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Systematic approach to IMM mixing
for unequal dimension states

Karl Granström, Member, IEEE, Peter Willett, Fellow, IEEE, and Yaakov Bar-Shalom, Fellow, IEEE

Abstract—The IMM estimator outperforms fixed model filters,
e.g. the Kalman filter, in scenarios where the targets have periods
of disparate behavior. Key to the good performance and low
complexity is the mode mixing. Here we propose a systematic
approach to mode mixing when the modes have states of different
dimensions. The proposed approach is general and encompasses
previously suggested solutions. Different mixing approaches are
compared, and the proposed methodology is shown to perform
very well.

Index Terms—Multiple mode, Interacting Multiple Model,
IMM, Jump Markov System, estimator, filter.

I. INTRODUCTION

In many cases it is insufficient to model an estimation
problem using a single process model and/or a single mea-
surement model. Multiple models are necessary, e.g. to model
motion where one process model is accurate for straight line
motion and another model is accurate for curving motion. Each
process and measurement model pair is referred to as a mode,
and the switches between the modes are modeled as a Markov
process.

When the mode switches are unknown, as is the typical case,
the complexity of the optimal Bayesian solution to the problem
increases exponentially and approximations are necessary.
Examples of approximate methods include the first and second
order Generalized Pseudo Bayesian (GPB) estimators, see e.g.
[3], and the interacting multiple model (IMM) estimator [5].

The IMM filter is known to represent a good compromise
between estimation accuracy and computational complexity.
The algorithm consists of three main steps:

1) mode mixing;
2) mode matched prediction update;
3) mode matched measurement update.

Typically each mode is represented by a Gaussian estimate and
the models are (non)-linear with Gaussian noise, in which case
the prediction and measurement updates can be taken from the
Kalman filter or one of its non-linear variants.

The key to the remarkable success of the IMM estimator is
that it carries out the mixing just before the update of the
mode-conditioned estimates, just like the optimal Bayesian
estimator [2]. The key to the simplicity of the IMM estimator
is the Gaussian mixture approximation, with the number of
terms equal to the number of modes, of the exact prediction
probability density function (pdf). The exact prediction pdf, in
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the case of the optimal Bayesian estimator, has an exponen-
tially increasing number of terms.

In this paper we will consider the first step, mode mixing,
for modes with states of unequal dimension. For the sake of
simplicity we will assume that there are two modes, however
it is straightforward to generalize the presented work to an
arbitrary number of modes. Mode mixing involves matching
the first two moments, i.e. the Gaussian mean and covariance,
however this cannot be performed in the standard way when
the state vectors are of unequal dimension. This problem is
approached by augmenting the distribution for the smaller state
such that the augmented dimension matches the larger state.

A simple approach, see e.g. [3], involves augmenting with
zero mean and variance. This leads to a biased estimate [14],
and as a remedy one can augment with the mean and variance
from the larger state. This approach showed good results when
tested with real data from thrusting ballistic projectiles in a
scheme involving multiple IMM estimators [14]. A similar
approach was used in [8], however the implementation in [8]
is performed state-by-state, in contrast to the implementation
in [14] (and the standard IMM estimator) which is performed
directly on the state vectors.

The approach suggested in this paper is based on the idea
that the augmented distribution should reflect the underlying
situation when the target switches from one mode to the other,
without negatively affecting the estimation of the states that
are common to both modes. For example, if the target switches
from CV motion to turning motion with some turn rate, then
the distribution for the turn rate should correctly reflect the
feasible turn rate values.

The paper is organized as follows. The next section presents
a problem formulation, followed by the proposed approach to
mixing in Section III. Three different motion model pairs are
used in a simulation comparison of four different approaches
to mode mixing. The simulation setup is presented in Sec-
tion IV, and the simulation results are given in Section V.
The paper is concluded in Section VI.

II. PROBLEM FORMULATION

In this section we briefly review mode mixing, and give a
description of the problem considered in the paper.

A. Mode mixing
Let mk denote the target mode at time step k, and let Zk

denote all measurements up to and including time step k. For
each of the two modes there is a corresponding Gaussian state
estimate,

p(xk|mk = i,Zk) = N
(
xk ; x̂

(i)
k|k, P

(i)
k|k

)
, i ∈ {1, 2} (1)
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where x̂
(i)
k|k and P

(i)
k|k are the mean and covariance, respec-

tively, and x̂
(i)
k|k ∈ Rnix . The backward mixing probabilities

µ
(i,j)
k−1|k = P

(
mk−1 = i|mk = j,Zk−1

)
, i, j ∈ {1, 2} (2)

model the probability that the mode was i at time step k− 1,
conditioned on being in mode j at time k. In the mixing step
the following Gaussian estimates are computed for j ∈ {1, 2},

x̂(0,j) =µ(1,j)x̂(1) + µ(2,j)x̂(2) (3a)

P (0,j) =µ(1,j)P (1) + µ(2,j)P (2) +M (0,j) (3b)

M (0,j) =µ(1,j)
(
x̂(0,j) − x̂(1)

)(
x̂(0,j) − x̂(1)

)T

+ µ(2,j)
(
x̂(0,j) − x̂(2)

)(
x̂(0,j) − x̂(2)

)T

(3c)

where, for the sake of brevity, we have dropped the time
indexing.

The mode mixing (3) can be derived and motivated with
the Kullback Leibler divergence (KL-div) [7]. Defined for two
pdfs p(x) and q(x) as

KL (p(x)||q(x)) =

∫
p(x) log (p(x)/q(x)) dx (4)

the KL-div is a measure of the information lost when the
distribution q(x) is used to approximate p(x), see e.g. [4].
When it comes to approximating distributions in a maximum
likelihood sense, the KL-div is often considered the optimal
difference measure, see e.g. [1], [6], [11]–[13].

The mixing (3) corresponds to the approximation of a
weighted sum of Gaussian distributions,

µ(1,j)N
(
x ; x̂(1), P (1)

)
+ µ(2,j)N

(
x ; x̂(2), P (2)

)
(5a)

with a single Gaussian distribution,

N (x ; x̂, P ) (5b)

By minimizing the Kullback Leibler divergence between the
weighted sum of Gaussian distributions (5a) and the single
Gaussian distribution (5b) it can be shown that the optimal
parameter choice x̂ and P are indeed given by the mixed
parameters (3). In a maximum likelihood sense, the mean
x̂(0,j) and covariance P (0,j) given by (3) are, given the mixing
probabilities µ(1,j) and µ(2,j), the best approximations of the
two estimates x̂(1), P (1) and x̂(2), P (2).

The KL-div is known for its moment matching characteris-
tics for distributions that belong to the exponential family, see
e.g. [1], [4], [9]; the mode mixing (3) corresponds to moment
matching of the first and second order moments.

B. Unequal state dimensions

Let mode 1 have higher dimension than mode 2, i.e.
n1x > n2x, and assume that the states contained in x̂

(2)
k|k are

also contained in x̂
(1)
k|k,

x̂
(1)
k|k =

[
x̂
(1)
k|k

θ̂
(1)
k|k

]
; P

(1)
k|k =

[
P

(xx,1)
k|k P

(xθ,1)
k|k

P
(θx,1)
k|k P

(θθ,1)
k|k

]
(6a)

x̂
(2)
k|k = x̂

(2)
k|k; P

(2)
k|k = P

(xx,2)
k|k (6b)

The additional state θ̂
(1)
k|k ∈ Rn1−n2 can, e.g., be model

acceleration, turn-rate, steering angle, or thrust.
Since n1x 6= n2x the mixing cannot be performed as in (3),

because vectors and matrices with unequal dimension cannot
be added and multiplied. For mixing involving transition to
mode 2 (x̂(0,2) and P (0,2)) this has a simple and straightfor-
ward solution: replace x̂

(1)
k|k and P

(1)
k|k with the marginalized

mean and covariance, i.e. replace with x̂(1)k|k and P (xx,1)
k|k .

However, mixing involving transition to mode 1 (x̂(0,1) and
P (0,1)) require more elaborate treatment; this is the problem
considered in this paper. We will propose a simple and general
approach to the problem, show how it encompasses previously
suggested solutions, and present results from a simulation
study that compares the different approaches for different state
vectors.

III. MIXING WITH UNEQUAL STATE DIMENSIONS

In this section, for the sake of brevity, time indexing is
omitted. For the case of mixing into mode 1, augment the
mode 2 distribution with an arbitrary distribution q

(
θ(2)
)
,

p (x, θ|m = 2,Z) = N
(
x ; x̂(2), P (xx,2)

)
q
(
θ(2)
)

(7)

Next, analogous to (5), we approximate the sum

µ(1,j)N
(
x ; x̂(1), P (1)

)
+ µ(2,j)p (x, θ|m = 2,Z) (8)

with a single Gaussian distribution. By matching the first and
second order moments (i.e. minimizing KL-div) the optimal
Gaussian parameters can be shown to be

x̂(0,1) =µ(1,1)x̂(1) + µ(2,1)x̂(2,a) (9a)

P (0,1) =µ(1,1)P (1) + µ(2,1)P (2,a) +M (0,1) (9b)

M (0,1) =µ(1,1)
(
x̂(0,1) − x̂(1)

)(
x̂(0,1) − x̂(1)

)T

(9c)

+ µ(2,1)
(
x̂(0,1) − x̂(2,a)

)(
x̂(0,1) − x̂(2,a)

)T

where the augmented mean x̂(2,a) and covariance P (2,a) are

x̂(2,a) =

[
x̂(2)

Eq [θ]

]
; P (2,a) =

[
P (xx,2) 0

0 Covq(θ)

]
(10)

Here the expected value and covariance of θ are computed
with respect to the distribution q.

The mixing approach (9), (10) is valid for any distribution
q( · ) for which the first and second moments can be computed,
and it encompasses the two following standard approaches to
mixing of states of unequal dimension.
• A simple approach, see e.g. [3], is to augment the mode

2 estimate as

x̂(2,a) =

[
x̂(2)

0

]
; P (2,a) =

[
P (xx,2) 0

0 0

]
(11)

This corresponds to the choice

q(θ) = δ(θ) (12)

• An unbiased approach was suggested in [14], where the
mode 2 estimate is augmented as

x̂(2,a) =

[
x̂(2)

θ̂(1)

]
; P (2,a) =

[
P (xx,2) 0

0 P (θθ,1)

]
(13)
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This corresponds to the choice

q(θ) = N
(
θ ; θ̂(1), P (θθ,1)

)
(14)

It is also possible to take an approach to mixing of states
of unequal dimensions that does not correspond to a choice
of q(θ). For example (9b) can be replaced by

P (0,1) =
(
µ(1,1)Λ(1) + µ(2,1)Λ(2,a)

)−1
+M (0,1) (15)

where Λ(i) = (P (i))−1 is the information matrix. In this case
Λ(2) is augmented with zero information and the augmented
information matrix is

Λ(2,a) =

[
Λ(2) 0
0 0

]
(16)

This may seem like an attractive approach, as it captures that
for mode 2 we do not have any information about the state
θ. However, we have tried this approach to mixing and advise
against using it, because we found that it gives results that are
numerically unstable. In short, problems occur when µ(2,j)

is close to unity, because then the weighted sum is almost
equal to Λ(2,a), i.e. the weighted sum is nearly a singular
matrix. Note also that the inverse of a weighted sum of two
information matrices is not algebraically equivalent to the
weighted sum of the corresponding covariance matrices.

In practical scenario the distribution q(θ) should be chosen
such that it correctly represents both practical reality and
theoretical properties. In terms of theoretical properties, one
may wish to have an unbiased estimate. In [14] the unbiased
approach (13) is shown to outperform the standard approach
(11). Practical considerations include using any prior available
information about the tracking scenario when selecting the
distribution q( · ).

In the simulation study presented below we compare using
a uniform mixing distribution to three other choices, including
the simple and unbiased approaches. Comments on how the
uniform distribution can be chosen are also given.

IV. SIMULATION SETUP

We conducted a simulation study that compares different
approaches to mixing for three different motion model com-
binations. The first combines two linear models, the second
combines a linear and a non-linear model, and the third
combines two non-linear models.

Here we also present how the true trajectories were gener-
ated, and we present the four different approaches to mode
mixing that we compare. In the last subsection we give
performance evaluation metrics that are used to compare the
IMM estimators’ estimation results.

A. Motion and measurement models

1) Second and third order kinematics in 2D: The first mode
models third order kinematics, also known as nearly constant
acceleration (CA) or Wiener process acceleration (WPA). the
second mode models second order kinematics, also known

as nearly constant velocity (CV) or white noise acceleration
(WNA). The state vectors for the two modes are

x(1) =

p(1)

v(1)

a(1)

 x(2) =

[
p(2)

v(2)

]
(17)

where p is position, v is velocity, and the additional state
θ(1) = a(1) models the acceleration. The transition density is

p
(
x
(i)
k+1

∣∣∣x(i)
k

)
= N

(
x
(i)
k+1 ; F(i)x

(i)
k ,G(i)QG(i)T

)
(18)

where the models F(i) and G(i) and process noise covariance
Q are

F(1) =

 I2 TsI2
T 2
s

2 I2
02×2 I2 TsI2
02×2 02×2 I2

 ; G(1) =

T 2
s

2 I2
TsI2
I2

 (19a)

F(2) =

[
I2 TsI2

02×2 I2

]
; G(2) =

[
T 2
s

2 I2
TsI2

]
(19b)

Q(1) = σ2
v,1I2; Q(2) = σ2

v,2I2 (19c)

In the simulation study presented below, the acceleration noise
standard deviations are set to

σv,1 = γσv,0, σv,2 = γσv,0, (20)

where σv,0 = 1m/s2 and γ is a unitless scaling factor.
2) Constant velocity and coordinated turn in 2D: The first

mode models coordinated turn (CT) kinematics, and the second
mode models constant velocity (CV) kinematics (some prefer
to call this “nearly”-CV or NCV). The state vectors for the two
modes are

x(1) =

p(1)

v(1)

ω(1)

 x(2) =

[
p(2)

v(2)

]
(21)

where p is position, v is velocity, and the additional state
θ(1) = ω(1) models the turnrate. The transition density is

p
(
x
(i)
k+1

∣∣∣x(i)
k

)
= N

(
x
(i)
k+1 ; f (i)

(
x
(i)
k

)
,Q(i)

)
(22)

The motion models f (i)( · ) and process noise covariances Q(i)

are

f (1)(x) =


1 0 sin(ωTs)

ω
−1+cos(ωTs)

ω 0

0 1 1−cos(ωTs)
ω

sin(ωTs)
ω 0

0 0 cos(ωTs) − sin(ωTs) 0
0 0 sin(ωTs) cos(ωTs) 0
0 0 0 0 1

x (23a)

Q(1) = G(1)diag
([
σ2
v,1 , σ

2
v,1 , σ

2
ω

]) (
G(1)

)T

(23b)

G(1) =

T 2
s

2 I2 02×1
TsI2 02×1
01×2 1

 (23c)

f (2)(x) =

[
I2 TsI2

02×2 I2

]
x (23d)

Q(2) = G(2)diag
([
σ2
v,2 , σ

2
v,2

]) (
G(2)

)T

(23e)

G(2) =

[
T 2
s

2 I2
TsI2

]
(23f)
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In the simulation study presented below the acceleration and
turnrate standard deviations are set to

σv,1 = γσv,0 σv,2 = γσv,0 (24a)
σω = γσω,0 (24b)

where σv,0 = 1 m/s2, σω,0 = 1 deg/s, and γ is a unitless
scaling factor.

3) Thrusting ballistic projectile models in 3D: In this
comparison we use models for the motion of projectiles, such
as a rocket. When launched it has a thrust and this is modeled
by a thrust mode (TM). After the fuel is burnt the projectile’s
motion is described by a ballistic mode (BM). The state vectors
for the two modes, in continuous time, are

x(1)(t) =
[
x y z ẋ ẏ ż α τ

]T
(25a)

x(2)(t) =
[
x y z ẋ ẏ ż α

]T
(25b)

where
[
x y z

]T
is position,

[
ẋ ẏ ż

]T
is velocity1, α

is the drag coefficient at subsonic speed, and the additional
state θ(1) = τ (1) models the thrust. The motion models, in
continuous time, areẍÿ

z̈

 =

(
τ√

ẋ2 + ẏ2 + ż2
+ ααmD

)ẋẏ
ż

−
0

0
g

+ w1

(26a)
α̇ = w2 (26b)
τ̇ = w3 (26c)

where wi are zero mean Gaussian process noises, αm is a
Mach number-dependent coefficient, D is air density and g is
standard acceleration due to gravity. The model is discretized
using an second-order Taylor expansion; we refer the reader
to [10], [14] for the details too lengthy to be repeated here.
The discretized process noise covariance matrix is

Q(1) =


[
T 4
s

4 I3
T 2
s

2 I3
T 2
s

2 I3 T 2
s I3

]
σ2
v 06×1 06×1

01×6 σ2
α 0

01×6 0 σ2
τ

 (27)

for TM. The process noise covariance matrix Q(2) for BM is
given by removing the last row and column of Q(1).

In the simulation study presented below the acceleration,
drag-coefficient and thrust process noise standard deviations
are set to

σv,1 = γσv,0 σv,2 = γσv,0 (28a)
σα,1 = γσα,0 σα,2 = γσα,0 (28b)
στ = γστ,0 (28c)

where σv,0 = 10 m/s2, σα,0 = 5×10−3 m2/kg, στ,0 = 5 m/s2

and γ is a unitless scaling factor.

1ẋ denotes derivative w.r.t. time of x.

4) Measurement model: A linear measurement model is
used, the likelihood is

p
(
zk

∣∣∣x(i)
k

)
=N

(
zk ; H(i)x(i), R

)
(29a)

H(i) =
[
Id 0d×(ni−d)

]
(29b)

R =σ2
wI (29c)

for i = 1, 2, where d = 2 for the first two motion model
combinations, and d = 3 for the thrusting ballistic projectile.

B. True trajectory and measurement generation

The sampling times were set to Ts = 1 s in the two 2D
scenarios; in the 3D scenario the sampling time was set to
Ts = 1/30 s, as suggested in [10], [14]. The motion model
pairs in Section IV-A were simulated for process noise scaling
factors

γ ∈ {10−2, 10−1.75, 10−1.5, 10−1.25, . . .

. . . 10−1, 10−0.75, 10−0.5, 10−0.25, 1}. (30)

For the thrusting ballistic projectile simulation the measure-
ment noise standard deviation was set to σw = 2 m, as in [10].
For the two 2D simulations measurements were generated with
measurement noise standard deviations

σw ∈ {2, 20, 200} m (31)

For each γ and each σw, 100 target trajectories were generated,
i.e. in total 3× 3× 100 = 900 trajectories for each 2D model
pair, and 3× 1× 100 = 300 for the 3D model pair.

1) CV/ CA scenario: Scenarios with 200 time steps
were simulated; the true mode is CV for time steps
k = 1, . . . , 50, 101, . . . , 150, and CA for time steps k =
51, . . . , 100, 151, . . . , 200. Initial position and velocity were
set to p = [1000 1000]T m and v = [55 0]T m/s. Upon mode
switch from CV to CA, the true acceleration was initialized as
follows

ak =

{
a0
[
1 1

]T
m/s2, k = 51

−a0
[
1 1

]T
m/s2, k = 151

(32)

where a0 was randomly sampled at the beginning of the
simulation from the distribution U(a0; 5, 10). An example true
track is given in Figure 1a.

2) CV/ CT scenario: Scenarios with 200 time steps
were simulated; the true mode is CV for time steps
k = 1, . . . , 50, 101, . . . , 150, and CT for time steps k =
51, . . . , 100, 151, . . . , 200. Initial position and velocity were
set to p = [1000 1000]T m and v = [55 0]T m/s. Upon mode
switch from CV to CT, the turnrate was initialized as follows

ωk =

{
ω0 deg/s, k = 51
−ω0 deg/s, k = 151

(33)

where ω0 was randomly sampled at the beginning of the
simulation from the distribution U(ω0; 3.6, 7.2). An example
true track is given in Figure 1b.
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Fig. 1. Trajectory examples. (a) CA/CV, a0 = 5 m/s2, γ = 10−2. (b) CT/CV, ω0 = 3.6 degrees/s, γ = 10−2. (c) TM/BM, τ0 = 100 m2/s, γ = 10−2.
Trajectory (solid) and ground projection (dashed).

3) TM/ BM scenario: Projectile trajectories were simu-
lated with p = [0 0 0]T m as initial position and v =
[0.03 0.03 0.09]Tm/s as initial velocity.2 The drag coef-
ficient was initialized to α = 0.1025 m2/kg. The initial
thrust τ0 m/s2 was randomly sampled from the distribution
U(τ0; 100, 500), and the thrust mode was simulated for four
seconds. After that the ballistic mode was simulated until the
projectile hit the ground (z-position = 0). The length of the
simulation depends on the thrust that is applied: the larger
the thrust, the longer the projectile path and the longer the
simulation. An example true track is given in Figure 1c.

C. IMM estimator settings
We compare four different IMM estimators denoted I1, I2,

I3 and I4. The IMM estimators are identical except for the
mixing step augmentation, where four different approaches are
considered:

1) I1 uses a simple approach q(θ) = δ(θ).
2) I2 uses an unbiased approach [14]

q(θ) = N
(
θ ; θ̂(1), P (θθ,1)

)
. (34)

3) I3 uses a uniform distribution q(θ) = U(θ; a, b). If θ is a
vector, a and b are vectors of same length, and we have

q(θ) =

nθ∏
j=1

U (θj ; aj , bj) (35)

Following the Gaussian approximation (8) the expected
value and covariance of the distribution q(θ) are needed.
For a uniform distribution, the expected value and covari-
ance are

E[θ] =
[
a1+b1

2 . . .
anθ+bnθ

2

]T
(36a)

Cov(θ) = diag
([

(b1−a1)2
12 . . .

(bnθ−anθ )
2

12

])
(36b)

2In reality the initial velocity for a thrusting ballistic projectile is zero.
However, to avoid division by zero in the Matlab implementations a small
initial velocity must be used.

In practice, the parameters aj and bj should be chosen to
represent the underlying properties of the scenario. For
example, if we know that the target’s maximum turnrate is
ξ deg/s, we set a = −ξ and b = ξ. For the three scenarios
considered here, the uniform distribution parameters are
chosen as

b = −a = 10 m/s2 for CA/CV (37a)
b = −a = 10 deg/s for CT/CV (37b)

b = 500, a = 100 m/s2 for TM/BM (37c)

4) I4 uses a high uncertainty approach q(θ) =
N
(
θ ; 0, σ2I

)
, where the scalar standard deviation

σ is chosen as large as Matlab numerically would allow
in our implementations,

σ = 1010 m/s2 for CA/CV (38a)

σ =
180

π
103 deg/s for CT/CV (38b)

σ = 1016 m/s2 for TM/BM (38c)

In a sense this approach is analogous to (15), (16) since
zero information corresponds to infinite covariance.

In all IMM estimators the mode transition probability matrix
was set to [

0.99 0.01
0.01 0.99

]
(39)

In addition to comparing the performance of the four IMM
estimators, we also compare to one Kalman filter based on
the motion model from mode 1, denoted as K1; and another
Kalman filter based on the motion model from mode 2,
denoted as K2.

D. Performance evaluation

The results for the different approaches are compared in
terms of the root mean square errors (RMSE) of the estimate
of target position and the mode estimate. Let the posterior
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Fig. 2. CV/CA results, equal model and filter tuning parameters: Position RMSE (a) and mode RMSE (b).
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Fig. 3. Selected CV/CA results, equal model and filter tuning parameters: estimated mode probabilities for γ = 0.01 (a), γ = 0.1 (b) and γ = 1 (c). Results
are averaged over 100 Monte Carlo runs.

position estimates for the two modes be denoted p̂
(i)
k|k for i =

1, 2, let the true position be denoted pk, let µ(i)
k|k for i = 1, 2

denote the posterior mode weights, and let the “true” mode
weight vector be defined as

µk =

{ [
1 0

]T
if mk = 1,[

0 1
]T

if mk = 2.
(40)

The position and mode RMSE are

εp =

(
1

N

N∑
k=1

∥∥∥µ(1)
k|kp̂

(1)
k|k + µ

(2)
k|kp̂

(2)
k|k − pk

∥∥∥2)
1
2

, (41a)

εm =

(
1

N

N∑
k=1

∥∥∥[µ(1)
k|k µ

(2)
k|k

]T
− µk

∥∥∥2)
1
2

. (41b)

V. SIMULATION RESULTS

The noise parameters of the motion and measurement mod-
els — see (20), (24), (28) and (29c) — determine the properties
and characteristics of the modeled target. As mentioned in the
previous section, the different IMM estimators and Kalman
filters are compared for data generated using different model
parameters.

When simulated data are used the model parameters used to
generate the data are known, and the filter tuning parameters

of the IMM estimator or Kalman filter can easily be set
equal to them. However, when real world experimental data
is used there are no true underlying model parameters, and
tuning the estimator/filter parameters is therefore harder. It
is therefore interesting to compare estimators for different
parameter settings, and evaluate if any estimator is more robust
to the parameter settings.

We will first present results for the case when the estima-
tor/filter tuning parameters are equal to the simulated model
parameters. Then we present results for the same scenarios,
but where the filter tuning parameters are allowed to be larger
or smaller than the model parameters.

A. Equal tuning and model parameters

The results for the 2D models are similar for the different
measurement noise settings (see (31)), however they vary more
significantly across the different process noise settings. For
brevity we only illustrate the results for σw = 20 meters, and
highlight the differences that show when the process noise
settings are changed.

Position RMSE and mode RMSE results are given in Fig. 2,
4 and 6 for CA/CV, CT/CV and TM/BM, respectively. Estimated
mode probabilities, averaged over 100 Monte Carlo runs, are
shown in Fig. 3, 5 and 7.
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Fig. 4. CV/CT results, equal model and filter tuning parameters: Position RMSE (a) and mode RMSE (b).
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Fig. 5. Selected CV/CT results, equal model and filter tuning parameters: estimated mode probabilities for γ = 0.01 (a), γ = 0.1 (b) and γ = 1 (c). Results
are averaged over 100 Monte Carlo runs.

For the 2D scenarios, the difference is largest when the
process noise is low (γ ≤ 10−1). The performance of I3 can
only be matched for the larger simulated process noise, where
all IMM estimators and the mode 1 Kalman filters (K1) all
perform similarly. In the 3D scenario I3 performs best for all
γ; the difference in position RMSE is rather small but the mode
RMSE is significantly lower.

Overall the results show that I3 achieves best performance,
as it has both lowest position RMSE and mode RMSE for all
three motion model pairs. These results are intuitive:

• When low process noise is used to generate the trajec-
tories, the differences between the two motion models
stand out and hence the IMM estimators outperform
the Kalman filters. When high process noise is used
to generate the trajectories, the differences between the
two motion models “drown” in the process noise, and
modeling exactly zero acceleration/turnrate/thrust is less
important. Hence the IMM estimators and mode 1 Kalman
filters all perform similarly for high process noise.

• When low process noise is used to generate the trajecto-
ries, the largest changes are due to the initializations a0,
ω0 and τ0. This is accurately captured by the uniform
augmentation distribution in I3, however the augmenta-
tion methods used in I1, I2 and I4 do not model this

well enough. Hence, I3 outperform the other three IMM
estimators.

For the second of these two points, it is important to note
that the proposed augmentation method, i.e. the one used in
I3, models the initial values for the additional state θ, without
negatively affecting the estimation performance for the states
that are common to both modes. The standard augmentation
methods used in I1 and I2 do not capture these initial values,
and for lower γ the process noise cannot correctly capture the
“jumps” (sudden increases) that the initial values represent —
hence the poor performance of I1 and I2 compared to I3. The
suggested augmentation method overcomes the low process
noise and introduces a robustness in the IMM estimator.

The difference between the IMM estimators for low process
noise can possibly be reduced if the corresponding tuning
parameters are changed. This is investigated in the next
simulation comparison.

B. Free tuning parameters

For each value of γ, the IMM estimators and Kalman filters
were tested with process noise tuning parameters that were
larger, equal to, and smaller than the process noise parameters
used to generate the trajectories. Results for CA/CV, CT/CV
and TM/BM,are shown in Fig. 8, 9 and 10, respectively. For
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Fig. 6. TM/BM results, equal model and filter tuning parameters: Position RMSE (a) and mode RMSE (b). The position RMSE for K2 are very large, and are
excluded to make the plot easier to read.
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Fig. 7. Selected TM/BM results, equal model and filter tuning parameters: estimated mode probabilities for the first 12 seconds for γ = 0.01 (a), γ = 0.1
(b) and γ = 1 (c). Results are averaged over 100 Monte Carlo runs.

clarity, the filter tuning parameter is denoted here as γ̂, while
the true value in the model is γ.

The results show that IMM estimators I1 and I2 achieve
their lowest position RMSE when the process noise parameter
is tuned to a high value: a factor 102 higher than the true value
used to generate the trajectory. By increasing the process noise
the jumps in the initial values of θ are better estimated by the
IMM estimator. The lowest position RMSEs for I1 and I2 are
almost as low as the lowest position RMSE for I3, however
the position RMSE for the Kalman filters are equally low, i.e.
the conditions are such that there is very little gain in using
an IMM estimator instead of a Kalman filter.

It is noteworthy that I3 achieves low position and mode
RMSE even when the process noise is tuned very low, up to
a factor 10−2 lower than the true value used to generate the
trajectory. This shows that using carefully tuned distribution
q(θ) for the mode augmentation gives an IMM estimator that is
more robust to parameter tuning, compared to the two standard
approaches.

VI. CONCLUSIONS

A systematic approach to mode mixing with unequal state
dimensions was taken, and the simulation study shows that the

choice of augmentation distribution has a significant impact on
the performance of the IMM estimator. When the augmentation
distribution for the mixing is chosen to reflect the magnitude of
the “extra” state component, significant performance increases
are achieved compared to the standard approaches that can
be found in the literature. The IMM estimators based on
the standard approaches can only match the performance in
scenarios with such high process noise that there is essentially
very little benefit to using an IMM estimator instead of a
Kalman filter.

The proposed augmentation approach yields an IMM esti-
mator that can correctly estimate “jumps” in the states that
occur upon mode switching, is insensitive to the process noise
settings, and can achieve this without affecting the estimation
of the states that are common to all modes in the IMM
estimator. The proposed approach is shown to introduce a
significant robustness in the IMM estimator.
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GRANSTRÖM et al.: SYSTEMATIC APPROACH TO IMM MIXING FOR UNEQUAL STATES 9

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

γ = 0.01

γ̂

ε
p

 

 

I1
I2
I3
I4
K1

K2

(a)

10
−4

10
−3

10
−2

10
−1

10
0

0.4

0.6

0.8

1

γ = 0.01

γ̂

ε
m

 

 

I1
I2
I3
I4

(b)

10
−2

10
−1

10
0

10
1

10
2

10
1

10
2

10
3

γ = 1

γ̂

ε
p

 

 

I1
I2
I3
I4
K1

K2

(c)

10
−2

10
−1

10
0

10
1

10
2

0.4

0.6

0.8

1

γ = 1

γ̂

ε
m

 

 

I1
I2
I3
I4

(d)

Fig. 8. Selected CA/CV results, free filter tuning parameters: position RMSE ((a) and (c)) and mode RMSE ((b) and (d)) for different simulated model process
noise magnitudes γ. The dashed black lines indicate γ̂ = γ, i.e. the points that are plotted in Fig. 2. Note γ is true, γ̂ is parameter to which the filters are
tuned.

IEEE Transactions on Aerospace and Electronic Systems, vol. 41, no. 3,
pp. 986–991, Jul. 2005.

[3] Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and data fusion, a
handbook of algorithms. YBS Publishing, 2011.

[4] C. M. Bishop, Pattern recognition and machine learning. New York,
USA: Springer, 2006.

[5] H. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm
for systems with Markovian switching coefficients,” IEEE Transactions
on Automatic Control, vol. 33, no. 8, pp. 780–783, Aug. 1988.

[6] K. Granström and U. Orguner, “On the Reduction of Gaussian inverse
Wishart mixtures,” in Proceedings of the International Conference on
Information Fusion, Singapore, Jul. 2012, pp. 2162–2169.

[7] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, Mar. 1951.

[8] R. Lopez, P. Danes, and F. Royer, “Extending the IMM filter to
heterogeneous-order state space models,” in Proceedings of the IEEE
Conference on Decision and Control, Atlanta, GA, USA, Dec. 2010,
pp. 7369–7374.

[9] T. Minka, “A family of algorithms for approximate Bayesian inference,”
Ph.D. dissertation, Massachusetts Institute of Technology, Jan. 2001.

[10] V. C. Ravindra, Y. Bar-Shalom, and P. Willett, “Projectile identification
and impact point prediction,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 46, no. 4, pp. 2004–2021, Oct. 2010.

[11] A. R. Runnalls, “Kullback-Leibler approach to Gaussian mixture reduc-
tion,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43,
no. 3, pp. 989–999, Jul. 2007.

[12] D. Schieferdecker and M. F. Huber, “Gaussian Mixture Reduction
via Clustering,” in Proceedings of the International Conference on
Information Fusion, Seattle, WA, USA, Jul. 2009.

[13] J. L. Williams and P. S. Maybeck, “Cost-Function-Based Gaussian Mix-
ture Reduction for Target Tracking,” in Proceedings of the International
Conference on Information Fusion, Cairns, Queensland, Australia, Jul.
2003.

[14] T. Yuan, Y. Bar-Shalom, P. Willett, E. Mozeson, S. Pollak, and D. Hardi-
man, “A multiple IMM estimation approach with unbiased mixing for
thrusting projectiles,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 48, no. 4, pp. 3250–3267, Oct. 2012.

Karl Granström (M’08) is a postdoctoral research
fellow at the Department of Electrical and Computer
Engineering at University of Connecticut, USA. He
received the MSc degree in Applied Physics and
Electrical Engineering in May 2008, and the PhD
degree in Automatic Control in November 2012,
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Fig. 9. Selected CT/CV results, free filter tuning parameters: position RMSE ((a) and (c)) and mode RMSE ((b) and (d)) for different simulated model process
noise magnitudes γ. The dashed black lines indicate γ̂ = γ, i.e. the points that are plotted in Fig. 4. Note γ is true, γ̂ is parameter to which the filters are
tuned.
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Fig. 10. Selected TM/BM results, free filter tuning parameters: position RMSE ((a) and (c)) and mode RMSE ((b) and (d)) for different simulated model
process noise magnitudes γ. The position RMSE for K2 are very large, and are excluded to make the plot easier to read. The dashed black lines indicate
γ̂ = γ, i.e. the points that are plotted in Fig. 6. Note γ is true, γ̂ is parameter to which the filters are tuned.


