tree [56]. One of the most commonly used algorithms for generating decision trees
is the C4.5 rules proposed by Quinlan [56]. The rules generated by this approach are in
conjunctive form such as “if A and B then C” where both A and B are the rule antecedents,
while C is the rule consequence. Every path from the root to the leaf is converted to an initial
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rule by regarding all the conditions appearing in the path as the conjunctive rule antecedents
while regarding the class label Y (xa) xa ∈ D, held by the leaf as a rule consequence. Tree
pruning is then done by using a greedy elimination rule which removes antecedents that are
not sufficiently discriminatory. The rule set is then further refined by the way of the minimum
description length (MDL) principle [57] to remove those rules that do not contribute to the
accuracy of the tree. Hence for each φ ∈ {PCA, LDA, MDS, ISO, LLE, LEM}, we obtain a
separate decision tree classifier  to classify every xi ∈ D as {+1, −1}. The C4.5
decision trees is extended for the multi-class case by simplying adding more output labels.
Classifier evaluation is also similarly performed on Dj, j ∈ {1, 2, …, 11} following feature
pruning.

b) Dimensionality Reduction Comparison via Cluster Validity Measures: The low-
dimensional embeddings Gφ (xi), obtained for each φ ∈ {PCA, LDA, MDS, ISO, LLE, LEM},
are also compared in terms of the 5 cluster validity measures. Prior to this however, the
embedding coordinates Gφ (xi) for xi ∈ D need to be normalized within a unit hypercube ℋ
in order to facilitate a quantitative comparison across the 6 DR schemes. The eigenvector

, for each xi ∈ D and ν ∈ {1, 2, …, m}, is thus scaled between [0, 1] along each of m-
dimensions via the formulation given by Equation 16.

(16)

where  is the normalized embedding coordinate of xi along the νth dimension, where ν ∈
{1, 2, …, m}. For all xa ∈ Dj, such that Y (xa) = +1, the cluster center of the +1 class, G ̃φ,+, is

obtained by averaging the embedding coordinate locations  along each dimension ν ∈ {1,
2, …, m} and for each φ. Formally, where n+ is the number of objects in the +1 class,

(17)

Thus the normalized cluster center for the +1 class is obtained as .
Similarly we obtain the cluster center G ̃φ,− for the −1 class. Having obtained G ̃φ,+ and G ̃φ,−we
define 5 cluster validity measures as follows.

i) Inter-Centroid Distance (ICD):   is defined as the Euclidean distance between centroids
G ̃φ,+ and G ̃φ,− [58].  is calculated for each Dj, j ∈ {1, 2, …, 10}, and for all φ.

ii) Cluster Tightness (CT): To evaluate the tightness and distinctness of object clusters in the
embedding space, we define and evaluate 4 cluster tightness measures:

.  is defined as the mean Euclidean distance of
all objects xa ∈ Dj, Y (xa) = +1, from G ̃φ,+. Formally, this is expressed as

(18)
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We also similarly compute  as the standard deviation of the Euclidean distances of all
xa ∈ D from their corresponding cluster centroid G ̃φ,+ [59]. Similarly,  and 
are also defined for the −1 class. The calculation of the above cluster measures and
normalization of the embedding coordinate system is repeated for all Dj, j ∈ {1, 2, …, 11}
following feature pruning.

Following computation of the 7 quantitative performance measures (2 classifier, 5 cluster), a
paired student t-test comparison is performed between the values for

 for each of the following 9 pairs of linear and
nonlinear methods (PCA/ISO, LDA/ISO, MDS/ISO, PCA/LLE, LDA/LLE, MDS/LLE, PCA/
LEM, LDA/LEM, MDS/LEM) across all datasets Dj, j ∈ {1,2,…,10}, under the null hypothesis
that there is no difference in the 7 performance measures between each of the 9 pairs of linear/
nonlinear DR methods. Thus, if p ≤ 0.05 for a pair of linear/nonlinear methods for a particular
performance measure, the difference is assumed to be statistically significant. A similar t-test
comparison is also performed using the embedding data obtained following feature pruning
with the aim of showing similar trends across the 6 different DR methods applied to both the
unpruned and the feature pruned datasets.

IV. RESULTS AND DISCUSSION
A. Qualitative Results

1) Class Separability in Embedding Space—In Figure 3 are shown the 2 dimensional
embedding plots of 6 different linear and nonlinear DR methods for 1 proteomic spectra
(ovarian cancer [19]), and 2 gene expression (colon [16] and lung cancer [54]) datasets. Each
of the plots in Figures 3(a)-(l) were generated by plotting the first dominant eigenvector

 versus the second dominant eigenvector of , for all xi ∈ Dj, and for a given DR
method φ. The two object classes (+1) and (−1) are denoted with different symbols. Figures 3
(a), (d) correspond to the embeddings generated by two of the linear DR methods (PCA, MDS)
while Figures 3(g), (j) show the corresponding plots obtained from 2 of the nonlinear DR
methods (ISO, LLE) on the ovarian cancer study. Note that in the embedding obtained with
both Isomap and LLE (Figures 3(g), (j)), the 2 classes are clearly distinguishable while the
corresponding embeddings obtained with PCA and MDS (Figures 3(a), (d)) reveal a significant
degree of overlap between the +1 and −1 classes. A similar trend is seen with PCA and LDA
(Figures 3(b), (e)) and LLE and LEM (Figures 3(h), (k)) on the colon cancer dataset [16]. Note
that in spite of the presence of a couple of apparent outliers in the embeddings obtained by
LLE and LEM, the nonlinear DR methods appear to perform much better compared to PCA
and MDS (Figures 3(b), (e)). The difference is even more stark in the embeddings obtained
with PCA (Figure 3(c)) and LDA (Figure 3(f)) compared to Isomap (Figure 3(i)) and LEM
(Figure 3(l)) on the lung cancer [54] dataset in the right-most column.

2) Novel Class Detection in Embedding Space—Figure 4 illustrates qualitatively the
differences between the linear and nonlinear DR methods in capturing the true underlying low-
dimensional structure of the data and highlights differences between the two types of methods
in terms of their ability to identify subclasses in the data. In Figures 4(a)-(c) are shown the
embedding plots obtained via LDA, LLE, and (c) LEM respectively for the lung cancer-
Michigan dataset [26]. For LDA (Figure 4(a)), no meaningful clustering of samples was
observable, while for both LLE and LEM, 2 distinct clusters of normal classes (denoted via
superimposed ellipses) were identifiable. In Figure 4, sub-clusters (denoted in superimposed
ellipses) in the prostate cancer dataset [17] for both LLE and LEM (Figures 4(e), (f)) were
discernable but were occult in MDS (Figure 4(d)). Note the ellipses in Figures 4(b), (c), (e),
and (f) are manually placed on the plots to highlight what appear to be possible new classes.
Since 10 of the studies considered in this work were labeled as binary-class datasets, we were
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unable to evaluate the validity of newly detected subclasses. Note however that the 2 nonlinear
methods for both the lung cancer [54] and leukemia datasets [1], [32] identify near identical
sub-clusters, lending further credibility to the fact that the sub-clusters identified are genuine
subclasses. To further test the ability of nonlinear DR schemes for novel class detection, a
multi-class dataset comprising 5 known subtypes of acute lymphoblastic leukemia [32] was
considered. As shown in Figure 4(g), PCA is unable to unravel the classes as discriminatingly
as Isomap (Figure 4(h)) or LLE (Figure 4(i)). The 5 subclasses shown in Figures 4(g), (h), (i)
are represented with different symbols.

B. Quantitative Results
1) Classifier Accuracy—For each of the 10 binary- and 1 multi-class dataset, classifier
accuracy ( , ) was assessed on the embeddings obtained via the 6 DR schemes on
both unpruned (Figures 5(a), (b)) and feature pruned datasets (Figure 5(c)). It can be seen from
Figure 5 that on the average, nonlinear DR methods (ISO, LLE, and LEM) perform better than
their linear counterparts (PCA, LDA, and MDS) for both classifiers. In Tables III and IV are
listed the accuracy results for the SVM and C4.5 classifiers respectively over the 10 binary-
class datasets. Classifier accuracy comparing the performance of the 6 DR schemes via a SVM
and C4.5 classifier on a multi-class dataset (Acute Lymphoblastic Leukemia [32]) are given
in Table V. The results in Tables III-V clearly suggest that for both the binary- and multi-class
case, the performance of the nonlinear DR schemes is superior compared to the linear DR
schemes.

2) Cluster Metrics—In Figure 6 and Tables VI–VIII are shown the results for the cluster
validity measures for all φ. Figures 6(a), (b), and (c) correspond to average

 respectively across the 10 binary-class datasets after feature
pruning. Tables VI–VIII show the average  values for φ ∈ {PCA,
LDA, MDS, ISO, LLE, LEM} over the 10 binary-class studies considered in this work without
feature pruning. From Figure 6(a) and Table VI, we observe that the inter-centroid distance
between the dominant clusters is on average greater for the nonlinear DR methods compared
to the linear methods, in turn suggesting greater separation between the 2 classes. Similarly
from Figures 6(b) and (c), we observe that the average  values over all
the 10 binary-class datasets are smaller for the nonlinear DR methods compared to the linear
methods, suggesting the objects classes form more compact, tighter clusters in the embedding
spaces generated via nonlinear DR schemes.

In Table IX, p-values for the paired student t-tests obtained by comparing
 across the 10 binary-class datasets for each pair of

linear and nonlinear DR methods (PCA/ISO, LDA/ISO, MDS/ISO, PCA/LLE, LDA/LLE,
MDS/LLE, PCA/LEM, LDA/LEM, and MDS/LEM). Statistically significant differences were
observed for all the performance measures considered for each pair of linear/nonlinear DR
methods across all 10 binary-class datasets. Similar trends were observed for embeddings
obtained from linear and nonlinear DR schemes following feature pruning. (Table X).

Additionally, we investigated the performance of each of the DR methods across the 10 binary-
class studies as a function of the number of dimensions of the embedding space Gφ from a
classification perspective. Figures 7(a), (b) show the average classification accuracy ( 
and ) respectively for each DR method, where the number of dimensions is being varied
from 2 to 10 (υ ∈ {2, 3, …, 10}). Similarly, Figures 8(a), (b), and (c) show the cluster validity
measures ( , and ) respectively for each DR method,
where the number of dimensions is also being varied from 2 to 10 (υ ∈ {2, 3, …, 10}). For
both the classifier and cluster validity measures, one can see similar trends across dimensions
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showing nonlinear DR methods outperforming linear methods (Figures 7, 8), thereby
comprehensively demonstrating that the nonlinear DR schemes outperform the linear DR
methods independent of the number of embedding dimensions considered.

V. Concluding Remarks
The primary objective of this paper was to identify appropriate dimensionality reduction
methods to precede analysis and classification of high-dimensional gene- and protein-
expression studies. This is especially important in applications where the goal is to identify
two or more specific classes within the datasets. In this paper, we quantitatively compared the
performance of 6 different DR methods, three linear (PCA, LDA, MDS) and three nonlinear
(Isomap, LLE, Laplacian Eigenmaps) from the perspective of (a) distinguishing between
cancer and non-cancer studies, and (b) identifying new object classes (cancer subtypes) from
10 binary high-dimensional gene- and protein-expression datasets for prostate, lung, breast,
and ovarian cancers, as well as for leukemia, lymphomas, and gliomas. Additionally, a multi-
class dataset comprising 5 distinct subtypes of lymphoblastic leukemia was also considered.
The efficacy of the low-dimensional representations of the high-dimensional data obtained by
the different DR methods was evaluated via 2 classifier schemes (SVM and C4.5) and 5
different cluster validity measures. The intuition behind the use of these evaluation measures
was that if the low-dimensional embedding was indeed a faithful representation of the high-
dimensional feature space, the 2 different data classes would be separable into distinct, tightly
packed clusters. Embeddings were generated by the 6 different DR methods from the original
high-dimensional data before and after feature pruning. Feature pruning was applied to identify
only the top 10 percentile of most informative features in each dataset in order to reduce any
possible nonlinearity in the data on account of redundant or uncorrelated features. The 3
different linear and 3 nonlinear methods were also compared pairwise via a paired student t-
test in terms of the 7 performance measures and across all 10 datasets. In addition, 6 different
DR methods were also qualitatively compared in terms of the ability of their respective
embeddings to reveal the presence of new subclasses within the data. Our primary conclusions
from this work are as follows,

1. The nonlinear methods significantly outperformed the linear methods over all the
datasets in terms of all 7 performance measures, suggesting in turn the nonlinear
underlying manifold structure of high-dimensional biomedical studies.

2. The differences between the linear and nonlinear methods were found to be
statistically significant even after pruning the datasets by feature selection and were
independent of the number of dimensions of the embedding space that were
considered.

3. The nonlinear methods also appeared to be able to identify potential subclasses within
the data better compared to the linear methods. The linear methods for the most part
were unable to even discriminate between the 2 most dominant classes in each dataset.

In making our conclusions, we also acknowledge the following limitations of this study: 1)
Our results are based on a relatively small database comprising 10 binary- and 1 multi-class
gene- and protein-expression datasets. 2) Not all linear and nonlinear DR methods were
considered in this study. 3) The performance of nonlinear methods are dependent on the size
of the local neighborhood parameter κ within which data linearity is assumed.

As the value of κ increases, the locally linear assumption is no longer valid and the nonlinear
DR methods begin to resemble linear methods. The dependency of the nonlinear methods on
the value of κ is reflected in the plots in Figure 9. For both φ = (a) LLE and (b) LEM, the
corresponding cluster measures  begin to decrease with increasing values of κ, suggesting
the degeneracy of the non-linear schemes.
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In Table XI are listed the best and worst DR schemes based on each of the 7 performance
criterion considered in this study. As can be surmised from Table XI, the nonlinear DR scheme
LLE was the best dimensionality reduction method overall and the linear scheme LDA
performed the worst.

Our results appear to suggest that if the objective is to distinguish multiple classes or identify
sub-clusters within high-dimensional biomedical data, nonlinear dimensionality reduction
methods such as LLE, Isomap, and Laplacian Eigenmaps may be a better choice compared to
linear dimensionality reduction methods such as PCA. Preliminary results in an application
involving prostate magnetic resonance spectroscopy [46] appear to confirm the conclusions
presented in this work.
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Fig. 1.
(a) Nonlinear manifold structure of the Swiss Roll dataset [42]. Labels from 2 classes (shown
with black circles and red crosses) are provided to show the distribution of data along the
manifold. (b) The low-dimensional embedding obtained via linear MDS on the Swiss Roll
reveals a high degree of overlap between samples from the two classes due to the use of
Euclidean distance as a dissimilarity metric. The embedding obtained via LEM on the other
hand, is able to almost perfectly distinguish the two classes by projecting the data in terms of
geodesic distance determined along the manifold.
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Fig. 2.
Flowchart showing the overall organization and process flow of our experimental design.
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Fig. 3.

Embedding plots were obtained by plotting dominant eigenvectors  and  against
each other for ovarian cancer [19] ((a), (d), (g), (j)), colon cancer [16] ((b), (e), (h), (k)), and
lung cancer [54] ((c), (f), (i), (l)) datasets for 6 different linear and nonlinear DR methods.
Embedding plots for φ = (a) PCA (d) MDS, (g) ISO, and (j) LLE for the ovarian cancer dataset
[19] are shown in the left column while in the middle column are shown embedding plots for
colon cancer [16] obtained via φ = (b) LDA, (e) MDS, (h) LLE, and (k) LEM. Embedding
plots for the lung cancer dataset [54] for φ = (c) PCA, (f) LDA, (i) ISO, and (l) LEM are shown
in the right-most column.

Lee et al. Page 21

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2008 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.

Embedding graphs obtained by plotting the 3 most dominant embedding vectors 

and  for xi ∈ Dj, for φ = (a) LDA, (b) LLE, and (c) LEM respectively on the lung cancer-
Michigan dataset [26] in the top row. In the middle row the embedding results obtained on the
prostate cancer study [17] for φ = (d) MDS, (e) LLE, and (f) LEM respectively. Finally the
embedding plots obtained via (g) PCA, (h) ISO, and (i) LLE for the multi-class acute
lymphoblastic leukemia dataset [32] are shown in the bottom row. Note that the ellipses in
Figures 4(b), (c), (e), and (f) have been manually placed to highlight what appear to be
potentially new classes.
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Fig. 5.
Average (a)  and (b)  for φ ∈ {PCA, LDA, MDS, ISO, LLE, LEM}, for 10 binary-
class datasets, before feature pruning. Additionally, average (c)  is given for all φ, for
10 binary-class datasets, following feature pruning.
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Fig. 6.
Average (a) , (b)  values, and (c)  values over 10 binary-class datasets
for each φ ∈ {PCA, LDA, MDS, ISO, LLE, LEM} after feature pruning.
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Fig. 7.
Average classification accuracy for (a)  and (b)  over 10 binary-class datasets for
φ ∈ {PCA, LDA, MDS, ISO, LLE, LEM} for υ ∈ {2, 3, …, 10}.
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Fig. 8.
Average (a)  (b)  values, and (c)  values over all 10 binary-class datasets
for each φ, ∈ {PCA, LDA, MDS, ISO, LLE, LEM) for υ ∈ {2, 3, …, 10}.
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Fig. 9.
The degree to which nonlinearity in the data can be accurately approximated is dependent on
the size of the local neighborhood κ within which linearity is assumed. As κ increases, the
locally linear assumption is no longer valid. Figures 9(a) and (b) show  and 
respectively plotted against increasing values of κ for the Lung Cancer-Michigan dataset. As
κ increases,  and  both decrease, suggesting that the nonlinear DR schemes
are effectively becoming linear.
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TABLE I
List of frequently appearing symbols and notations in this paper.

Symbol Description

Dj Dataset j arranged in a n × M dimensional matrix, where j denotes a specific dataset j ∈ {1, 2, …, 11}
xi Patient samples xi ∈ Dj, where i ∈ {1, 2, …, n}

fu(xi) Single feature associated with xi, where u ∈ {1, 2, …, M}
F(xi) M-dimensional gene- or protein-expression feature vector describing xi

gv
φ(xi)

Transformed eigen feature obtained from F(xi), where υ denotes the index for the eigenvector, υ ∈ {1, 2, …, m}

Gφ(xi) m-dimensional feature (embedding) vector describing xi
φ Denotes the DR method used to create Gφ(xi), where φ ∈ {PCA, LDA, MDS, ISO, LLE, LEM}

Y(xi) Class label for observation xi, Y ∈ {+1, −1}
CSVM (G φ(xi))

Classifier label determined via SVM applied to Gφ(xi) for all xi ∈ Dj

CC4.5(G φ(xi))
Classifier label determined via C4.5 decision tree applied to Gφ(xi) for all xi ∈ Dj

CICD Inter-Centroid Distance between dominant data clusters

CCT ,φ,μ+ Mean Cluster Tightness of object class +1

CCT ,φ,μ− Mean Cluster Tightness of object class −1

CCT ,φ,σ+ Standard Deviation of Cluster Tightness of object class +1

CCT ,φ,σ− Standard Deviation of Cluster Tightness of object class −1
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TABLE II
Description of gene expression and proteomic spectra datasets considered in this study

Dataset Samples Genes/Peptides Class Description Original Study

(1) ALL-AML Leukemia 34 7129 20 ALL, 14 AML Golub et al. [1]
(2) Breast Tumor 30 54675 10 Tumor, 20 Normal Turashvili et al. [7]
(3) Colon Cancer 62 2000 40 Tumor, 22 Normal Alon et al. [16]
(4) DLBCL-Harvard 77 6817 58 DLBCL,19 FL Shipp et al. [25]
(5) Glioma 85 791 26 Grade III, 59 Grade IV Freije et al. [24]
(6) Lung Cancer 148 12533 15 MPM, 134 ADCA Gordon et al. [54]
(7) Lung Cancer-Michigan 96 7129 86 Tumor, 10 Normal Beer et al. [26]
(8) Ovarian Cancer 253 15154 162 Tumor, 91 Normal Petricoin et al. [19]
(9) Prostate Cancer 34 12600 25 Tumor, 9 Normal Singh et al. [17]
(10) Types of DLBCL 47 4026 24 Germinal, 23 Activated Alizadeh et al. [8]
(11) Acute Lymphoblastic
Leukemia

58 12558 6 BCR-ABL, 9 E2A-PBX1, 6
MLL, 22 Hyperdiploid > 50, 15
T-ALL

Yeoh et al. [32]
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