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MeTRAbs: Metric-Scale Truncation-Robust
Heatmaps for Absolute 3D Human Pose
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Abstract—Heatmap representations have formed the basis of human pose estimation systems for many years, and their extension to 3D
has been a fruitful line of recent research. This includes 2.5D volumetric heatmaps, whose X and Y axes correspond to image space and
Z to metric depth around the subject. To obtain metric-scale predictions, 2.5D methods need a separate post-processing step to resolve
scale ambiguity. Further, they cannot localize body joints outside the image boundaries, leading to incomplete estimates for truncated
images. To address these limitations, we propose metric-scale truncation-robust (MeTRo) volumetric heatmaps, whose dimensions are all
defined in metric 3D space, instead of being aligned with image space. This reinterpretation of heatmap dimensions allows us to directly
estimate complete, metric-scale poses without test-time knowledge of distance or relying on anthropometric heuristics, such as bone
lengths. To further demonstrate the utility our representation, we present a differentiable combination of our 3D metric-scale heatmaps
with 2D image-space ones to estimate absolute 3D pose (our MeTRAbs architecture). We find that supervision via absolute pose loss is
crucial for accurate non-root-relative localization. Using a ResNet-50 backbone without further learned layers, we obtain state-of-the-art
results on Human3.6M, MPI-INF-3DHP and MuPoTS-3D. Our code is publicly available.1

Index Terms—3D human pose estimation, absolute human pose, scale estimation, truncation
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1 INTRODUCTION

HUMAN pose estimation is a long-standing computer
vision problem with wide applicability in human-

robot interaction [1], virtual reality [2], medicine [3] and
commerce [4], among others. Since the adoption of deep con-
volutional neural networks (CNN), and especially heatmap
representations, we have witnessed rapid progress in pose
estimation research [5], [6], [7]. A particularly challenging
task is monocular 3D pose estimation [8], [9], [10], [11],
[12], where a person’s anatomical landmarks are sought
in 3D space, i.e., in millimeters, instead of pixels, given
only a single image. Reconstructing 3D from images is
one of the major goals of computer vision research, but
several geometric ambiguities make this challenging. First,
different 3D articulations may share the same 2D projection
and second, there is an ambiguity between object size and
distance, as small objects near the camera appear the same
as large ones far away.

There is no clear consensus on the most effective way to
represent and tackle these problems. Heatmap estimation
is a promising direction, because it makes direct use of the
convolutional structure of CNNs by turning the coordinate
estimation problem into a binary classification problem of
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Fig. 1. By defining heatmaps in the 3D metric space around the person
(top row) we directly estimate scale-correct complete poses. This is in
contrast to prior work (bottom row) that defines the X and Y heatmap
axes in image space and requires further post-processing to obtain
a metric-scale skeleton. The three columns show that this heatmap
representation is nearly invariant w.r.t. image zooming. A knee heatmap
is shown along with the soft-argmax decoded skeleton.

whether the joint is located at the given position or not. To
estimate 3D pose, a successful line of works extends 2D joint
heatmaps with a depth axis, resulting in a 2.5D volumetric
representation [13], [14], [15], [16].

Finding heatmap maxima gives the estimated pixel
coordinates and root-relative metric depths per joint (a
2.5D pose). While these estimates can be accurate, 2.5D
representations do not address the challenging ambiguity
between person size and distance. To bridge the gap between
a 2.5D and a 3D pose, a separate scale recovery step is needed
in post-processing. Explicit anthropometric heuristics have
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been proposed as scale cues, e.g. bone length priors [13] or a
skeleton length prior [17], computed by averaging over the
training poses. However, these simple heuristics have difficul-
ties when the experimental subjects have diverse heights. A
further limitation is that 2.5D formulations are constrained to
the estimation of joints that lie within the image boundaries.
This is problematic in practical applications, where the image
crop may not include the whole person, e.g. due to occlusions
or detector noise. While one could use an additional module
to fill in missing joints, it is desirable to learn the complete
skeleton estimation in a single unified stage.

Our goal in this paper is to tackle scale and distance
estimation of 3D poses in a truncation-robust, simple and
efficient manner, while also keeping the structural advan-
tages of fully-convolutional heatmap estimation, as opposed
to numerical coordinate regression (i.e. encoding position by
activation location instead of activation value).

To this end, we propose training a fully-convolutional
network to output our novel metric-scale truncation-robust
(MeTRo) heatmaps as illustrated in Fig. 1. All dimensions of
these heatmaps are defined to have a fixed metric extent in
meters. This is an unconventional task definition for fully-
convolutional networks (FCN). FCNs are predominantly
applied for pixel-wise prediction tasks, such as semantic
segmentation, where the input and output are pixel-to-
pixel aligned. In our proposed approach, the input pixel
positions and the output metric positions only satisfy a looser
form of spatial correspondence. Nevertheless, we show that
somewhat surprisingly, such a mapping can still be learned
effectively by a standard modern FCN backbone.

By skipping the 2.5D stage, the backbone FCN has to
implicitly reason about out-of-image joints, discover scale
cues and learn the geometric perspective back-projection in
an end-to-end manner. Our MeTRo heatmaps can naturally
encode body parts outside the image, since the prediction
volume’s bounds do not correspond to the image bounds.
As there is no need to design an explicit scale recovery step,
the pipeline becomes simpler and requires neither the focal
length nor the root joint distance to be known at test time for
root-relative prediction.

Employing the differentiable soft-argmax [14], [16], [18],
[19] layer, our method becomes end-to-end learned all the
way from image to final 3D metric-scale prediction as shown
in Fig. 2. Soft-argmax also allows rapid training with low-
resolution heatmaps. Without any additional learned decoder
module, we perform dense prediction with reduced strides
at test time for higher quality results. We find that the details
of the striding mechanism are crucial and propose a centered
striding method that distributes the output neuron receptive
fields evenly over the image.

This paper presents an extension of our own previous
work [20]. While in [20] we only considered single-person
root-relative pose, here we show that MeTRo heatmaps
are also effective for absolute (non-root-relative) 3D pose
estimation. In multi-person scenes it is especially important
to estimate absolute poses, in order to recover the spatial
layout of the whole group. We combine 3D metric-scale
root-relative heatmaps with 2D image-space heatmaps in a
two-headed CNN architecture, and subsequently reconstruct
the absolute 3D root position in a differentiable manner.
While prior approaches have tackled the root reconstruction

problem, to our knowledge we are the first to backpropagate
gradients through this reconstruction, allowing us to end-
to-end supervise the absolute pose task. We evaluate our
network in a top-down fashion combined with an off-the-
shelf person detector. We refer to this combined approach as
MeTRAbs.

Recent approaches have achieved good generalization
performance to in-the-wild images by using abundant and
diverse images with 2D pose labels in the training procedure
besides 3D data [10], [14], [16]. Applying such weak supervi-
sion is challenging in our representation, since the MeTRo
heatmap would require supervision with metric ground truth
instead of the image-space ground truth supplied with 2D
datasets. We tackle this by proposing a scale and translation
agnostic loss for 2D-annotated examples using an alignment
layer. Note that in contrast to 2.5D heatmaps, this alignment
is only used for loss computation during training, and still
allows MeTRo to infer joints outside the image boundaries.

Experimentally, we achieve state-of-the-art results on the
two largest single-person 3D pose benchmarks, Human3.6M
and MPI-INF-3DHP, as well as the popular multi-person
dataset MuPoTS-3D. To isolate the effect of the representation,
we perform direct comparisons with 2.5D heatmap learning
using bone-length-based scale recovery [13], under otherwise
equal training conditions. We find that scale cues can indeed
be learned implicitly in this fashion and MeTRo outperforms
the baseline on most test sequences. Furthermore, our
approach achieved first place in the 2020 ECCV 3D Poses in
the Wild [21] Challenge.

In summary, we make the following contributions: 1)
We propose a novel 3D heatmap representation for pose
estimation, called MeTRo, whose dimensions are defined in
a fixed metric scale, irrespective of the input image scale. We
achieve state-of-the-art results on Human3.6M and MPI-INF-
3DHP and demonstrate strong truncation-robustness. 2) We
propose centered striding, an improvement to the usual CNN
striding logic, enabling higher accuracy at a coarse (8×8)
heatmap resolution. 3) For absolute pose estimation, we
extend the MeTRo approach to MeTRAbs, by also estimating
2D image-space heatmaps from the same backbone and
reconstructing the absolute pose. We achieve state-of-the-
art results on the MuPoTS-3D and 3DPW multi-person
benchmarks using MeTRAbs in a top-down paradigm. 4)
To our knowledge, we are first to use a monocular geometry-
based differentiable absolute pose reconstruction module
to supervise the network with the final absolute ground
truth fully end-to-end. We show that this is crucial for good
distance estimation and extensively evaluate strong and
weak perspective-based reconstruction variants.

2 RELATED WORK

3D human pose estimation has had a long research his-
tory starting with hand-crafted features and part-based
models [22]. Similar to other computer vision problems,
the transition to deep convolutional networks has led to a
dramatic performance increase in this task. For a thorough
overview, see the recent survey by Chen et al. [23].

2.1 Deep 3D Human Pose Estimation
Much of the inspiration in recent 3D pose estimator design
has come from lessons learned in 2D pose research. DeepPose,
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the first neural 2D pose estimator [24] directly regressed 2D
joint coordinates on the RGB input via convolutional and
fully-connected layers. Later, top-performing 2D methods
have transitioned to predicting body joint heatmaps by
fully-convolutional networks (e.g., [5]) as an intermediate
representation. These heatmaps are spatially discretized
arrays (one for each joint), in which higher values indicate
higher confidence that the particular joint is located at the
corresponding position.

One line of 3D pose research builds on top of 2D heatmaps
and infers the 3D pose from them by exemplar-matching [25],
regression [8] or probabilistic inference [26]. One downside
of such approaches is that the image content only indirectly
influences the 3D estimation, as it acts on the result of the 2D
estimation stage. Furthermore, 2D-to-3D lifting is performed
in a numerical coordinate representation, which does not
benefit from the built-in convolutional structure of CNNs.

Nibali et al. [12] predict three marginal heatmaps per body
joint, for the XY, XZ and YZ planes, respectively. Pavlakos et
al. [13] propose extending 2D heatmaps with a root-relative
metric depth axis. One can obtain the 2D pixel positions and
root-relative depths of the joints by finding maxima in the
heatmaps.

One downside of heatmap representations has been the
requirement of a dense output, which can become especially
costly in 3D. The recently proposed soft-argmax [18], [19],
[27] a.k.a. integral regression [14] method greatly alleviates
this problem. As opposed to hard-argmax, which simply
finds the location of the highest heatmap activation, soft-
argmax is computed as the weighted average of all voxel
grid coordinates, using softmaxed heatmap activations as the
weights. For example, a low resolution heatmap can encode
a joint position lying halfway between two bin centers by
outputting 0.5 for both bins. By virtue of being differentiable,
unlike hard-argmax, it also obviates the need for explicit
heatmap-level supervision (e.g., voxel-wise cross-entropy).
Instead, the loss can be computed (and its gradients back-
propagated) from the coordinates yielded by soft-argmax.

Besides 2D heatmaps, Mehta et al. [9] estimate three
further output channels per joint, the so-called location maps.
These are read out at the position of the corresponding
heatmap’s peak to obtain the X, Y and Z coordinates on
a metric scale. Note how in their approach the final 3D
joint coordinates are generated in the form of activation
values (of the location maps at the heatmap peaks), as
opposed to high-activation locations. We can thus think of it a
conceptual hybrid of direct numerical coordinate regression
and heatmap estimation. A downside of this method is that
it requires high-resolution location maps and cannot benefit
from the soft-argmax approach.

2.2 Scale and Distance Estimation

It is well-known that projecting a 3D world onto a 2D
image plane results in ambiguity between size and distance
(depth). However, the end goal for 3D scene understanding
and 3D human pose estimation in particular is a metric-
space output at the true scale. The ambiguity can only be
resolved using semantic scale cues, i.e. prior knowledge of
the usual size of humans and other objects appearing in the
scene. Unfortunately, not all papers describe how this step

is performed. Some authors report their results assuming an
already known ground-truth root joint distance and focal
length [12], [14], [28], [29]. A simple anthropometric approach
is used by Pavlakos et al. [13] Given 2D pixel positions and
root relative depth estimates from volumetric heatmaps, they
optimize the absolute person distance such that the back-
projected skeleton’s bone lengths match the average over
the training set in a least squares sense, assuming a full
perspective model. We use this scale recovery approach
as our main baseline comparison throughout the paper,
described in more detail in Sec. 5. Sun et al. [17] employ
a similar idea, but use the overall skeleton length and a
weak perspective model instead. Methods that are not based
on volumetric heatmaps [30], [31] can directly predict the
metric-scale numerical coordinates. Some recent works have
shown that direct regression of person height from an image
is a challenging task [32], [33].

While monocular 3D pose estimation methods are typi-
cally only evaluated in a root-relative manner, some works
have also explicitly tackled the absolute (non-root-relative)
pose estimation task, where every joint position is predicted
within the 3D camera coordinate frame. This is closely related
to the above-discussed metric-scale prediction: if both the
image-space pose and the metric-scale root-relative pose are
known, one can reconstruct the absolute distance (assuming
a calibrated camera). Mehta et al. [34] and Dabral et al. [35]
reconstruct the root offset by assuming a weak perspective
model. Mehta et al. [36] assume the foot touches the known
ground plane in the first frame. Moon et al. [37] predict
the metric area of the human bounding box as a numerical
value via a separate deep network (RootNet), besides their
root-relative 2.5D PoseNet. In contrast to Moon et al., we
estimate the scaled pose fully-convolutionally and do not
require multiple separate backbones. In our earlier work [38],
we estimate the distance directly from the image crop, but
that does not generalize well to novel environments. Dabral
et al. [35] propose to estimate the focal length jointly with
the distance, implicitly relying on the perspective distortion
of people far from the optical axis. As the authors note,
this cannot work well when the camera is turned directly
towards the target person. Véges et al. [39] make use of a
monocular depth prediction network pretrained on various
indoor and outdoor datasets to help with absolute person
distance estimation. Finally, some recent works also consider
the depth relations among people: Jiang et al. [40] optimize
the depth ordering by occlusion cues, while Fieraru et al. [41]
explicitly localize contact points between people to help
with coherent reconstruction. In contrast, we perform our
estimation for each person independently.

2.3 Truncated Pose Estimation

Single-person 3D pose estimation benchmarks, such as Hu-
man3.6M [42], [43], assume that the whole person is visible in
the input image. In practical applications, however, bounding
boxes are obtained using imperfect detectors, which can
result in body truncation, especially in high-occlusion scenes.
A possible remedy could be extending the detection crops
by amodal completion [44], but this would result in a loss
of image resolution. Generally, pose estimation performance
under truncation has not been studied extensively in the
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Image-space
2D heatmaps

Root-rel., complete,
metric 3D pose

2D pose
(potentially
truncated)

Differentiable
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(geometry, not learned)

Root-rel.
3D loss*

2D loss

Absolute
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Off-the-shelf
backbone

1x1
conv

1x1
conv

(Optional,
for MeTRAbs)

Camera intrinsics

Fig. 2. Overview of our approach. We predict volumetric heatmaps using an off-the-shelf fully-convolutional backbone. Applying soft-argmax on
these heatmaps and scaling by an image-independent constant factor yields joint coordinates in metric space up to translation. We minimize
the root-relative L1 loss. Focusing on simplicity, no learnable parameters are introduced outside the standard backbone, except for a single 1×1
convolution. Optionally, if absolute (non-root-relative) pose estimation is required, our MeTRAbs extension also estimates classic 2D image-space
heatmaps via another 1×1 convolutional head. We then reconstruct the absolute pose through a differentiable reconstruction module. This is based
on a linear least squares formulation derived from the pinhole camera model. Supervision is applied both at the outputs of the individual prediction
heads and at the final combined output. (∗For 2D-labeled examples, the root-relative loss is replaced by a scale and translation-invariant 2D loss and
the absolute 3D loss is not used.)

literature. Recent work by Park et al. [45] uses cropping data
augmentation to improve 2D pose estimation. Vosoughi et al.
create randomly truncated crops from Human3.6M images,
and show that current methods perform poorly on truncated
person images, even when only considering the present
(within-boundary) joints [46]. They tackle the problem using
direct numerical coordinate regression, similar to early 2D
pose estimation methods [24]. We show that our approach
performs significantly better in the truncated setting.

3 SINGLE-PERSON ROOT-RELATIVE APPROACH

In this section we present our proposed approach for metric-
scale root-relative 3D human pose estimation. The input
is an RGB image crop I ∈ Rw×h×3 depicting a person.
The desired output is a 3D skeleton, consisting of J joint
coordinates

{
(∆Xj ,∆Yj ,∆Zj)

T
}J
j=1

in millimeters, up to
arbitrary translation (hence the ∆ symbols).

3.1 Metric-Space Volumetric Heatmap Representation

As is common in heatmap-based approaches, we apply a
fully-convolutional backbone network, with effective stride s
to produce an array with d · J spatial output channels. Here
d is the number of discretization bins along the depth axis
of the prediction volume. We then split the array along the
channel axis into J volumes, each of shape (w/s)×(h/s)×d.
3D spatial softmax is applied over each of them, resulting in
volumetric heatmap activations V (j) ∈ R(w/s)×(h/s)×d. Up to
this point the process is similar to other volumetric heatmap
approaches [13], [14]. The difference lies in how the heatmap
axes are interpreted to yield metric-scale coordinates. In
particular, the 3D joint coordinates are decoded using soft-
argmax with fixed scaling factors:∆Xj

∆Yj
∆Zj

 =
∑
p,q,r

V (j)
p,q,r ·

p · s/w ·Wq · s/h ·H
r · 1/d ·D

 , (1)

where the p, q, r are 0-based integer indices into the volumet-
ric heatmap array and W,H,D are the fixed metric width,
height and depth extents of the full prediction volume. We
set these extents as 2.2 meters in our work, which allows
capturing people of usual height even when stretched out.
Depending on striding logic (see Sec. 3.3), Eq. 1 needs to
be adjusted slightly, e.g. the volume size may change with
denser striding (Fig. 3). The final root-relative prediction
is obtained by subtracting the predicted root coordinates
from all joint positions. Supervision is applied on these root-
relative coordinates. This means that the position of the root
joint prediction within the volume is not explicitly supervised
and the network can place the skeleton anywhere within
the prediction volume. The gradients are backpropagated
through the root-joint-subtraction operation. No camera
calibration-based back-projection, nor bone or skeleton size-
based rescaling is needed for this root-relative prediction.
The network is trained to perform these operations implicitly
within the backbone.

3.2 Architecture
In contrast to prior work that employs decoders with
upsampling layers and multiple refinement stages, we show
that the task can be tackled in a significantly simpler fashion.
Indeed, we apply the widely used ResNet-50 [47] backbone
to directly predict spatial heatmaps, without any additional
learnable layers, such as transposed convolutions. By default,
ResNet-50 has an effective stride of 32, resulting in heatmaps
of spatial size 8×8 from the input image of size 256×256
during training. The depth of the volumetric heatmap is
set to 8. When testing on single-person datasets, we apply
the trained network with an effective stride of 4, to obtain
heatmaps with spatial size 64, which is the typical size
used in prior work [13], [14]. This is called dense prediction
and is commonly used in image segmentation [48]. In this
technique, striding is removed from a given number of
convolutional layers and the dilation rate of subsequent
convolutions is increased correspondingly. As we will see,
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normal striding centered striding

Fig. 3. Receptive field centers of the output neurons in a strided FCN
operating on a 256×256 image (+: stride 32, ×: stride 16). left : normal
striding logic, where the top left result is kept per 2×2 block. Note that
denser striding skews the sample density towards the bottom and right
in the border areas. right: by reversing the stride logic in the last strided
layer (i.e., bottom right result taken, instead of top left), the samples are
centered and the increased striding density is distributed evenly.

dense prediction increases the compute requirements but also
improves accuracy, while still allowing real-time execution.

3.3 Centered Striding

When changing striding density at test time compared to
training time, it is important to consider how the distribution
of heatmap receptive field centers is affected. The left side
of Fig. 3 shows a 256×256 image processed with training
stride 32 (+) and test stride 16 (×). The coverage changes
significantly between training and test and is not symmetric
over the image. While not an issue for pixel-labeling tasks,
soft-argmax is a weighted vote-averaging scheme and intro-
ducing new voting positions in an uneven manner skews the
prediction result. To tackle this issue, we propose centered
striding, where the striding logic in the last convolutional
layer of the backbone is “reversed”, such that it outputs
the bottom right result per each 2×2 block. The result is
a more evenly distributed coverage over the image, with
each original sampling position replaced with four new ones
equally spaced around it. This benefit is evaluated in Sec. 7.

3.4 Scale and Translation Agnostic 2D Loss

Similar to recent approaches [10], [14], [16], we train simul-
taneously on 3D-labeled data from motion capture studios
and 2D-labeled, in-the-wild data from the MPII dataset [49],
to incorporate more appearance variation in the training
process. Half of each mini-batch is filled with examples of
either kind. Supervision via 2D labels is straightforward
when using 2.5D heatmaps, as the X and Y heatmap axes
correspond to the space in which the 2D labels are defined.
However, since our prediction volume is defined on a metric
scale and is not aligned with image space, we propose a
2D loss computation method that is invariant to prediction
scale and translation. To this end, we first orthographically
project the predicted 3D skeleton onto the image plane by
discarding the Z coordinate. Then we align the projected
prediction to the 2D pixel-scale ground truth by translation
and uniform scaling to the least-squares optimal fit before
computing the loss. This alignment layer is differentiable and
gradients can be backpropagated through it. We note that a

similar scale-invariant loss has been used by Rhodin et al. to
enforce multi-view consistency of 3D poses [50].

3.5 Truncated Pose Estimation
Our metric-space heatmap representation decouples the
image boundary from the heatmap boundary. This enables
the prediction of joint locations outside the image frame
without additional design effort, the network is simply
trained to output complete poses at a metric scale, regardless
of how the input image is scaled or cropped. To evaluate this
aspect, we follow Vosoughi et al. [46] by randomly cropping
H3.6M inputs, keeping at least 1/4 of the area of the person
bounding square. Examples of such crops are in the second
row of Fig. 7. We consider two scenarios. In the first one,
the above described sampling of truncated crops is only
performed at test time. In the second case, such crops are
used for training as well.

3.6 Training
Prior work has shown that the L1 loss is preferable in soft-
argmax-based pose estimation [14]. To balance the losses
computed on 3D and 2D-annotated examples, we use a fixed
weighting factor λ = 0.1 tuned on a separate validation set
of Human3.6M, yielding the overall loss as

L = Lann3D + λLann2D. (2)

We initialize the network with ImageNet-pretrained
weights and use the Adam optimizer with weight decay [51]
and a batch size of 64. We decay the learning rate exponen-
tially by an overall factor of 100, in two parts: from 10−4 to
3.33× 10−5 over 25 epochs and from 3.33× 10−6 to 10−6 in
2 final cooldown epochs.

As usual in deep learning, several sources of random-
ness influence the exact results of an experiment: random
weight initialization, data shuffling, data augmentation and
hardware-level non-determinism of execution order. We con-
trol these (except the last) by consistently seeding the random
number generators. To distinguish random fluctuations from
algorithmic differences, we repeat our experiments with 5
different seeds and report the mean and standard deviation
of the evaluation metrics.

3.7 Intuition
As described above, our network is trained to output
complete skeletons at the same metric scale, regardless of
image zooming and truncation. To gain more intuition, we
illustrate in Fig. 4 how this fully-convolutional model is
able to achieve approximately image-scale- and truncation-
invariant predictions. In particular, we can see that the
soft-argmax output is not necessarily in the middle of the
heatmap’s most prominent peak. As soft-argmax yields the
heatmap’s center of mass, even distant heatmap values have
an influence. Intuitively, this allows the network to move
the prediction result towards different heatmap locations by
adding counter-balancing correction weights, for example at
the image sides or at the person center. Regarding truncation,
the last row shows that the model can infer that the arms
must lie above waist level, as there is no visual evidence of
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Input crop Right wrist
Metric-scale heatmaps (XY projection, side=2.2 m)

Left ankle Right knee

Fig. 4. A closer look at scale and truncation robustness. We plot the
projected metric-scale heatmaps for 3 joints with the full soft-argmax
skeleton for reference. The predicted skeleton is approximately invariant
to change in scale and truncation. Since the metric size of the person
does not change with image scaling, the backbone learns to output
heatmaps with a similar center of mass, regardless of image scale. Note
that the heatmaps do not align with image space and this is intended by
design. (The broad peaks are a result of training the model at low, 8×8
heatmap resolution.)

them in the image. To understand how a fully-convolutional
network can “know” where the truncation happens, we
refer to Islam et al.’s paper [52], showing that even fully-
convolutional networks can encode positional information
as a result of the zero-paddings within convolutional layers.
This means that the location of the top image border can
be used as a cue for the network to shift the full skeleton
downwards inside the heatmap volume, such that it fits.
Note that the network is free to place the skeleton anywhere
within the volume, since the root prediction is subtracted
before computing the root-relative loss.

4 MULTI-PERSON ABSOLUTE POSE APPROACH

In this section, we propose MeTRAbs, a combination of
MeTRo 3D heatmap estimation presented in Sec. 3 with
traditional 2D pose heatmaps in a single end-to-end trained
network for absolute 3D pose estimation. The main idea
is that the MeTRo approach implicitly estimates the scale,
which we then use to infer the distance. By applying this
method within a top-down paradigm (detection, cropping,
pose estimation), we obtain a fast and accurate way to tackle
multi-person absolute 3D pose estimation.

Using our approach from Sec. 3, we estimate a complete
metric-scale pose

{
(∆Xj ,∆Yj ,∆Zj)

T
}J
j=1

up to translation
(where J is the number of joints).

By additionally estimating the 2D, image-space pose{
(xj , yj)

T
}J
j=1

, we obtain all the necessary information to
recover the absolute 3D pose in the (calibrated) camera
coordinate system, as we will see in the following. For
absolute pose estimation we assume known camera intrinsics,
since monocular focal length estimation [44], [53] is a very
challenging task (c.f . the “dolly zoom” effect [54]). However,
note that our method does not require the intrinsic calibration
for root-relative estimation.

The absolute pose can be expressed as{
(X0 + ∆Xj , Y0 + ∆Yj , Z0 + ∆Zj)

T
}J
j=1

with (X0, Y0, Z0)
being the absolute pose offset, which we aim to recover. For
this, we first calculate the normalized image coordinates as
(x̃j , ỹj)

T = K−1(xj , yj)
T , where K is the intrinsic matrix.

Mehta et al. [34] derive a formula to reconstruct the
absolute root position using the weak perspective projection
model. Véges et al. [39], while still operating in the weak
perspective model, note that an approximation step involved
in Mehta et al.’s algorithm leads to worse performance.
Motivated by this, we derive a reconstruction method under
the full perspective pinhole camera model and extensively
compare it with Mehta et al.’s weak perspective method. In a
full perspective model, a perfect estimate would satisfy[

x̃j
ỹj

]
=

[
(X0 + ∆Xj)/(Z0 + ∆Zj)
(Y0 + ∆Yj)/(Z0 + ∆Zj)

]
, (3)

which can be rearranged to[
X0 − x̃jZ0

Y0 − ỹjZ0

]
=

[
x̃j∆Zj −∆Xj

ỹj∆Zj −∆Yj

]
. (4)

Considering all joints, we obtain 2J linear equations
in the three variables (X0, Y0, Z0). Since x̃, ỹ, X, Y and
Z are estimates, the equation system is noisy and over-
determined. Hence we opt to solve it by linear least squares,
with TensorFlow’s differentiable solver based on Cholesky
decomposition. This differentiability allows us to directly
supervise the network with a loss Labs3D computed on the
final absolute 3D pose output, which turns out to be crucial
for accurate distance estimation.

For truncated images, Eq. 3 only holds for body joints
inside the image frame, since the 2D heatmap method cannot
estimate out-of-image joint locations. We therefore exclude
joints from the optimization, which are predicted to lie closer
to the image border than one stride length. After reconstruct-
ing the root joint position, we can obtain the absolute pose
in two ways. Either as (∆Xj + X0,∆Yj + Y0,∆Zj + Z0)T

(adding the reconstructed offset to the 3D head’s root-relative
output), or as (x̃j , ỹj , 1)T · (∆Zj + Z0) (back-projecting the
2D head’s output). For joints that lie within the image, we
use the latter option, while for truncated ones we use the
former. Both the individual prediction heads and the final
absolute output are supervised with the L1 loss. As in the
root-relative MeTRo network, we apply weak supervision
from 2D-labeled data for MeTRAbs as well, on both heads.
Extending Eq. 2, the loss becomes
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2D pose and root-
relative metric depths

Absolute pose recovery 
by convex optimization of 
bone-length discrepancy

2.5D loss

3D soft-
argmax

2.5D heatmap

Backbone
1x1
conv

Camera intrinsics

Average training
set bone lengths

(Test-time post-processing)

Fig. 5. Baseline architecture with 2.5D heatmaps for ablative comparison
experiments.

L =Labs3D
ann3D + Lhead3D

ann3D + Lhead2D
ann3D + λ

(
Lhead2D

ann2D + Lhead3D
ann2D

)
,

(5)

where we again set λ = 0.1.
We found that the absolute loss can introduce numerical

instabilities very early during training, since at this point
the two prediction heads do not yet produce sufficiently
compatible outputs, making the reconstruction problem ill-
conditioned. Hence, we only turn on the absolute loss after
5000 update steps.

In a multi-person scenario, inference speed becomes
a priority, since the model is evaluated on each person
detection separately. To retain real-time performance, we
do not apply dense prediction with MeTRAbs; the network
is trained and tested with coarse, 8×8 heatmaps.

5 2.5D BASELINE

For comparison, we implement a 2.5D baseline derived from
Pavlakos et al.’s work [13], which introduced volumetric
heatmaps for 3D human pose estimation. Pavlakos et al. use
a coarse-to-fine estimation scheme with a stacked hourglass
architecture [5] and no soft-argmax. To make the baseline
directly comparable to our results, we instead use the archi-
tecture depicted in Fig. 5. This baseline directly estimates
2.5D heatmaps through a 1×1 convolution at the end of the
backbone. We then use soft-argmax, and compute the L1

loss on the resulting coordinates. This makes the baseline
similar to Sun et al. [14], except Sun et al. used additional
learned layers and did not perform scale recovery. As a test-
time post-processing step, the baseline uses the bone-length
optimization method from Pavlakos et al. [55] to recover
the root joint depth, which we briefly reiterate here. Given
an assumed value for the root joint depth Z0 and known
camera intrinsics, the 2.5D pose can be back-projected into
metric space and each bone’s resulting length bi(Z0) can be
calculated. The optimal Z0 is then the one that minimizes the
squared bone length discrepancy, as compared to the average
training bone lengths ti:

Z∗0 = arg min
Z0

∑
i∈bones

(bi(Z0)− ti)2 , (6)

where we only use bones, whose both ends are predicted to
lie within the image (further from the border than 1 stride
length). This is a convex, nonlinear least-squares problem,
and we solve it using the Levenberg-Marquardt algorithm
initialized at Z0 = 2 m. To reiterate, as in [13], the absolute
pose is not supervised during the baseline’s training and the
convex optimization of Z0 is not backpropagated through,
for simplicity. We note, however, that the recent development
of differentiable convex optimization layers [56], [57] could,
in principle, enable such a solution as well.

6 DATASETS, PREPROCESSING, EVALUATION

We conduct our single-person experiments on the
largest available benchmarks: Human3.6M (shortened as
H3.6M) [42], [43] and MPI-INF-3DHP (3DHP) [34]. The
extended approach described in Sec. 4 is evaluated in a
multi-person context by training on MuCo-3DHP (MuCo)
and testing on MuPoTS-3D (MuPoTS).

H3.6M [42], [43] was captured with 4 cameras in a motion
capture studio. Two evaluation protocols are in wide use. In
Protocol 1, the training subjects are 1, 5, 6, 7, 8, while 9 and 11
are used for testing. Prediction and ground-truth are aligned
at the root joint, but no Procrustes alignment is performed. In
Protocol 2, subjects 1, 5, 6, 7, 8, 9 are used in training and 11
in evaluation, with Procrustes alignment between prediction
and ground truth. Every 64th frame is evaluated. We use the
provided bounding boxes. We downsample videos from 50
to 10 fps. To further reduce redundancy, training frames are
only used if at least one body joint moves at least 100 mm
since the previous kept frame.

MPII [49] is a 2D-labeled dataset with 25k training
images. We use this dataset for weak supervision, following
the idea of Zhou et al. [10]. Only arm and leg joints are used
from MPII, as we found these to be the most consistently
labeled across datasets. In single-person experiments we only
use instances explicitly marked as “well-separated” from
other people and take the provided person centers and sizes
as the center and side length of the bounding box. In multi-
person experiments, we use all person instances and the
boxes are obtained with YOLOv3 [58].

3DHP [34] shows 8 training subjects in a green-screen
studio. Test frames come from 3 scenes, each with 2 subjects:
green-screen studio, studio without green screen, and out-
door. The latter two make this benchmark more challenging
than H3.6M. In this dataset, the hips are labeled closer to the
legs than in MPII. Following [10], we move the hips towards
the neck by a fifth of the pelvis-neck vector before comparing
with MPII-annotated skeletons for 2D loss computation.
3DHP provides two ground truth variants: unnormalized
metric-space poses and “universal” (height-normalized) ones.
We evaluate on both. We use only the chest-height cameras
as [34], and only examples where all joints are within the
image. We generate 3DHP bounding boxes by combining
the bounding box of labeled joints and the most confident
person detection of YOLOv3. The same frame sampling
strategy is used as described above for H3.6M. Since its
publication, the official 3DHP ground truth has been changed
twice, making not all published results comparable. In our
experience the first update changes scores by 1-3%, while
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the second one only by 0.1%, which is within experimental
fluctuation, making the two latest versions comparable.

MuCo [31] is a synthetically composited multi-person
dataset, derived from 3DHP by pasting persons over each
other based on their root joint depth order. As [39], we
generate 150k training images, each with 4 people. We run
YOLOv3 on these images to get realistic bounding boxes.

MuPoTS [31] is a mixed indoor and outdoor multi-
person test set, compatible with MuCo, consisting of 20
sequences showing people performing various actions and
interactions. Like 3DHP, MuPoTS also provides normalized
and unnormalized skeletons.

We crop images to the person’s bounding square and
resize it to 256 × 256 px. Perspective effects must be taken
into account when centering the image on the subject as
this induces an implicit camera rotation [34]. We compensate
by transforming both the input image and the predicted
pose according to the implied camera rotation. The indoor
3DHP and MuPoTS sequences are gamma-corrected with an
exponent of 0.67.

We apply geometric augmentations (scaling, rotation,
translation, horizontal flip) and color distortion (brightness,
contrast, hue, saturation). For single-person datasets, syn-
thetic occlusion is added with 70% probability, half of which
are rectangles with uniform white noise as in [70], half
are segmented non-person objects from Pascal VOC [71]
as in [38], [72]. On MuCo, synthetic occlusion probability is
reduced to 30% since some occlusion is already introduced
from compositing person segments over each other. On
3DHP and MuCo, we also augment the background with 70%
probability following [34]. Backgrounds are taken from IN-
RIA Holidays [73], excluding person images. All evaluation
is done on a single crop, with no test-time augmentation.

We use the standard evaluation measures. The main one
on 3DHP and MuPoTS is the percentage of correct keypoints
(PCK), i.e. the fraction of joints predicted within 150 mm of
the ground truth. The AUC is the area under the PCK curve
as the threshold ranges from 0 to 150 mm. The measure on
H3.6M is the mean per joint position error (MPJPE). 3DHP
and MuPoTS evaluate 14 joints, excluding the root, while
H3.6M uses 17, including the root. The official MuPoTS
evaluation script rescales the bone lengths of the prediction
to match the ground truth bone lengths before computing
metrics, leading to some confusion and inconsistency be-
tween reported results. In [31] rescaling was only used for
evaluating LCR-Net [74], but it has since been adopted by
other authors as well. For consistency and simplicity, we
train MeTRAbs only with unnormalized skeletons. When
evaluating on universal (normalized) skeletons, we use bone
rescaling. On unnormalized skeletons, we do not use bone
rescaling, in order to directly evaluate the raw metric-space
outputs of the methods. Following Véges et al. [75], on
MuPoTS we also evaluate absolute (i.e. non-root-relative)
versions of these metrics, prefixed with “A-”, e.g. A-PCK. For
absolute MPJPE, Véges et al. [39], [75] evaluate all 17 joints
and 16 (no pelvis) for relative MPJPE (but use 14 for PCK
and A-PCK). For consistency, we always use 14 joints on
MuPoTS, except when marked otherwise.
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Fig. 6. Analysis of robustness to truncation on H3.6M. Average perfor-
mance remains relatively stable up to 7 truncated joints.

7 RESULTS

On H3.6M without ground truth depth or scale information,
we achieve 49.3 mm MPJPE, which is within the margin
of error compared to the state-of-the-art by Xu et al. [65]
(49.2 mm), while using a considerably simpler approach (see
Tab. 1). (In all tables, the number after “±” is the standard
deviation of 5 repeated experiments with different random
seeds, therefore the standard error of the mean is a fifth of
this value.) Besides simplifying the prediction pipeline and
allowing for truncation-robust prediction (see below), our
metric heatmap representation also performs better than
the 2.5D baseline with bone-length-based scale recovery
under the exact same experimental conditions. Tab. 7 shows
that training data augmentations improve performance by
a large margin. On Protocol 2 (Tab. 2), the benefit of our
method is masked by the use of Procrustes alignment, which
explicitly ignores the quality of scale recovery. It is therefore
unsurprising that our method performs about equally well
as the 2.5D variant.

On 3DHP, our method outperforms prior work by a large
margin, including ones trained on more datasets as well
(Tab. 3). Both with universal (height-normalized) skeletons
and true metric-scale ones, the MeTRo representation outper-
forms the baseline on green-screen studio images, however,
the outdoor scenes were recorded on an empty field without
scale cues and the explicit bone-length-based scale recovery
performs better there. Qualitative results are in Fig. 7.

We analyze scale recovery in more detail (Tab. 4). As
expected, the idealized method with test-time access to the
ground truth root joint depth performs best on both H3.6M
and 3DHP. The proposed approach performs better than
the 2.5D baseline using average bone lengths on H3.6M
and comparably on 3DHP. On H3.6M, MeTRo closes most
of this scale recovery gap between the 2.5D average bone
length baseline and the idealized variant using the true
root. Interestingly, our approach outperforms even the 2.5D
variant using ground truth bone lengths for each test frame.
On 3DHP, MeTRo’s scale recovery performance is similar
to the 2.5D baseline (equal PCK, better AUC, slightly worse
MPJPE). Further, on this dataset, access to ground truth scale
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TABLE 1
Evaluation on H3.6M Protocol 1 (subjects 9 and 11), using mean per joint position error (MPJPE) without Procrustes alignment.

All methods use extra 2D-labeled pose data in training.

Dir. Dis. Eat Gre. Phn. Pose Pur. Sit SitD Sm. Pht. Wait Walk WD WT Avg ↓

Methods using ground-truth scale or depth information at test time

Sun et al. [59] 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7 86.7 61.5 67.2 53.4 47.1 61.6 53.4 59.1
Nibali et al. [12] – – – – – – – – – – – – – – – 57.0
Luvizon et al. [16] 51.5 53.4 49.0 52.5 53.9 50.3 54.4 63.6 73.5 55.3 61.9 50.1 46.0 60.2 51.0 55.1
Luvizon et al. [60] 43.7 48.8 45.6 46.2 49.3 43.5 46.0 56.8 67.8 50.5 57.9 43.4 40.5 53.2 45.6 49.5
Sun et al. [14] 47.5 47.7 49.5 50.2 51.4 43.8 46.4 58.9 65.7 49.4 55.8 47.8 38.9 49.0 43.8 49.6
Chen et al. [29] 45.3 49.8 46.1 49.6 48.2 41.7 47.4 53.1 55.2 48.0 57.7 45.6 40.8 52.4 45.2 48.4

Methods using no ground truth scale or depth information at test time

Pavlakos et al. [13] 67.4 72.0 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Zhou et al. [10] 54.8 60.7 58.2 71.4 62.0 53.8 55.6 75.2 111.6 64.2 65.5 66.0 51.4 63.2 55.3 64.9
Martinez et al. [8] 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0 94.6 62.3 78.4 59.1 49.5 65.1 52.4 62.9
Fang et al. [61] 50.1 54.3 57.0 57.1 66.6 53.4 55.7 72.8 88.6 60.3 73.3 57.7 47.5 62.7 50.6 60.4
Yang et al. [62] 51.5 58.9 50.4 57.0 62.1 49.8 52.7 69.2 85.2 57.4 65.4 58.4 43.6 60.1 47.7 58.6
Pavlakos et al. [63] 48.5 54.4 54.4 52.0 59.4 49.9 52.9 65.8 71.1 56.6 65.3 52.9 44.7 60.9 47.8 56.2
Liu et al. [64] 47.0 53.1 50.3 48.8 56.0 48.1 47.6 65.9 72.6 52.3 61.4 49.1 39.3 54.2 40.6 52.4
Xu et al. [65] 40.6 47.1 45.7 46.6 50.7 45.0 47.7 56.3 63.9 49.4 63.1 46.5 38.1 51.9 42.3 49.2
Sharma et al. [66] 48.6 54.5 54.2 55.7 62.6 50.5 54.3 70.0 78.3 58.1 72.0 55.4 45.2 61.4 49.7 58.0
Cai et al. [67] 46.5 48.8 47.6 50.9 52.9 48.3 45.8 59.2 64.4 51.2 61.3 48.4 39.2 53.5 41.2 50.6

2.5D baseline 45.1 50.4 45.4 47.8 50.0 44.6 49.8 59.0 69.4 49.4 56.5 48.0 39.6 49.4 45.0 50.2±0.3
MeTRo (ours) 46.3 48.3 43.3 48.2 50.2 45.1 46.1 56.2 66.8 49.3 54.5 46.7 40.1 49.6 46.2 49.3±0.7

TABLE 2
Comparison of MPJPE with prior work on H3.6M under Protocol 2 (test subject 11 with Procrustes alignment to the ground truth).

Nie [68] Pavlakos [13] Sun [59] Martinez [8] Sun [14] Nibali [12] Habibie [69] Xu [65] Chen [29] 2.5D baseline MeTRo (ours)

P-MPJPE 79.5 51.9 48.3 47.7 40.6 40.4 49.2 38.9 33.7 34.5±0.4 34.7±0.5

information provides a larger improvement than on H3.6M,
highlighting the importance of testing on many subjects.

When tested on truncated crops, our method by far
outperforms prior approaches (Tab. 5). This is true even for
our default training configuration, but performance improves
substantially when training on truncated images as well. The
method is robust to truncation of up to 7 or 8 joints (of the 17)
before overall performance substantially degrades (Fig. 6).
Given the obvious ambiguity introduced by truncation, it is
noteworthy that even truncated joints can be estimated with
as little as about 100 mm average error. Qualitative examples
are in the second row of Fig. 7, showing that our method can
handle strongly truncated cases as well.

On the multi-person MuPoTS-3D, our MeTRAbs ap-
proach yields state-of-the-art results. For height-normalized
skeletons with bone rescaling (standard setting in prior work,
Tab. 11), MeTRAbs outperforms the 2.5D baseline, and the
baseline already reaches state-of-the-art results. Our method
performs particularly well on test sequence 2, with heavy
occlusions (e.g. Fig. 8, left). Removing the supervision with
the absolute 3D loss worsens the absolute PCK of all poses
from 38.4% to 35.0%. Surprisingly, the root-relative accuracy
seems to improve when turning off the absolute loss. This is,
however, hard to interpret, as Tab. 11 shows an artificial eval-
uation setting with normalized-height skeletons and bone-
rescaling, thereby removing some of the scale recovery aspect
from the evaluation. When evaluating on unnormalized
skeletons without bone rescaling (Tab. 8), it becomes clear
that the absolute loss helps: absolute MPJPE improves from
328.8 mm to 248.2 mm, absolute PCK from 36.7% to 40.2%,

with the root-relative metrics slightly improving as well.
These are state-of-the-art results and improve over methods
that are pre- or jointly trained on ground truth pixel-wise
depth prediction datasets [39], [75]. Further, we can see that
the absolute PCK score has high variance and therefore small
differences are not necessarily meaningful. The standard devi-
ation across 5 repeat experiments is around 1.4–3.2%, and the
absolute results for individual test sequences varies strongly
as well across different configurations. This is because the
test examples are strongly correlated since they come from
video sequences. Lastly, we note that the detection rate is
essentially the same for all of our configurations (Tab. 8),
since we use the same detections, and the official evaluation
script performs matching based on the 2D projection, which
is very similar across these methods.

In Table 9 we evaluate whether using the full perspective
pinhole camera model in the absolute pose reconstruction
module brings benefits. In the last two rows, the absolute
loss is not used at training time. In the other cases we back-
propagate the absolute loss gradients either through the
weak or full perspective reconstruction method. We find that
training on MuCo with the full perspective model improves
the absolute results, but when testing on MuPoTS, it is better
to use the weak model. This may be explained by the fact
that people in the MuCo dataset are closer to the camera
than in MuPoTS, resulting in stronger perspective effects in
MuCo. To verify this, we computed the ratio of the farthest
and closest joint’s depth maxj Zj/minj Zj per pose. If this
ratio is large, the weak perspective assumption is a bad
approximation. The median and the 90th percentile of this
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TABLE 3
Comparison on MPI-INF-3DHP with prior methods. ∗Evaluated with the first version of the dataset, with some annotation difference. Dashes (–)

reflect a lack of published information. Superscripts indicate the training data (first characters of 3DHP, H36M, MPII, LSP and COCO).

Stand/
walk

Exer-
cise

Sit on
chair

Cro./
reach

On
floor Sport Misc. Green

screen
No

gr.sc.
Out-
door Total

PCK↑ PCK↑ AUC↑ MPJPE↓

Universal, height-normalized skeletons (simplified scale recovery task)

Rogez et al. [74]∗ 70.5 56.3 58.5 69.4 39.6 57.7 57.6 – – – 59.7 27.6 158.4
Zhou et al.H+M [10]∗ 85.4 71.0 60.7 71.4 37.8 70.9 74.4 71.7 64.7 72.7 69.2 32.5 137.1
Zhou et al.H+M [76] – – – – – – – 75.6 71.3 80.3 75.3 38.0 –
Mehta et al.3+M+L+H [9]∗ 87.7 77.4 74.7 72.9 51.3 83.3 80.1 – – – 76.6 40.4 124.7
Mehta et al.3+M+L+H [34]∗ 86.6 75.3 74.8 73.7 52.2 82.1 77.5 84.6 72.4 69.7 75.7 39.3 117.6
Mehta et al.3+M+L+C [31]∗ 83.8 75.0 77.8 77.5 55.1 80.4 72.5 – – – 75.2 37.8 122.2
Luo et al.3+M+H [11], [77] 95.5 82.3 89.9 84.6 66.5 92.0 93.0 – – – 84.3 47.5 84.5
Nibali et al.3+M [12] – – – – – – – – – – 87.6 48.8 87.6

2.5D baseline3+M 95.1 90.7 86.8 92.4 74.2 94.1 91.7 92.1 89.0 87.7 89.9±0.2 52.8±0.4 79.7±0.6

MeTRo (ours)3+M 95.0 91.8 90.2 92.1 73.4 95.1 91.8 93.4 90.3 86.5 90.6±0.4 56.2±0.5 74.9±1.4

Metric-scale skeletons (full scale recovery task)

2.5D baseline3+M 93.1 89.3 83.6 93.1 73.7 93.2 91.1 89.0 87.9 89.4 88.7±0.6 48.6±1.3 87.1±2.2

MeTRo (ours)3+M 94.0 89.2 87.1 89.1 68.9 92.6 90.3 90.1 87.8 85.7 88.2±0.5 48.7±0.7 88.4±1.3

TABLE 4
Comparison with baseline methods of scale recovery, with or without
access to ground truth information. For both datasets, metric-scale

skeletons are used with the same 17 joints for comparability. The first
two comparison methods access the ground truth at test time.

H3.6M 3DHP
PCK↑ AUC↑ MPJPE↓ PCK↑ AUC↑ MPJPE↓

2.5D GT root depth 96.6 68.8 49.0 90.8 56.1 74.2
2.5D GT bone length 96.4 67.0 51.9 90.3 56.1 74.6

2.5D avg train bones 96.6 68.1 50.2 89.6 52.1 80.6
MeTRo (ours) 97.0 68.6 49.3 89.6 52.6 81.1

TABLE 5
MPJPE scores on H3.6M under truncation, evaluating all or only the
present joints. (∗Training was not performed with truncated crops.)

Results of other methods are taken from [46].

Mehta∗ [9] Zhou∗ [10] Vosoughi [46] MeTRo∗ MeTRo

All joints 396.4 400.5 185.0 124.7 77.8
Present joints 338.0 332.5 173.6 76.8 59.8

ratio on MuCo is 1.22 and 1.41, while on MuPoTS it is only
1.16 and 1.26, respectively. This confirms that perspective
effects are stronger in MuCo.

Another possible reason is that the model may output
slightly perspective distorted results in the metric 3D head,
which are better handled by the weak-perspective model
in the next step, as opposed to training time, when the
network learns to output the correct metric, perspective-
undistorted pose, for which the full perspective model works
better afterwards. Nevertheless, as there is no clear overall
winner between the weak and full perspective models, and
changing the method across training and test is clearly
not desirable, we use the more commonly applied weak
perspective method for all other experiments.

7.1 Inference Speed

Our method is capable of real-time inference. The root-
relative architecture can process 511 crops per second on

TABLE 6
Test speed (crops per second, FPS) and error (H3.6M MPJPE) tradeoff

with the two striding variants from Fig. 3.

Striding
variant

Test stride

32 16 8 4

MPJPE normal strides 53.1 52.5 52.7 52.9
center-aligned 50.9 50.2 50.0 49.3

Speed
(crop per sec.)

no batching 160 150 105 38
batch size 8 511 475 292 92

TABLE 7
Augmentation ablation on H36M.

Geometry Color Occlusion MPJPE

X – – 58.0
X X – 52.8
X X X 49.3

TABLE 8
Results on MuPoTS-3D. Detected, unnormalized poses, no bone

rescaling. (∗Re-evaluated public results; joint count: †17, ‡16, else 14)

A-MPJPE↓ MPJPE↓ A-PCK↑ PCK↑ Det.Rate↑

Rogez et al. [74] – 146‡ – – 86
Mehta et al. [31] – 132‡ – – 93
Baseline in [39] 320† 122‡ – – 91
Véges et al. [39] 292† 120‡ – – 91
Véges et al. [75]∗ 257.2 (255†) 119.4 (108‡) 38.1 75.4 93

2.5D baseline 317.6 (313.6†) 114.0 (110.0‡) 40.0±1.0 79.3±0.3 94.2±0.0

MeTRAbs 248.2 (246.9†) 108.2 (104.3‡) 40.2±1.9 81.1±0.4 94.1±0.1

w/o abs. loss 328.8 (327.8†) 108.4 (104.7‡) 36.7±3.2 80.9±0.4 94.1±0.1

an RTX 2080 Ti desktop GPU when operating on batches of
8 crops at stride 32 (Tab. 6). Varying the heatmap resolution
using dense prediction provides diminishing returns in
accuracy (Tab. 6), showing that soft-argmax can cope with
heatmaps of very coarse resolution. By gathering all person
instances of a frame in a batch, MeTRAbs can process 128,
118, 98, 67, 41 frames per second for 1, 2, 4, 8 and 16 people
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TABLE 9
Comparison of weak (W) and full (F) perspective-based absolute pose

reconstruction. The two letters denote the training and the test time
variant. (Unnormalized skeletons, without bone rescaling.)

Persp. assumption All annotations Matched annotations

Training Test A-PCK↑ PCK↑ A-PCK↑ PCK↑

F F 37.2±1.7 76.2±0.5 39.3±1.7 79.9±0.5
F W 39.4±1.6 76.2±0.5 41.6±1.6 80.0±0.5
W F 35.6±1.8 77.1±0.4 37.6±1.8 81.0±0.5
W W 38.1±1.8 77.2±0.4 40.2±1.9 81.1±0.4
– F 33.0±3.3 77.0±0.4 34.9±3.3 80.8±0.4
– W 34.8±3.1 77.0±0.4 36.7±3.2 80.9±0.4

TABLE 10
Results on the 3DPW challenge dataset. (PA=Procrustes analysis)

MPJPE↓ MPJPE-PA↓ PCK@50mm↑ AUC@200mm↑

Known association to GT identity

Sun et al. [78] 81.8 58.6 37.3 59.9
Kissos et al. [79] 83.2 59.7 42.4 62.3
MeTRAbs (ours) 68.8 49.7 48.8 66.8

Unknown association to GT identity

MeTRAbs (ours) 85.1 56.7 45.8 63.2

per frame, respectively. The above calculations assume the
image crops are available instantly and the time cost of
detection is excluded.

7.2 ECCV 3DPW Challenge
Finally, we note that our MeTRAbs method has won the
3D Poses in the Wild (3DPW) [21] challenge, organized as a
workshop event at the European Conference on Computer
Vision, 2020. Tab. 10 compares results using the 3DPW
protocol. For this, we train our network on a combination
of the H3.6M, MuCo, SURREAL [81], SAIL-VOS [82] and
CMU-Panoptic [83] datasets. We use ResNet-101 as the back-
bone and additionally apply upper body crop (truncation)
augmentation at training time and 5-crop averaging at test
time. When identity tracking is needed, we perform frame-to-
frame matching based on absolute pose distance. The listed
methods are not directly comparable due to different training
data. Even with this caveat, our top results show that our
approach can scale with further training data and performs
well even in challenging in-the-wild scenarios.

8 CONCLUSION

We proposed metric-scale truncation-robust (MeTRo) volu-
metric heatmaps for the tasks of root-relative and absolute 3D
human pose estimation. These heatmaps directly represent
the metric space around the person instead of being tied to
the image space and can be predicted with any standard fully-
convolutional network. With a modified weak supervision
scheme for 2D labels, careful stride alignment considerations
and strong data augmentation, we achieved state-of-the-
art results on two important single-person benchmarks:
Human3.6M and MPI-INF-3DHP. We showed that our
approach can implicitly discover scale cues from the data,
given its superior performance compared to a previous, fixed
bone length based heuristic on most test scenarios. Future

research should consider possibilities for learning similar
scale cues from large-scale outdoor data as well. Another
interesting future direction can be the evaluation on people
with widely differing heights, if such data becomes available
on a large scale. Further, we demonstrated the second benefit
of the MeTRo representation, the prediction (“hallucination”)
of complete skeletons even when only a part of the body
is contained in the image. For the multi-person absolute
3D pose estimation scenario, we developed a combination
of MeTRo heatmaps with 2D heatmap prediction, referred
to as MeTRAbs. We saw the importance of supervising
the absolute pose prediction end-to-end by employing a
differentiable combination of 2D and root-relative 3D poses.
For this we tested two alternatives, based on weak and full
perspective geometry, but neither performed clearly better
than the other in our experiments. Applying MeTRAbs in
the top-down multi-person paradigm, we achieved state-
of-the-art results on the challenging MuPoTS-3D dataset
while keeping the method real-time capable. Overall we can
conclude that heatmap estimation is a versatile paradigm and
it is possible to tackle absolute 3D human pose estimation
through exclusively estimating heatmaps and encoding all
quantities such as coordinates or sizes as activation locations,
instead of as activation values.
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