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Abstract

We proposed a probabilistic approach to joint modeling of participants’ reliability and humans’ 

regularity in crowdsourced affective studies. Reliability measures how likely a subject will 

respond to a question seriously; and regularity measures how often a human will agree with other 

seriously-entered responses coming from a targeted population. Crowdsourcing-based studies or 

experiments, which rely on human self-reported affect, pose additional challenges as compared 

with typical crowdsourcing studies that attempt to acquire concrete non-affective labels of objects. 

The reliability of participants has been massively pursued for typical non-affective crowdsourcing 

studies, whereas the regularity of humans in an affective experiment in its own right has not been 

thoroughly considered. It has been often observed that different individuals exhibit different 

feelings on the same test question, which does not have a sole correct response in the first place. 

High reliability of responses from one individual thus cannot conclusively result in high consensus 

across individuals. Instead, globally testing consensus of a population is of interest to 

investigators. Built upon the agreement multigraph among tasks and workers, our probabilistic 

model differentiates subject regularity from population reliability. We demonstrate the method’s 

effectiveness for in-depth robust analysis of large-scale crowdsourced affective data, including 

emotion and aesthetic assessments collected by presenting visual stimuli to human subjects.
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1 INTRODUCTION

HUMANS’ sensitivity to affective stimuli intrinsically varies from one person to another. 

Differences in gender, age, society, culture, personality, social status, and personal 

experience can contribute to its high variability between people. Further, inconsistencies 

may also exist for the same individual across environmental contexts and current mood or 

affective state. The causal effects and factors for such affective experiences have been 

extensively investigated, as evident in the literature on psychological and human studies, 

where controlled experiments are commonly conducted within a small group of human 

subjects—to ensure the reliability of collected data. To complement the shortcomings of 

those controlled experiments, ecological psychology aims to understand how objects and 

things in our surrounding environments effect human behaviors and affective experiences, in 

which real-world studies are favored over those within artificial laboratory environments [1], 

[2]. The key ingredient of those ecological approaches is the availability of large-scale data 

collected from human subjects, remedying the high complexity and heterogeneity that the 

real-world has to offer. With the growing attention on affective computing (initiated from the 

seminal discussion [3] to recent communications [4]), multiple data-driven approaches have 

been developed to understand what particular environmental factors drive the feelings of 

humans [5], [6], and how those effects differ among various sociological structures and 

between human groups.

One crucial hurdle for those affective computing approaches is the lack of full-spectrum 

annotated stimuli data at a large scale. To address this bottleneck, crowdsourcing-based 

approaches are highly helpful for collecting uncontrolled human data from anonymous 

participants [7]. In a recent study reported in [8], anonymous subjects from the Internet were 

recruited to annotate a set of visual stimuli (images): at each time point, after being 

presented with an image stimulus, participants were asked to assess their personal 

psychological experiences using ordinal scales for each of the affective dimensions: valence, 

arousal, dominance and likeness (which means the degree of appreciation in our context). 

This study also collected demographics data to analyze individual difference predictors of 

affective responses. Because labeling a large number of visual stimuli can become tedious, 

even with crowdsourcing, each image stimulus was examined by only a few subjects. This 

study allowed tens of thousands of images to obtain at least one label from a participant, 

which created a large data set for environmental psychology and automated emotion analysis 

of images.

One interesting question to investigate, however, is whether the affective labels provided by 
subjects are reliable. A related question is how to separate spammers from reliable subjects, 

or at least to narrow the scope of data to a highly reliable subgroup. Here, spammers are 

defined as those participants who provide answers without serious consideration of the 
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presented questions. No answer from a statistical perspective is known yet for crowdsourced 

affective data.

A great difficulty in analyzing affective data is caused by the absence of ground truth in the 

first place, that is, there is no correct answer for evoked emotion. It is generally accepted that 

even the most reliable subjects can naturally have varied emotions. Indeed, with variability 

among human responses anticipated, psychological studies often care about questions such 

as where humans are emotionally consistent and where they are not, and which subgroups of 

humans are more consistent than another. Given a population, many, if not the vast majority 

of stimuli may not have a consensus emotion at all. Majority voting or (weighted) averaging 

to force an “objective truth” of the emotional response or probably for the sake of 

convenience, as is routinely done in affective computing so that classification on a single 

quantity can be carried out, is a crude treatment bound to erase or disregard information 

essential for many interesting psychological studies, e.g., to discover connections between 

varied affective responses and varied demographics.

The involvement of spammers as participating subjects introduces an extra source of 

variation to the emotional responses, which unfortunately is tangled with the “appropriate” 

variation. If responses associated with an image stimulus contain answers by spammers, the 

inter-annotator variation for the specific question could be as large as the variation across 

different questions, reducing the robustness of any analysis. An example is shown in Fig. 1. 

Most annotators labeling this image are deemed unreliable, and two of them are highly 

susceptible as spammers according to our model. Investigators may be recommended to 

eliminate this image or acquire more reliable labels for its use. Yet, one should not be 

swayed by this example into the practice of discarding images that solicited responses of a 

large range. Certain images are controversial in nature and will stimulate quite different 

emotions to different viewers. Our system acquired the reliability scores shown in Fig. 1 by 

examining the entire data set; the data on this image alone would not be conclusive, in fact, 

far from so.

Facing the intertwined “appropriate” and “inappropriate” variations in the subjects as well as 

the variations in the images, we are motivated to unravel the sources of uncertainties by 

taking a global approach. The judgment on the reliability of a subject cannot be a per-image 

decision, and has to leverage the whole data. Our model was constructed to integrate these 

uncertainties, attempting to discern them with the help of big data. In addition, due to the 

lack of ground truth labels, we model the relational data that code whether two subjects’ 

emotion responses on an image agree, bypassing the thorny questions of what the true labels 

are and if they exist at all.

For the sake of automated emotion analysis of images, one also needs to narrow the scope to 

parts of data, each of which have sufficient number of qualified labels. Our work computes 

image confidences, which can support off-line data filtering or guide on-line budgeted 

crowdsourcing practices.

In summary, systematic analysis of crowdsourced affective data is of great importance to 

human subject studies and affective computing, while remains an open question. To 
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substantially address the aforementioned challenges and expand the evidential space for 

psychological studies, we propose a probabilistic approach, called Gated Latent Beta 
Allocation (GLBA). This method computes maximum a posteriori probability (MAP) 

estimates of each subject’s reliability and regularity based on a variational expectation- 

maximization (EM) framework. With this method, investigators running affective human 

subject studies can substantially reduce or eliminate the contamination caused by spammers, 

hence improve the quality and usefulness of collected data (Fig. 2).

1.1 Related Work

Estimating the reliability of subjects is necessary in crowdsourcing-based data collection 

because the incentives of participants and the interest of researchers diverge. There were two 

levels of assumptions explored for the crowd- sourced data, which we name as the first-order 

assumption (A1) and the second-order assumption (A2). Let a task be the provision of 

emotion responses for one image. Consider a task or test conducted by a number of 

participants. Their responses within this task form a subgroup of data.

A1 There exists a true label of practical interest for each task. The dependencies between 

collected labels are mediated by this unobserved true label, of which noisy labels are 

otherwise conditionally independent.

A2 The uncertainty model for a subgroup of data does not depend on its actual specified 

task. The performance of a participant is consistent across subgroups of data subject to a 

single fixed effect.

Existing approaches that model the complexities of tasks or reliability of participants often 

require one or both of these two assumptions. Under the umbrella of assumption A1, most 

probabilistic approaches using the observer models [9], [10], [11], [12] focus on estimating 

the ground truth from multiple noisy labels. For example, the modeling of one reliability 

parameter per subject is an established practice for estimating the ground truth label [12]. 

For the case of categorical labels, modeling of one free parameter per class per subject is a 

more general approach [9], [13]. Our approach does not model the ground truth of labels, 

hence it is not viable to compare our approach with other methods in this regard. Instead, we 

sidestep this issue to tackle whether the labels from one subject can agree with labels from 

another on a single task. Agreement is judged subject to a preselected criterion. Such 

treatment may be more realistic as a means to process sparse ordinal labels for each task.

Assumption A2 is also widely exploited among methods, often conditioned on A1. It 

assumes that all of the tasks have the same level of difficulty [14], [15]. Modeling one 

difficulty parameter per task has been explored in [16] for categorical labels. However, in 

our approach, task difficulty is modeled as a random effect without subscribing a task-

specific parameter. Wisely choosing the modeling complexity and assumptions should be 

based on availability and purity of data. As suggested in [17], more complexity in a model 

could challenge the statistical estimation subject to the constraint of real data. Choices with 

respect to our model attempted to properly analyze the affective data we obtained.
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If the mutual agreement rate between two participants does not depend on the actual 

specified task (i.e., when A2 holds), we can essentially convert the resulting problem to a 

graph mining problem, where subjects are vertices, agreements are edges, and the proximity 

between subjects is modeled by how likely they agree with each other in a general sense. 

Probabilistic models for such relational data can be traced back to early stochastic 

blockmodels [18], [19], latent space model [20], and their later extensions with mixed 

membership [21], [22] and nonparametric Bayes [23]. We adopt the idea of mixed 

memberships wherein two particular modes of memberships are modeled for each subject, 

one being the reliable mode and the other the random mode. For the random mode, the 

behavior is assumed to be shared across different subjects, whereas the regular behaviors of 

subjects in the reliable mode are assumed to be different. Therefore, we can extend this 

framework from graph to multigraph in the interest of crowdsourced data analysis. 

Specifically, data are collected as subgroups, each of which is composed of a small 

agreement graphs for a single task, such that the covariate within a subgroup is modeled. 

Our approach does not rely on A2. Instead, it models the random effects added to subjects’ 

performance in each task via the multigraph approach. Assumptions A1 and A2 implies a 

bipartite graph structure between tasks and subjects. In contrast, our approach starts from the 

multigraph structure among subjects that is coordinated by tasks. Finding the proper and 

flexible structure that data possess is crucial for modeling [24].

1.2 Our Contributions

To our knowledge, this is the first attempt to connect probabilistic observer models with 

probabilistic graphs, and to explore modeling at this complexity from the joint perspective. 

We summarize our contributions as follows:

• We developed a probabilistic multigraph model to analyze crowdsourced data 

and its approximate variational EM algorithm for estimation. The new method, 

accepting the intrinsic variation in subjective responses, does not assume the 

existence of ground truth labels, in stark contrast to previous work having 

devoted much effort to obtain objective true labels.

• Our method exploits the relational data in the construction and application of the 

statistical model. Specifically, instead of the direct labels, the pair-wise status of 

agreement between labels given by different subjects is used. As a result, the 

multigraph agreement model is naturally applicable to more flexible types of 

responses, easily going beyond binary and categorical labels. Our work serves as 

a proof of concept for this new relational perspective.

• Our experiments have validated the effectiveness of our approach on real-world 

affective data. Because our experimental setup was of a larger scale and more 

challenging than settings addressed by existing methods, we believe our method 

can fill some gaps for demands in the practical world, for instance, when gold 

standards are not available.
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2 THE METHOD

In this section, we describe our proposed method. Let us present the mathematical notations 

first. A symbol with subscript omitted always indicates an array, e.g., x = ( . . . , xi, . . .). The 

arithmetic operations perform over arrays in the element-wise manner, e.g., x + y = ( . . . ,xi 

+ yi,. . .). Random variables are denoted as capital English letters. The tilde sign indicates 

the value of parameters in the last iteration of EM, e.g., θ. Given a function fθ, we denote f θ

by f θ or simply f , if the parameter θ is implied. Additional notations, as summarized in 

Table 1, will be explained in more details later.

2.1 Agreement Multigraph

We represent the data as a directed multigraph, which does not assume a particular type of 

crowdsourced response. Suppose we have prepared m questions in the study, the answers 

can be binary, categorical, ordinal, and multidimensional. Given a subject pair (i, j) who are 

asked to look at the kth question, one designs an agreement protocol that determines whether 

the answer from subject i agrees with that from subject j. If subject i’s agrees with subject j’s 

on task k, then we set Ii, j
(k) = 1. Otherwise, Ii, j

(k) = 0.

In our case, we are given ordinal data from multiple channels, we define Ii, j
(k) = 1 if (sum of) 

the percentile difference between two answers ai, a j ∈ 1, …, A  satisfies

1
2 P ai

(k) − P a j
(k) + 1

2 P ai
(k) + 1 − P a j

(k) + 1 ≤ δ . (1)

The percentile P[·] is calculated from the whole pool of answers for each discrete value, and 

δ = 0.2. In the above equation, we measure the percentile difference between ai and aj as 

well as that between ai + 1 and aj + 1 in order to reduce the effect of imposing discrete 

values on the answers that are by nature continuous. If the condition does not hold, they 

disagree and Ii, j
(k) = 0. Here we assume that if two scores for the same image are within a 20 

percent percentile interval, they are considered to reach an agreement. Compared with 

setting a threshold on their absolute difference, such rule adapts to the non-uniformity of 

score distribution. Two subjects can agree with each other by chance or they indeed 

experience similar emotions in response to the same visual stimulus.

While the choice of the percentile threshold δ is inevitably subjective, the selection in our 

experiments was guided by the desire to trade-off the preservation of the original continuous 

scale of the scores (favoring small values) and a sufficient level of error tolerance (favoring 

large values). This threshold controls the sparsity level of the multi-graph, and influences the 

marginal distribution of estimated parameters. Alternatively, one may assess different values 

of the threshold and make a selection based on some other criteria of preference (if exist) 

applied to the final results.
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2.2 Gated Latent Beta Allocation

This section describes the basic probabilistic graphical model we used to jointly model 

subject reliability, which is independent from the supplied questions, and regularity. We 

refrain from carrying out a full Bayesian inference because it is impractical to end users. 

Instead, we use the mode(s) of the posterior as point estimates.

We assume each subject i has a reliability parameter τi, ∈ [0, 1] and regularity parameters 

αi, βi, > 0 characterizing his or her agreement behavior with the population, for i = 1, . . . ,m. 

We also use parameter γ for the rate of agreement between subjects out of pure chance. Let 

Θ = τi, αi, βi i = 1
m , γ  be the set of parameters. Let Ωk be the a random sub-sample from 

subjects {1, . . . , m} who labeled the stimulus k, where k = 1,... ,n. We also assume sets Ωk’s 

are created independently from each other. For each image k, every subject pair from Ωk′
2

i.e., ( i, j) with i ≠ j, has a binary indicator Ii, j
(k) ∈ 0, 1  coding whether their opinions agree 

on the respective stimulus. We assume Ii, j
(k) are generated from the following probabilistic 

process with two latent variables. The first latent variable T j
(k) indicates whether subject Oj is 

reliable or not. Given that it is binary, a natural choice of model is the Bernoulli distribution. 

The second latent variable Ji
(k), lying between 0 and 1, measures the extent subject Oi agrees 

with the other reliable responses. We use Beta distribution parameterized by αi, and βi, to 

model Ji
(k) because it is a widely used parametric distribution for quantities on interval [0,1] 

and the shape of the distribution is relatively flexible. In a nutshell, T j
(k) is a latent switch 

(aka, gate) that controls whether Ii
(k) can be used for the posterior inference of the latent 

variable Ji
(k). Hence, we call our model Gated Latent Beta Allocation (GLBA). A graphical 

illustration of the model is shown in Fig. 4.

We now present the mathematical formulation of the model. For k = 1,...,n, we generate a set 

of random variables independently via

T j
(k) i . i . d . Bernoulli τ j , j ∈ Ωk, (2)

Ji
(k) i . i . d . Beta αi, βi , i ∈ Ωk, (3)

Ii, j
(k) |T j

(k), Ji
(k) Bernoulli Ji

(k) if T j
(k) = 1

Bernoulli γ) if T j
(k) = 0

(4)
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where the last random process holds for any j ∈ Ωk
−i: = Ωk − i  and i ∈ Ωk with k = 1,...,n, 

and γ is the rate of agreement by chance if one of i, j turns out to be unreliable. Here Ii, j
(k)

are observed data.

If a spammer is in the subject pool, his or her reliability parameter τi is zero, though others 

can still agree with his or her answers by chance at rate γ. On the other hand, if one is very 

reliable yet often provides controversial answers, his reliability τi can be one, while he 

typically disagrees with others, indicated by his high irregularity 𝔼 Ji
(k) =

αi
αi + βi

≈ 0. We are 

interested in finding both types of subjects. However, most of subjects lie in between these 

two extremes.

As an interesting note, Eq. (4) is asymmetric, meaning that Ii, j
(k) ≠ I j, i

(k) is possible, a scenario 

that should never occur by definitions of the two quantities. We propose to achieve 

symmetry in the final model by using the conditional distribution of Ii, j
(k) and I j, i

(k) given that 

Ii, j
(k) = I j, i

(k), and call this model the symmetrized model. With details omitted, we state that 

conditioned on T i
(k), T j

(k), Ji
(k), and J j

(k), the symmetrized model is still a Bernoulli 

distribution:

Ii, j
(k) Bernoulli H Ji

(k) Ti
(k)

γ
1 − Ti

(k)
, J j

(k) T j
(k)

γ
1 − T j

(k)
, (5)

where

H(p, q) = pq
pq + (1 − p)(1 − q) .

We tackle the inference and estimation of the asymmetric model for simplicity.

2.3 Variational EM

Variational inference is an optimization based strategy for approximating posterior 

distribution in complex distributions [25]. Since the full posterior is highly intractable, we 

consider to use variational EM to estimate the parameters Θ = τi, αi, βi i = 1
m , γ  [26]. The 

parameter γ is assumed to be pre-selected by the user and does not need to be estimated. To 

regularize the other parameters in estimation, we use the empirical Bayes approach to 

choose priors. Assume the following priors

τi Beta τ0, 1 − τ0 , (6)
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αi + βi Gamma 2, s0 . (7)

By empirical Bayes, τ0, s0 are adjusted. For the ease of notations, we define two auxiliary 

functions ωi
(k)( ⋅ ) and ψ i

(k)( ⋅ ) :

ωi
(k)(x): = ∑

j ∈ Ωk
¬i

x jIi, j
(k), ψ i

(k)(x): = ∑
j ∈ Ωk

x j . (8)

Similarly, we define their siblings

ωi
(k)(x) = ωi

(k)(1 − x), ψ i
(k)(x) = ψ i

(k)(1 − x) . (9)

We also define the auxiliary function rj(·) as

r j
(k)(x) = ∏

i ∈ Ωk
¬ j

xi
γ

Ii, j
(k) 1 − xi

1 − γ

1 − Ii, j
(k)

. (10)

Now we define the full likelihood function:

Lk Θ; T(k), J(k), I(k) : = ∏
j ∈ Ωk

τ j
T j

(k)
1 − τ j

1 − T j
(k)

⋅ ∏
i ∈ Ωk

Ji
(k) αi

(k)
1 − Ji

(k) βi
(k)

ϕi
(k)

B αi, βi
,

(11)

where auxiliary variables simplifying the equations are

αi
(k) = αi + ωi

(k) T(k) ,

βi
(k) = βi + ψi

(k) − ωi
(k) T(k) ,

ϕi
(k) = γ

ωi
(k) T(k)

(1 − γ)
ψi

(k) T(k) − ωi
(k) T(k)

,

and B(·, ·) is the Beta function. Consequently, assume the prior likelihood is LΘ(Θ) , the 

MAP estimate of Θ is to minimize
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L(Θ; T , J, I): = LΘ(Θ) ∏
k = 1

n
Lk Θ; T(k), J(k), I(k) . (12)

We solve the estimation using variational EM method with a fixed (τ0, s0) and varying γ. 

The idea of variational methods is to approximate the posterior by a factorizable template, 

whose probability distribution minimizes its KL divergence to the true posterior. Once the 

approximate posterior is solved, it is then used in the E-step in the EM algorithm as the 

alternative to the true posterior. The usual M-step is unchanged. Each time Θ is estimated, 

we adjust prior (τ0, s0) to match the mean of the MAP estimates of {τi} and 
αi + βi

2

respective until they are sufficiently close.

E-Step.—We use the factorized Q-approximation with variational principle:

pΘ T(k), J(k) I(k) ≈ ∏
j ∈ Ωk

qT j, Θ* T j
(k) ∏

i ∈ Ωk

qJi, Θ* Ji
(k) . (13)

• Let

qT j, Θ* T j
(k) ∝ exp 𝔼

J, T ¬ j logLk Θ; T(k), J(k), I(k) , (14)

whose distribution can be written as

Bernoulli
τ jR j

(k)

τ jR j
(k) + 1 − τ j

,

where log R j
(k) = 𝔼J ∑

i ∈ Ωk
¬ j log ri

(k) J(k) . As suggested by Johnson and Kotz 

[27], the geometric mean can be numerically approximated by

R j
(k) ≈ ∏

i ∈ Ωk
¬ j

1
αi

(k) + βi
(k)

αi
(k)

γ

Ii, j
(k)

βi
(k)

1 − γ

1 − Ii, j
(k)

, (15)

if both αi
(k) and βi

(k) are sufficiently larger than 1.

• Let
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qJi, Θ* Ji
(k) ∝ exp 𝔼

T , J ¬i logLk Θ; T(k), J(k), I(k) , (16)

whose distribution is

Beta αi + ωi
(k)(τ), βi + ψi

(k)(τ) − ωi
(k)(τ) .

Given parameter Ω = τi, αi, βi i = 1, we can compute the approximate posterior expectation 

of the log likelihood, which reads

𝔼T , J Θ, IlogLk Θ; T(k), J(k), I(k)

≈ const . + logLΘ(Θ)

+ ∑
j ∈ Ωk

τi
(k)logτ j + 1 − τi

(k) log 1 − τ j

+ ∑
i ∈ Ωk

αi

βi
,

∇B αi
(k), βi

(k)

B αi
(k), βi

(k)

− ∑
i ∈ Ωk

logB αi, βi + logγ ∑
i ∈ Ωk

ωi
(k) τi

(k)

+log(1 − γ) ∑
i ∈ Ωk

ψ i
(k) τi

(k) − ωi
(k) τi

(k) ,

(17)

where relevant statistics are defined as

αi
(k) = αi + ωi

(k)(τ)

βi
(k) = βi + ψ i

(k)(τ) − ωi
(k)(τ), and

τi
(k) =

Ri
(k)τi

Ri
(k)τi + 1 − τi

.

(18)

Remark B(·, ·) is the Beta function, and Ri
(k) is calculated from approximation Eq. (15)

M-Step.—Compute the partial derivatives of L with respect to αi and βi: let Δi be the set of 

images that are labeled by subject i. We set ∂L/ ∂αi = 0 and ∂L/ ∂βi = 0 for each i, which 

reads
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αi + βi
s0

− log αi + βi ⋅ 1
1

= ∑
k ∈ Δi

∇B αi
(k), βi

(k)

B αi
(k), βi

(k) −
∇B αi, βi
B αi, βi

= ∑
k ∈ Δi

Ψ αi
(k) − Ψ αi

(k) + βi
(k)

Ψ βi
(k) − Ψ αi

(k) + βi
(k) ,

− Δi ⋅
Ψ αi − Ψ αi + βi

Ψ βi − Ψ αi + βi

(19)

where Ψ (x) ∈ [log(x − 1), logx] is the Digamma function. The above two equations can be 

practically solved by Newton-Raphson method with a projected modification (ensuring α, β 
always are greater than zero).

Compute the derivatives of L with respect to τi and set ∂L/ ∂τi = 0, which reads

τi = 1
Δi + 1 τ0 + ∑

k ∈ Δi

τi
(k) . (20)

Compute the derivatives of L w.r.t. γ and set to zero, which reads

γ =
∑i ∈ Ωk

ωi
(k) τi

(k)

∑i ∈ Ωk
ψ i

(k) τi
(k) . (21)

In practice, the update formula for γ needs not to be used if γ is pre-fixed. See Algorithm 1 

for details.

Algorithm 1.

Variational EM algorithm of GLBA

Input: A multi-graph Ii, j
k ∈ 0, 1

i, j ∈ Ωk′
0 < γ < 0.5

Output: subject parameters Θ = τi, αi, βi i = 1
m , γ

Initialisation : τ0 = 0.5, αi = βi = τi = 1.0, i = 1, . . . ,m

1: repeat

2:  for k − 1 to n do
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3:   compute statistics αi
(k), βi

(k), τi
(k)

 by Eq. (18);

4:  end for

5:  for i − 1 to m do

6:   solve (αi, βi) from Eq. (19) (Newton-Raphson);

7:   compute τi by Eq. (20);

8:  end for

9:  (optional) update γ from Eq. (21);

10: until τi, αi, βi i = 1
m

 are all converged.

11: return Θ

2.4 The Algorithm

We present our final algorithm to estimate all parameters by knowing the multigraph data 

Ii, j
(k) . Our algorithm is designed based on Eqs. (19), (20), and (21). In each EM iteration, 

there are two loops: one for collecting relevant statistics for each subgraph, and the other for 

re-computing the parameter estimates for each subject. Please refer to Algorithm 1 for 

details.

3 EXPERIMENTS

3.1 Data Sets

We studied a crowdsourced affective data set acquired from the Amazon Mechanical Turk 

(AMT) platform [8]. The affective data set is a collection of image stimuli and their affective 

labels including valence, arousal, dominance and likeness (degree of appreciation). Labels 

for each image are ordinal: {1,. . .,9} for the first three dimensions, and {1,. . .,7} for the 

likeness dimension. The study setup and collected data statistics have been detailed in [8], 

which we describe briefly here for the sake of completeness.

At the beginning of a session, the AMT study host provides the subject brief training on the 

concepts of affective dimensions. Here are descriptions used for valence, arousal, 

dominance, and likeness.

• Valence: degree of feeling happy versus unhappy

• Arousal: degree of feeling excited versus calm

• Dominance: degree of feeling submissive versus dominant

• Likeness: how much you like or dislike the image

The questions presented to the subject for each image are given below in exact wording.

• Slide the solid bubble along each of the bars associated with the 3 scales 

(Valence, Arousal, and Dominance) in order to indicate how you ACTUALLY 

FELT WHILE YOU OBSERVED THE IMAGE.
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• How did you like this image? (Like extremely, Like very much, Like slightly, 

Neither like nor dislike, Dislike slightly, Dislike very much, Dislike extremely)

Each AMT subject is asked to finish a set of labeling tasks, and each task is to provide 

affective labels on a single image from a prepared set, called the EmoSet. This set contains 

around 40,000 images crawled from the Internet using affective keywords. Each task is 

divided into two stages. First, the subject views the image; and second, he/she provides 

ratings in the emotion dimensions through a Web interface. Subjects usually spend three to 

ten seconds to view each image, and five to twenty seconds to label it. The system records 

the time durations respectively for the two stages of each task and calculates the average cost 

(at a rate of about 1.4 US Dollars per hour). Around 4,000 subjects were recruited in total. 

For the experiments below, we retained image stimuli that have received affective labels 

from at least four subjects. Under this screening, the AMT data have 47,688 responses from 

2,039 subjects on 11,038 images. Here, one response refers to the labeling of one image by 

one subject conducted in one task.

Because humans can naturally feel differently from each other in their affective experiences, 

there was no gold standard criterion to identify spammers. Such a human emotion data set is 

difficult to analyze and the quality of data is hard to assess. Among several emotion 

dimensions, we found that participants were more consistent in the valence dimension. As a 

reminder, valence is the rated degree of positivity of emotion evoked by looking at an image. 

We call the variance of the ratings from different subjects on the same image the within-task 

variance, while the variance of the ratings from all the subjects on all the images the cross-

task variance. For valence and likeness, the within-task variance accounts for about 70 

percent of the cross-task variance, much smaller than for the other two dimensions. 

Therefore, the remaining experiments were focused on evaluating the regularity of image 

valences in the data.

3.2 Baselines for Comparison

We discuss below several baseline methods or models with which we compare our method.

Dawid and Skene [9].—Our method falls into the general category of consensus methods 

in the literature of statistics and machine learning, where the spammer filtering decision is 

made completely based on the labels provided by observers. Those consensus methods have 

been developed along the line of Dawid and Skene [9], and they mainly deal with categorical 

labels by modeling each observer using a designated confusion matrix. More recent 

developments of the observer models have been discussed in [17], where a benchmark has 

shown that the Dawid-Skene method is still quite competitive in unsupervised settings 

according to a number of real-world data sets for which ground-truth labels are believed to 

exist albeit unknown. However, this method is not directly applicable to our scenario. To 

enable comparison with this baseline method, we first convert each affective dimension into 

a categorical label by thresholding. We create three categories: high, neural, and low, each 

covering a continuous range of values on the scale. For example, high valence category 

implies a score greater than a neural score (i.e., 5) by more than a threshold (e.g., 0.5). Such 

a thresholding approach has been adopted in developing affective categorization systems, 

e.g., [5], [6].
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Time Duration.—In the practice of data collection, the host filtered spammers by a simple 

criterion—to declare a subject spammer if he spends substantially less time on every task. 

The labels provided by the identified spammers were then excluded from the data set for 

subsequent use, and the host also declined to pay for the task. However, some subjects who 

were declined to be paid wrote emails to the host arguing for their cases. Under this spirit, in 

our experiments, we form a baseline method that uses the average time duration of each 

subject to red-flag a spammer.

Filtering Based on Gold Standard Examples.—A widely used spammer detection 

approach in crowdsourcing is to create a small set with known ground truth labels and use it 

to spot anyone who gives incorrect labels. However, such a policy was not implemented in 

our data collection process because as we argued earlier, there is simply no ground truth for 

the emotion responses to an image in a general sense. On the other hand, just for the sake of 

comparison, it seems reasonable to find a subset of images that evoke such extreme 

emotions that ground truth labels can be accepted. This subset will then serve the role of 

gold standard examples. We used our method to retrieve a subset of images which evoke 

extreme emotions with high confidence (see Section 3.7 for confidence score and emotion 

score calculation). For the valence dimension, we were able to identify at most 101 images 

with valence score ≥ 8 (on the scale of 1 . . .9) with over 90 percent confidence and 37 

images with valence score ≤ 2 with over 90 percent confidence. We also looked at those 

images one by one (as provided in the supplementary materials, which can be found on the 

Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TAFFC.

2017.2678472. ) and believe that within a reasonable tolerance of doubt those images should 

evoke clear emotions in the valence dimension. Unfortunately, only a small fraction of 

subjects in our pool have labeled at least one image from this “gold standard” subset. 

Among this small group, their disparity from the gold standard enables us to find three 

susceptible spammers. To see whether these three susceptible spammers can also be detected 

by our method, we find that their reliability scores τ ∈ [0,1] are 0.11,0.22,0.35 respectively. 

In Fig. 9, we plot the distribution of τ of the entire subject pool. These three scores are 

clearly on the low end with respect to the scores of the other subjects. Thus the three 

spammers are also assessed to be highly susceptible by our model.

In summary, while we were able to compare our method with the first two baselines 

quantitatively, with results to be presented shortly, comparison with the third baseline is 

limited due to the way the AMT data were collected [8].

3.3 Model Setup

Since our hypotheses included a random agreement ratio γ that is pre-selected, we adjusted 

the parameter γ from 0.3 to 0.48 to see empirically how it affects the result in practice.

Fig. 5 depicts how the reliability parameter τ varies with γ for different workers in our data 

set. Results are shown for the top 15 users who provided the most numbers of ratings. 

Generally speaking, a higher γ corresponds to a higher chance of agreement between 

workers purely out of random. From the figure, we can see that a worker providing more 

ratings is not necessarily more reliable. It is quite possible that some workers took advantage 
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of the AMT study to earn monetary compensation without paying enough attention to the 

actual questions.

In Table 2, we demonstrate the valence, arousal, and dominance labels for two categories of 

subjects. On the top, the first category contains susceptible spammers with low estimated 

reliability parameter τ; and on the bottom, the second category contains highly reliable 

subjects with high values of τ. Each subject takes one row. For the convenience of 

visualization, we represent the three-dimensional emotion scores given to any image by a 

particular color whose RGB values are mapped from the values in the three dimensions 

respectively. The emotion labels for every image by one subject are then condensed into one 

color bar. The labels provided by each subject for all his images are then shown as a palette 

in one row. For clarity, the color bars are sorted in lexicographic order of their RGB values. 

One can clearly see that those labels given by the subjects from these two categories exhibit 

quite different patterns. The palettes of the susceptible spammers are more extreme in terms 

of saturation or brightness. The abnormality of label distributions of the first category 

naturally originates from the fact that spammers intended to label the data by exerting the 

minimal efforts and without paying attention to the questions.

3.4 Basic Statistics of Manually Annotated Spammers

For each subject in the pool, by observing all his or her labels in different emotion 

dimensions, there was a reasonable chance of spotting abnormality solely by visualizing the 

distribution. If one were a spammer, it often happened that his or her labels were highly 

correlated, skewed or deviated in an extreme manner from a neural emotion along different 

dimensions. In such cases, it was possible to manually exclude his or her responses from the 

data due to his or her high susceptibility. We applied this same practice to identifying highly 

susceptible subjects from the pool. We found about 200 susceptible participants.

We studied several basic statistics of this subset in comparison with the whole population: 

total number of tasks completed, average time duration spent on image viewing and survey 

per task. The histograms of these quantities are plotted in Fig. 6. One can see that the 

annotated spammers did not necessarily spend less time or finish fewer tasks than the others, 

and the time duration has shown only marginal sensitivity to those annotated spammers (See 

Fig. 6). The figures demonstrate that those statistics are not effective criteria for spammer 

filtering.

We will use this subset of susceptible subjects as a “pseudo-gold standard” set for 

quantitative comparisons of our method and the baselines in the subsequent studies. As 

explained previously in 3.2, other choices of constructing a gold standard set either conflict 

the high variation nature of emotion responses or yield only a tiny (of size three) set of 

spammers.

3.5 Top-K Precision Performance in Retrieving the Real Spammers

We conducted experiments on each affective dimension, and evaluated whether the subjects 

with the lowest estimated τ were supposed to be real spammers according to the “pseudo-

gold standard” subset constructed in Section 3.4. Since there was no gold standard to 

correctly classify whether one subject was truly a spammer or not, we have been agnostic 
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here. Based on that subset, we were able to partially evaluate the top-K precision in 

retrieving the real spammers, especially the most susceptible ones.

Specifically, we computed the reliability parameter τ for each subject and chose the K 
subjects with the lowest values as the most susceptible spammers. Because τ depends on the 

random agreement rate γ, we computed τ′s using 10 values of γ evenly spaced out over 

interval [0.3,0.48]. The average value of τ was then used for ranking. The Precision Recall 

Curves are shown in Fig. 7. Our method achieves high top-K precision by retrieving the 

most susceptible subjects from the pool according to the average τ. In particular, the top-20 

precision is 100 percent, the top-40 precision is 95 percent, and the top-60 precision is 78 

percent. Clearly, our algorithm has yielded results well aligned with the human judgment on 

the most susceptible ones. In Fig. 7, we also plot Precision Recall Curves by fixing γ to 0.3, 

0.37,0.44 and using the corresponding τ. The result at γ = 0.37 is better than the other two 

across recalls, indicating that a proper level of the random agreement rate can be important 

for achieving the best performance. The two baseline methods are clearly not competitive in 

this evaluation. The Dawin- Skene method [9], widely used in processing crowdsourced data 

with objective ground truth labels, drops quickly to a remarkably low precision even at a low 

recall. The time duration method, used in the practice of AMT host, is better than the 

Dawin-Skene method, yet substantially worse than the performance of our method.

We also tested this same method of identifying spammers using affective dimensions other 

than valence. As shown in Fig. 8, the two most discerning dimensions were valence and 

arousal. It is not surprising that people can reach relatively higher consensus when rating 

images by these two dimensions than by dominance or likeness. Dominance is much more 

likely to draw on evidence from context and social situation in most circumstances and 

hence less likely to have its nature determined to a larger extent by the stimulus itself.

3.6 Recall Performance in Retrieving the Simulated Spammers

The evaluation of top-K precision was limited in two respects: (1) the susceptible subjects 

were identified because we could clearly observe their abnormality in terms of the 

multivariate distribution of provided labels. If the participant labeled the data by acting 

exactly the same as the distribution of the population, we could not manually identify 

him/her using the aforementioned methodology. (2) We still need to determine if one is a 

spammer, how likely we are to spot him/her.

In this study, we simulated several highly “intelligent” spammers, who labeled the data by 

exactly following the label distribution of the whole population. Every time, we generated 

10 spammers, who randomly labeled 50 images. The labels of simulated spammers were not 

overlapping. We mixed those labels of the simulated spammers with the existing data set, 

and then conducted our method again to determine how accurate our approach was with 

respect to finding the simulated spammers. We repeated this process 10 times in order to 

estimate the t distribution of the simulated spammers. Results are reported Fig. 9. We drew 

the histogram of the estimated reliability of all real workers and compared them to the 

estimated reliability of simulated spammers (in the table included in Fig. 9). We noted that 

more than half of the simulated spammers were identified as highly susceptible based on the 

τ estimation (≤ 0.2), and none of them were supposed to have a high reliability score (≥ 0.6). 
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This result validates that our method is robust enough to spot the “intelligent” spammers, 

even if they disguise themselves as random labelers within a population.

3.7 Qualitative Comparison Based on Controversial Examples

To re-rank the emotion dimensions and likenesses of stimuli with the reliability of the 

subject accounted for, we adopted the following formula to find the stimuli with “reliably” 

highest ratings. Assume each rating αi ∈ [0,1]. We define the following to replace the usual 

average:

bk: =
∑i ∈ Ωk

τiai
(k)

∑i ∈ Ωk
τi

est. score

⋅ 1 − ∏
i ∈ Ωk

1 − τi

confidence

, (22)

where 1 − ∏i ∈ Ωk
1 − τi ∈ [0, 1] is the cumulative confidence score for image k. This 

adjusted rating bk not only allows more reliable subjects to play a bigger role via the 

weighted average (the first term of the product) but also modulates the weighted average by 

the cumulative confidence score for the image. Similarly, in order to find those with 

“reliably” lowest ratings, we replace ai
(k) with 1 − ai

(k)  in the above formula and then still 

seek for the images with the highest bk′s.

If bk is higher than a neutral level, then the emotional response to the image is considered 

high. Fig. 10 shows the histogram of image confidence scores estimated by our method. 

More than 85 percent of images had acquired a sufficient number of quality labels. To obtain 

a qualitative sense of the usefulness of the reliability parameter τ, we compared our 

approach with the simple average-and-rank scheme by examining controversial image 

examples according to each emotion dimension. Here, being controversial means the 

assessment of the average emotion response for an image differs significantly between the 

methods. Despite the variability of human nature, the majority of the population were quite 

likely to reach consensus for a portion of the stimuli. Therefore, this investigation is 

meaningful. In Figs. 2 and 3, we show example image stimuli that were recognized to 

clearly deviate from neutral emotions by one method but not agreed upon by the other. We 

skipped stimuli images that were fear inducing, visually annoying or improper. Interested 

readers can see the complete results in the supplementary material, available online.

3.8 Cost/Overhead Analysis

There is an inevitable trade-off between the quality of the labels and the average cost of 

acquiring them when screening is applied based on reliability. If we set a higher standard for 

reliability, the quality of the labels retained tends to improve but we are left with fewer 

labels to use. It is interesting to visualize the trade-off quantitatively. Let us define overhead 

numerically as the number of labels removed from the data set when quality control is 

imposed; and let the threshold on either subject reliability or image confidence used to filter 

labels be the index for label quality. We obtained what we call overhead curve in Fig. 11. On 
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the left plot, the result is based on filtering subjects with reliability scores below a threshold 

(all labels given by such subjects are excluded); on the right, it is based on filtering images 

with confidence scores below a threshold. As shown by the plots, if either the labels from 

subjects with reliability scores below 0.3 are discarded or those for images with confidence 

scores below 90 percent are discarded, roughly 10,000 out of 47,688 labels are deemed 

unusable. At an even higher standard, e.g., subject reliability ≥ .5 or image confidence level 

≥ 95%, around half of the labels will be excluded from the data set. Although this means the 

average per label cost is doubled at the stringent quality standard, we believe the screening is 

worthwhile in comparison with analysis misled by wrong data. In a large-scale crowdsource 

environment, it is simply impractical to expect all the subjects to be fully serious. This 

contrasts starkly with a well-controlled lab environment for data collection. In a sense, post-

collection analysis of data to ensure quality is unavoidable. It is indeed a matter of which 

analysis should be applied.

4 DISCUSSIONS

Underlying Principles.

Our approach to assess the reliability of crowdsourced affective data deviates fundamentally 

from the standard approaches much concerned with hunting for “ground truth” emotion 

stimulated by an image. An individual’s emotion response is expected to be naturally 

different because it depends on subjective opinions rooted in the individual’s lifetime 

exposure to images and concepts, a topic having been pursued long in the literature of social 

psychology. The new principle we adopted here focuses on the relational knowledge about 

the ratings of the subjects. Our analysis steps away from the use of “ground truth” by 

recasting the data as relational quantities.

As pointed out by a reviewer, such a relational perspective may be intrinsic in human 

cognition, going beyond our specific problem here. For instance, the same spirit of 

exploiting relationships has already appeared in studies to understand linguistic learning. 

Gentner [28], [29] proposed that one should understand linguistic learning in a relational 

way. Instead of assuming there are well-formed abstract language concepts to grasp, the 

human’s cognitive ability often starts from analogical processing based on examples of a 

concept, and then utilizes the symbolic systems (languages) to reinforce and guide the 

learning, and to facilitate memory of the acquired concepts. The relationships among the 

examples and the abstract concept play a role in learning hand in hand, refining recursively 

the understanding of each other. The whole process is an interlocked and repeated 

improvement of one side assisted by the other. In a similar fashion, our system improves its 

assessment about which images evoke highly consensus emotion responses and which 

subjects are reliable. At the beginning, the lack of either kind of information obscures the 

truth about the other. Or equivalently, knowing either makes the understanding of the other 

easy. This is a chicken-and-egg situation. Like the proposed way of learning languages, our 

system pulls out of the dilemma by recursively enhancing the understanding of one side 

conditioned on what has been known about the other.
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Results.

We found that the crowdsourced affective data we examined are particularly challenging for 

the conventional school of observer models, developed along the line of Dawid and Skene 

[9]. We identified two major reasons. First, each image in our data set has a much smaller 

number of observers, compared with what are typically studied in the benchmarks [17]. In 

our data set, most images were only labeled by 4 to 8 subjects, while many existing 

benchmark data sets have tens of subjects per task. Second, a more profound reason is that 

most images do not have a ground truth affective label at the first place. This can render 

ineffective many statistical methods which model the user-task confusion matrix and hence 

count on the existence of “true” labels and the fixed characteristics of uncertainty in 

responses (assumptions A1 and A2).

Our experiments demonstrate that valence and arousal are the two most effective dimensions 

that can be used to analyze the reliability of subjects. Although subjects may not reach a 

consensus at local scales (say, an individual task) because the emotions are inherently 

subjective, consensus at a global scale can still be well justified.

Usage Scenarios:

We would like to articulate on the scenarios under which our method or other traditional 

approaches (e.g., those described in Section 3.2) are more suitable.

First, our method is not meant to replace traditional approaches that add control factors at 

the design stage of the experiments, for example, recording task completion time, and testing 

subjects with examples annotated with gold standard labels. Those methods are effective at 

identifying extremely careless subjects. But we argue that the reliability of a subject is often 

not a matter of yes or no, but can take a continum of intermediate levels. Moreover, 

consensus models such as Dawid-Skene methods require that each task is assigned to 

multiple annotators.

Second, our method can be integrated with other approaches so as to collect data most 

efficiently. Traditional heuristic approaches require the host to come up with a number of 

design questions or procedures effective for screening spammers before executing the 

experiments, which can be a big challenge especially for affective data. In contrast, the 

consensus models support post analyses of collected data and have no special requirement 

for the experimental designs. This suggests we may use a consensus model to carry out a 

pilot study which then informs us how to best design the data collection procedure.

Third, as a new method in the family of consensus models, our approach is unique in terms 

of its fundamental assumptions, and hence should be utilized in quite different scenarios 

than the other models. Methods based on modeling confusion matrix are more suitable for 

aggregating binary and categorical labels, while the agreement-based methods (ours 

included) are more suitable for continuous and multi-dimensional labels (or more 

complicated structures) that normally have no ground truth. The former are often evaluated 

quantitatively by how accurately they estimate the true labels [17], while the latter are 

evaluated directly by how effectively they identify unreliable annotators, a perspective barely 

touched in the existing literature.
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Limitations and Future Work.

Despite the fact that we did not assume A1 or A2 and approached the problem of assessing 

the quality of crowdsourced data form an unusual angle, there are interesting questions left 

about the statistical model we employed.

• Some choices of parameters in the model are quite heuristic. The usage of our 

model requires pre-set values for certain parameters, e.g., γ, but we have not 

found theoretically pinned-down guidelines on how to choose those parameters. 

As a result, it is always subjective to some extent to declare a subject spammer. 

The ranking of reliability of subjects seems easier to accept. Where the cutoff 

should be will involve some manual checking on the result or will be determined 

by some other factors such as the desired cost of acquiring a certain amount of 

data.

• Although we have made great efforts to design various measures to evaluate our 

method, struggling to get around the issue of lacking an objective gold standard 

(its very existence has been questioned), these measures have limitations in one 

way or the other, as discussed in Section 3. We feel that due to the subjective 

nature of emotion responses to images, there is no simple and quick solution to 

this. The ultimate test of the method has to come from its usage in practice and a 

relatively long-term evaluation from the real-world.

• The effects of subgroup consistency, though varied from task to task, were 

random effects. We constructed the model this way to stretch its applicability 

because the number of responses collected per task in our empirical data was 

often small. Some related approaches (e.g., [16]) propose to estimate a difficulty/

consistency parameter for each task, but often require a relatively large number 

of annotators per task. Which kind of probabilistic assumptions is more accurate 

or works better calls for future exploration.

• Only one “major” reliable mode was assumed at one time, and hereafter only the 

regularities conditioned on this mode are estimated. In another word, all the 

reliable users are assumed to behave consistently. One may ask whether there 

exist subgroups of reliable users who behave consistently within a group but 

differ across groups for reasons such as different demographic backgrounds. In 

our current model, if such “minor” reliable mode exists in a population, these 

subjects may be absorbed into the spammer group. Our model implicitly assumes 

that diversity in demography or in other aspects does not cause influential 

differences in emotion responses. Because of this, our method in dealing with 

culturally sensitive data is not well justified.

Experimentally our method is only evaluated on one particular large data set [8]. Evaluations 

on other affective data sets (when publicly available) are of interest.

We have focused on the post analysis of collected data. As a future direction, it is of interest 

to examine the capacity of our approach to reduce time and cost in the practice of 

crowdsourcing using A/B test. We hereby briefly discuss an online heuristic strategy to 

dynamically allocate tasks to more reliable subjects. Recall that our model has two sets of 
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parameters: parameter τi, indicating the reliability of subjects and parameter αi; βi, 

capturing the regularity. We can use the variance of distribution Beta (αi, βi) to determine 

how confident we are with the estimation of τi. For subject I, if the variance of Beta (αi, βi) 

is smaller than a threshold while τi is below a certain percentile, this subject is considered 

confidently unreliable and he/she may be excluded from the future subject pool.

5 CONCLUSION

In this work, we developed a probabilistic model, namely Gated Latent Beta Allocation, to 

analyze the off-line consensus for crowdsourced affective data. Compared to the usual 

crowdsourcing settings, where reliable workers are supposed to have consensus, the 

consensus analysis of affective data is more challenging because of the innate variation in 

emotion responses even out of true feelings. To overcome this difficulty, our model estimates 

the reliability of subjects by exploiting the agreement relationships between their ratings at a 

global scale. The experiments show that the relational data based on the valence of human 

responses are more effective than the other emotion dimensions for identifying spammer 

subjects. By evaluating and comparing the new method with some standard methods in 

multiple ways, we find that the results have demonstrated clear advantages and the system 

seems ready for use in practice.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An example illustrating one may need to acquire more reliable labels, ensuring the image 

confidence is more than 0.9.
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Fig. 2. 
Images shown are considered of lower valence than their average valence ratings (i.e., 

evoking a higher degree of negative emotions) after processing the data set using our 

proposed method. Our method eliminates the contamination introduced by spammers. The 

range of valence ratings is between 0 and 8.

Ye et al. Page 27

IEEE Trans Affect Comput. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Images shown are considered of higher valence than their average valence ratings (i.e., 

evoking a higher degree of positive emotions) after processing the data set using our propose 

method. Our method again eliminates the contamination introduced by spammers. The range 

of valence ratings is between 0 and 8.
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Fig. 4. 
Probabilistic graphical model of the proposed Gated Latent Beta Allocation.
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Fig. 5. 
(a) Reliability scores versus γ ∈ [0.3,0.48] for the top 15 users who provided the most 

numbers of ratings. (b) Visualization of the estimated regularity parameters of each worker 

at a given γ. Green dots are for workers with high reliability and red dots for low reliability. 

The slope of the red line equals γ.
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Fig. 6. 
Normalized histogram of basic statistics including total number of tasks completed and 

average time duration spent at each of the two stages per task.
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Fig. 7. 
The agnostic Precision-Recall curve (by valence) based on manually annotated spammers. 

The top 20, top 40 and top 60 precision is 100, 95, 78 percent respectively (black line). It is 

expected that precision drops quickly with increasing recalls, because the manually 

annotation process can only identify a special type of spammers, while other types of 

spammers can be identified by the algorithm. The PR curves at γ = 0.3,0.37,0.44 are also 

plotted. Two baselines are compared: the Dawid and Skene (DS) approach and the time 

duration based approach.
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Fig. 8. 
The agnostic Precision-Recall curve based on manually annotated spammers computed from 

different affective dimensions: valence, arousal, dominance, and likeness.
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Fig. 9. 
The histogram distribution of estimated worker reliabilities τ and statistics of simulated 

spammers based on 10 repeated runs, each with 10 spammers injected.
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Fig. 10. 
The histogram of image confidences estimated based on our method. About 85 percent of 

images have a confidence scores higher than 90 percent.
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Fig. 11. 
Left: Overhead curve based on subject filtering; Right: overhead curve based on image 

filtering. The overhead is quantified by the number of labels discarded after filtering.
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TABLE 1

Symbols and Descriptions of Parameters, Random Variables, and Statistics

Symbols Descriptions

Oi subject i

τi rate of subject reliability

αi, βi shape of subject regularity

γ rate of agreement by chance

Θ union of parameters

T j
(k) whether Oj reliably response

Ji
(k) rate of Oi agreeing with other reliable responses

Ii, j
(k) whether Oi agrees with the responses from Oj

ωi
(k)( ⋅ ) cumulative degree of responses agreed by Oi

ψ i
(k)( ⋅ ) cumulative degree of responses

r j
(k)( ⋅ ) a ratio amplifies or discounts the reliability of Oj

τi
(k)

sufficient statistics of posterior T i
(k)

, given Θ

αi
(k), βi

(k)
sufficient statistics of posterior Ji

(k)
, given Θ
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TABLE 2

Oracles in the AMT Data Set
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