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Abstract—To improve the modeling resilience of silicon strong
physical unclonable functions (PUFs), in particular, the APUFs
that yield a very large number of challenge response pairs
(CRPs), a number of composited APUF variants such as XOR-
APUF, interpose-PUF (iPUF), feed-forward APUF (FF-APUF),
and OAX-APUF have been devised. When examining their secu-
rity in terms of modeling resilience, utilizing multiple information
sources such as power side channel information (SCI) or/and
reliability SCI given a challenge is under-explored, which poses
a challenge to their supposed modeling resilience in practice.
Building upon multi-label/head deep learning model architecture,
this work proposes Multi-Label Multi-Side-channel-information
enabled deep learning Attacks (MLMSA) to thoroughly evaluate
the modeling resilience of aforementioned APUF variants. Despite
its simplicity, MLMSA can successfully break large-scaled APUF
variants, which has not previously been achieved. More precisely,
the MLMSA breaks 128-stage 30-XOR-APUF, (9, 9)- and (2, 18)-
iPUFs, and (2, 2, 30)-OAX-APUF when CRPs, power SCI and
reliability SCI are concurrently used. It breaks 128-stage 12-
XOR-APUF and (2, 2, 9)-OAX-APUF even when only the easy-to-
obtain reliability SCI and CRPs are exploited. The 128-stage six-
loop FF-APUF and one-loop 20-XOR-FF-APUF can be broken by
simultaneously using reliability SCI and CRPs. All these attacks
are normally completed within an hour with a standard personal
computer. Therefore, MLMSA is a useful technique for evaluating
other existing or any emerging strong PUF designs.

Index Terms—Physical unclonable function, Multi-side-
channel information, Multi-label classification, Multi-head/output
model.

I. INTRODUCTION

Physical unclonable functions (PUFs) provide hardware
instance-specific outputs (known as responses) to queried
inputs (known as challenges), thus challenge-response-pairs
(CRPs) generally function as ‘fingerprints’ of hardware de-
vices [1]–[3]. PUFs can be categorized based on the number of
yielded CRPs into weak and strong PUFs [1], [2]. Weak PUFs
have a limited number of CRPs which must be protected, so
that its primary application is volatile key provision [4], [5].
On the other hand, strong PUFs offer a very large number
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of CRPs, which can be used in many security applications
ranging from identification, lightweight authentications to
oblivious transfer [2]. Among strong PUFs, the arbiter PUF
(APUF) [6]–[8] is the most studied design due to its com-
pactness and compatibility with silicon fabrication processes.
However, the APUF is vulnerable to modeling attacks due to
its linear structure. To increase the complexity of modeling
attacks, various non-linearity injection techniques have been
used to construct APUF variants including the representative
l-XOR-APUF, (x, y)-Iterpose PUF (iPUF) [9], feed-forward
APUF (FF-APUF) [10], and (x, y, z)-OAX-APUF [11]. These
APUF variants are resilient to modeling attacks to a large
extent given that their scale is increased (i.e., 128-stage or/and
large number of underlying APUFs composited) [12] when
accessing to high performance computing platform, e.g., server
with a cluster of GPUs and resourceful memory is unavailable.
State-of-the-Art of Modeling Attacks: Majority of modeling
attacks exploit CRPs only to train the model. By using deep
learning (DL) (i.e., multiple layer perception network), purely
CRP based modeling attacks can break 128-stage 7-XOR-
APUF, 64-stage (11, 11)-iPUF, 128-stage FF-APUF with 5
loops, 64-stage 6-XOR-FF-APUF with 5 loops [13]. In addi-
tion, it has been shown that the side-channel information (SCI)
including unreliability [14], [15], power or timing [16], and
photonic emission [17] can be utilized to model the APUF or
its variants. However, merely relying on SCI is insufficient to
break APUF variants once it is properly scaled, and acquisition
of some SCIs, e.g., photonic emission and timing require
costly peripheral equipment.

To date, little efforts have been paid to hybrid modeling
attacks on strong PUFs, in particular, APUF variants. The
two hybrid attacks that are multi-class/single-label multi-SCI
attack (SLMSA) [18], and gradient-based reliability hybrid at-
tack (GRA) [19] use not only CRP but also SCIs concurrently
to break the APUF variants at a larger scale. However, there
are still limitations in these attempts. More specifically, the
SLMSA has a large dimension as its trained model output
dimension is a multiplication per SCIs (SCI including the
binary response information). In addition, this work mainly
examines the efficiency of CRP as well as power SCI hybrid
attacks, but efficacy when easy-to-obtain unreliability SCI is
available has not been explored by [18]. The reason is that
Liu et al. [18] recognized the dimension of the reliability SCI
could be much higher, potentially resulting in a dimensional
curse (detailed in Section VI-D). For the GRA specifically
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devised to attack iPUFs, it requires the differential mathemat-
ical model of underling APUFs, which is non-trivial to adopt
without in-depth knowledge of the model given the APUF
variant.
Our Contributions: The primary contributions and results of
this work are summarized as follows. Significantly, all reported
results are achieved with a common personal computer and
modeling attacks are completed within an hour even for large-
scaled strong APUF variants.
• We are the first to introduce multi-label/head classifica-

tion to facilitate multi-SCI DL modeling attack, coined as
MLMSA that eliminates the curse of dimensionality in the
SLMSA. Specifically, the MLMSA model output dimension
is now equal to the dimension summation per SCI rather a
dimension multiplication per SCI in the SLMSA. In contrast
to SLMSA that requires mapping from the predicted label
to the response, MLMSA directly outputs the response.

• We have successfully attacked 128-stage 10-XOR-APUF,
(2, 2, 8)-OAX-APUF and (5, 5)-iPUF with the MLMSA
by simultaneously using the response and easy-to-obtain
reliability SCI. Notably, 128-stage 12-XOR-APUF, (2, 2, 9)-
OAX-APUF are also breakable statistically, that is, among
five repetitions, one attempt succeeds in our experiments.
For these attacks, the training size is no more than 600, 000
and training completes within an hour. In contrast to GRA,
the MLMSA does not require a mathematical model of
underlying PUFs. As a comparison, the purely CRP based
DL modeling attacks can break 128-stage 7-XOR-APUF
but with significantly increased training size of 30M [13].

• We have advanced the breakable APUF variants to a
even larger scale, albeit the concise design of the pro-
posed MLMSA. By simultaneously exploiting multiple
SCIs including response, power and reliability, the MLMSA
successfully breaks 30-XOR-APUF, (2, 2, 30)-OAX-APUF,
(9, 9)- and (2, 18)-iPUFs, all with 128-stage underlying
APUFs.

• Based on silicon measurements, we have further affirmed
the merits of leveraging additional easy-to-obtain reliability
information to attack XOR-APUFs compared to the setting
of merely using response information. In particular, the re-
sponse and reliability based DL can successfully attack 128-
stage 10-XOR-APUF with 1.5M challenges corresponded
response and reliability pairs, whereas merely response
based DL can only attack a 6-XOR-APUF with the same
128-stage and training set size.

II. BACKGROUND

This section provides necessary background on APUF and
its representative variants that this study examines.

A. Arbiter-based PUF

The APUF exploits manufacturing variability that results
in random interconnect and transistor gate time delays [6].
This structure is simple, compact, and capable of yielding a
large CRP space. In contrast to the optical PUF that lacks
mathematical model [20], the APUF has a linear additive
structure, leading to vulnerability to modeling attacks. In the

...
...

...
...

Fig. 1. l-XOR-APUF consists of l APUFs and each of the APUF response,
{r1, ..., rl} is XOR-ed at the end to form a 1-bit response r. All APUFs
share the same challenge c.

modeling attack, an attacker utilizes observed CRPs to build a
mathematical PUF model that can accurately predict responses
for unseen challenges [15], [21]–[23].
Linear Additive Delay Model: A linear additive delay model
of APUFs is formulated as [10]:

∆ = wTΦ, (1)

where w is the weight vector that characterizes the time delay
segments in the APUF, and Φ is the parity (or feature) vector
that can be generally understood as a transformation of the
challenge. The dimension of both w and Φ is n+ 1 given an
n-stage APUF, where.

Φ[n] = 1,Φ[i] =

n−1∏
j=i

(1 − 2c[j]), i = 0, ..., n− 1. (2)

The response of an n-stage APUF is determined by the
delay difference ∆ between the top path and bottom path of the
APUF. This delay difference is the sum of the delay differences
of each individual n stages. The delay difference of each stage
depends on the corresponding challenge [15]. Based on Eq. 1,
the response r of the challenge c is modeled as:

r =

{
1, if ∆ < 0

0, otherwise.
(3)

B. XOR-APUF

As shown in Fig. 1, l-XOR-APUF has l underlying APUFs
in parallel. Each APUF shares the same challenge and pro-
duces a digital response. All l responses are XOR-ed to form
the final l-XOR-APUF response. Using a larger l can nearly
exponentially increase the modeling attack complexity when
only CRP is used. However, the l-XOR-APUF unreliaiblity
increases when l is increasing, which negatively restricts the
large l usage to some extent. In addition, the large l of
a l-XOR-APUF is still ineffective against reliability-based
modeling attacks—it uses reliability information of the CRP—
since the complexity of such attack is only linearly increased
as a function of l.

C. OAX-APUF

As is shown in Fig. 2, the OAX-APUF [11] consists of
OR, AND and XOR blocks. The x APUFs’ responses are
OR-ed to get ror, y APUFs are belong to AND block, in
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... ...

 OR Block 

... ...

 XOR Block  

... ...

 AND Block  

Fig. 2. Overview of (x, y, z)-OAX-PUF, which has three blocks: OR, AND,
and XOR blocks.

which the responses are AND-ed. The XOR block contains
z APUFs, whose responses are XOR-ed to gain rxor. The
responses of three blocks are XOR-ed to obtain the final
response r. According to [11], the OAX-APUF has higher
reliability than XOR-APUF, while OAX-APUF can defeat
Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
based reliability attacks and demonstrate comparable modeling
resilience to logistics regression attack compared to (x+y+z)-
XOR-APUF. However, it has relatively lower resilience than
(x+ y + z)-XOR-APUF when the DL attack is applied [11].

D. iPUF

The iPUF contains two layers of XOR-APUFs [9], [18]. As
shown in Fig. 3, the response of x-XOR-APUF is inserted
into the i-th position of the challenge to obtain the challenge
of (n + 1) bits. The new (n + 1)-bit challenge is input into
y-XOR-APUF to get the final response r. In theory and
experiment, the iPUF has been demonstrated to have desired
resistance to LR and reliability based CMA-ES attacks [9],
[18]. According to [24], the security of the (x, y)-iPUF against
modeling resilience is similar to a (x2 + y)-XOR-APUF when
the logistic regression (LR)-based divide-and-conquer attack
is applied.

C0C1...CiCi+1....Cn-1

rx

x-XOR-APUF

C0C1...CirxCi+1....Cn-1 y-XOR-APUF

C

r

n-bit Challenge

(n+1)-bit Challenge

Fig. 3. n-bit (x,y)-iPUF [9].

E. Feed Forward Arbiter PUF

The Feed Forward Arbiter-PUF (FF-APUF) [10] adds one or
more intermediate arbiters within a basic APUF, and the output
response of the intermediate arbiter replaces one or multiple
bits of the challenge. This is a typical design of obfuscating
the APUF challenge bit(s). The structure of a FF-APUF with
one loop is depicted in Fig. 4 [12]. This FF-APUF can be
incorporated with XOR or OAX operations when multiple
underlying FF-APUFs are used.

1Challenge 0

...

1

1
0

1
0

1
0

0
1

0
1

0
1

...
Arbiter

Response

0 or 1

0

0

0
1

1

Intermediate
Arbiter

...

...

...

...

Fig. 4. An exemplified FF-APUF with one loop.

III. RELATED WORKS

Modeling attacks on strong PUFs normally rely on machine
learning (ML) techniques. The ML attacks against strong PUFs
can be divided into three categories according to the type of
training data used: CRP-based ML attacks, SCI-based attacks
and SCI hybrid attacks, which uses CRPs; SCI; and CRPs
along with SCI(s) as training data, respectively.

A. CRP-based ML Attacks

Logistic regression (LR), support vector machine (SVM),
and evolution strategies were utilized by Rührmair et el. [21]
to model XOR-APUF, FF-APUF and LSPUF in 2010. There
are number of improvements to increase the attacking accu-
racy [25]. It is always suggested increase the scale of the
APUF variants, in particular, the XOR-APUF to increase
the modeling resilience against those CRP-based modeling
attacks. In order to increase the complexity of these ML
attacks, more APUF variants building upon various forms
of recompositions have been proposed, such as MPUF [26],
iPUF [9] and OAX-APUF [11].

According to [9], LR is the most efficient attack against l-
XOR-APUF, but it cannot be used to attack the iPUF directly.
Wisiol et el. [13] made some improvements to the LR attack
and reported that the improved LR attack can break 64-bit 8-
XOR-APUF with an accuracy of 96.4% by using up to 150M
CRPs (i.e., training time is 391 minutes using 4 threads). The
LR-based divide-and-conquer attack [24] (LDA) was proposed
to attack the iPUF, which can successfully break 64-stage
(1, 7)-iPUF with an accuracy of 97% [18]. As reported by
Liu et el. [18], the LDA attack can successfully break 128-
stage (6, 6)-iPUF. According to Wisiol et el. [13], the MLP-
based divide-and-conquer attack is able to attack 64-stage
(11, 11)-iPUF with 650M CRPs.

More recently, DL has been shown to be a simple and
effective way to attack strong PUFs without knowing the un-
derling mathematical strong PUF model. Alkatheriri et el. [27]
showed that a 1-hidden layer MLP attack can successfully
model FF-APUF with 6 loops in 2017. In 2018, Aseeri et
el. [28] proposed a 3-hidden layer MLP attack, which can
successfully model 128-bit 7-XOR-APUF with 40M CRPs
according to Wisiol et el. [13]. Santikellur et el. [29] proposed
DL attacks on XOR-APUF, MPUF and iPUF in 2019, which
can break 128-stage (4, 4)-iPUF, (128, 5)-rMPUF and 5-XOR-
APUF. It has been also shown that the (64, 6)-rMPUF and
(32, 7)-rMPUF are breakable [30]. Note compared to iPUF,
XOR-APUF and OAX-APUF, it requires greatly increased
APUFs and many MUXs (e.g., 2k-to-1 MUXs are first de-
composed into many 2-to-1 MUXs for implementation). The



4

implementation of a further scaled (64, 7)-rMPUF and (32, 8)-
rMPUF requires at least 255 64-stage APUFs and 511 32-
stage APUFs, respectively, which high area overhead renders
its practicality to a large extent. Mursi et el. [31] proposed a
3-hidden layer MLP attack, which mainly focuses on XOR-
APUF. According to Wisiol et el. [13], this 3-hidden layer
MLP [31] can successfully break 128-stage 7-XOR-APUF
with 30M fully reliable CRPs.

B. SCI-based Attacks

SCI-based attacks can be divided into pure side-channel
analysis (SCA) attacks and SCA-based ML attacks. The pure
SCA attacks can be conducted alone to attack a single APUF,
such as reliability-based analysis [14] and the photonic emis-
sion attack [17]. The SCA-based ML attacks mainly utilize
reliability and power SCIs.

The reliability-based ML attack establishes the reliability
model of PUF that exploits the relationship between the
response reliability and internal parameters [15]. The measured
reliability data and challenges are provided to, e.g., CMA-ES
model, as training data to learn the internal parameters of e.g.,
XOR-APUFs. The fault injection can be utilized to accelerate
the reliability SCI collection [18], [32]. The reliability-based
CMA-ES attack [15] can successfully break XOR-APUF and
LSPUF. The CMA-ES attack is based on the assumption
that the unreliability contribution per APUF of the l-XOR-
APUF is equal, so that the CMA-ES can converge to any
of l APUFs in an equal chance when the attack repeats.
Therefore, the complexity of breaking the l-XOR-APUF is
linear in l. The OAX-APUF [11] and iPUF [9] breaks such
an assumption, thus can defeat the CMA-ES based reliability
modeling attacks.

Different power-based ML attacks leverage differing meth-
ods for analyzing power leakages, e.g., simple power analysis
(SPA) and correlation power analysis (CPA) [18]. Becker et
el. [33] proposed a CPA-based CMA-ES attack that uses
power correlation coefficients as the fitness function to model
controlled PUFs and LSPUFs. An SPA-based LR attack was
proposed by Rührmair et el. [16], which adopts a gradient-
based algorithm similar to LR to learn the power side-channel
model of XOR-APUF. However, because the relationship
between other APUF variants’ power and response is difficult
to deduce, so fewer power-based ML attacks are used to model
other APUF variants.

Though there are a number of SCI sources that can be used
to attack strong PUFs, the reliability SCI is the most easily
obtainable one. To collect power SCI, physical access to the
PUF device and some expertise are required. The photonic
emission collection is costly and usually requires proficient
expertise.

C. SCI Hybrid Attacks

The above two types of ML based attacks with a CRP-
based attack or SCI-based attack only use CRP or SCI, and
thus knowledge gained by both is not utilized. The other type
of SCI hybrid ML attack considers using them concurrently
to be more efficient. There are two recent studies on SCI

hybrid attacks, exhibiting greatly improved attack efficacy.
One is the gradient-based reliability hybrid attack (GRA) [19]
and the other is the multi-class/single-label multi-SCI attack
(SLMSA) [18].

The GRA [19] was mainly devised to attack (x, y)-iPUF. In
essence, it combines the CMA-ES reliability attack and LR
CRP attack together. For the CMA-ES reliability attack term,
it learns multiple APUFs concurrently (i.e., regular CMA-
ES learn an APUF per run [15]) and enforces that each
APUF is dissimilar to others to prevent the APUF converging
to those easiest-to-learn APUFs through reliability SCI. The
GRA attack requires careful constraints to each attack term,
which potentially requires manual settings in practical upon
trials. Note that the GRA attack is less effective on (x, y)-
iPUF with x > 1. Therefore, a multiple pass attack similar
to the iPUF splitting attack [24] has to be adopted. In this
context, the y-APUF are firstly learned, then the x-APUF
are learned sequentially. In addition, the GRA requires to
construct a differential model for the iPUF, which is non-
trivial for adoption as it requires in-depth understanding of
the underlying PUFs under attack.

The multi-class classification based side-channel hybrid
attack (SLMSA) proposed by Liu et al. [18] is the state-
of-the-art to attack XOR-APUF and iPUF, which avoids the
underlying PUF mathematical models by using DL techniques.
The SLMSA combines response and power SCI to validate
its efficiency. To transform the hybrid information into mul-
tiple classes, where there is only one true value and the
rest are false values, we use one-hot vector encoding also
referred to as single-label classification, so the SLMSA has
to firstly fuse CRP information with SCI to construct the so
called challenge-synthetic-feature pairs (CSPs) via the feature
crossing method of Liu et al. [18]. More specifically, feature
crossing uses the Cartesian product of the response r and
side-channel information p to form a single label. Therefore,
the number of categories of the multi-class classification is
substantially increased when the dimension per p and number
of p increases due to usage of the Cartesian product. This
could incur dimension curse as recognized by Liu et al. [18].
For example, the response has two categories, and the l-XOR-
APUF has (l+1) power SCI categories, so that the dimension
is 2× (l+ 1). In this context, Liu et al. take the CRP and the
power SCI into consideration. The reliability SCI is not used.
Nonetheless, the SLMSA has shown to successfully break 128-
stage 16-XOR-APUF and (2, 16)-iPUF with 600, 000 training
CSPs (response and power SCI). However, this study does not
validate the efficacy of the reliability SCI that is the most easily
obtainable SCI. In addition, the prediction of the response
is not immediately available, which is recovered through a
remapping according to the CSP process.

IV. MULTI-LABEL MULTI-SCI BASED DEEP LEARNING
ATTACKS

We propose a multi-label DL based attack to efficiently
and effectively take advantage of multiple SCIs, coined as
MLMSA. Firstly, its output dimension is merely a summation
per used SCI. Secondly, its can directly predict the response of
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the learned strong PUF without additional remapping. Thirdly,
it can allow flexible weight tuning per SCIs and response to
gain improved attack accuracy—we thus can break 128-stage
12-XOR-APUFs by using response and the easy-to-obtain
reliability SCI that is not considered in [18].

A. Multi-Label Model for MLMSA

Liu et al. used a single-label model [18] to exploit multiple
information, e.g., CRP and power SCI. In the single-label
model, a given input instance can only belong to one of more
than two classes. This results in the inconvenient CSP syn-
thesis, where the dimension of the output is greatly increased,
especially when multiple SCIs are concurrently exploited—
the curse of dimensionality recognized by Liu et al. [18]. We
note that the single-label model can be circumvented via the
multi-label model. In the multi-label classification, there is no
constraint on how many of the classes the instance can be
assigned to. For instance, an analogy is that a movie can has
multiple classes of comedy, romance, and action in the multi-
label output.

The multi-label DL model [34], [35] is also usually referred
to as multi-head/output DL model. Different from the single-
label/head DL model, the output layer of the multi-head model
has multiple outputs or heads, which each head corresponds
to a label (i.e., response or power SCI or reliability SCI).
Supposing there are k heads/outputs in the multi-head model,
then the loss of the model can be expressed as Eq.4:

L =

k∑
i=1

λiLi, (4)

where Li means the loss of i-th head, λi means the weight or
the regularized factor of the Li, which can be flexibly tuned
to gain optimal performance.

Φ[0]

Φ[i]

...

Φ[n]

...

...
...

...
...

Response
Output Head

Reliability
Output Head

Power
Output Head

Input Layer Hidden Layer Output Layer

Sigmoid

Softmax

Softmax

Fig. 5. Exemplified three-head DL architecture with heads of response,
reliability SCI, and power SCI. The input layer and hidden layer(s) are shared
by multiple heads.

B. MLMSA

As shown in Fig. 5, the multi-head model can use CRP and
a number of SCIs, thus enhancing the model for learning the
underlying PUFs better by leveraging more useful information
sources. Because not only the response but also other SCIs
observed for a given challenges are all simultaneously used
to train the model, providing more meaningful information to
model the internal parameters of the underlying strong PUF.

This work focuses on power or/and reliability SCIs. The
power consumed by the e.g., l-XOR-APUF is linearly pro-
portional to number of responses being ‘1’ in l APUFs.
More specifically, reliability SCI is obtained by computing
the number of responses of ‘1’s from m repeated measure-
ments given the same challenge queries. Let us consider ten
repeated measurements of a given challenge as an example:
the number of responses with ‘1’s obtained from 10 repeated
measurements has a value ranging from 0 to 10, and thus there
are 11 possible values. If the reliability SCI is divided into 11
categories, each integer number stands for one category. The
proposed MLMSA attack has three stages:

Pretreatment Stage: Collecting CRPs and the exploited
SCI(s). Note that the label of a given SCI needs to be converted
to one-hot vector.

Training Stage: Using multi-head model to train the tar-
geted strong PUF model. The input is a challenge. One head
predicts the response, and the other head(s) predict(s) the rest
SCI(s), respectively, of the given challenge. The difference
between the predictions and the ground-truth labels are used
to optimize the multi-head model, according to Eq. 4.

Prediction Stage: Once the multi-head model is trained, the
response given an unseen challenge can be directly predicted
by the response head/output.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

According to the dynamic power analysis of PUFs, the
amount of drawn charge is linearly proportional to the number
of latches exhibiting a value of ‘1’s [18]. For PUF designs
that employ more than one APUFs in parallel, by measuring
the amount of current drawn from the supply voltage during
any latch transition, the cumulative number of APUFs that
respond with ‘1’s can be determined [18], [36]. In other
words, the power consumption is linear with the number of
‘1’ responses produced by APUFs. This has been validated by
the consistency between physical measurements and simula-
tions [16], [33], [37]. Following [18], we adopt the counted
‘1’s as the power SCI. As for reliability information, we apply
the same challenge repeatedly many times, and classify the
reliability information according to the number of responses
‘1’s obtained by repeated measurements. More specifically, if
there are 10 repeated measurements, the number of categories
of reliability SCI is 11 (i.e., from 0 to 10).

Following [9], [11], [21], [23], [24], we use MATLAB to
numerically simulate CRPs, power SCI and reliability SCI
required by the following experiments—silicon measurement
validations of reliability SCI are detailed in Section VI-C.
Each APUF is 128 stage—majority of previous studies us-
ing 64-stage APUF. For the response and power SCI, most
experiments use noise free simulation, in which µ = 0,
σ = 1 are used to generate the weights corresponding to the
APUFs as in Eq. 1. In this context, we collect training/testing
CRPs. The unreliability is produced by injecting Gaussian
noise into the above generated weights by setting, µnoise = 0
and σnoise = 0.05 to get the noisy weights per repeated
same challenge query. The unreliability of APUFs ranges
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TABLE I
MLMSA MULTI-HEAD LOSS WEIGHT λ SETTINGS.

PUF Multi-Head Response
Weight

Power
Weight

Reliability
Weight

XOR-APUF
Two-Head A 10 2 /
Two-Head B 1 / 0.8(1.8)
Three-Head 10 2 2(1)

OAX-APUF
Two-Head A 10 2 /
Two-Head B 1 / 0.8(1.8)
Three-Head 10 2 2

iPUF
Two-Head A 10(2) 2(3) /
Two-Head B 1 / 0.8
Three-Head 10(2) 2 2

* Two-Head A of MLMSA uses response and power SCI. Two-Head
B of MLMSA uses response and reliability SCI. Three-Head of
MLMSA uses response, power and reliability SCIs.

** In Two-Head B, for l-XOR-APUF, the reliability weight is 1.8
when l = 10; and 0.8 in other cases. In Three-Head, the reliability
weight is 1 when l = 29, 30; 2 in other cases.

*** In Two-Head B, for (x, y, z)-OAX-APUF, the reliability head loss
weight is 1.8 when x+ y + z = 12; 0.8 in other cases.

**** In Two-Head A, for (8, 8)-iPUF, (9, 9)-iPUF, (2, 16)-iPUF and
(2, 18)-iPUF, the response weight is 2, power weight is 3, these
two weights are 10 and 2 respectively in other cases. In Three-
Head, for (8, 8)-iPUF, (9, 9)-iPUF, (2, 16)-iPUF and (2, 18)-iPUF,
the response weight is 2. In Three-Head, for other iPUFs, the weight
of response is 10 (Three-Head).

***** These head loss weight settings are based on few empirically
tuning. There may be better choices, which need to be analyzed on
a case by case basis.

from 0.05 to 0.08 after noise injection. The reliability SCI
consequentially can be collected. For the power SCI, we count
the number of ‘1’s in simulated APUFs as the SCI.

The training set, validation set and test set are divided
according to the ratio of 4:1:1. It should be noted that if CRPs
used for testing and CRPs used for training collected under
different conditions (e.g., enrolled at 25°C but regenerated at
50°C), testing accuracy is expected to be degraded.

For FF-APUF, we have only considered the combination
of response and reliability, the responses of training set and
validation set are obtained by majority voting, and the response
of testing set is noise-free. For the XOR-APUF, iPUF, and
OAX-APUF, we have considered the hybrid of response,
power, and reliability.

The number of hidden layers of the multi-head model as
exemplified in Fig. 5 in each experiment is 3 or 4, and the
activation function is ReLU. In [18], Liu et al. used 2 or 3
hidden layers, which breaks 16-XOR-APUF. Our reproduced
results of Liu et al. successfully attack 30-XOR-APUF, which
can be potentially attributed to the adopted DL architecture
with more hidden layers that are optimal values after hyper-
parameter tuning. For the response head, the loss function uses
binary crossentropy, while the loss function of other heads
uses categorical crossentropy. The Adam optimizer is used
for all experiments. The settings of different head loss weights
of MLMSA are summarized in Table I. All experiments are
completed using a common personal computer with an Intel(R)
Core(TM) i5-6200U CPU, and 12 GB memory.

B. Modeling Attacks and Results Analysis

The XOR-APUF, OAX-APUF, iPUF, and FF-APUF are
used to validate the effectiveness of the proposed MLMSA.
Note that the SLMSA is the most efficient attack using
not only CRPs but also SCI (in particular, power SCI). We
compare the results with SLMSA by reproducing it under
the same experimental settings for fair comparisons. Table II
summarizes the main results of the MLMSA and SLMSA

attacks on three strong APUF variants. Notably, the Multi-
Class A and Multi-Class B belong to the SLMSA attacks [18],
where different SCIs are used:

1) Multi-Class A: The CSPs are formed with power SCI
and CRPs;

2) Multi-Class B: The CSPs are formed with reliability SCI
and CRPs.

Note that the Multi-Class B is not considered in [18] for
experimental evaluations, which we explore, for the first time,
for comparison purposes.

1) l-XOR-APUF: The loss weight settings of multi-head
model are described in Table I. As for the Two-Head A model
(response head and rower head), the response loss weight is
10, the power loss weight is 2. As for Two-Head B model
(response head and reliability head), the response weight is 1,
the reliability loss weight is 0.8 when l ≤ 9; 1.8 when l = 10.
As for Three-Head, the response loss weight is 10, the power
loss weight is 2. While the reliability loss weight is 2 when
l ≤ 28; 1 when l = 29, 30. The training size is 300, 000
when l ≤ 12; 600, 000 when l ≥ 16 if the attack uses power
SCI (e.g., Two-Head A, Three-Head and Multi-Class A that
is the SLMSA). As for Two-Head B that only uses the easy-
to-obtain reliability SCI, the training size is 600, 000 for all l
settings—the largest l in this case is 10.

Fig. 6 depicts the results of multi-head (i.e., our MLMSA)
and multi-class (in particular, the SLMSA) attacks on l-
XOR-APUF (l ≤ 30). When the power SCI is used, both
MLMSA and SLMSA classification can attack 128-stage 30-
XOR-APUF with accuracy about 90%, which scale has not
been achieved in all previous studies. Liu et el. [18] only
reported the accuracy of 97.8% when modeling 16-XOR-
APUF by using Multi-Class A—as mentioned above, one
potential reason is that Liu et el. [18] used 2 or 3 hidden layers
that is less powerful than 3 or 4 hidden layers we adopted in
the reproduction.

When using only response and reliability SCI, the two
attacks can reliably break 10-XOR-APUF with accuracy more
than 95%—later we show 12-XOR-APUF is statistically
breakable under multiple repeated attacks. The larger l, the
harder to minimize reliability loss during the training opti-
mization. The Three-Head attack using response, power, and
reliability SCI exhibits an improvement over the two-head
model that uses response and power SCI only when l is small.
This means the power SCI is more efficient than reliability SCI
for attacks. The accuracy of Two-Head A, Three-Head and
Multi-Class A are similar, This further indicates the dominant
contribution of the power SCI compared to reliability SCI.
Notably, when the power SCI is unavailable, reliability SCI
can indeed help to break larger scale strong PUFs that CRP
based modeling attacks cannot achieve alone, as specifically
validated in Section VI-B.

2) (x, y)-iPUF: The loss weight settings for the (x, y)-iPUF
are detailed in Table I. For most of the iPUF configurations
with 128-stage x-APUF and 129-stage y-APUF, the response
head loss weight is set to 10, the power head loss weight
is 2, and the reliability head loss weight is 2. However, these
settings are not successful in attacking (8, 8)-iPUF and (2, 16)-
iPUF. It is necessary to tune the corresponding loss weight
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TABLE II
COMPARISONS OF MLMSA WITH SLMSA (I.E., MULTI-CLASS) [18] AND DL WITH PURE CRP ATTACK [29] ON COMPLICATED STRONG PUFS.

PUF Training CRPs Two-Head A Three-Head Multi-Class A [18] Two-Head B Multi-Class B [18] DL2019 [29]
5-XOR-APUF 300,000 (600,000 / 655,000) 96.97% 97.45% 98.25% 98.51% 98.27% 97.61%
6-XOR-APUF 300,000 (600,000 / 1,200,000) 96.98% 97.38% 98.09% 98.24% 97.54% 49.96%

10-XOR-APUF 300,000 (600,000) 95.43% 95.61% 97.12% 96.14% 96.32% /
30-XOR-APUF 600,000 91.85% 89.77% 92.13% / / /

(2,2,3)-OAX-APUF 300,000 (600,000) 97.49% 97.94% 97.40% 98.08% 97.87% 97.57%
(2,2,4)-OAX-APUF 300,000 (600,000) 97.18% 97.82% 97.37% 97.98% 96.81% 50.08%
(2,2,8)-OAX-APUF 300,000 (600,000) 96.17% 95.00% 96.31% 95.30% 96.84% /
(2,2,30)-OAX-APUF 600,000 87.27% 84.23% 88.95% / / /

(4,4)-iPUF 300,000 (600,000 / 647,000) 97.05% 97.58% 97.33% 96.82% 96.63% 74.73%
(5,5)-iPUF 600,000 (1,200,000) 96.94% 97.29% 97.09% 95.70% 95.36% /
(8,8)-iPUF 600,000 95.79% 94.35% 95.71% / / /
(9,9)-iPUF 600,000 95.29% 94.72% 95.47% / / /

(2,16)-iPUF 600,000 92.81% 90.33% 92.82% / / /
(2,18)-iPUF 600,000 89.26% 89.00% 90.49% / / /

* Two-Head A of MLMSA uses response and power SCI. Two-Head B of MLMSA uses response and reliability SCI. Three-Head of MLMSA uses response, power SCI,
and reliability SCI. Multi-Class A of SLMSA uses response and power SCI. Multi-Class B of SLMSA uses response and reliability SCI.

** For Two-Head A, Three-Head and Multi-Class A, the training size is 300, 000 or 600, 000. Take 5-XOR-APUF as an example, the size of 300, 000 is used when the
attacks use power SCI; 600, 000 when attacks use reliability SCI. The 655, 000 is the number given by [29].
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Fig. 6. Comparisons of MLMSA (i.e., multi-head) and SLMSA (i.e., Multi-
Class) attacks using CRP, or/and power or/and reliability SCI on l-XOR-
APUFs. The x-axis stands for the l of XOR-APUFs.

settings for optimization, the response head loss weight is 2,
the power head loss weight is 3 when the Two-Head A attack
is used; the response head loss weight is 2 when the Three-
Head attack is used. As for Two-Head A, Three-Head and
Multi-Class A, the training size is 600, 000. While for Two-
Head B and Multi-Class B, the training size is 600, 000 for
(4, 4)-iPUF, 1, 200, 000 for (5, 5)-iPUF, respectively.

Though MLMSA is simple, it can also break (2, 16)/(8, 8)-
iPUF with accuracy of 90.33%/94.35% that is comparable to
the SLMSA when response, power SCI and reliability SCI
are exploited. When using response, power SCI and reliability
SCI, Three-Head of MLMSA can also successfully model
(2, 18)/(9, 9)-iPUF with accuracy of 89.00%/94.72%, which
has not been reached by existing works include [18]. As for
Two-Head B by using response and reliability SCI, both the
MLMSA and SLMSA can break (5, 5)-iPUF with accuracy
more than 95%.

3) (x, y, z)-OAX-APUF: For the (x, y, z)-OAX-APUF, we
fix x = 2, y = 2, and change the setting of z. The loss
weight settings of multi-head attacks are detailed in Table I.
As for Two-Head A model (response head and power head),
the response head loss weight is 10, the power head loss weight
is 2. As for Two-Head B model (response head and reliability
head), the response head loss weight is 1, the reliability head
loss weight is 0.8 when z ≤ 7; 1.8 when z = 8, respectively.
As for Three-Head, the response head loss weight is 10, the
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Fig. 7. Comparisons of MLMSA (i.e., multi-head) and SLMSA (i.e., Multi-
Class) attacks on (x, y)-iPUFs. The x-axis stands for the (x, y) of iPUFs.

power head loss weight is 2 and the reliability head loss weight
is 2. The training size is 300, 000 when z ≤ 10; 600, 000 when
z ≥ 12, respectively, if the attacks use power SCI (Two-Head
A, Three-Head, and Multi-Class A). As for Two-Head B, the
training size is 600, 000.

As shown in Fig. 8, the performance of MLMSA and
SLMSA are similar though the MLMSA is simpler. More
specifically, when power SCI is leveraged, both MLMSA and
SLMSA can break (2, 2, 30)-OAX-APUF with an accuracy of
about 88%. Two-Head B with reliability SCI can reliably break
(2, 2, 8)-OAX-APUF with an accuracy of more than 95%—
later in Section VI-B we show that (2, 2, 9)-OAX-APUF is
statistically breakable.

These experiments further validate the security of the OAX-
APUF. Compared with the l-XOR-APUF, the (x, y, z)-OAX-
APUF with l = x + y + z is slightly easier to be modeled
in front of DL based attacks, because the OR and AND
are easier to be approximated than the XOR operation by
DL. Despite the OAX-APUF defeats CMA-based reliability
modeling attacks and improves the modeling resilience to the
LR based modeling attacks with only CRPs for training [11].

4) FF-APUF: For FF-APUF, we compare i) the Two-Head
model of MLMSA with multi-class of SLMSA attack and ii)
the pure CRP based DL attack [27]. Note for the first two type
attacks, only the reliability SCI is utilized.

In this experiment, the number of hidden layer is set to
be 2 for Two-Head B and Multi-Class B. The training size is
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Fig. 8. Comparisons of MLMSA and SLMSA using power and reliability
SCIs on OAX-APUFs. The x-axis stands for the z of (x, y, z)-OAX-APUFs.

30, 000 when the loop number is less than 4; 600, 000 when the
loop number is 4, 5 and 6. The weight of response head loss is
10, and the weight of reliability head loss is 2. There are three
reliability SCI settings: 10 times of repeated measurement with
11 classes; 19 times measurements with 4 classes (e.g., 0-4
are one class, 5-9 are one class); and 19 measurements with
20 classes. The challenge feature vector extraction method is
consistent with [27].

As results detailed in Table III, the multi-head of MLMSA
and multi-class of SLMSA attack can successfully model FF-
APUF which has 6 loops with an accuracy of about 90%.
Both attacks that are hybrid attacks exhibit a better accuracy
than the purely CRP-based DL modeling attack [27]. As for
the repeated times of reliability SCI, when the response is
measured repeatedly for 19 times and the results are divided
into 20 categories (i.e., more repeated times and fine-grained
class), the response accuracy obtained by the two attacks is
the highest. This indicates the higher fine-grained reliability
SCI, the better.

MLMSA can be used to break XOR-FF-APUF, where the
FF-APUFs are further XOR-ed. As shown in Fig. 9, when
using response and power SCI, MLMSA can successfully
break 10-XOR-FF-APUF when the training size is 300, 000.
By increasing the training size, larger XOR-FF-APUF (i.e., 20-
XOR-FF-APUF) is also breakable. Note, here all FF-APUFs
have one-loop.
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Fig. 9. Comparisons of Two-Head A Attack with different number of training
CRPs and power SCI on l-XOR-FF-APUF in which FF-APUFs have 1 loop
(63→80). The x-axis stands for the l of XOR-FF-APUFs.

VI. DISCUSSION

A. Different Loss Weights

We take Two-Head B of MLMSA attack to further explore
the impact of different head loss weight settings on perfor-
mance of the MLMSA. In this experiment, the response head
loss weight is set to be 1, while the reliability head loss weight
ranges between 0.5 and 2.0. The attacked strong PUFs are 10-
XOR-APUF, (2, 2, 8)-OAX-APUF, and (5, 5)-iPUF. As shown
in Fig. 10, when the reliability head loss weight is small, the
chance of response accuracy greater than 90% tends to be
small—each weight setting per strong PUF runs one time. The
other observation is the attacking accuracy stability, for 10-
XOR-APUF and (5, 5)-iPUF, when the reliability head loss
weight is greater than 1.5, the response prediction accuracy
is high and stably maintained, e.g., above 90% of 10-XOR-
APUF.

There are two general implications. Firstly, a slightly higher
reliability head loss weight is necessary to enforce its contri-
bution. Otherwise, if its weight is too small, the Two-Head B
attack degrades to CRP-only based DL attacks, which is less
effective exhibited by the lower chance of breaking large-scale
APUF variants, e.g., 128-stage 10-XOR-APUF. Secondly, a
properly set higher head loss can make the attacking accu-
racy remain stably high with smaller variance, which can be
observed by the accuracy of 10-XOR-APUF and (5, 5)-iPUF.

According to our observations on different loss curves dur-
ing the training in all aforementioned experiments, the power
output head converges the fastest, followed by the response
output head, and finally the reliability output head. Though
we always adopt a fixed head loss in all our experiments
throughout the training process, it is expected that dynamically
tuning these loss weights may achieve improved attack effect
e.g., better accuracy or faster convergence for the total loss.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Reliability Weight

50%

60%

70%

80%

90%

100%

Ac
cu

ra
cy

re
s

10-XOR-APUF
(2,2,8)-OAX-APUF
(5,5)-iPUF

Fig. 10. Response prediction accuracy under different loss settings.

B. Reliability Hybrid Attack

The proposed MLMSA and reproduced SLMSA attack [18]
using the reliability SCI obtained from 11 repeated measure-
ments can reliably model 10-XOR-APUF with an accuracy
of 96%. As for (2, 2, 8)-OAX-APUF, the accuracy of the two
attacks both reliably achieve 95%. In fact, when these two
attacks run for multiple times, there is a certain probability
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TABLE III
COMPARISONS OF MLMSA WITH SLMSA (I.E., MULTI-CLASS) [18] AND DL WITH PURE CRP ATTACK [27] ON FF-APUFS WITH VARYING NUMBER OF

LOOPS.

loopNum (m, cn) Start → End Two-Head B Multi-Class B TowardsFast Start → End Two-Head B Multi-Class B TowardsFast
(19,20) 99.02% 99.04% 95.87% 98.94% 99.17% 97.77%
(19,4) 98.75% 99.03% 95.61% 98.86% 99.14% 96.85%1

(10,11)
15→80

98.83% 98.91% 95.25%
63→80

98.95% 99.11% 98.06%
(19,20) 94.90% 95.00% 95.09% 94.88% 95.11% 95.17%
(19,4) 94.79% 94.90% 95.11% 94.79% 94.83% 94.99%2

(10,11)
15→80,85

94.82% 94.92% 94.99%
63→80,85

94.83% 94.98% 95.07%
(19,20) 94.33% 94.31% 91.84% 94.34% 94.59% 93.36%
(19,4) 94.17% 94.24% 91.53% 94.14% 94.39% 93.30%3

(10,11)
15→80,85,90

94.26% 94.69% 91.83%
63→80,85,90

94.22% 94.43% 92.88%
(19,20) 91.45% 91.53% 91.48% 91.50% 91.51% 91.44%
(19,4) 91.41% 91.55% 91.40% 91.43% 91.49% 91.59%4

(10,11)

15→80,85
15→90,95 91.43% 91.55% 91.32%

63→80,85
63→90,95 91.29% 91.38% 91.38%

(19,20) 90.83% 90.73% 88.62% 91.12% 91.04% 89.62%
(19,4) 90.66% 90.80% 88.69% 90.93% 91.05% 89.39%5

(10,11)

15→80,85
15→90,95,100 91.00% 91.01% 88.21%

63→80,85
63→90,95,100 91.12% 90.91% 89.49%

(19,20) 91.28% 91.38% 89.69% 91.22% 91.30% 90.15%
(19,4) 91.33% 91.17% 89.52% 90.92% 91.21% 89.67%6

(10,11)

15→80,85,90
15→95,100,105 91.02% 91.21% 89.69%

63→80,85,90
63→95,100,105 91.09% 91.37% 90.02%

* Two-Head B of MLMSA uses response and reliability SCI. Multi-Class B of SLMSA uses response and reliability SCI.
** (m, cn) means reliability SCI is obtained by repeating the measurements for m times, which is divided into cn categories/classes.
*** In the experiments of FF-APUFs, the responses of training set are obtained by a majority vote. While the responses of test set are noise-free.

that the response accuracy of even larger scaled 11, 12-XOR-
APUF, (2, 2, 9)-OAX-APUF can reach more than 90% (i.e.,
being successfully broken). To be more precise, we have run
5 times, and there is one attempt reaching about 94%.

As shown in Table II, Two-Head B of MLMSA and Multi-
Class B of SLMSA can successfully break 10-XOR-APUF,
(2, 2, 8)-OAX-APUF and (5, 5)-iPUF when the reliability SCI
assists the model training. In comparison, when only CRPs
are used, the DL attack [29] can only break 5-XOR-APUF,
(2, 2, 3)-OAX-APUF and (4, 4)-iPUF, which are inferior to the
hybrid attacks. Note to be fair, these attacks by us have used
the same MLP structure except for the output layer.

According to Liu et al. [18], the GRA based hybrid attack
using reliability SCI [19] can successfully crack a 128-stage 6-
XOR-APUF. But it cannot crack a 12-XOR-APUF. GRA can
break (6, 6)-iPUF, which cannot be broken by the two attacks
we have attempted. The GRA exhibits improved performance
over iPUF due to its knowledge of the differential model for
the iPUF. In addition, the GRA relies on a multiple pass attack
when the x > 1 in the (x, y)-iPUF. In other words, the y-APUF
are firstly learned, then the x-APUF are learned sequentially
by fixing the learned y-APUF.

In summary, by using the easily obtainable reliability SCI to
assist the hybrid modeling attacks, larger scaled strong APUF
variants can be successfully broken, which cannot be achieved
by using the CRP-only based DL attacks.

C. Silicon Measurement Validations

Following [38], [39], we use the public ROPUF dataset
HOST2018 [40] to synthesize APUF, coined as RO-APUF.
The key of this method is to use the reciprocal of four RO
frequencies as the four time delays of each stage of the RO-
APUF (see illustration in Fig. 12). To synthesize a 128-stage
RO-APUF, 512 RO frequencies are utilized, which mainly has
the following three steps.

1) Obtain the reciprocal of RO frequencies to serve as the
path segment delays of APUF: the reciprocal of four RO
frequencies are used as the segment time delays of the
i-th stage of APUF: ti13, ti14, ti23, ti24, as illustrated in
Fig. 12.
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(d) (2,2,6)-OAX-APUF
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(e) (2,2,7)-OAX-APUF
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Fig. 11. The response unreliability SCI category statistics of XOR-APUF (a-
c) and OAX-APUF (d-f) based on silicon measurement sythesized RO-APUF
and MATLAB numerical simulated APUF.
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Fig. 12. Example of i-th stage of an APUF with two signal paths (i.e., top
and bottom paths).

2) The delay crossi = ti14 − ti23 and delay uncrossi =
ti13 − ti24 are computed to represent the cross path delay
difference and uncross path delay difference of the ith
stage. The w[i] is obtained through Eq. 5.

w[0] = (delay uncross0 − delay cross0)/2,

w[128] = (delay uncross127 + delay cross127)/2,

w[i] = (delay uncrossi−1 + delay crossi−1

+ delay uncrossi − delay crossi)/2,

i = 1, 2, ..., 127.

(5)

3) Compute the response of a given challenge according to
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Eq. 1, Eq. 2, and Eq. 3.
The HOST2018 ROPUF dataset provides raw data from 217

Xilinx Artix-7 XC7A35T FPGAs, each containing a total of
6,592 ROs, comprising six different routing paths with 550 to
1,696 instances per type [40]. Each RO frequency is evaluated
100 times at 5°C, 15°C, 25°C, 35°C, 45°C, and 55°C. These
repetitive frequency measurements are used for reliability SCI
for the RO-APUF. However, this dataset does not have power
consumption measurements—the silicon measured power SCI
of the RO-APUF is unavailable. Therefore, the experiments
below consider only the response and reliability SCI as in-
puts of the MLMSA when when compared with its SLMSA
counterpart—noting SLMSA in [18] is not evaluated against
reliability SCI.

After synthesis, RO-APUF, XOR-RO-APUF and OAX-RO-
APUF are used to validate the efficiency of the proposed
MLMSA attack with silicon measurements. The reference
response is measured at 25°C. The reliability SCI is measured
10 times at 55°C.

For the numerical simulated CRPs and the corresponding
reliability SCI obtained through MATLAB simulator, the
training size is 600, 000. Both MLMSA and SLMSA can
successfully break 10-XOR-APUF and (2, 2, 8)-OAX-APUF.
However, the same training size and loss head weight settings
are not directly applicable to XOR-RO-APUF and OAX-RO-
APUF with silicon measurements.

In order to achieve the same attack effect as the MATLAB
numerical simulation, the training size and head loss weight
settings are adjusted in some cases. When modeling the l-
XOR-RO-APUF, the training size is adjusted to 600, 000 when
l ≤ 7; 1, 200, 000 when l = 8, 9; and 1, 500, 000 when l =
10. As for (x = 2, y = 2, z)-OAX-RO-APUF, the training
size is adjusted to 600, 000 when x + y + z ≤ 9; 1, 200, 000
when x + y + z = 10, 11; 1, 500, 000 when x + y + z = 12.
The response weight of all Two-Head B attacks on XOR-RO-
APUF and OAX-RO-APUF are 1. For l-XOR-RO-APUF, the
reliability loss weight is 0.8 when l = 5, 6, 8, 9; 1.8 when
l = 7; and 1 when l = 10. The reliability loss weight for the
OAX-RO-APUF is always 0.8. Both Two-Head B and Multi-
Class B can model 10-XOR-APUF with an accuracy of about
95%. While Multi-Class B of SLMSA can not break (2, 2, 8)-
OAX-RO-APUF, Two-Head B of MLMSA can successfully
break it with an accuracy of 97.35%.

Generally, the required number of training CRPs and corre-
sponding reliability SCI silicon measurement attacks is larger
than the number of numerical simulated strong PUFs. The
potential reason is that the unreliability of RO-APUF is lower
than that from numerical simulation. The bit error rate or
unreliability of RO-APUF is about 3% to 5%, while the
unreliability of the APUF upon numerical simulation is about
5% to 8%. More precisely, as we repeatedly measure the same
response 10 times to gain 11 categories for the reliability
SCI, it indicates that the unreliable responses (categories of
0 and 10 are from those reliable responses, rest 1 to 9
categories are unreliable responses) in the RO-APUF is less
than that in numerical simulation. Therefore, the contribution
from the reliability SCI is reduced, which requires a larger
training size. Fig. 11 manifests this conjecture. We can see

TABLE IV
COMPARISON BETWEEN MLMSA AND SLMSA WHEN ATTACKING

LARGE-SCALED l-XOR-APUFS RESULTING INTO HIGH DIMENSIONALITY
BY USING RESPONSE, RELIABILITY SCI AND POWER SCI.

Attack l (m,cn) Num. Classes
(Output Dimens.) Response Acc Time

10 (10,11) (2,11,11) 95.94% 7 min 2 s
10 (19,20) (2,11,20) 96.12% 9 min 36 s
12 (10,11) (2,13,11) 94.43% 9 min 33 s
12 (19,20) (2,13,20) 94.29% 13 min 39 s
16 (10,11) (2,17,11) 96.08% 39 min 21 s
16 (19,20) (2,17,20) 96.21% 42 min 51 s
20 (10,11) (2,21,11) 95.14% 43 min 49 s

MLMSA

20 (19,20) (2,21,20) 94.28% 45 min 42 s
10 (10,11) 242 95.26% 27 min 33 s
10 (19,20) 440 95.66% 39 min 14 s
12 (10,11) 286 94.77% 32 min 42 s
12 (19,20) 520 95.08% 55 min 37 s
16 (10,11) 374 94.92% 89 min 44 s
16 (19,20) 680 94.55% 2 h 38 min
20 (10,11) 462 92.12% 2 h 59 min

SLMSA

20 (19,20) 840 93.58% 4 h 59 min
* (m, cn) means reliability side-channel information is obtained by repeating the

measurement for m times, which is divided into cn categories/classes.
** SLMSA means the specific Multi-Class C that uses response, power SCI and

reliability SCI to build CSPs.
*** MLMSA and SLMSA have the same number of hidden layers. The number of

hidden layer is 3 when l = 10, 12, 16. The number of hidden layer is 4 when
l = 20.

**** The Num.Classes (output dimensionality) for Three-head MLMSA means the
number of classes of (response, power, reliability). The Num.Classes for SLMSA
Multi-Class C means 2× |power| × |reliability|.

that the unreliable response categories of (1–9) of the silicon
measurement based strong PUFs are much less than that from
numerical simulations. Nonetheless, MLMSA and SLMSA
can still successfully model XOR-RO-APUF and OAX-RO-
APUF once the number of unreliable responses (i.e., those in
categories 1–9) increases.

D. Curse of Dimensionality

We now compare SLMSA with MLMSA when the large-
scaled l-XOR-APUFs are attacked. In this context, when using
all three response, reliability, and power SCI features, the
dimensionality is high. The results are detailed in Table IV
and visualized in Fig. 13.

As we can see, MLMSA always outperforms SLMSA when
the dimensionality increases in terms of not only accuracy but
also training time. The training time reduction is significant.
When attacking l-XOR-APUF, the total dimensionality of
SLMSA is 2× cn× (l+ 1) and MLMSA is 2 + cn+ (l+ 1).
For instance, when attacking 20-XOR-APUF using response,
reliability SCI and power SCI, the dimensionality of SLMSA
becomes 462 (i.e., 2 × 21 × 11 = 462) and 840 (i.e.,
2 × 21 × 20 = 840) when (m = 10, cn = 11) and (m = 19,
cn = 20), respectively. While for MLMSA, the summed
dimensionality of its three output heads is 2 + 21 + 11 = 34
and 2 + 21 + 20 = 44, respectively, which is an order of
magnitude smaller than that of SLMSA. The increased output
dimensionality results in a larger network, which requires
longer training time. In addition, when the number of classes
of a single head greatly increases in SLMSA, the error
increases—the classification hardness (slightly) goes up [41].

E. Lightweight Cryptographic Module Incorporation

The general take-away of this study is that by barely increas-
ing the scale of a strong PUF, in particular, the APUF variants,
is still challenging when it is confronted with rapidly evolving
DL techniques, especially by combining response information
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Fig. 13. MLMSA vs. SLMSA when the dimensionality is high (using
response, reliability and power features).

and multiple SCIs. Therefore, the practical solution of using
strong PUFs appears to incorporate lightweight cryptographic
modules such as the Lockdown-PUF [42], TREVERSE con-
structions [38], and RSO-APUF [43] to protect the CRP
interface. The overhead caused by lightweight cryptographic
modules can be lower or comparable to the overhead incurred
by increasing the APUF variants to a large-scale, e.g., 128-
stage 30-XOR-APUF being breakable.

F. MLP Insensitivity to Non-Uniformity

Aghaie et al. [44] demonstrated that implementation defects
resulted in bias that hardens certain machine learning based
modeling attacks (i.e., LR attacks) on complex PUF architec-
tures (i.e., iPUF). Nonetheless, not any learning algorithm is
sensitive to the APUF’s non-uniformity when it is used to
modeling the APUF variants. As recognized by Aghaie et
al. [44], the ANN (in essence, the MLP is used) is insen-
sitive to the non-uniformity based on their validations, which
has been used to replace LR to mitigate the non-uniformity
degradation on the attacking accuracy. In MLMSA, we have
utilized a similar MLP learning algorithm.

We have further evaluated the MLP’s attacking accuracy
when the underling PUFs’ uniformity varies from 0.5 to 0.9
to check whether the MLP attack is indeed sensitive to the
PUF uniformity. The MLP structure, hyperparameter settings
and training CRP size in the experiments follow [29]. We
note that the reported accuracy [29] is hardly achieved until
we replace the activation function Relu used in [29] with
Tanh. We note that the l-XOR-APUF with l = 3, 4, 5 and
(3, 3)-iPUF, (4, 4)-iPUF have been used by [44], which we
evaluate as well. As detailed in Fig. 14, when the uniformity
increases, the accuracy almost does not decline, but is even
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Fig. 14. MLP attacking accuracy with biased l-XOR-APUFs and (x, y)-
iPUFs.

TABLE V
MINIMAL TRAINING SIZE OF MLMSA TO ATTACK

l-XOR-APUF—RESPONSE, POWER, AND RELIABILITY (m = 10 AND
cn = 11) FEATURES ARE USED. THE MLP HAS FOUR HIDDEN LAYERS

FOR l = 20 AND THREE HIDDEN LAYERS FOR THE REST.

l
Training

Size
Response
Weight

Power
Weight

Reliability
Weight Best Acc Success

Rate
5 50,000 2 10 2 92.91% 10/10
6 62,000 2 10 2 93.24% 10/10
7 68,000 2 10 2 91.82% 8/10
8 80,000 2 10 2 91.94% 8/10
9 92,000 2 10 2 91.66% 6/10

10 100,000 2 10 2 92.12% 7/10
11 145,000 2 10 2 94.01% 10/10
12 164,000 4 5 2 93.98% 10/10
13 164,000 2 10 2 93.52% 6/10
14 200,000 4 5 2 93.72% 9/10
15 240,000 4 5 2 93.10% 8/10
16 260,000 10 8 2 93.09% 7/10
17 280,000 5 5 2 93.41% 6/10
18 300,000 5 5 2 93.51% 9/10
19 340,000 10 8 2 93.18% 7/10
20 360,000 10 5 2 93.88% 9/10

higher in some cases. Our results align with that of Aghaie
et al. [44], that is the non-uniformity has negligible influence
on increasing the APUF variants’ modeling resilience to MLP.
Therefore, MLMSA evaluations building upon the MLP model
architecture hold their validity.

TABLE VI
MINIMAL TRAINING SIZE OF MLMSA TO ATTACK

(x, y)-IPUF—RESPONSE, POWER, AND RELIABILITY (m = 10 AND
cn=11) FEATURES ARE USED. THE MLP HAS FOUR HIDDEN LAYERS.

(x,y) Training
Size

Response
Weight

Reliability
Weight

Power
Weight Best Acc Success

Rate
(4,4) 100,000 2 2 10 93.66% 9/10
(5,5) 130,000 2 2 10 94.35% 10/10

(1,10) 160,000 2 2 10 91.61% 7/10
(6,6) 170,000 2 2 10 94.17% 6/10
(7,7) 200,000 2 2 10 93.61% 8/10
(8,8) 250,000 2 2 10 93.55% 10/10

(2,16) 480,000 2 2 10 91.19% 6/10

TABLE VII
MINIMAL TRAINING SIZE GENERALLY DECREASES GIVEN HIGHER

TRAINABLE PARAMETERS OF MLP IN THE MLMSA ATTACK AGAINST
l-XOR-APUF AND (x, y)-IPUF.

PUF Training
Size

Hidden
Layer
Num

Response
Weight

Power
Weight

Reliability
Weight Best Acc Success

Rate

5-XOR-APUF 80,000 2 2 10 2 92.15% 8/10
5-XOR-APUF 50,000 3 2 10 2 92.91% 10/10
5-XOR-APUF 45,000 4 2 10 2 92.99% 9/10

(4,4)-iPUF 110,000 3 2 10 2 94.49% 10/10
(4,4)-iPUF 100,000 4 2 10 2 93.66% 9/10
(4,4)-iPUF 100,000 5 2 10 2 94.28% 9/10
(4,4)-iPUF 90,000 5 2 10 2 93.85% 7/10
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TABLE VIII
INCREASE RELIABILITY GRANULARITY HELPS TO IMPROVE THE MLMSA

ATTACK ACCURACY GIVEN THE SAME TRAINING SIZE. THE
l-XOR-RO-APUF IS ATTACKED WITH A 600, 000 TRAINING SIZE

(RESPONSE AND RELIABILITY FEATURE ARE USED). THE MLP HAS
THREE HIDDEN LAYERS.

m cn 5-XOR-APUF 6-XOR-APUF 7-XOR-APUF 8-XOR-APUF
10 11 98.38% 98.13% 50.25% 49.95%
20 21 98.30% 98.39% 97.72% 50.02%
30 31 98.52% 97.93% 97.75% 50.10%
40 41 98.37% 98.22% 97.99% 50.08%
50 51 98.35% 97.97% 97.98% 97.65%

TABLE IX
INCREASE RELIABILITY GRANULARITY HELPS TO IMPROVE THE MLMSA

ATTACK ACCURACY GIVEN THE SAME TRAINING SIZE. THE
(x, y, z)-OAX-RO-APUF IS ATTACKED WITH A 600, 000 TRAINING SIZE

(RESPONSE AND RELIABILITY FEATURE ARE USED).

m cn (2,2,2) (2,2,3) (2,2,4) (2,2,5) (2,2,6)
10 11 98.38% 98.07% 97.56% 97.19% 49.92%
20 21 98.40% 98.22% 97.75% 97.46% 50.31%
30 31 98.50% 98.19% 97.82% 97.64% 50.33%
40 41 98.50% 98.37% 97.89% 97.47% 51.46%
50 51 98.33% 98.33% 97.89% 97.42% 97.22%

G. Minimal Training Size

It is preferable to find the minimal number of training CRPs
to comprehend the robustness of PUFs from a theoretical (i.e.,
PAC Learning [45]) or empirical (i.e., Intrinsic ID [46]) point
of view to demonstrate the attack efficiency from another per-
spective. For machine learning based APUF modeling attacks,
it is non-trivial to gain a theoretical bound of the minimal
training size. This is especially the case for MLMSA that
leverages multiple features given the same challenge. We have
aimed at empirically finding the minimal training size with the
same MLP trainable size and reliability granularity. The results
are shown in Table V and Table VI against l-XOR-APUF
and (x, y)-iPUF, respectively. Note that when the PUF scale
goes up, the minimal training size does gradually increase, see
the visualization in Figure 15 with a much small slope. This
minimal training size increase is slight (i.e., very small slope)
compared to that reported by Becker [15] that used reliability-
based attack incorporating a divide-and-conquer strategy to
break underlying APUFs within l-XOR-APUF one-by-one—
the CMA-ES algorithm is leveraged. In this case, the attacking
complexity (i.e., attacking time and required number of CRPs)
is also (approximately) linear with l. We note that the CMA-
ES will find each APUF’s numerical weights that have a linear
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Fig. 15. The minimal training size of MLMSA attack on l-XOR-APUFs.

relationship with the real time-delay segments of the APUF.
In other words, it needs to recover the mathematical model
per APUF.

We further note that the implemented MLP model’s per-
formance is dependent on its trainable parameters. That is,
by properly tuning the MLP trainable size, the performance
(i.e., the attacking accuracy) can be improved even given the
same training size—see experimental results in Table VII. For
example, when the 5-XOR-APUF is attacked, the minimal
training size is reduced from 80,000 to 45,000 when more
hidden layers are leveraged in the MLP—higher number of
trainable parameters.

Moreover, when the reliability SCI is used, the minimal
training size can be reduced if the granularity (i.e., m, and
cn) of the reliability increases—see experimental results in
Table VIII for attacking l-XOR-APUF and Table IX for
attacking (x, y, z)-OAX-APUF. For example, in Table VIII,
when the reliability granularity is low (m = 10 and cn = 11),
the 7-XOR-APUF and 8-XOR-APUF cannot be broken. When
m = 20 and cn = 21, the 7-XOR-APUF is breakable with the
same training size but increased reliability granularity. When
m = 50 and cn = 51, the 8-XOR-APUF is further broken
with the same training size but a further increased reliability
granularity.

H. Limitations
It has been found that the modeling attack results of

simulated CRPs can (reasonably) reflect the APUF variants
modeling resilience based on silicon CRPs [22]. Using sim-
ulated CRPs following the well-established linear additive
delay model [10], [14], [22], [23], [26], [47]–[49] to evaluate
the modeling resilience is a common and acceptable means,
despite other parameters (i.e., uniformity and uniqueness)
sometimes exhibiting some inconsistency when the physical
implementation is not properly tuned (i.e., some paths are
extremely asymmetric, resulting in severe bias).

Silicon measurement based validations are preferable and
have been conducted in other modeling resilience studies [9],
[16], [22]. It is worth validating the MLMSA and SLMSA with
silicon measurements, especially, for the power SCI in future
work. The absence of silicon fabrication based validation is a
limitation of current study.

To remedy this limitation to some extent, following [38],
[39], we have evaluated the MLMSA efficacy through silicon
measurement via the synthesized RO-APUFs—the response
and reliability SCI are emulated in this context. The char-
acteristics are the same for the numerical simulation based
evaluations.

The weights or regularization factors of response and other
SCIs (i.e., power and reliability) in the MLMSA are em-
pirically determined, which have shown sufficient attacking
performance. It is interesting to incorporate adaptive weights
learning during the training to automate their optimization in
future work.

VII. CONCLUSION

This work proposes the MLMSA attack that constructively
leverages multi-head DL to concurrently exploit useful multi-
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channel information to attack strong PUFs, particularly, APUF
variants. With this simple and efficient MLMSA attack, we
have successfully attacked a 128-stage 30-XOR-APUF, a (9,
9)- and (2, 18)-iPUF, and a (2, 2, 30)-OAX-APUF when
CRPs, power SCI and reliability SCI are simutaneously used.
With access to only easy-to-obtain reliability SCI and CRPs,
the MLMSA can stably break a 128-stage 10-XOR-APUF,
(2, 2, 8)-OAX-APUF, and 6-loop FF-APUF; and statistically
break a 12-XOR-APUF and (2, 2, 9)-OAX-APUF. All these
large-scaled strong APUF variants have not been achieved
by state-of-the-arts attacks. We conclude that MLMSA can
serve as an efficient technique for examining other existing
or emerging strong PUF’s modeling resilience due to its sim-
plicity, efficacy and the avoidance of underlying mathematical
model.
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[22] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, “PUF modeling
attacks on simulated and silicon data,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 8, no. 11, pp. 1876–1891, 2013.

[23] G. T. Becker, “On the pitfalls of using arbiter-PUFs as building blocks,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 8, pp. 1295–1307, 2015.
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