
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Computing Execution Times with eXecution
Decision Diagrams in the Presence

of Out-Of-Order Resources
Zhenyu Bai, Hugues Cassé, Thomas Carle, Christine Rochange

IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3
118 route de Narbonne 31062 Toulouse, France

Email: firstname.surname@irit.fr

Abstract—Worst-Case Execution Time (WCET) is a key com-
ponent for the verification of critical real-time applications.
Yet, even the simplest microprocessors implement pipelines with
concurrently-accessed resources, such as the memory bus shared
by fetch and memory stages. Although their in-order pipelines
are, by nature, very deterministic, the bus can cause out-of-order
accesses to the memory and, therefore, timing anomalies: local
timing effects that can have global effects but that cannot be
easily composed to estimate the global WCET. To cope with
this situation, WCET analyses have to generate important over-
estimations in order to preserve safety of the computed times or
have to explicitly track all possible executions. In the latter case,
the presence of out-of-order behavior leads to a combinatorial
blowup of the number of pipeline states for which efficient
state abstractions are difficult to design. This paper proposes
instead a compact and exact representation of the timings in
the pipeline, using eXecution Decision Diagram (XDD) [1]. We
show how XDD can be used to model pipeline states all along
the execution paths by leveraging the algebraic properties of
XDD. This computational model allows to compute the exact
temporal behavior at control flow graph level and is amenable to
efficiently and precisely support WCET calculation in presence of
out-of-order bus accesses. This model is finally experimented on
the TACLe benchmark suite and we observe good performance
making this approach appropriate for industrial applications.

Index Terms—real-time, WCET, static analysis, pipeline

I. INTRODUCTION

The correct behavior of hard real-time systems depends
not only on its functional behavior but also on its temporal
behavior. The latter is guaranteed by the scheduling analysis of
the tasks composing the system, which relies on the estimation
of their Worst-Case Execution Time (WCET).

With modern processors, the execution time of a code
snippet is difficult to determine. For instance, on a proces-
sor equipped with cache memories, the latency of memory
accesses is variable: it depends on whether the access results
in a Cache Miss or a Cache Hit. Although the latency of
memory access it-self is statically known (i.e. the latency
in case of a Miss), it cannot be easily accounted when
computing the execution time. The presence, in modern micro-
architectures, of pipelined and superscalar execution and other
mechanisms to favor instruction-level parallelism achieving
high performance causes a large variability in the execution
times and makes the WCET analysis to suffer from timing
anomalies [2]–[5]. Briefly, timing anomalies state that the

WCET analysis cannot assert a local worst case with a constant
worst case temporal effect. Illustrated on the case of cache
accesses, this means that Cache Miss (longer access) cannot
be asserted to be the global worst case and no constant worst
time contribution to the global WCET can be determined [6],
[7].

Unless the target processor is proved to be timing-anomalies
free, a safe and precise WCET analysis has to capture them
by precisely tracking the execution states of the micro-
architecture. Hence the WCET computation is generally de-
composed into two parts [8]. Firstly, global analyses, inde-
pendent from pipeline’s structure, are performed: they typi-
cally encompass cache and branch-prediction analyses, which
determine the behavior of these mechanisms at instruction
level. Secondly, the pipeline analysis uses the information
provided by global analyses to determine how instructions are
executed through the pipeline, and to determine the (worst-
case) execution times of instruction sequences.

In [1], Bai et al. show that the eXecution Decision Diagram
(XDD) is good data structure to record times in pipeline
analysis. An XDD can be deemed as a lossless compression of
the relationship between the execution time of an instruction
sequence and the combination of the occurrence of timing
variations. By implanting XDD into the pipeline model based
on the Execution Graph (XG), they have achieved exact and
efficient pipeline analysis on sequentially executed instructions
in in-order pipelines. In this [1], the pipeline analysis is
designed to consider Basic Blocks (BB) of program inde-
pendently by calculating their worst-case execution context.
However, with the presence of out-of-order resources like
shared buses, the conservative use of a worst-case context does
not hold any more. We need to precisely track the possible
execution contexts in order to evaluate how the concurrent
accesses to the bus are interlaced. The pipeline analysis has to
analyze the micro-architecture states on the whole of program
i.e. at Control-Flow Graph (CFG) level.

a) Contribution: This paper shows (a) how we adapt
the original graph based pipeline model proposed in [1] into
a data-flow analysis applied at CFG level which computes
exactly all possible temporal pipeline states; (b) how, by
leveraging the algebraic properties of XDD, we construct an
efficient computational model of our analysis; and (c) how we
exploit the precise pipeline states produced by this computa-

ar
X

iv
:2

20
7.

07
48

1v
1

 [
ee

ss
.S

Y
]

 1
5

Ju
l 2

02
2

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

tional model to support a typical out-of-order resource: the
shared memory bus between instruction cache and data cache
to access the main memory.

b) Outline: Section II presents the background knowl-
edge about the XG model and XDD. In section III, we
extend the original model of XG with XDD to a resource-
based model which is able to express the state of pipeline
with a vector. Later in this section, we show how to leverage
the algebraic properties of XDD in order to ameliorate the
performance of the analysis. In section IV, we show how to
build the complete analysis at CFG level. Section V extends
our model to support the shared memory bus. Experimentation
in section VI demonstrates the efficiency of our analysis
on realistic benchmarks. Several metrics are examined and
discussed. Related works are presented in section VII and we
conclude in Section VIII.

II. BACKGROUND

As the analyzed program has several execution paths and
possibly loops, it is impossible to track all the possible
execution traces. The static WCET analysis approach we use in
this paper models the whole program as a CFG, then computes
the WCET of each BB and determines the WCET using the
Implicit Path Enumeration Techniques (IPET) [9]. Thus, the
pipeline analysis aims to determine the execution time of each
BB, for example, using Execution Graphs.

A. Execution Graphs

An eXecution Graph (XG) [10], [11] models the temporal
behavior of an instruction sequence (like a BB) executed in
the pipeline. The key idea of XG is to model the temporal
behavior by considering the dependencies arising between
instructions during their execution in the pipeline stages.
For example, an instruction have to exit a pipeline stage to
start its execution in the next stage, an instruction have to read
a register after another instruction has written this register,
etc. This results in a dependency graph: a vertex represents
the progress of an instruction in a pipeline stage; the edges
represent the precedence relationships between these vertices.
Formally, let I be the set of machines instructions, and let XG
be a Directed Acyclic Graph (DAG) GXG = 〈VXG, EXG〉
built for an instruction sequence Seq ∈ I∗ s.t.
• VXG is the set of vertices defined by VXG =
{[Ii/s] | Ii ∈ Seq ∧ s ∈ P}, with P the set of pipeline
stages.

• EXG ⊂ VXG× VXG, the set of edges, is built according
to the dependencies in the considered pipeline.

In addition, an XG is decorated with temporal information:
• λv ∈ N is the latency of the XG vertex v, that is, the

time spent in this vertex.
• δv→w ∈ {0, 1} represents the effect of dependencies of

the edge v → w ∈ EXG. If δv→w = 1 (solid), w starts
after the end of v; if δv→w = 0 (dotted), w can start at
the same time or after the start of v.

Examples in this paper consider a 5-stages (FE – fetch,
DE – decode, EX – execute, ME – memory, WB – write-
back), in-order, 2-scalar pipeline but the presented algorithms

FE DE EX ME WB
(I0) add r3, r0, #4

(I1) add r1, r0, r1, lsl #2

(I2) ldr r2, [r3]

(I3) cmp r2, ip

(I4) ldrgt ip, [r3]

(I5) add r3, r3, #4

Fig. 1: XG model of an instruction sequence.

are not limited to this configuration. Figure 1 shows the XG
for this pipeline and for the sequence of instructions on the left.
The vertices correspond to the use of a stage (column headers)
by an instruction (row headers) through the pipeline. The edges
are generated according to the following dependencies:
• The horizontal solid edges model the Pipeline Order:

an instruction goes through the pipeline in the order of
stages.

• The vertical dotted edges model the parallel execution of
instructions in the super-scalar stages (Program Order).

• The vertical solid bent edges model the capacity limit of
the stages – 2 instructions per cycle (Capacity Order).

• The slanted dotted edges model the capacity of FIFO
queues (2 instructions) between stages (Queue Capacity).

• The slanted solid edges model the Data Dependencies
between instructions when an instruction reads a register
written by a prior instruction.

The set of dependency edges shown above are typical for in-
order pipelines. Depending on a particular pipeline design,
rules to build the edges may be added or removed to account
for specific features.

Using an XG, the start time of an instruction in a stage
ρw is computed as the earliest time at which all incoming
dependencies are satisfied and the end time ρ∗w as ρw increased
by the time passed by the instruction in the stage:

ρw = max
v→w∈EXG

ρv + δv→w × λv (1)

ρ∗w = ρw + λv (2)

The execution time of the instruction sequence is obtained
by calculating the start time of each vertex following a topo-
logical order in the XG. Since the pipeline is in-order (all
resources are allocated in program order), the instruction
timing only depends on prior instructions meaning that, at
least, one topological order exists. In in-order processors,
this order is implied by the combination of the Pipeline
Order (horizontal edges) and of the Capacity Order (vertical
edges). It is highlighted in the example XG of Figure 1 by
the light gray arrow in the background.

The computation of time in XG is fast and efficient
but, as soon as the pipeline produces variable times (like
Cache Hits/Misses), to be precise, the computation has to
be performed for each combination of these times, causing
a computation complexity blowup. Yet, the data structure
presented in the next section alleviates this issue.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

B. Execution Decision Diagram

The eXecution Decision Diagram (XDD) is inspired from
the Binary Decision Diagram (BDD) [12], [13] and its Multi-
Terminal BDD (MTBDD) variant [14]. An XDD is a DAG
that is recursively defined as:

Definition II.1.

XDD = LEAF(k) | NODE(e, f , f) (3)

The Boolean variables e ∈ E in the nodes are called events:
they model the uncertainty in the analysis regarding the micro-
architecture state and its impact on the time e.g. whether a
particular cache access results in a Hit or in a Miss. The sub-
trees f, f ∈ XDD represent, respectively, the situations where
the event e happens or not. The leaves of XDDs stores the
execution times k ∈ Z# = Z ∪ {+∞,−∞}.

As in OBDDs [13], XDDs deploy hash consing techniques
to guarantee the unicity of the sub-trees instances and to speed
up the calculations. Thus, identical sub-trees share the same
instance in memory. This compression allows the XDDs to
represent efficiently the relationship between the combina-
tions of events (called configurations) and the corresponding
execution times. A configuration γ ∈ Γ is the combination
of activation or inactivation of events – Γ = ℘(E), and
corresponds to a path from the root node to a leaf in the XDD
DAG.

When the events are taken into account, the actual time
for each vertex is represented by a map between the event
configurations and the corresponding times (i.e. in the domain
Γ→ Z#) which size is combinatorial with respect to the num-
ber of events and thus is costly in computation time. XDDs
efficiently solve this problem by factorizing identical sub-
trees. In [1], it has been shown that the subtree factorization
frequently occurs in realistic benchmarks which largely speeds
up the analysis. Yet, an isomorphism between XDD and
Γ → Z# exists: XDD

α
↼−−⇁
β

(Γ → Z#). This means that

XDD can be deemed as a lossless compression of the map
(Γ → Z#). In the remainder of the paper, we note f [γ] (for
f ∈ XDD or f ∈ Γ → Z#) the time corresponding to the
configuration γ in f .

Figure 2a shows an example of XDD with 8 possible
configurations: right edges of a node e represent the activation
of event e and the left ones the non-activation. The original
map between configuration and the execution time is shown in
the figure 2b on the right (IC and DC represent, respectively,
the instruction and data cache events, over-line bar denotes
inactive events).

[1] has shown that any binary operation � on Z# used
in (Γ → Z#) can be transferred in the XDD domain in an
equivalent operation � such that performing the operation in
XDD domain is lossless:

∀s1, s2 ∈ (Γ→ Z#)2,∀γ ∈ Γ,

s1[γ]� s2[γ] = (α(s1) � α(s2))[γ]
(4)

With α the morphism from (Γ→ Z#) to XDD.

DC2

IC1

IC0 24 IC0

7 16 25

(a) Example XDD

Configuration time
IC0, IC1, DC2 25
IC0, IC1, DC2 25
IC0, IC1, DC2 16
IC0, IC1, DC2 16
IC0, IC1, DC2 24
IC0, IC1, DC2 24
IC0, IC1, DC2 16
IC0, IC1, DC2 7

(b) Explicit representation
DC2

IC1 IC0

3 5 4 6

⊕
DC2

4 7

=

DC2

IC1

4 5

7

(c) Example of ⊕
Fig. 2: Example of XDDs

The implementation of this operation is detailed in [1].
Shortly, � combines the XDD operands along the sub-trees
and applies � when leaves need to be combined. As the
operations used in XG analysis are max and + (Eq. 1), the
equivalent operations on XDDs are, respectively ⊕ and ⊗:

∀s1, s2 ∈ (Γ→ Z#)2,∀γ ∈ Γ,

s1[γ] + s2[γ] = (α(s1)⊗ α(s2))[γ]

max(s1[γ], s2[γ]) = (α(s1)⊕ α(s2))[γ]

(5)

The work of ⊕ and its ability to reduce the size of XDDs
is illustrated in the example of Figure 2c.

The isomorphism guarantees that using XDD to perform the
XG analysis is precise by following the dependency resolution
rule (Equation 1) and following the proposed topological
order. By exploiting the properties of XDDs, the next section
proposes a new paradigm of BB time calculation to support
the pipeline analysis at the CFG level and of out-of-order
accesses to the bus.

III. RESOURCE BASED MODEL

The usual approach – consisting in building and solving
an XG for each BB on its own, is no more sustainable
when out-of-order bus accesses have to be supported. Indeed,
the bus access interactions can span over BB bounds while
XGs for whole execution paths are inconvenient to build and
the number of execution paths is intractable.

This section proposes to solve this issue by turning the
original XG model into a state machine model where the
pipeline analysis is performed by applying transitions on
the pipeline states. Moreover, by leveraging the algebraic
property of XDD, we improve the computational model by
implementing the transitions as matrices multiplications. The
matrices can be pre-computed before the pipeline analysis.

A. Temporal State

The dependencies d ∈ D in the XG model the uses and
releases of resources e.g. stages, queues etc. For instance, in
our 5-stage in-order pipeline, determining the start time of an
instruction Ii ∈ I in stage DE requires:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Program Order Capacity Order Pipeline Order Queue Capacity
ρ[Ii−1/DE] ρ∗

[Ii−2/DE]
ρ∗
[Ii−1/DE]

ρ∗
[Ii/FE]

ρ[Ii−2/EX] ρ[Ii−1/EX]

TABLE I: Necessary information determining the start time of any Ii in the DE stage.

• the start time of the previous instruction in the DE stage:
ρ[Ii−1/DE] (Program Order),

• the end time of the second last instruction in the DE
stage: ρ∗[Ii−2/DE] (Capacity Order),

• the end time of Ii in the FE stage: ρ∗[Ii/FE] (Pipeline
Order),

• the start time of the second last instruction in the EX
stage: ρ[Ii−2/EX] (Queue Capacity).

Where Ii−n represents the nth previous instruction. ρ[Ii/s] and
ρ∗[Ii/s] respectively stand for the start and the end time of the
[Ii/s] vertex. The actual start time of Ii in DE is the earliest
date at which all dependencies are satisfied:

ρ[Ii/DE] = ρ[Ii−1/DE] ⊕ ρ∗[Ii−2/DE]

⊕ ρ∗[Ii/FE] ⊕ ρ[Ii−2/EX]

ρ∗[Ii−2/DE] = ρ[Ii−2/DE] ⊗ λ[Ii−2/DE]

ρ∗[Ii/FE] = ρ[Ii/FE] ⊗ λ[Ii/FE]

This corresponds to the computation of Equation 1 extended to
the XDD domain: we use ⊕ instead of max and ⊗ instead of
+. As in the integer case, each computation requires the results
of the computations of previous instructions (e.g. ρ[Ii/DE]

requires ρ[Ii−1/DE] and ρ∗[Ii−2/DE]) which correspond to the
release time of the concerned resources.

Table I sums up the dependency information required to
compute the start time of any instruction Ii in the DE
stage. The necessary information may differ depending on
the pipeline architecture, but an important point is that any
architecture that can be described in the XG model can also
be expressed as a vector of XDDs as Table I.

In the same fashion, such a vector can be built for each
instruction and for each stage of the pipeline. Table II shows
the complete dependency information to be maintained for all
stages of the example pipeline: each line represents a stage
and each column represents a dependency on a resource to
be satisfied to start the stage execution. The symbol −∞ is
used when no dependency is required1. Ifetch, Iload, Istore
and IRi

are, respectively, the last instructions that fetched an
instruction block from memory, performed a load, a store and
wrote to register Ri (in stage sRi).

Finally, Table II sums up the set of dependencies an instruc-
tion has to satisfy considering all possible pipeline stage, i.e.
D. Grouped in an XDD vector, defined as S = XDD|D|, they
precisely represent the temporal state of the pipeline. For a
given stage s, a temporal state ~S ∈ S , and D[Ii/s] ⊂ D the
set of dependencies applicable to XG vertex [Ii/s], start and
end times can now be rewritten as:

ρ[Ii/s] =
⊕

d∈D[Ii/s]

~S[id] (6)

ρ∗[Ii/s] =ρ[Ii/s] ⊗ λ[Ii/s] (7)

1−∞ is convenient as it is neutral for the max operation.

Notice that the function δv→w is useful as its effect is
supported by the dependency on start or end time in ~S.

B. Pipeline Analysis with Temporal States

We now present how temporal states are updated during
the analysis to account for the execution of instructions in the
pipeline. To simplify the computations, we add a slot ρ at
index iρ into the state vector that records the current time all
along the analysis, which we call the time pointer.

Definition III.1. Following the principle of XG analysis,
the behavior of an instruction in a stage can be divided into
four steps.
• Step 1. Before being executed in the stage, the instruction

waits until all dependencies are satisfied (Eq. 6). To model
this behavior with the temporal state, the time pointer
is reset to 0 = LEAF (−∞) (Step 1.1). Then, each
dependency time is accumulated with ⊕ into the time
pointer (Step 1.2). At the end of Step 1, the time pointer
records the maximum release time of all dependencies
which is the actual start time for the analyzed XG vertex.
The transitions for the temporal state are defined with the
functions τreset and τwait:

τreset : S → S,

τreset(~S) = ~S′ |

{
~S′[i] = ~S[i]⊗ 0 if i = iρ
~S′[i] = ~S[i] otherwise

(8)

τwait : N× S → S,

τwait(x, ~S) = ~S′ |

{
~S′[i] = ~S[i]⊕ ~S[x] if i = iρ
~S′[i] = ~S[i] otherwise

(9)

τwait has to be called for each dependency (with index
x in the temporal state vector) of the current vertex.

• Step 2. Some resources are released at the start of an XG
vertex. The corresponding dependencies (e.g. Program
Order and Queue Capacity) have to be updated with the
start time ρ. This is done with τmove:

τmove : N× N× S → S,

τmove(idest, isrc, ~S) = ~S′ |

{
~S′[i] = ~S[isrc] if i = idest
~S′[i] = ~S[i] otherwise

(10)

τmove copies a vector element into another element and
overwrite the destination value. Updating the depen-
dency of single resource turns out to copy ρ into the
slot of the dependency: for example updating the start
time of a stage s ∈ Stages with index is consists
in τmove(is, iρ, ~S). The state of FIFO resources (like
queues) requires to update several temporal state slots
(i to i+ n− 1 with n the FIFO capacity) to express the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Prog. Order Capacity Order Pipeline Order Queue Capacity
FE ρ[Ii−1/FE] ρ∗

[Ii−1/FE]
ρ∗
[Ii−2/FE]

−∞ ρ[Ii−1/DE] ρ[Ii−2/DE]

DE ρ[Ii−1/DE] ρ∗
[Ii−1/DE]

ρ∗
[Ii−2/DE]

ρ∗
[Ii/FE]

ρ[Ii−1/EX] ρ[Ii−2/EX]

EX ρ[Ii−1/EX] ρ∗
[Ii−1/EX]

ρ∗
[Ii−2/EX]

ρ∗
[Ii/DE]

ρ[Ii−1/ME] ρ[Ii−2/ME]

ME ρ[Ii−1/CM] ρ∗
[Ii−1/ME]

ρ∗
[Ii−2/ME]

ρ∗
[Ii/EX]

ρ[Ii−1/CM] ρ[Ii−2/CM]

CM ρ[Ii−1/ME] ρ∗
[Ii−1/CM]

ρ∗
[Ii−2/CM]

ρ∗
[Ii/ME]

−∞ −∞
Fetch Order Memory Order Data Dependencies

FE ρ∗
[Ifetch/FE]

−∞ −∞
DE −∞ −∞ −∞
EX −∞ −∞ ρ∗

[IR0/sR0]
ρ∗
[IR0/sR1]

...

ME −∞ ρ∗
[Iload/ME

ρ∗
[Istore/ME]

ρ∗
[IR0/sR0]

ρ∗
[IR1/sR1]

...

CM −∞ −∞ −∞
TABLE II: The temporal state.

shift of the n last FIFO uses. Hence FIFO resources are
updated by a series of τmove on the n FIFO slots in the
temporal state and by setting the first slot to ρ, the use
time for the first FIFO element:

∀j ∈ [i, i+ n− 2], τmove(j + 1, j, ~S);

τmove(i, iρ, ~S);

• Step 3. The started instruction spends λ[Ii/s] cycles in the
stage.

τconsume : N× S → S,

τconsume(λ[Ii/s],
~S) = ~S′|

{
~S′[i] = ~S[i]⊗ λ[Ii/s] if i = iρ
~S′[i] = ~S[i] otherwise

(11)

• Step 4. The instruction finishes its execution and the
dependencies recording the end time of the current vertex
are updated. The τmove operation of Step 2 is used.

As in the original XG resolution model, the computational
model with temporal states has to follow the topological order
so that the times recorded in the XDD vector refer to the cor-
rect timing of resources. In other words, if the state is correctly
updated according to the rules stated above, the resource-based
model is equivalent to the original XG analysis but expressed
in state machine fashion. The implementation using XDDs
extends the model to consider all possible cases according to
the timing variations without any loss. The BB analysis is
consequently exact with respect to the XG pipeline model.

C. The computational model

An important property of XDD domain is that, equipped
with ⊕ and ⊗, it forms the semiring 〈XDD,⊕,⊗, 0, 1〉 with
0 = LEAF (−∞) and 1 = LEAF (0). As the functions τ
are affine in this domain, their application can be expressed as
matrix multiplications. By combining and pre-computing these
matrices, they will help to speed up the pipeline analysis at
CFG level as some BBs need to be recomputed several times
in different execution contexts.

Scalar and matrix multiplication on XDD semiring is simi-
lar to the linear algebra over R by replacing + by ⊕, × by ⊗:

Definition III.2. The scalar multiplication is defined by:

· : XDDN × XDDN → XDD,

[f0, f1, ..., fN−1] · [f ′0, f ′1, ..., f ′N−1] =
⊕

0≤i≤N−1

fi ⊗ f ′i

Definition III.3. The matrix multiplication is defined by:

· : XDDN×M × XDDM×L → XDDN×L,

B · C =

 Ai,j

 |Ai,j =
⊕

1≤k≤M

Bi,k ⊗ Ck,j

Definition III.4. The identity matrix Id on XDD semiring is
defined by:

Id =

 Ai,j

 |Ai,j =

{
1 if i = j

0 otherwise

Notice that, by definition, ~S ·Id = ~S: any matrix column at
index i composed of 0 except with a 1 in the row i maintains
unchanged the value of ~S[i] in the resulting vector. To im-
plement the transitions functions τ as matrix multiplications,
the matrix Id is taken as a basis and only the cells that have
an effect on the vector have to be changed

1) A 0 on the diagonal of the Id matrix at the timer pointer
position resets it: ~S[iρ]⊗ 0 = 0:

τreset(~S) = ~S ·Mreset

= ~S ·

 Ai,j

 |Ai,j =

{
0 if i = j = iρ

Idi,j otherwise

(12)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

2) For a given slot at index x in ~S, τwait(x, ~S) is represented
by a matrix Mwait(x) with a 1 at position (x, iρ) resulting
in the operation ρ⊕ (1⊗ ~S[x]):

τwait(x, ~S) = ~S ·Mwait(x)

= ~S ·

 Aij

 |Aij =

{
1 if i = iρ ∧ j = x

Idij otherwise

(13)

3) τmove(isrc, idest, ~S) is represented by a matrix
Mmove(isrc,idest) where the element at (idest, idest) is set
to 0 and the element (idest, isrc) to 1 s.t. element idest in
the result becomes (0⊗~S[idest])⊕(1⊗~S[isrc]) = ~S[isrc].

τmove(isrc, idest, ~S) = ~S ·Mmove(isrc,idest)

= ~S ·

 Aij

 |Aij =


0 if i = j = idest

1 if i = isrc ∧ j = idest

Idi,j otherwise
(14)

4) For a given latency λ, τconsume(λ, ~S) can be represented
by a matrix Mconsume(λ), obtained from Id by putting λ
at position (iρ, iρ).

τconsume(λ, ~S) = ~S ·Mλ
consume

= ~S ·

 Aij

 |Aij =

{
λ if i = j = iρ

Idi,j otherwise

(15)

Theorem III.1. Each applied transition function τ to the
timing vector is a linear map from S to S

Proof. Direct since we have already given the matrix repre-
sentation of each transition in Definition III.4.

Consequently, the operation performed at each step is
also linear because they are combination of τ functions.
Their matrix representation is simply the multiplication of each
invoked τ . For example,

MStep1[Ii/s] = Mreset ·
∏

d∈D[Ii/s]

Mwait(id)

With D[Ii/s] the set of dependencies required by [Ii/s] and id
the index of resource d in the state vector.

Similarly, we can express MStep2[Ii/s],MStep3[Ii/s] and
MStep4[Ii/s] by invoking the corresponding τ functions.
As each step is linear, the operation when analyzing one in-
struction on a stage is also linear because it is the combination
of the 4 steps.

M[Ii/s] = MStep1[Ii/s] ·MStep2[Ii/s] ·MStep3[Ii/s] ·MStep4[Ii/s]

Finally, the whole analysis of a BB a ∈ V is composed by
the analysis of each instruction on each stage:

Ma =
∏
Ii∈a

∏
s∈P

M[Ii/s]

With a matrix as Ma, it is easy and fast to compute the
output temporal state ~S′ ∈ S corresponding to an input
temporal state ~S ∈ S for a BB a:

~S′ = ~S ·Ma (16)

IV. PIPELINE ANALYSIS ON THE CFG

This section extends the temporal state computational
model, presented in the previous section, to the complete
analysis of the CFG. It consists, mainly, in tracking the explicit
set of possible temporal states for each BB all over the CFG
execution paths.

A. Computing the context with Rebasing operation

So far, the temporal state contains times relative to the
start of a BB. As the analysis on CFG starts from the entry
point of the program, the recorded times are execution times
relative to the start of the program and the temporal states
have to be tracked for all possible execution paths. This
is generally infeasible because of the number of execution
paths and especially because of the presence loops. In fact,
the main reason to compute exact temporal states at CFG
level is to determine bus accesses timings but these timings
does not need to be absolute with respect to the start of the
program. Instead, the times can be relative to different time
bases arbitrarily chosen, while, to preserve the soudness of the
computation, XDDs with different bases are not mixed. We
call this operation rebasing.

Rebasing a state is changing the origin of the timeline of
the times it contains. For now, the temporal state at the end
of a BB a represents the delay induced by the execution of
a to the start of following BB b. Considering that a new
time base T ∈ XDD is the start of b, we can get a new
temporal state relative to T by subtracting T from the times
in the temporal state in the base of a. The outcome is a
temporal state containing XDDs with positive or negative
times relative to T . The relationship between times and events
in the temporal state is preserved. The subtraction in XDDs
� is built in the usual way from − operator (Eq. 4).

Rebasing a temporal state is lossless simply because � is
reversible. By adding T (with ⊕), one can find back the state
before rebasing. Rebasing is very helpful to reduce the size of
XDDs in the temporal state: an event removed by rebasing
has no effect on the following BBs but it does not mean it
has no effect. In fact, its contribution to the overall WCET is
simply linear with respect to the number of occurrences of the
BB. Intuitively, the execution of an instruction depends on the
execution of nearby instructions and thus, the effect of events
is rather short term and it is often eliminated by rebasing.

B. Events Generation within loops

The events calculated by global analyses are linked to a
particular instruction. The pipeline analysis of a BB presented
so far deems the occurrence of events unique. This is not true
when an event arises in a BB contained in a loop as it may
occur or not in different iterations. We would get unsound
timings if we denotes these different event occurrence with
the same event node in the XDD. To fix this, a generation
number is associated with each event. To prevent temporal
state blowup, this generation number is relative to the current
iteration and is incremented in the current temporal state each
time the analysis restarts the loop. The generation number thus

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

distinguishes the events in different iterations. However, this
method does not result in an endless increase of generation
because (a) the effect of events is often bound in the time and
(b) the WCET calculation requires to bound the loop iterations.

C. The CFG pipeline analysis

Finally, the complete pipeline analysis is designed like
a classical data-flow analysis with a work list. Each BB is
associated with a set of input temporal states and a set of
output temporal states (initially empty). The analysis starts
with an initial temporal state at the entry of the CFG and
propagates the new states all along the CFG paths. For each
entry edge of a BB, the input state set is the union of the output
states of the preceding BBs. Each input state is updated by
multiplying it with the pre-computed matrix and is rebased
to make a new output state. If the set of the output states
differs from the original set, the successors of the current BB
are pushed into the work list. The process is repeated until
finding a fix-point on all sets of input/output states.

This process may be subject to state explosion blow-up
caused either by the control flow or by the timing variations
i.e. the events. Using XDD, the variability caused by events is
efficiently recorded without any loss thanks to its compaction
property. Besides, the analysis at CFG level collects the set of
all possible pipeline states meaning it is also lossless according
to the the variability caused by the control-flow. In turn, this
means that the resulting set of vectors of XDDs contains
sufficient information to determine the exact temporal behavior
of each BB in all possible situations.

V. MODELING THE SHARED MEMORY BUS

A frequent design in embedded microprocessors is to have
the instruction and data caches sharing a common bus to the
memory (or to a shared L2 cache). So far, our pipeline analysis
required the target processor to be in-order to ensure a correct
evaluation order but a shared memory bus introduces an out-
of-order behavior that raises a new difficulty: the variability
created by events in the start times of FE and ME stages
may change the access order to the shared bus. As XG
dependencies are not expressive enough to model out-of-order
bus allocations, this section proposes an extension to the
pipeline analysis to manage efficiently the shared bus accesses
according to the different configurations of the temporal states.
It supports the usual bus arbitration policy: first-come-first-
served, with the priority given to the ME stage in case of
synchronous bus accesses.

A. Bus scheduling topology

Since we consider an in-order pipeline, the number of
possible contention scenarios on the shared bus is limited.
For instance, an instruction using the bus in the ME stage
cannot contend with any subsequent instructions in the ME
stage (load/store memory order is preserved). In the same
fashion, the bus accesses by FE stage are performed following
the Program Order. Moreover, the Pipeline Order ensures that
a request emitted by an instruction in the FE stage acquires the

bus before a request emitted by the same instruction in the ME
stage. This means that the bus allocation in an in-order pipeline
is almost completely in-order, with only one exception: the bus
usage in the ME stage by an instruction denoted ME0 may
be delayed by a bus request in the FE stage by a subsequent
instruction denoted FEi|i>0. To simplify the notation in this
section, ME0 and FEi|i>0 denotes as well the instructions
as the XG vertices in their respective stage. The instructions
in-between are disregarded but are still accounted for in the
update matrices for the temporal states.

To sum up, FEi can delay ME0 only if FEi is ready
to enter FE stage before ME0 is ready. In the XG model,
this situation can only happen when FEi does not depend on
ME0, that is, when there is no path from ME0 to FEi 2.

In the example of Table III, we consider that ME0 can
only be delayed by FE1, FE2 and FE3. For a particular
configuration of events, there are four possible schedules
that are shown in the first column of the table. These four
schedules correspond to the four possible ways to interleave
ME0 with FEi accesses. The actual schedule is determined
by comparing the ready time of ME0 (ρME0

) with the ones of
FE1, FE2 and FE3 (resp. ρFE1 , ρFE2 and ρFE3): the center
column shows the condition corresponding to each schedule.
The third column gives the actual time at which ME0 gets
the bus with λBUS denoting the latency to access to the bus
(including the memory transaction): if ME0 is the first to be
ready, then it gets the bus at time ρME0

. Otherwise, ME0 gets
the bus at the maximum time between its ready time and the
release time of the FEi contender that get the bus before.

B. Batch bus scheduling with XDD

Table III shows the schedule of ME0 for a fixed configura-
tion. Yet, the times are recorded with XDDs and a particular
XDD may support configurations with different schedules.
Figure 3 shows how the bus contention scheduling presented in
the previous paragraph is extended to XDDs. Let us consider
a lightly simpler scenario: ME0 may be delayed by FE1 and
FE2. The instruction memory access at FE1 may experiment
instruction cache Hits or Misses represented by event ic1. The
access at FE2 is classified as Always Miss, meaning that it
always requests the bus. The latency of bus access is 9 cycles.

XDD (a) shows the ready time of ME0 and (b) the initial
value of ρ̂ME0

, the scheduling time of ME0 on the bus (+∞
means that no access is yet scheduled). (c) shows the initial
value of ρrel, recording the release time of the bus by FEi
(−∞ denotes that the bus is not used by any FEi for now).

The ready time of FE1 (d) is computed from the initial
state ~S0 and the matrix between ME0 and FE1. The event
ic1 indicates with −∞ the configuration where FE1 does not
use the bus (hence it is not concerned by the contention).
ρME0 (a) and ρFE1 (d) are compared using JME to

get the configurations and the time – ρschedME0 (e) where
ME0 takes the bus, i.e. is scheduled, before FE1 (JME is
formally defined in Eq. 17). Other configurations are assigned
+∞ denoting they are not processed yet. Notice that −∞

2The occurrence of such situations is limited by the size of the inter-stage
queues in the pipeline.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Schedule Condition Scheduling time of ME0

ME0, FE1, FE2, FE3 ρME0
≤ ρFE1

ρME0

FE1,ME0, FE2, FE3 ρFE1
< ρME0

≤ ρFE2
max(ρFE1

+ λBUS , ρME0
)

FE1, FE2,ME0, FE3 ρFE2 < ρME0 ≤ ρFE3 max(ρFE2 + λBUS , ρME0)
FE1, FE2, FE3,ME0 ρFE3 < ρME0 max(ρFE3 + λBUS , ρME0)

TABLE III: Possible schedules of ME0 with subsequent FEs.

ρSi

ρschedME0
=

(ρME0
JME ρFEi

)
⊕ρrel

ρ̂ME0
=

ρ̂ME0
	 ρschedME0

ρschedFEi =
ρFEi

JFE ρME0

ρrel ρ̂FEi

ME0

FE1

FE2

e0

e1

1 3
15

(a)
+∞

(b)
−∞

(c)

ic1

−∞ 2

(d) ic1

e0

e1

1 ∞

(e)
ic1

e0

e1

1 ∞

(f)
ic1

e0

e1

∞

−∞

2

(g)
ic1

e0

e1

∞

−∞

11

(h)
ic1

e0

e1

10

−∞

2

(i)

ic1

e0

e13

19 11

(j)
ic1

e0 e0

e1e1

1 3 11∞

(k)
ic1

e0 e0

e1 e1

1 3 11

∞

(l)

ic1

e0 e0

113∞

(m)
ic1

e0 e0

∞ 12 20

(n) ic1

e0 e0

11
e1 e1

12

3

10 20

(o)

Fig. 3: Batch bus scheduling with XDDs.

configurations in ρFEi
does not allow ME0 to be scheduled

as subsequent FEj>i might allocate the bus before ME0.
ρschedME0

is then used to update ρ̂ME0
using the minimum

operator 	 (f).
ρschedFE1

(g), the configurations where FE1 gets the bus
is computed in a similar way as ρschedME0

but with operator
JFE that selects the configurations of FE with the strict
< comparison instead of ≤ because ME stage has priority
over FE stage. By adding the latency of the bus (λBUS)
to ρschedFE1

, we are able to update, using ⊕, the release
time of the bus after FE1 – ρrel (h). Finally, we compute
the actual schedule of FE1 – ρ̂FE1 (i) which is the time of
ρschedFE1 if FE1 is scheduled, otherwise the release time
of the bus by ME0 (ρ̂ME0

⊗ λBUS). Now, as the actual
schedule of FE1 is known, the release time of the bus at
FE1 is computed and is used to adjust the temporal state.
By multiplying the state ~SFE1

by the matrix MFE1−FE2
, we

get the ready time of FE2 (j). In the second iteration, first,
ρME0 (a) is compared with ρFE2 (j) with the operator JME .
The actual scheduling time ρschedME0

(k) is computed by
considering the maximum between ρschedME0

and the release
time of the bus by FE1 (ρrel) according to the third column of
Table III. Then, ρ̂ME0 is updated (l). The schedule of FE2 –
ρschedFE2 (m) is computed with the operator JFE applied to
ρFE2

and ρME0
which is then used to update the release time

of the bus ρrel (n). The actual schedule of FE2 is computed
with respect to the use of the bus by ME0 (o).

When the end of the sequence is reached, there are no
further subsequent instructions that may contend with ME0

and the remaining +∞ in ρ̂ME0
represents configurations

accessing the bus after FE1 and FE2. They are replaced by
the maximum between the ready time of ME0 and the release
times of the bus by FE1 and FE2, ρrel.

Operators JME and JFE have a straight-forward defini-
tions setting to +∞ the configurations where ME, respec-
tively FE, does not get the bus:

∀fME , fFE ∈ XDD2,∀γ ∈ Γ,

(fME JME fFE)[γ] =

{
fME [γ] if fME [γ] ≤ fFE [γ],

+∞ otherwise

(fFE JFE fME)[γ] =

{
fFE [γ] if fFE [γ] < fME [γ],

+∞ otherwise
(17)

All these calculations seems a bit complex but it must be
kept in mind that real XDDs are much more complex with
much more configurations and relying on the XDD operators
allows to benefit from the XDDs optimizations.

C. Contention Analysis

The contention analysis depicted in the preceding example
is described more formally in this paragraph. Basically, the
pipeline analysis is extended by splitting a BB at contention
points, the XG node where a bus access may occur i.e. ME
or FE stages causing cache misses. Then they are grouped in
a sequence of one ME access followed by zero or several
FE accesses, (ME0, FE0<i≤n). The instructions between
contention points are summarized by a pre-computed matrix.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Algorithm 1 is then applied to compute the possible inter-
leaving of bus accesses for all configurations of the sequence
(ME0, FE0<i≤n). Additionally, it takes as input the temporal
state ~S0. The result is the definitive schedule of ME0 – ρ̂ME0

and of FEi – ρ̂FEi .

Algorithm 1: Contention computation.

Input: ~S0 ∈ S, (ME0, FE1≤i≤n)
Output: (ρ̂ME0 , ρ̂FE1≤i≤n

)
1 ρ̂ME0

= LEAF(+∞)
2 ρrel := LEAF(−∞)

3 ~SFE1
:= ~SME0

·MME0−FE1

4 i := 1;

5 ρME0
:= ~S0[iρ]

6 while i ≤ n ∧ (∃γ ∈ Γ ∧ ρ̂ME0
[γ] = +∞) do

7 if FEi.mustUseBus() then
8 ρFEi

:= ~SFEi
[iFE]

9 else
10 ρFEi := ~SFEi [iFE]⊗ NODE(ici,−∞, 0)

11 ρschedME0
:= (ρME0

JME ρFEi
)⊕ ρrel

12 ρ̂ME0
:= ρ̂ME0

	 ρsched
13 ρschedFEi

:= ρFEi
JFE ρME0

14 ρrel := ρrel ⊕ (ρschedFEi
⊗ λBUS)

15 ρ̂FEi
:= ρschedFEi

	 (ρ̂ME0
⊗ λME0

)

16 ~SFEi+1 :=

(~SFEi
⊕ [0, ..., 0, ρ̂FEi

⊗ λBUS]) ·MFEi−FEi+1

17 i = i+ 1

18 ρ̂ME0 := ρ̂ME0 	 (ρrel ⊕ ρME0)

Initially, ME0 is considered as not scheduled whatever the
considered configuration and ρ̂ME0 is set to LEAF (+∞)
(line 1). It will then be updated after considering the contention
with each subsequent FEi. When ME0 does not contain +∞
anymore or when all FEi has been processed, ME0 schedule
is complete (condition at line 6). Line 2 initializes ρrel that
records the release time of the bus by FEi to −∞ as no FEi
has been processed yet.

In line 3, the temporal state just before FE1 is computed
by applying the matrix MME0−FE1

to the initial state ~S0;
i is initialized in line 4 and will range over the Contention
Points, 1 to n. The ready time of ME0 is recorded into ρME0

at line 5. Lines 7-10 compute the ready time of FEi if the
access results always or sometimes in a Miss (according to
mustUseBus()). The latter case is expressed by the event ici
and by adding the NODE(ici,−∞, 0) to ρFEi

: −∞ denotes
the case where ici does not arise and there is no bus access.
ρschedME0

, ME0 configurations getting the bus before
FEi, is computed with JME at line 11 by comparing the
ready time of ME0 with the ones of FEi. According to the
last column of Table III, these configurations are fixed by
taking the maximum between the ready time of ME0 and
the release time of the bus ρrel. The schedule of ME0 at this
iteration is accumulated in the definitive schedule of ME0

at line 12. At line 13, the schedule of FEi is computed.

Notice that as the ready time of FEi contains −∞ to denote
the case where it does not use the bus, these −∞ are kept
in ρshcedFEi

. By adding the bus latency λBUS to ρschedFEi

and then ⊕ with ρrel, the release time of the bus is only
updated for configurations γ where FEi uses and gets the bus
– ρschedFEi

[γ] 6= +∞ (line 14). Notice that the +∞ in ρrel
cannot overwrite the release time of the bus by FEi because
FEi cannot get the bus if any prior FEj<i does not get
the bus. At line 15, the actual schedule of FEi is computed by
replacing the +∞ in ρschedFEi

(where FEi loses contention
in favor of ME0) by the release time of the bus by ME0.
Configurations where time is +∞ in ρschedFEi

must not
be +∞ in ρ̂ME0 because only one of both FEi or ME0

is scheduled. However, as ρschedFEi configurations different
from +∞ are lower than ρ̂ME0

(otherwise it is considered as
non-scheduled), 	 can be used to implement the replacement.

At line 16, the temporal state is updated regarding the
schedules of FEi, by applying ⊕ between the time pointer
of the state vector and the release time of the bus by FEi.
The updated state is then multiplied by matrix MFEi−FEi+1

to obtain the ready time of FEi+1. Line 18 takes into
account the +∞ configurations remaining in ρ̂ME0

that are
not already scheduled by the loop. The times assigned to these
configurations are the maximum between the ready time of
ME0 and the bus release time by FEi. Notice that +∞ in
the ρ̂ME0 may also be caused by the fact that none of FEi
have used the bus: this time is recorded as −∞ in ρrel and is
hence automatically overwritten by the ready time of ME0.

VI. EXPERIMENTS

The performance of the analysis strongly depends on the
size of the XDDs in the pipeline states and the number
of pipeline states. Both characteristics are related to some
inherent properties of the analyzed program and of the micro-
architecture whose impact is difficult to estimate. Therefore,
we experiment our analysis on realistic benchmarks that em-
pirically provides a better understanding of the performances.

A. Experiment Setup

The pipeline used in the examples of the previous sections
was chosen to improve the readability of the article. For the
experimentation, we prefer a more powerful micro-architecture
with more parallelism leading to more complex temporal
states. In addition, this new pipeline allows to demonstrate
the scalability of our approach.

The experimentation pipeline has 4 stages able to process 4
instructions per cycle: FE, DE, EX, CM. It fetches instructions
from the main memory in the FE stage via a single level
instruction cache. The FE stage is able to fetch simultaneously
4 instructions of the same memory block with a latency
of 7 cycles for miss (without considering contention). The
DE stage decodes the instructions and the EX stage handles
all arithmetic, floating point and memory related operations
in several Functional Units (FU). 4 ALUs (Arithmetic and
Logic Units) are available and can be simultaneously used if
no data dependencies are present. The latency of arithmetic
operations is 1 cycle for addition and subtraction; 2 cycles

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

for multiplication and 7 cycles for division. 1 FPU (Floating
Point Unit) is available with latencies of 3 cycles for addition
and substraction, 5 cycles for multiplication and 12 cycles
for division. One MU (Memory Unit) is also available to
handle memory related operations (load and store). In case
of a multiple load/store operations, the memory accesses are
performed in order, and if one load/store needs to use the
bus, it occupies the bus until all loads/stores are completed.
The latency of memory accesses is the same as for FE stage.
An issue buffer at EX stage distributes the instruction to EX
FUs with respect to the operations realized by the instruction.
Instructions using the same FU are executed in-order in EX
stage; instructions using different FUs are executed out-of-
order (if no data dependencies exist).

The instruction cache is a 16 KBits 2-way set associative
LRU (Least Recent Used) cache. The data cache is a 8 KBits
2-way set associative LRU cache. Both caches have only one
level and share the same bus to access the main memory.
We think that this architecture is representative of mid-range
processors used in real-time embedded systems.

The whole CFG analysis is implemented using the OTAWA
toolbox [15]. Global analyses, including instruction and data
cache analyses, control flow analyses etc. are provided by
OTAWA. The benchmarks are taken from the TACLe suite [16]
compiled for armv7 instruction set with hard floating point
unit. Among 83 tasks to be analyzed, 7 of them3 failed due
to limitations in OTAWA.

B. Number of Temporal States

The first experiment explores the number of temporal states
along the edges of BBs over all benchmarks (representing the
output of the source BBs and the input of sink BBs). The
experimental results are shown in Figure 4. The x-axis is the
number of pipeline states, the y-axis is in logarithm scale and
shows the number of edges for each quantity of states. The
displayed statistics accumulate data from all TACLe’s bench-
marks. The risk, with our approach, is to face to a blowup in
the number of states. Fortunately, the experimentation shows
that most of the edges have less than 20 output states except
in some rare cases where the number of states is much higher.
This generally means that most of timing variations due to
events are efficiently represented in the XDDs of the temporal
states. As expected, the XDDs successfully prevent the state
explosion and keep the pipeline analysis tractable at CFG level.
The presence of some rare cases that have a lot of states is not
blocking as the analysis time is reasonable in most of cases
(confer Section VI-D).

C. Events Lifetime

The second experiment measures the lifetime of events
during the analysis. The longer the lifetime of events, the larger
the complexity of the analysis in terms of state number and
XDD size. In our micro-architecture, an event is created by
a cache access and may disappear from the XDD during the
analysis, for two reasons. (a) It is absorbed by the pipeline:
for example, when an instruction stalls at EX stage due

3pm, recursion, quicksort, huff enc,mpeg2, gsm enc, ammunition

0 20 40 60 80
number of states

100

101

102

103

104

nu
m

be
r o

f e
dg

es

Fig. 4: The distribution of number of pipeline states.

to a data cache miss, next instructions may go on in the
pipeline completely hiding the stalling time. This event will
only stay alive in a short time window during the analysis
of other instructions executed in parallel. (b) The events are
stabilized and disappear thanks to the rebasing operation.
Intuitively, we assume that in most situations the events raised
by an instruction only impact nearby instructions. This is
demonstrated by tracking the liveness of events in the analysis.

However, the pipeline analysis is only able to provide this
information at the granularity of Contention Points because
the instruction execution effect between Contention Points is
summed up by matrices. As collecting these statistics at a
finer granularity would have an important adverse effect on
the analysis time, we survey the liveness of events on this
basis. Events are deemed as dead at Contention Points whose
temporal states does not contain the event regarding all XDDs
contained in the vector. Thus, the lifetime statistics are over-
estimated by the number of instructions between Contention
Points. Besides, the pipeline states are only rebased at the end
of BBs so the lifetime of events in the middle of BBs does not
consider the potential death due to rebasing. In the end, the
measured lifetime in this experimentation is an over-estimation
of the actual lifetime of events.

Figure 5 shows the experimental results. The x-axis is the
lifetime of events (in instructions with limitations described
above) and y-axis, in logarithm scale, shows the number of
events having this lifetime. These are also accumulated from
the whole set of TACLe’s benchmarks. The statistics show that
most of events have short lifetime (below 50 instructions). We
have observed a unique lifetime of 602 instructions that is not
represented to keep the figure readable. It turns out that in
most of situation where the lifetime is greater than 50, the
events are in a BB of a big number of instructions. In the
extreme case with 602-instruction event lifetime, the involved
BB is made of 617 instructions (in benchmark md5) and the
reported lifetime is an effect of the granularity level. Despite
this very infrequent case, as most of events have short lifetime,
the temporal state size (sum of XDDs sizes of the vector) stays
reasonable and the analysis remains efficient.

D. Analysis time

The analysis time includes the time to pre-compute the
matrices and the time of the pipeline analysis on the CFGs.
The measurement is performed on a virtual machine running

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

0 25 50 75 100 125 150 175
lifetime of events

100

101

102

103

nu
m

be
r o

f e
ve

nt
s

Fig. 5: The distribution of events lifetime.

on a cloud server with 8GB RAM and 4-core Intel Broadwell
processors. Only 2 cores are occupied simultaneously to run
the benchmarks. We have also measured the analysis time
without pre-computing the matrices (with a timeout of 1
hour) in order to clarify the advantage of that optimization.
The results are shown in Figure 6. The x-axis shows the
benchmarks and the y-axis provides the analysis time in
seconds with a logarithmic scale. The analysis time with
matrices is recorded as green bars. At worst, the analysis
with matrices finishes in 553s (9m13s). In most cases, the
analysis finishes in about 1 − 20s. In contrast, the analysis
without matrix has both memory usage and speed issues as
shown by the red (crashed because out of 8G RAM) and
yellow bars (timeout after 1 hour). For those finishing within
1 hour (blue bars), matrix optimization brings 217% speed-
up in average4. The rare cases where the analysis without
matrix is faster are simple benchmarks where the cost of
computing the matrices is not compensated by the speed-up.
This result reveals that the pre-computation of matrices ef-
fectively reduces intermediate redundant computations, which
enhances the analysis performance in terms of speed and
memory usage. Considering the presence of some exceptional
cases, large number of temporal states, long lifetime events,
we think that the analysis is still able to handle them and
finishes in a reasonable time. Moreover, we observed that the
industry-like applications encompassed in TACLe benchmarks
– Rosace, Debbie and Papabench, are analyzed in short times –
respectively 15s, 10mn, 15mn summing the times of all tasks
composing them. Therefore, our approach could be used in
industrial real-time applications (for example, Airbus requires
at most 48H between the detection of a bug and the distribution
of the fix, including temporal verification).

VII. RELATED WORKS

The pipeline model used in the aiT WCET analyzer is
maybe the most successful and the most used pipeline analysis
[17], [18]. They define the state by the time left in each
resource of the pipeline and update it at the granularity of the
processor cycle. Based on Abstract Interpretation framework
[19], according to our knowledge, they use power set domain
to keep the set of possible pipeline states. Therefore, this
model also suffers from combinatorial complexity caused by

4average speed up = sum of the time of all benchmarks without matrix
divided by sum of time with matrix.

the presence of timing anomalies as it has to keep all possibles
states. They have proposed several approaches to reduce the
complexity. (a) Although the literature provides very few
details about that, close states seem to be joined to form
abstract states at the cost of loss of precision, (b) in [20], they
show how to use Binary Decision Diagram to compress the
state machine representation of their analysis system. Reineke
et al. in [21] defines sufficient condition to drop not-worst
cases in order to reduce the number of states. This work has
been extended later in [22], [23] that provides a theoretical
basis to design strict-in-order pipeline where timing anomalies
are proven to not occur [6], [24], thus allowing to more easily
drop non-worst case states. However, for now, the price to
pay for the design of timing-anomaly-free pipelines is still a
significant loss of performance.

Model checking can also be used for WCET analyses [25],
[26]. With the help of mature theories and tools of model
checking, the solving procedure itself is well optimized and is
independent of the timed model of the target program and the
micro-architecture which eases the design of modular and flex-
ible analyses [27], [28]. However, in general, model checking-
based analyses have to completely explore the domain of traces
of the program and the domain of program inputs. On the
one hand, this provides tight WCETs without over-estimation,
and precise information about the worst execution pattern. On
the other hand, the large search domain combined with the
micro-architecture model complexity questions the scalability
of these analyses for complex program and architectures.

Another approach to pipeline analysis is the Execution
Graph proposed by Li et al [10], close to what is presented
in Section II-A. They analyze the WCET at the scope of
BBs and calculate the worst execution context. To support
timing variation, the XG computational model uses intervals
to representing minimum and maximum times. The contention
between instructions is considered by checking the intersec-
tion of time intervals. If a contention occurs, the interval
is extended accordingly. The XG solving algorithm repeats
the computation until a fix-point is reached. However, in the
presence of lots of events the interval representation tends to
trigger a chain reaction: the imprecision due to the interval
representation create contentions that are actually impossible
which extends the interval and involves more impossible
contentions. Moreover, with respect to the micro-architecture,
making precise assumption on the worst execution context is
not always trivial. Another XG based approach is proposed by
Rochange et al. in [11] that computes the execution time of
BBs for each combination of events what makes the algorithm
to tend toward combinatorial complexity. In addition, the
contention analysis requires to examine all cases leading to
an exponential complexity.

VIII. CONCLUSION

In this paper, we have formally defined a state representation
useful for the pipeline time analysis. It is derived from the XG
model but the times are replaced by XDDs that efficiently
represent time variation caused by the raise of events. An
XDD is a data structure working as a lossless compression of a
map between the event configurations and the execution time.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

ad
pc

m_d
ec

ad
pc

m_e
nc

an
ag

ra
m

au
dio

be
am

bin
ar

ys
ea

rch
bit

co
un

t
bit

on
ic

bs
or

t

cjp
eg

_tr
an

su
pp

cjp
eg

_w
rb

mp

co
mple

x_
up

da
te

s
co

sf

co
un

tn
eg

at
ive

cu
bic

de
bie

-H
an

dle
Ac

qu
isi

tio
n

de
bie

-H
an

dle
He

alt
hM

on
ito

rin
g

de
bie

-H
an

dle
Hi

tTr
igg

er

de
bie

-H
an

dle
Te

lec
om

man
d

de
bie

-In
itA

cq
uis

itio
nT

as
k

de
bie

-In
itH

ea
lth

Mo
nit

or
ing

de
bie

-In
itH

itT
rig

ge
rTa

sk

de
bie

-In
itT

ele
co

mman
dT

as
k

de
g2

ra
d

dij
ks

traep
ic fac fft

filt
er

ba
nk

fir
2d

im
fm

re
f

g7
23

_e
nc

gs
m_d

ec
h2

64
_d

ec
hu

ff_
de

c iir
ins

er
tso

rt
isq

rt
jfd

cti
nt

lift
-m

ain lm
s

lud
cm

p
mat

rix
1

md5
minv

er
nd

es

pp
b-

__
ve

cto
r_1

0

pp
b-

__
ve

cto
r_1

2

pp
b-

__
ve

cto
r_1

7

pp
b-

__
ve

cto
r_3

0

pp
b-

__
ve

cto
r_5

pp
b-

__
ve

cto
r_6

pp
b-

alt
itu

de
_c

on
tro

l

pp
b-

ch
ec

k_
fai

lsa
fe

pp
b-

ch
ec

k_
meg

a1
28

_v
alu

es

pp
b-

cli
mb_

co
nt

ro
l

pp
b-

lin
k_

fb
w_

se
nd

pp
b-

ra
dio

_c
on

tro
l

pp
b-

se
nd

_d
at

a_
to

_a
ut

op
ilo

t

pp
b-

se
rv

o_
tra

ns
mit

pp
b-

sta
bil

isa
tio

n
pp

b-
te

st_
pp

m
pe

tri
ne

t

po
we

rw
ind

ow
_m

ain
pr

im
e

ra
d2

de
g

rijn
da

el_
de

c
rijn

da
el_

en
c

ro
sa

ce
-ro

s_
th

1_
main

ro
sa

ce
-ro

s_
th

2_
main

ro
sa

ce
-ro

s_
th

3_
main

ro
sa

ce
-ro

s_
th

4_
main

ro
sa

ce
-ro

s_
th

5_
main sh

a st
sta

te
mat

e
su

sa
n

10 1
100
101
102
103

An
al

ys
is

Ti
m

e
(s

) no matrix no matrix > 1h no matrix memory overflow with matrix

Fig. 6: The analysis time.

XDD’s advantage is its ability to compact the time variation
compared to the use of power set map. Moreover, we represent
the pipeline state as a vector of XDDs. This simplifies the
design of pipeline analysis at CFG level and allows to leverage
the algebraic properties of XDDs to represent the analysis
of instruction sequences as matrices multiplications. These
matrices can be statically determined before the analysis which
significantly speeds up the analysis. Together with rebasing
and generation number, the presented analysis enables the
tracking of exact timing behavior over the CFG of program.

Secondly, we extend this analysis to support the shared
bus between fetch and memory pipeline stages. The shared
bus is dynamically allocated and may experiment out-of-order
access. Temporal states obtained so far are used to track
precisely the bus accesses schedule. Based on the survey of
the topology of the bus usage by instructions, we designed
a contention analysis to support bus access times in the
temporal states. The contention analysis needs only to be
invoked upon contention points while instructions in-between
are summarized by the aforementioned matrices.

The experimentation has been conducted on TACLe’s
benchmarks. The measurement of the number of pipeline states
per edge in the CFG showed that our approach is able to
efficiently represent the timing variations. Then, we produce a
rough (but conservative) evaluation of the event lifetime that
shows that the effect of events are generally short term in the
CFG. Some exceptions are observed (edges with a lot of states
or events with long lifetime), but they are not problematic as
they are very infrequent. The analysis time shows that our
analysis is very efficient and suggests that it could be used for
industrial applications.

As future works, we could benefit from the exact tracking
of the temporal states to more precisely qualify the effects of
timing variations in different micro-architectures. This could
be used to eventually qualify good or bad micro-architecture
design in terms of predictability. This may help to find better
compromises in the design of predictable pipelines, which
could also alleviate over-stringent constraints on the pipeline
such as strict-in-order execution, that often limits the perfor-
mance of the processor. We plan to extend our approach to all
out-of-order resources. Although our operators and matrices
calculation are correct whatever the out-of-order resource, the
modeling of the interleaving of resource acquisitions might
not scale.

REFERENCES

[1] Z. Bai, H. Cassé, M. De Michiel, T. Carle, and C. Rochange, “Improv-
ing the Performance of WCET Analysis in the Presence of Variable
Latencies,” in ACM SIGPLAN/SIGBED LCTES, 2020.

[2] T. Lundqvist and P. Stenstrom, “Timing anomalies in dynamically
scheduled microprocessors,” in IEEE RTSS, 1999.

[3] J. Eisinger, I. Polian, B. Becker, S. Thesing, R. Wilhelm, and A. Metzner,
“Automatic Identification of Timing Anomalies for Cycle-Accurate
Worst-Case Execution Time Analysis,” in IEEE DDECS, 2006.

[4] G. Gebhard, “Timing anomalies reloaded,” in WCET 2010.
[5] F. Cassez, R. R. Hansen, and M. C. Olesen, “What is a timing anomaly?”

in WCET, 2012.
[6] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder, “Principles of timing

anomalies in superscalar processors,” in QSIC’05.
[7] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,

and B. Becker, “A Definition and Classification of Timing Anomalies,”
in WCET’06.

[8] R. Wilhelm, S. Altmeyer, C. Burguière, D. Grund, J. Herter, J. Reineke,
B. Wachter, and S. Wilhelm, “Static Timing Analysis for Hard Real-
Time Systems,” in VMCAI, 2010.

[9] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” in ACM SIGPLAN LCTES, 1995.

[10] X. Li, A. Roychoudhury, and T. Mitra, “Modeling out-of-order proces-
sors for software timing analysis,” in IEEE RTSS, 2004.

[11] C. Rochange and P. Sainrat, “A Context-Parameterized Model for Static
Analysis of Execution Times,” in HIPEAC II, ser. LNCS, 2009.

[12] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on com-
puters, vol. 27, no. 06, pp. 509–516, 1978.

[13] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,” ACM Computing Surveys (CSUR), 1992.

[14] M. Fujita, P. C. McGeer, and J.-Y. Yang, “Multi-terminal binary decision
diagrams: An efficient data structure for matrix representation,” Formal
methods in system design, vol. 10, no. 2, pp. 149–169, 1997.

[15] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “Otawa: An open
toolbox for adaptive wcet analysis,” in IFIP SEUS, 2010.

[16] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“Taclebench: A benchmark collection to support worst-case execution
time research,” in WCET, 2016.

[17] J. Schneider and C. Ferdinand, “Pipeline behavior prediction for super-
scalar processors by abstract interpretation,” ACM SIGPLAN Notices,
vol. 34, no. 7, pp. 35–44, May 1999.

[18] S. Thesing, “Safe and precise wcet determination by abstract interpre-
tation of pipeline models,” Ph.D. dissertation, Univ. Saarland, 2004.

[19] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in 4th ACM SIGACT-SIGPLAN symposium on PLDI, 1977.

[20] S. Wilhelm, “Symbolic representations in WCET analysis,” Ph.D. dis-
sertation, Saarland University, 2012.

[21] J. Reineke and R. Sen, “Sound and Efficient WCET Analysis in the
Presence of Timing Anomalies,” in WCET’09, 2009.

[22] S. Hahn, J. Reineke, and R. Wilhelm, “Toward Compact Abstractions
for Processor Pipelines,” ser. LNCS, 2015, vol. 9360, pp. 205–220.

[23] S. Hahn and J. Reineke, “Design and analysis of SIC: a provably timing-
predictable pipelined processor core,” Real-Time Systems, vol. 56, 2020.

[24] J. Engblom and B. Jonsson, “Processor pipelines and their properties
for static WCET analysis,” in EMSOFT, ser. LNCS, 2002.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

[25] F. Cassez, “Timed games for computing wcet for pipelined processors
with caches,” in IEEE ACSD, 2011.

[26] R. Metta, M. Becker, P. Bokil, S. Chakraborty, and R. Venkatesh, “Tic:
a scalable model checking based approach to wcet estimation,” ACM
SIGPLAN Notices, vol. 51, no. 5, pp. 72–81, 2016.

[27] F. Cassez and J.-L. Béchennec, “Timing analysis of binary programs
with uppaal,” in IEEE ACSD, 2013.

[28] A. E. Dalsgaard, M. C. Olesen, M. Toft, R. R. Hansen, and K. G. Larsen,
“Metamoc: Modular execution time analysis using model checking,” in
WCET, 2010.

	I Introduction
	II Background
	II-A Execution Graphs
	II-B Execution Decision Diagram

	III Resource Based Model
	III-A Temporal State
	III-B Pipeline Analysis with Temporal States
	III-C The computational model

	IV Pipeline Analysis on the CFG
	IV-A Computing the context with Rebasing operation
	IV-B Events Generation within loops
	IV-C The CFG pipeline analysis

	V Modeling the Shared Memory Bus
	V-A Bus scheduling topology
	V-B Batch bus scheduling with XDD
	V-C Contention Analysis

	VI Experiments
	VI-A Experiment Setup
	VI-B Number of Temporal States
	VI-C Events Lifetime
	VI-D Analysis time

	VII Related Works
	VIII Conclusion
	References

