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Abstract. In this work, multi-variable derivative-free
optimization algorithms for unconstrained optimization
problems are developed. A novel procedure for approxi-
mating the gradient of multi-variable objective functions
based on non-commutative maps is introduced. The pro-
cedure is based on the construction of an exploration se-
quence to specify where the objective function is evaluated
and the definition of so-called gradient generating func-
tions which are composed with the objective function such
that the procedure mimics a gradient descent algorithm.
Various theoretical properties of the proposed class of al-
gorithms are investigated and numerical examples are
presented.

1. INTRODUCTION

A key ingredient in the solution of problems arising in ma-
chine learning, real-time decision making, and control are
sophisticated optimization algorithms. Hence, improving
existing optimization algorithms and developing novel
algorithms is of central importance in these areas. The
optimization problems therein are often very challenging,
i.e., they are high-dimensional, non-convex, non-smooth,
or of stochastic nature. In addition, in some applications
the evaluation of the objective to be optimized involves
noisy measurements or the mathematical description of
the objective is unknown. For this type of problems, a
promising class of algorithms are derivative-free algo-
rithms [1], which typically need only evaluations of the
objective function for optimization. Due to the increas-
ing computational power and the generic applicability,
derivative-free optimization algorithms have gained re-
newed interest in recent years, especially in the field of
machine learning and control [2, 3, 4, 5, 6, 7, 8, 9, 10].

In this paper, we propose a novel class of derivative-free
optimization algorithms based on a concept introduced in
[11]. The key idea is to use non-commutative maps to eval-
uate the objective function at certain points such that the
composition of the maps approximates a gradient descent
step. The class of proposed algorithms is built upon two
main ingredients: an exploration sequence indicating where
the objective is to be evaluated, and the (gradient) gen-
erating functions, which are composed with the objective
function in such a way that an approximation of a gra-
dient descent step is obtained. The resulting algorithms
have several noteworthy properties. For example, the al-
gorithms are sometimes able to overcome local minima
and robust against noisy objective function evaluations.
Such properties are also known from so-called extremum
seeking algorithms (cf. e.g. [12, 13, 14, 15]), which are
related to our proposed algorithms [7, 11].

In our preliminary work [11], the algorithms were lim-
ited to optimization problems with one decision (opti-
mization) variable or to a coordinate-wise application of
the gradient approximation scheme. Moreover, only a spe-
cial case of generating functions were discussed and no
full characterization was given. In another related work
[16], the optimization procedure of [11] was extended to
discrete-time extremum seeking problems, but still limited
to one optimization variable.

More broadly related work in terms of gradient ap-
proximation schemes are for example finite difference ap-
proximations [17, 18], simultaneous perturbation stochas-
tic approximations [5], and random directions stochastic
approximations [19]; in [20] those approximation tech-
niques are applied to the aforementioned extremum seek-
ing problems. These methods are based on so-called sam-
ple averaging of function evaluations, i.e., the neighbor-
hood of the current candidate solution is explored to ap-
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proximate the local gradient of the optimization objective.
In contrast, in the presented work, no numerical differ-
entiation is performed to extract gradient information,
instead a kind of numerical integration scheme is utilized
to approximate first order information.

The main contribution of this work is fourfold: 1) a con-
structive procedure for determining suitable exploration
sequences for multi-variable optimization problems is pre-
sented, 2) a general class of (gradient) generating functions
is characterized, 3) the so-called single and two-point algo-
rithms in [11] and [16] are extended to the multi-variable
case, and 4) a toolbox is developed to easily design and
apply the novel class of optimization algorithms to uncon-
strained optimization problems.

Notation. The set of real numbers equal or greater than
k is denoted by R≥k = {x ∈ R | x ≥ k}. The class of
k-times continuously differentiable functions is denoted
by Ck(Rn; R). I ∈ Rn×n stands for the n-dimensional unit
matrix, 1 ∈ Rn for the n-dimensional all-one vector, and
ei ∈ Rn for the i-th n-dimensional unit vector. The matrix
P ∈ Rn×n has the principal submatrix P1:r ∈ Rr×r with
r < n. The bijective mapping π : {1, . . . , n} → {1, . . . , n}
with n ∈N denotes a permutation function. A sequence
w0, . . . , wm−1 of length m is denoted by {w`}m−1

`=0 . The
ceiling and floor operator are defined as bxc := max{k ∈
Z | k ≤ x} and dxe := min{k ∈ Z | k ≥ x}, respectively.
A function f (x; ε) : Rn ×R → Rn is said to be of order
O(ε), if for all compact sets V ⊆ Rn there exist an M ∈
R>0 and ε̄ ∈ R>0 such that for all x ∈ V and ε ∈ [0, ε̄],
| f (x; ε)| ≤ Mε. The operator mod takes to integers k and
n and returns an integer k mod n, equal to the remainder
of the division of k by n. A compact set with center point
x∗ ∈ Rn radius δ ∈ R≥0 and denoted by U δ

x∗ ⊆ Rn is
defined as {x ∈ Rn : ‖x− x∗‖2 ≤ δ}.

2. PROBLEM STATEMENT AND
PRELIMINARIES

2.1. Problem Statement

In this work, we develop a class of algorithms to solve
unconstrained minimization problems

min
x∈Rn

J(x) (1)

for which a closed form expression of J : Rn → R may
be lacking, and only zero-order information in terms of
function evaluations are available to find a local minimizer
x∗ ∈ Rn of J. The algorithms we propose are of the form

xk+1 = M
√

h
k (xk, J(xk)), k ≥ 0, (2)

where we call M
√

h
k : Rn ×R→ Rn the transition map and

h ∈ R>0 is the step size. The main idea is to design the

−∇J

Figure 1.. An illustration of the presented optimization al-
gorithms based on non-commutative maps. Effects of non-
commutativity are utilized to approximate the negative gradient
of the optimization objective in m steps (i.e., m = 4 in this illus-
tration).

transition maps in such a way that for every k ∈ N, the
m-fold composition of these maps, i.e.,

xk+m =
(

M
√

h
k+m−1 ◦ · · · ◦M

√
h

k

)
(xk, J(xk)) (3)

approximates a gradient descent step, i.e.,

xk+m = xk − h∇J(xk) +O(h3/2) (4)

as visualized in Figure 1.
Hereby, we impose the following structure for the tran-

sition maps

M
√

h
k (xk, J(xk)) = xk +

√
hα1sk

(
J(xk)

)
+
√

hα2sk

(
J
(
xk +

√
hsk(J(xk))

))
s`(J(xk)) = f (J(xk))u` + g(J(xk))v`

(5)

with parameters α1, α2 ∈ R where α1 + α2 6= 0. We call
s` : R → Rn the evaluation map, f , g : R → R the gener-
ating functions and u`, v` ∈ Rn the m-periodic exploration
sequences. Note that for α2 6= 0, only two evaluations of
J per iterations are necessary. We elaborate on the choice
of this structure for the algorithm in the next section. The
main goal of this work is to characterize and design

1. m-periodic exploration sequences u`, v`, and

2. gradient generating functions f and g,

such that (2) with transition map (5) yields (4).
We will at various points make the use of one or both of

the following assumptions.
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(A1) The functions f , g are of class C2(R, R) and the ob-
jective function J is of class C2(Rn, R).

(A2) The objective function J is radially unbounded and
there exists an x∗ ∈ Rn such that ∇J(x)>(x− x∗) >
0 for all x ∈ Rn\{x∗}.

We note that (A2) will not be required for the design of the
algorithms, but only when we analyze their performance.
The implementation of the algorithms, however, is not
limited to the class of objective functions satisfying (A1).

2.2. Related Results

The structure of the transition map in (5) was introduced
by the authors of the present work in [11] for one di-
mensional problems. Therein, two cases were considered,
specified by the parameter setting [α1 α2] = [1 0], as so-
called single-point map

M
√

h
k (xk, J(xk))= E

√
h

k (xk, J(xk)) := xk +
√

hsk(J(xk))

(6)

and by [α1 α2] = [1/2 1/2], as so-called two-point map

M
√

h
k (xk, J(xk)) = H

√
h

k (xk, J(xk)) := xk +

√
h

2

[
sk

(
J(xk)

)
+sk

(
J(xk +

√
hsk
(

J(xk)
))]

. (7)

The algorithms relying on transition maps (6) and (7) are
called single and two-point algorithm, respectively, re-
flecting that the number of function evaluations of J at
each iteration is one and two. This type of map structure
was inspired by the well-known Euler and Heun (trape-
zoidal) numerical integration methods respectively (thus
the naming of the maps E and H), i.e., executing a sin-
gle integration step with step size

√
h of the differential

equation

ẋ(t) = s
(

J(x(t))
)
= f

(
J(x(t))

)
u(t) + g

(
J(x)

)
v(t) (8)

with piece-wise constant m
√

h-periodic inputs u(t), v(t) ∈
Rn for t ∈ [`

√
h, (`+ 1)

√
h] with ` ∈N, yields (6) and (7),

respectively. Note that (8) is well known as an approx-
imate gradient descent flow in the context of extremum
seeking control (cf. [12]). For a detailed explanation of the
proposed class of algorithms and the continuous-time al-
gorithm (8) plus how non-commutativity comes into play,
we refer to [11, 16].

For the coordinate-wise descent case (see Lemma 1 and

Lemma 2 in [11]) the choice of exploration sequences

u` = ū`ei, v` = v̄`ei with i = b`/4cmod(n) + 1

ū` =



1 ` = 0
0 ` = 1
−1 ` = 2

0 ` = 3
ū`−4 else

, v̄` =



0 ` = 0
1 ` = 1
0 ` = 2
−1 ` = 3
v̄`−4 else

(9)

with m = 4n leads to the evolution of xk with
[α1 α2] = [1 0] such that

xk+m = xk + h
{
([ f , g](J(xk))

− 1
2

∂( f 2 + g2)

∂J
(J(xk))

}
∇J(xk) +O(h3/2) (10)

and with [α1 α2] = [1/2 1/2] such that

xk+m = xk + h
{
([ f , g](J(xk))

}
∇J(xk) +O(h3/2), (11)

where [ f , g] := ∂g
∂J f − ∂ f

∂J g is the Lie bracket of f and g. A
simple calculation shows that the term in brackets in (10)
and (11) is identical to −1 for f (J(x)) = sin(J(x)) and
g(J(x)) = cos(J(x)), hence (4) is recovered. The explo-
ration sequence above is constructed in such a way that
components of the gradient are approximated sequentially
for the multi-dimensional setting, hence, coordinate-wise.
In Figure 2, the exploration sequence and the gradient
approximation is visualized for the scalar case xk ∈ R

(n = 1, m = 4). In summary, the existing procedure is
limited and mimics a coordinate-wise descent algorithm.
Further, only a single exploration sequence was presented
as well as a single pair of generating functions. There are,
however, many ways to construct exploration sequences
and generating functions, especially in the multi-variable
case. Since different exploration sequences and generating
functions lead to different properties of the algorithm, it
is the goal of this work to provide solutions for a flexible
design and constructions of exploration sequences in the
multi-variable setting and to characterize a large class of
generating functions.

3. MAIN RESULTS

3.1. Problem Statement Reformulation and
Convergence

As described in Section 2.1 we aim to construct m-periodic
exploration sequences u` and v` and generating functions
f and g such that (2) with transition map (5) yields (4).
Our first result restates the problem in terms of solving a
system of nonlinear equations.
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Figure 2.. (a) periodic inputs uk (•) and vk ( ) depicted for one
period m = 4 as specified in (9); (b) non-commutative maps as
in (5) with initial point x0.

Theorem 1. Let (A1) hold. Then the m-th step of the evo-
lution of (2) with transition map (5) is given by

xk+m = xk +
√

h(α1 + α2)Y( f (J(xk)), g(J(xk)))W1

+ hỸ( f (J(xk)), g(J(xk)))T(W)

×Y( f (J(xk)), g(J(xk)))
>∇J(xk) +O(h3/2). (12)

Here, W = [wk wk+1 · · · wk+m−1] ∈ R2n×m with wi =
[u>i v>i ]

> is the exploration sequence matrix and T(W) ∈
R2n×2n is given by

T(W) :=
m−1

∑
i=0

(
α2wiw>i + (α1 + α2)

2
i−1

∑
j=0

wiw>j

)
. (13)

Furthermore, Y( f (z), g(z)) := [ f (z)I g(z)I] ∈ Rn×2n

and Ỹ( f (z), g(z)) := [ ∂ f
∂z (z)I ∂g

∂z (z)I] = ∂
∂z Y( f (z), g(z)) ∈

Rn×2n.

The proof of Theorem 1 is given in Appendix B.1. If
there exist m-periodic exploration sequences {w`}m−1

`=0
(equivalently, an exploration sequence matrix W), and
generating functions f and g such that

Ỹ( f (z), g(z))T(W)Y( f (z), g(z))> = −I, ∀z ∈ R (14)
W1 = 0 (15)

are satisfied, then (4) holds. Thus, this system of nonlinear
ordinary differential equations (w.r.t. f (z) or g(z)) with
unknown coefficients is key in designing the algorithm.
The idea to solve this highly under-determined system of
equations is now to proceed in two steps:

Step 1) For a class of normal (skew-symmetric) matrices
Td, we construct exploration sequence matrices W
such that (15) and T(W) = Td hold.

Step 2) We characterize gradient generating functions f , g
and normal (skew-symmetric) matrices Td such
that (14) holds.

These two constructions are presented in the following
two subsections. We start with a remark on T(W) and the
convergence result of the proposed algorithms.

Remark 1. To get a sense of equation (14) and the role of
T(W), partition T(W) as

T(W) =

[
T11(W) T12(W)
T21(W) T22(W)

]
, (16)

with T11(W), T12(W), T21(W), T22(W) ∈ Rn×n. Note that
T11(W) is defined solely by {u`}m−1

`=0 , T22(W) solely by
{v`}m−1

`=0 , and T12(W) and T21(W) by both {u`}m−1
`=0 and

{v`}m−1
`=0 . Then (14) with (16) yields

∂ f
∂J

f T11 +
∂ f
∂J

gT12 +
∂g
∂J

f T21 +
∂g
∂J

gT22 = −I (17)

where the arguments J(x0) of the maps f and g and their
derivatives and W of Tij with i, j ∈ {1, 2} are omitted for
the sake of readability. By plugging {u`}m−1

`=0 and {v`}m−1
`=0

from (9), with W1 and W2 for [α1 α2] = [1 0] and [α1 α2] =
[1/2 1/2], respectively, into (13), one obtains

T(W1) =

[
−I −I
I −I

]
, and T(W2) =

[
0 −I
I 0

]
. (18)

Hence, the left hand side of (17) translates into the terms
in the curly brackets in (10) and (11), respectively. A geo-
metric interpretation of T(W) is discussed in Section 4.2.

Due to property (4), for example, semi-global practi-
cal asymptotic convergence to the optimizer x∗ can be
established (see [21]):

Theorem 2. Let (A1) and (A2) hold. Assume that there
exist generating functions f (J(x)) and g(J(x)) and an
exploration sequence matrix W such that (14) and (15)
are satisfied. Then, for all δ1, δ2 ∈ R>0 with δ2 < δ1,
there exist an h∗ ∈ R>0 and N(h) ∈ N, such that for all
h ∈ {h̄ | 0 < h̄ < h∗} and x0 ∈ U δ1

x∗ , it holds xk ∈ U δ2
x∗ for

all k ≥ N(h).

The proof of Theorem 2 follows along the lines of
the proof of [11, Theorem 2] by utilizing Lemma 3 in
Appendix A and Theorem 1.

Remark 2. Theorem 2 is based on a constant step size
h. Applying a variable decreasing step size hk, but con-
stant over a period of length m, i.e., h0 = h1 = · · · =
hm−1, hm = hm+1 = · · · = h2m−1, . . . , with

∞

∑
p=0

hpm = ∞,
∞

∑
p=0

h2
pm < ∞, (19)

e.g. hk = 1/(bk/mc+1) (cf. Proposition 1 in [5]) lead to a
semi-global asymptotic convergence result and a potential
numerical performance improvement. Note that the re-
quirement of periodically m constant steps preserves the
O(
√

h)-order terms in (12) (cf. proof of Lemma 3).
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3.2. Exploration Sequences

In this part we characterize the conditions under which
there exists an exploration sequence matrix W for a given
Td such that T(W) = Td together with W1 = 0 are satis-
fied, hence, addressing Step 1) as stated above. The next
lemma represents T(W), i.e. (13), in combination with (15)
in a more compact form.

Lemma 1. Consider (13) and suppose the exploration se-
quence matrix W ∈ R2n×m satisfies (15). Then T(W) can
be expressed as

T(W) = WPW>, (20)

with P ∈ Rm×m defined as

P =



c1 c2 · · · c2 0

α2
. . . . . .

...
...

...
. . . . . . c2

...
α2 · · · α2 c1 0
0 · · · · · · 0 0

 (21)

where c1 = 2α2 − (α1 + α2)
2, c2 = α2 − (α1 + α2)

2, and
α1, α2 defined in (5).

The proof of Lemma 1 is given in Appendix B.2. Conse-
quently, when proceeding according to Step 1) and Step 2)
described in the section above, the key equations for the
design of the exploration sequences are

WPW> = Td

W1 = 0.
(22)

The following theorem, which provides a constructive
design of the exploration sequence matrix W, is of central
importance. It also provides structural insight in terms
of obtaining lower bounds on the length (period) of the
exploration sequence m, suitable choices of the parameters
α1 and α2 and admissible structures for the desired target
matrices Td.

Theorem 3. Given α1, α2 and Td ∈ R2n×2n. Suppose that
either Td is normal, (2α2 − (α1 + α2)

2)(Td + T>d ) positive
definite, and Conjecture 1 (see below) is satisfied or that Td
is skew-symmetric with 2α2 − (α1 + α2)

2 = 0. Then there
exists a m ≥ rk(Td) + 1 such that W ∈ R2n×m satisfies the
system of equations (22).

The role of Conjecture 1 in Theorem 3 is discussed in
Remark 3.

Conjecture 1. Let the skew-symmetric matrix C(m) ∈
Rm×m be defined as

C(m) := A(m) + ε(m + 1)B(m) (23)

A(m) :=


0 1 · · · 1

−1
. . . . . .

...
...

. . . . . . 1
−1 · · · −1 0

 ∈ Rm×m, (24)

B(m) := 1[0 2 4 . . . 2(m− 1)]

− (1[0 2 4 . . . 2(m− 1)])T ∈ Rm×m (25)

with ε(m) = (m − 1)−1(1− m−1/2). Then for any m ≥
2, C(m) and C(m + 1) satisfy the eigenvalue interlacing
property (cf. Lemma 4 in Appendix A).

ωm+1
k > ωm

k > ωm+1
k+1 ≥ 0, (26)

for k = 1, . . . , bm/2c, where ±ωm
k i are the eigenvalues of

C(m), with {ωm
k }k=1...m sorted in non-decreasing order in

k for m fixed.

Remark 3. We verified numerically that Conjecture 1 is
always true (we verified it up to dimension m = 10000, see
Appendix A), but a proof is still lacking. Further notice,
that C(m) is part of the following equation:

P̃(m) =
(

P− ε(m)(11>P + P11>)

+ ε2(m)11>P11>
)

1:m−1

=
(1

2
(α1 + α2)

2 − α2

)
I

+
1
2
(α1 + α2)

2C(m− 1) (27)

with P in (21) and ε(m) defined in Conjecture 1. Note that
the interlacing property (26) holds also for P̃(m), since it is
arranged by a scaled unit matrix and the skew-symmetric
matrix C(m − 1) (cf. [22]). The interlacing property of
P̃(m) is utilized in the proof of Theorem 3.

The proof of Theorem 3 is constructive and presented in
Appendix B.3, where in particular in (105), Conjecture 1
enters. A step-by-step construction of W for a given Td
is provided in Appendix C.1. Moreover we obtain as a
corollary (which follows by the proof of Theorem 3):

Corollary 1. If 2α2 − (α1 + α2)
2 = 0 and Td skew-

symmetric, then there always exists an W ∈ R2n×m with
m = rk(Td) + 1.

Remark 4. It is worthwhile to point out an interesting
connection between the equations in (22) and nonlinear
control theory, i.e. the controllability of the so-called non-
holonomic integrator. Suppose {w`}m−1

`=0 is a solution of
(22), then it can be verified by direct calculations (see also
proof of Lemma 1 in Appendix B.2) that it is also a solu-
tion of the two point boundary value problem

y0 = 0, Z0 = 0, ym = 0, Zm = Td

yk+1 = yk + wk

Zk+1 = Zk + (α1 + α2)
2wky>k + α2wkw>k

(28)
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with k = 0, . . . , m− 1, states yk ∈ R2n, Zk ∈ R2n×2n, input
wk ∈ R2n, and vice versa. In particular with W1 = 0, i.e.,
wm−1 = −∑m−2

i=0 wi, (28) translates into

y0 = 0, Z0 = 0, Zm−1 = Td

yk+1 = yk + wk

Zk+1 = Zk + α2wky>k + (α2 − (α1 + α2)
2)ykw>k

+ (2α2 − (α1 + α2)
2)wkw>k

. (29)

Considering now the case [α1 α2] = [1/2 1/2] shows that
(29) is the state-transition of the generalized discrete-time
nonholonomic integrator [23] with given initial and final
states. Problem (28) with [α1 α2] = [1 0] has a similar
structure. Hence, Theorem 3 provides an explicit solution
to this state transition problem. Moreover, this viewpoint
underlines the relationship to non-commutative maps
and flows as indicated in Section 2.2 (Figure 2). Another,
more geometric, interpretation of (22) is also provided in
Section 4.2.

3.3. Gradient Generating Functions

This part addresses Step 2), i.e. solving the (functional)
equation (14) for f , g, and Td ∈ R2n×2n with T(W) = Td.
First, solutions (Td, f , g) for the parameter setting 2α2 −
(α1 + α2)

2 = 0 are presented.

Theorem 4. Let 2α2 − (α1 + α2)
2 = 0 and Td skew-

symmetric, then (14) is satisfied by the following triples
(Td, f , g), where a, b ∈ R>0 and c, φ ∈ R:

• Td =

[
0 −I
I 0

]
,

g(z) = − f (z)
∫

f (z)−2dz, f : R→ R (30)

• Td =

[
aQ −I
I bQ

]
, Q = −Q>,

f (z) = a−1/2 sin
(√

abz + φ
)

,

g(z) = b−1/2 cos
(√

abz + φ
)

(31)

• Td =

[
aQ −I
I −bQ

]
, Q = −Q>,

f (z) = ±a−1/2 cosh
(√

abz + φ
)

,

g(z) = ∓b−1/2 sinh
(√

abz + φ
)

(32)

• Td =

[
Q −I
I 0

]
, Q = −Q>,

f (z) = ±
√

a, g(z) = ∓ z√
a

(33)

• Td =

[
0 −I
I Q

]
, Q = −Q>,

f (z) = ± z√
a

, g(z) = ±
√

a, (34)

• Td =

[
0 −I −Q

I −Q 0

]
, Q = −Q>,

f (z) = ± 1√
a

e−
a
2 z, g(z) = ∓ 1√

a
e

a
2 z, (35)

• Td =

[
aQ −I − cQ

I − cQ bQ

]
, Q = −Q>,

f (z) =

 
b

ab− c2 sin
(√

ab− c2z + φ
)

,

g(z) = b−1/2 cos
(√

ab− c2z + φ
)

(36)

In addition, for each Td in (30)-(36) there exists an W, such
that T(W) = Td in (13). In (36), we require that a, b > c.

Remark 5. Every pair f , g in (31)-(36) satisfy (30), hence,
these generating functions are valid for the given Td in
(30), too. The advantage of the specified Td’s are discussed
in Section 4.2.

Remark 6. Consider the indefinite integral in (30). Let
F : Rn → R be an anti-derivative of f (z)−2. Then so is
F + c̄ for any c̄ ∈ R. Set g(z) = − f (z)(F(z) + c̄). The
constant c̄ is chosen such that g′(z) f (z)− f ′(z)g(z) = −1.

The proof of Theorem 4 is given in Appendix B.4. So-
lutions (Td, f , g) of (14) for the parameter setting 2α2 −
(α1 + α2)

2 6= 0 are presented next.

Theorem 5. Let Td ∈ R2n×2n be normal and (2α2 − (α1 +
α2)

2)(Td + T>d ) be positive definite, then (14) is satisfied
by the following triples (Td, f , g), where r : R → R>0,
a ∈ R\{0}, b ∈ R>0, and φ ∈ R:

• Td =

[
aI −I
I aI

]
, a(2α2 − (α1 + α2)

2) > 0

f (z)=
»

r(z) sin(ϕ(z)), g(z)=
»

r(z) cos(ϕ(z)),

ϕ(z) =
a
2

ln(r(z)) +
∫ 1

r(z)
dz + φ (37)

• Td =

[
Q −I
I Q

]
,

(2α2 − (α1 + α2)
2)(Q + Q>) pos. def. and normal,

f (z) = b−1/2 sin
(

bz + φ
)

,

g(z) = b−1/2 cos
(

bz + φ
)

(38)

In addition for every Td in (37)-(38) there exists an W, such
that T(W) = Td in (13).
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The proof of Theorem 5 is given in Appendix B.5.

Remark 7. The list of triples (Td, f , g) in Theorem 4 is es-
sentially exhaustive, save for some scaled version of the
presented cases. A case by case study is presented in
the proof of Theorem 4 in Appendix B.4. Whereas the
list of triples (Td, f , g) in Theorem 5 is not exhaustive (cf.
Appendix B.5).

Theorem 4 and Theorem 5 together with Theorem 3
solve (14) and (15) and thus ensure the existence of a ex-
ploration sequence W. Hence, a gradient descent step is
approximated by the proposed algorithm (2) with transi-
tion maps (5).

4. ALGORITHM, PARAMETERS AND
NUMERICAL RESULTS

In this section we present some numerical studies of the
proposed class of algorithms. We carry out simulations
and discuss how various choices of Td, of the singular
values of W, of the sequence length (period) m, or of the
parameters α1, α2 influence the qualitative behavior of the
algorithm. Further, a numerical approach to construct the
exploration sequences using nonlinear programming is
presented.

We start by summarizing the proposed optimization
algorithm and the involved parameters.

4.1. Algorithm and Parameters

The design parameters and functions involved in the pro-
posed algorithm are

1. map parameters α1, α2 ∈ R with α1 + α2 6= 0,

2. gradient generating functions f , g : R→ R,

3. matrix Td and exploration sequence matrix W, in par-
ticular singular values σi, i = 1, . . . , rk(Td) of W,

4. step size h > 0.

Hence, algorithm (2) with (5) is defined in terms of W as
follows:

Notice that Y(J(xk)) is a n × 2n matrix. Moreover, if
α2 = 0, then line 8 and 9 in Algorithm 1 can be skipped.

In the following we discuss the influence of the design
parameters on the algorithm’s behavior. Additionally, a set
of parameters working well in generic situations, which
can then be used as a starting point to obtain optimized
parameters for a particular application, is provided.

1. Map parameters α1, α2. The parameters weigh Y(J(xk)
and Y(J(x̂k) in Algorithm 1, respectively. In particular,
they can be utilized to choose between a single-point

Algorithm 1. Derivative-free optimization algorithm with
non-commutative maps

1: Input: x0, h, α1, α2, f (J(·)), g(J(·)), Td, σi (i =
1, . . . , rk(Td)), stop criterion

2: Calculate W and m as described in Appendix C.1
3: k = 0
4: while stop criterion is not fulfilled do
5: ` = k mod (m) + 1
6: e` = [0`, 1, 0n−1−`]

>

7: Y(J(xk)) = [ f (J(xk))I g(J(xk))I]
8: x̂k = xk +

√
hY
(

J(xk)
)
We`

9: Y(J
(
x̂k)
)
= [ f (J(x̂k))I g(J(x̂k))I]

10: xk+1 = xk +
√

h
(
α1Y

(
J(xk)

)
+ α2Y(J

(
x̂k)
))

We`
11: k← k + 1
12: end while
13: return [x0, x1, . . .]

(α2 = 0) or a two-point algorithm. They are to be nor-
malized according to α1 + α2 = 1 and to tune accord-
ing to the ratio of α1, α2, while utilizing the step size h
to tune the convergence speed. Moreover, the choice of
α1, α2 restricts the choice of Td to be skew-symmetric for
2α2−(α1 + α2)

2 = 0 and otherwise normal (cf. Theorem 4
and Theorem 5). In practice, the parameter sets we found
providing the best performance were [α1 α2] = [1 0] for
the single-point and [α1 α2] = [1/2 1/2] for the two-point
gradient-approximation scheme.

2. Generating functions f , g. The generating functions
comprise a scaling of the objective evaluated at xk and x̂k
as stated in Algorithm 1. Various choices are presented in
Theorem 4 and Theorem 5; depending on α1, α2. Often we
have chosen f , g as sinusoidal functions, since the algo-
rithm showed a very stable behavior for that cases. Note
that high function values of f , g or if f , g scale arbitrarily
large with J(xk), the algorithm performs large steps which
may cause instabilities. In the case of bounded functions,
such as sinusoidal functions, (arbitrarily) large steps sizes
are avoided. Further, if J, f , g vanish at a minimum x∗,
asymptotic convergence to x∗ (instead of practical conver-
gence) has been observed in our studies.

3. Exploration sequence matrix W and Td. The exploration
sequence matrix W depends on the choice of Td, specifi-
cally on the eigenvalues of Td. A step-by-step construction
of W based on the algorithm parameters is presented in
Appendix C.1. As explained in this construction, the sin-
gular values of W can be chosen (see Corollary 2 below),
hence this degree of freedom can be used in the algorithm
tuning. As shown in numerical examples below, smaller
singular values lead to smoother trajectories, but more
steps (larger m) are needed to perform one gradient ap-
proximation step. There exists a set of optimal singular
values in the sense of minimal number of steps m, which
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is m = rk(Td) + 1. Therewith, the choice of Td influences
the lower bound on m (see Corollary 3 below). Note that
minimal sequence length m does not always lead to the
fastest convergence behaviour.

4. Step size h. The approximated gradient is scaled
with the step size h, and hence, h influences the speed of
convergence, as well as the area of exploration around xk.
As stated in Theorem 2 there exists an upper bound on h
such that semi-global practical asymptotic convergence (if
(A1) and (A2) holds) is ensured. In our numerical studies,
h is often chosen as 0.001 ≤ h ≤ 0.5.

Corollary 2. In the case 2α2− (α1 + α2)
2 = 0, the singular

values σ2`−1, σ2`, ` = 1, . . . , drk(Td)/2e, of W can be cho-
sen arbitrarily. Otherwise, the singular values of W have
to satisfy σ2`−1 = σ2` and

Td =

[
diag([γ1 · · · γn]) −I

I diag([γ1 · · · γn])

]
, (39)

with

γ` =
(

α2 −
1
2
(α1 + α2)

2
)

σ2
2`−1. (40)

Proof. Following directly from the proof of Theorem 3 in
Appendix B.3. Specifically, Td in (39) satisfies (38) and (40)
corresponds to (102).

Corollary 3. The minimal number of steps to approxi-
mate a gradient according to (2) - (5) and using the Td’s in
Theorem 4 and Theorem 5 is m = n + 1.

Proof. Since the first n rows of each Td in Theorem 4
and Theorem 5 are linearly independent, we know
min{rk(Td)} ≥ n. This implies with Theorem 3 that
m ≥ n + 1.

Remark 8. A gradient step is a approximated in m =
n + 1 steps for Td as specified in (31) and Q with elements
{qij}2n

i,j=1 such that

qij =


1 if i + j = 2n + 1, i > j
−1 if i + j = 2n + 1, i < j

0 else
(41)

holds, while the singular values σ2`−1, σ2` of W satisfy
(104) for ` = 1, . . . , dn/2e.

4.2. Numerical Results

In the following, various simulation results are presented
to illustrate the influence of the algorithm parameters,
i.e., matrix Td, singular values σk, k = 1, . . . , r, of W and
map parameters α1, α2. For the sake of visualization, we

T(W) =

x1,i x2,i x3,i x4,i

y1,i

y2,i

y3,i

y4,i

Figure 3.. Generated areas of the exploration sequence {wk}m−1
k=0

in (9) for T(W) ∈ R2n×2n as given in (42) for n = 2. Hence,
T(W)1,3 = T(W)2,4 = −1, T(W)3,1 = T(W)4,2 = 1 and the rest
0. The filled green area ( ) have a area surface value of 1, the
striped orange area ( ) of −1, and the rest of 0. The coordinates
of each subplot are given by xp,i and yq,i defined in (44) for
p, q = 1, . . . , 2n.

focus on examples with n = 2. An extensive bench-
marking study, including the best choice of parameters
for certain classes of the objective, is beyond the scope of
this paper and carried out in ongoing and future work.
Hence, we keep f , g, (sinusoidal) and h fixed and provide
only a limited number of simulation examples to get some
qualitative insight in the degrees of freedom and how they
influence the algorithms behavior. In the figures below,
we show trajectories and the exploration sequences. In
addition, we provide a geometric interpretation and a
visualization of the matrix T(W) which is of interest by its
own and which is explained next.

The values of the components of T(W) in (13) for
[α1 α2] = [1/2 1/2], i.e.,

T(W)pq =
m−1

∑
i=0

i−1

∑
j=0

1
2

e>p wiw>i eq + e>p wiw>j eq, (42)

with p, q = 1, . . . , 2n, where the index pq specifies the ele-
ment of T(W) in the p-th row and q-th column, can be in-
terpreted as the projected areas spanned by the exploration
sequences {e>p w`}m−1

`=0 , {e>q w`}m−1
`=0 . The net area Apq of

an n-sided polygon with corner points (xp,i, yq,i) ∈ R2,
i = 0...n − 1 and p, q = 1, . . . , 2n, known as Shoelace or
Gauss area formula [24] is obtained as a special case of
Green’s Theorem and is given by

Apq =
1
2

n−1

∑
i=0

(
xp,i+1yq,i − xp,iyq,i+1

)
(43)

with xp,0 = xp,n = 0 and yq,0 = yq,n = 0. In Lemma 6
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Figure 4.. An illustration of the algorithm’s behavior (setup as in Simulation 1) with Td as in (30) and singular values [σ1 σ2 σ3 σ4] =
[1 1 1 1] (top) and [σ1 σ2 σ3 σ4] = [1.5 0.2 1.5 0.2] (bottom) of the exploration matrix W. In (a)+(e) the trajectories xk ( ), the first and
last m steps ( ), the exact gradient descent algorithm ( ), initial state x0 (•), and optimizer x∗ (�) are depicted. The plots (b)+(f) and
(c)+(g) show the exploration sequence {uk}m−1

k=0 and {vk}m−1
k=0 , respectively, where (•) is the first and ( ) the second component. In

(d)+(h) T(W) in form of the areas generated by {wk}m−1
k=0 is visualized, where the filled green areas ( ) have an area surface value of 1,

the striped orange areas ( ) of −1, and the rest of 0.

(Appendix A) we show that (43) is equivalent to (42) for

xp,i =
i−1

∑
k=0

e>p wk, yq,i =
i−1

∑
k=0

e>q wk. (44)

This geometric interpretation is not surprising in the light
of Remark 4 and the area generating rule appearing in
the study of nonholonomic systems [25]. In particular,
(43) represents a (double) iterated summation over the
exploration sequence. In the continuous-time setting, this
would correspond to double iterated integrals (or in gen-
eral k-fold iterated integrals, which are called the signature
of a path) and which play a fundamental role in nonholo-
nomic control systems. Note that for [α1 α2] 6= [1/2 1/2],
(43) with (44) does not hold. However, we believe it is
related to some kind of weighted area.

To illustrate this geometric interpretation, the explo-
ration sequence in (9) with [α1 α2] = [1/2 1/2] generates
T(W) as depicted in Figure 3, where the singular values
of W are σ1 = σ2 = σ3 = σ4 =

√
2. Obviously and as pre-

sented in the sequel, the singular values of W influence the
shape of the areas and give rise to various interpretations
of the algorithms behavior.

Simulation 1

In the first simulation setup we consider the objec-
tive J(x) = ‖x − [1 2]>‖2

2 and setting f (J(x)) =
sin(J(x)), g(J(x)) = cos(J(x)), [α1 α2] = [1/2 1/2], Td as in
(30), h = 0.05, and x0 = [0 1]>. The simulation results for
two different choices of singular value pairs are depicted
in Figure 4. On the one hand σ1 = σ2 = σ3 = σ4 = 1 yields
m = 8 and on the other hand σ1 = σ3 = 1.5, σ2 = σ4 = 0.2
results in m = 21. In the latter case the areas with net area
value ±1 have an elongated elliptical shape, which yield a
small amplitude of {vk}m−1

k=0 and therefore a small steady-
state amplitude since sin(J(x∗)) = 0 and cos(J(x∗)) = 1
(cf. (5)). Concluding, the amplitude of {e>i w`}m−1

`=0 is pro-
portional to σi with i = 1, . . . , 2n for this choice of Td.

Simulation 2.

In the second simulation study, we consider the same
setup as in Simulation 1, but choose Td as in (31) with Q
as specified in the proof of Corollary 3. The simulation
results for two different choices of singular values pairs
are depicted in Figure 5. On one hand σ1 = σ2 = 2 results
in m = 4 and on the other hand σ1 = σ2 = 0.2 in m =
154. The singular values can be interpreted as a kind of
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Figure 5.. An illustration of the algorithm’s behavior (setup as in Simulation 2) with Td as in (31) and singular values [σ1 σ2] = [2 2]
(top) and [σ1 σ2] = [0.2 0.2] (bottom) of the exploration matrix W. In (a)+(e) the trajectories xk ( ), the first and last m steps ( ), the
exact gradient descent algorithm ( ), initial state x0 (•), and optimizer x∗ (�) are depicted. The plots (b)+(f) and (c)+(g) show the
exploration sequence {uk}m−1

k=0 and {vk}m−1
k=0 , respectively, where (•) is the first and ( ) the second component. In (d)+(h) T(W) in

form of the areas generated by {wk}m−1
k=0 is visualized, where filled green area ( ) have an area surface value of 1, the striped orange

area ( ) of −1, and the rest of 0.

energy measurement of the exploration sequence, and
therefore in the latter case, m is much larger, but reveals a
smoother behavior. Moreover, σi influences the amplitude
of {e>2i−1w`}m−1

`=0 and {e>2iw`}m−1
`=0 for i = 1, . . . , n for the

given choice of Td, compared to the previous simulation
example. However, due to space limitations we omit the
plots for σ1 6= σ2.

Interestingly, as observed in Figure 4 and Figure 5
(d)+(h), the areas of T(W)ij for (i, j) ∈ {(1, 2), (2, 1)} and
(i, j) ∈ {(3, 4), (4, 3)} have the same shape as the last m
steps of xk.

Simulation 3.

Consider the same setup as in Simulation 1, but choosing
[α1 α2] = [1 0] and Td as described in (39). Choosing
σ1 = σ2 = σ3 = σ4 = 1 results in the behavior depicted
in Figure 6 (a)-(c), which is similar to the behavior from
Figure 4 (a)-(d), where m = 8, too. On the one hand, the
number of evaluations of the objective J is reduced by
half when compared to Simulation 1. On the other hand,
in this parameter setup, the choice of singular values is
restricted to σ1 = σ2 and σ3 = σ4, hence, a behavior as in
Figure 4 (e)-(h) can not be achieved. However, reducing
σ3 = σ4 to 0.4 yields a scaling in the coordinate directions

as illustrated in Figure 6 (d)-(f).

Simulation 4.

In this simulation scenario we consider the cost func-
tion J(x) = ‖x − [1 2]> + 0.5 sin(10πx)‖2, i.e., an ob-
jective with many local minima. We define f (J(x)) =
sin(J(x)), g(J(x)) = cos(J(x)), [α1 α2] = [1/2 1/2], h =
0.05, and x0 = [1 2]>. The simulation results with Td as in
Simulation 2 and σ1 = σ2 = 1 are depicted in Figure 7. As
motivated in the introduction, the proposed algorithm is
able to overcome local minima and converges into a neigh-
borhood of the global minimum. Due to the definition of

the maps M
√

h
k , the gradient of J is gained by a procedure

similar to numerical integration. It has been observed in
simulations that this procedure is numerically more stable
than numerical differentiation (finite differences). In sum-
mary, this integrating behavior has the effect to even and
flatten out local minima and noise respectively (cf. [7]).

Simulation 5.

One of the key advantages of derivative-free optimization
is demonstrated, namely to deal with non-smooth objec-
tives. To this end, in its ability to a simulation experiment,
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Figure 6.. An illustration of the algorithm’s behavior (setup as in Simulation 3) with Td as in (39) with singular values [σ1 σ2 σ3 σ4] =
[1 1 1 1] (top) and [σ1 σ2 σ3 σ4] = [1 1 0.4 0.4] (bottom) of the exploration matrix W. In (a)+(d) the trajectories xk ( ), the first and last m
steps ( ), the exact gradient descent algorithm ( ), initial state x0 (•), and optimizer x∗ (�) are depicted. The plots (b)+(e) and (c)+(f)
show the exploration sequence {uk}m−1

k=0 and {vk}m−1
k=0 , respectively, where (•) is the first and ( ) the second component.

the cost function is set to J(x) = ‖x‖. We use the same
algorithm parameters as in Simulation 2, i.e., f (J(x)) =
sin(J(x)), g(J(x)) = cos(J(x)), [α1 α2] = [1/2 1/2], h =
0.05, and x0 = [1 2]> with Td as in (31), Q specified in
Corollary 3, and singular values σ1 = σ2 = 0.4. The algo-
rithm’s behavior is depicted in Fig. 8. Since no first-order
information (derivatives) needs to be competed, the algo-
rithm is, as expected, converging to the local minima.

Remark 9. It is worth to mention that a very promising
generating function class is

f (z) =
√

z sin(ln(z)µ), g(z) =
√

z cos(ln(z)µ) (45)

with µ ∈ R>0, which belong to the setting of (30) and
(37) (with some adaptions). Specifically, the Lie bracket
between the generating functions results in [ f , g](z) = −µ,
i.e., it holds xm+k = xk − hµ∇J(xk) + O(h3/2). In this
view, µ can be chosen large and h small, hence, a large
enough gradient step is executed while the oscillations
can be kept small.

4.3. Exploration Sequences via Nonlinear
Programming

Besides the construction of the exploration sequence as
described in the proof of Theorem 3 in Appendix B.3 and
the step-by-step construction of W in Appendix C.1 one

can compute a sequence with nonlinear programming by
solving the constrained optimization problem

min ‖vec(W)‖2
p

s.t. T(W) = Td

W1 = 0

(46)

Instead of the p−norm of W ∈ R2n×m, one can in prin-
ciple choose any other objective function, for example a
weighted norm etc. In contrast to our constructive ap-
proach, the sequence length m with m ≥ rk(Td) + 1 has
to be specified in (46). An approximation of the lower
bound of m can be computed by following Step 4 of the
step-by-step construction procedure for the exploration
sequence matrix (see Appendix C.1) and choosing the sin-
gular values such that m is minimal.

5. CONCLUSION

In this work, we proposed a novel class of derivative-free
optimization algorithms. The idea was to approximate
the gradient of the objective function by a m-fold compo-
sition of maps. These maps are defined by exploration
sequences and generating functions. We provided a gen-
eral framework for the construction of those ingredients.
In particular, the construction of exploration sequences is
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related to nonholonomic state-transition problems and is
based on solving a system of quadratic equations, which
we encountered by a singular value decomposition (see
Theorem 3). The characterization of the generating func-
tions was carried out by solving the functional equation
(14) (see Theorem 4 and Theorem 5). Numerical simula-
tions and a qualitative study of the dynamics of the al-
gorithm were presented and the role of the algorithm pa-
rameters on the behavior of the algorithm was discussed.
It turned out that the singular values of the exploration
sequence matrix play a crucial role. Due to space limi-
tations, we leave an extensive benchmarking study and
comparisons with other derivative-free optimization al-
gorithms for follow up work. The tuning of the algo-
rithm parameters—which entails a choice of exploration
sequences and generating functions, and balancing ex-
ploration and exploitation by proper step size rules or
line search methods—requires systematic and intensive
testing for suitable classes of objective functions, which
is beyond the scope of this paper. Eventually, the tun-
ing of the parameters can be approached, for example,
by learning exploration sequences based on a training set
of relevant objective functions using an hyperparameter
optimization approach. Another future research direction
is the extension of the proposed algorithm to extremum
seeking problems (cf. [16]) for the two-point algorithmic
scheme. Finally, designing exploration sequences plays a
key role in our algorithms. This corresponds to the prob-
lem of finding sequences such that the first and second
iterated summations, i.e. the one- and two-dimensional
projected areas, have the values specified on the right
hand sides of (22). To the best of our knowledge, a gen-
eral and algorithmic characterization of solutions to this
inverse problem (i.e. given signature values and find cor-
responding paths) is not known and in our opinion it is
an interesting mathematical research question by its own
[26].
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A. PRELIMINARY LEMMAS

Lemma 2. Let a ∈ C2(Rn; R), b ∈ C0(Rp; Rn), and h ∈
R≥0. Then for any compact convex set Z ⊆ Rn and any
compact set Y ⊆ Rp there exist a R ∈ C0(Rn × Rp ×
R≥0; R) and a M ∈ R≥0 such that for all z, z + hb(y) ∈ Z
and y ∈ Y we have

a(z + hb(y)) = a(z) + h
∂a
∂z

(z)>b(y) + R(z, y; h2) (47)

with |R(z, y; h2)| ≤ Mh2, i.e., limh→0 R(z, y; h2) = 0.

Proof. Equation (47) is obtained by applying Taylor’s the-
orem [27, Theorem 5.15, p. 110] up to degree two, thus,
there exits a θ ∈ [0, 1] such that

a(z + hb(y)) = a(z) + h
∂a
∂z

(z)>b(y)

+
h2

2
b(y)>

∂2a
∂z

(x̄)b(y) (48)

holds with x̄ = z + θhb(y). The term

R(z, y; h2) = h2b(y)>
∂2a
∂2z

(x̄)b(y) (49)

is the Lagrange remainder where ∂2a/∂2z(·) is the Hessian
of a(·). Since Z and Y are compact and b ∈ C0(Rp; Rn)
there exists a Mb ∈ R≥0 such that

‖b(y)‖2 ≤ Mb, y ∈ Y (50)

holds. Furthermore, since Z is convex and compact and
a ∈ C2(Rn; R) there exists a Ma ∈ R>0 such that

‖∂2a
∂z2 (x̄)‖2 ≤ Ma, x̄ ∈ Z . (51)

Finally, |R(z, y; h2)| ≤ Mh2 with M = M2
b Ma.

Lemma 3. Let Assumption (A1) hold true. Moreover,
let X ⊆ Rn and J ⊆ R be compact convex sets,
and m ∈ N≥1. Then there exist a function Rk+m−1 :
Rn × R × R≥0 → Rn and a constant Mk+m−1 ∈ R≥0
such that for any iterates xk, . . . , xk+m of the algorithm

(2) with maps in (5), xt, xt +
√

hsk(J(xt)) ∈ X , and
J(xt), J(xt +

√
hsk(J(xt))) ∈ J for t = k, . . . , k + m, and

we have

xk+m = xk +
√

h(α1 + α2)
k+m−1

∑
i=k

si(J(xk))

+ hα2

k+m−1

∑
i=k

∂si
∂J

(J(xk))si(J(xk))
>∇J(xk)

+ h(α1 + α2)
2

k+m−1

∑
i=k

i−1

∑
j=k

∂si
∂J

(J(xk))sj(J(xk))
>∇J(xk)

+ Rm−1(xk, J(xk); h3/2), (52)

with ‖Rk+m−1(xk, J(xk); h3/2)‖2 ≤ Mk+m−1h3/2, i.e.,
Rk+m−1(xk, J(xk); h3/2) = O(h3/2).

Proof. W.l.o.g we set k = 0, i.e., we show by induction
that the m-step evolution of (2) with transition map (5) is
give by (52) with k = 0. Similarly to R(·, ·; ·) in (47), we
introduce the following notation of the Taylor remainder
(T.R.) terms for k = 0, . . . , m− 1:

• RJ,k(·, ·; h) of T.R. of J(xk)

• Rs,k(·, ·; h) of T.R. of sk(J(xk))

• R+
J,k(·, ·; h) of T.R. of J(xk +

√
hsk(J(xk)))

• R+
s,k(·, ·; h) of T.R. of sk(J(xk +

√
hsk(J(xk))))

and aggregated remainders with terms of order h or h3/2

and higher for k = 0, . . . , m− 1:

• Rk(·, ·; h3/2) of xk

• R̄J,k(·, ·; h) of J(xk)

• R̄s,k(·, ·; h) of sk(J(xk))

• R̄+
J,k(·, ·; h) of J(xk +

√
hsk(J(xk)))

• R̄+
s,k(·, ·; h) of sk(J(xk +

√
hsk(J(xk))))

Step 1: Basis. Consider the first step of (2) with (5), i.e,

x1 = x0 +
√

hα1s0(J(x0))

+
√

hα2s0
(

J(x0 +
√

hs0(J(x0)))
)

(Lemma 2)
= x0 +

√
h(α1 + α2)s0(J(x0))

+ hα2
∂s0

∂J
(J(x0))s0(J(x0))

>∇J(x0)

+ R0(x0, J(x0); h3/2) (53)

with R0 : Rn ×R×R≥0 → Rn. In the above equation,
Lemma 2 is applied twice. First, for J(x0 +

√
hs0(J(x0))
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where a(·) := J(·), b(·) := s0(·), z := x0, and y := J(x0) in
Lemma 2 are chosen such that R+

J,0(·, ·; h) as in (49) exists,
i.e.,

J
(
x0 +

√
hs0(J(x0))

)
= J(x0) +

√
hs0(J(x0))

>∇J(x0)

+ R+
J,0(x0, J(x0); h) (54)

with R+
J,0 : Rn ×R×R≥0 → R. Second, for s0(J(x0 +√

hs0(J(x0)))) where a(·) := f (·) and a(·) := g(·),
b(x0, J(x0)) = s0(J(x0))

>∇J(x0) + R+
J,0(x0, J(x0); h), z :=

J(x0), and y = [x>0 J(x0)]
> in Lemma 2 are chosen such

that a R+
s,0(·, ·; h) as in (49) exists with given bounds on u0

and v0, i.e.,

s0
(

J(x0 +
√

hs0(J(x0)))
)

= s0

(
J(x0) +

√
hs0(J(x0))

>∇J(x0)

+ R+
J,0(x0, J(x0); h)

)
= s0(J(x0)) +

∂s0

∂J
(J(x0))

(√
hs0(J(x0))

>∇J(x0)

+ R+
J,0(x0, J(x0); h)

)
+ R+

s,0(x0, J(x0); h) (55)

with R+
s,0 : Rn × R × R>0 → Rn. Note that s0(·) =

f (·)u0 + g(·)v0 (see (5)), i.e., (55) is obtained by applying
Lemma 2 to f (·) and g(·) separately. We neglected this
intermediate step and directly stated the Taylor expansion
for s0(·). In the sequel we do not highlight this interme-
diate step and ”directly“ apply Lemma 2 to a(·) := si(·)
which implies that Lemma 2 is applied to a(·) := fi(·) and
a(·) := gi(·) separately with given bounds on ui and vi.

Then, since J ∈ C2(Rn; R) by Assumption (A1),
x0, x0 +

√
hs0(J(x0)) ∈ X , and J(x0) ∈ J , we con-

clude with Lemma 2, there exists a M+
J,0 ∈ R≥0 such

that ‖R+
J,0(x0, J(x0); h)‖2 ≤ M+

J,0h. Additionally, by as-
sumption s0 ∈ C2(R; Rn) (see Assumption (A1)) and
J(x0 +

√
hs0(J(x0))) ∈ J , thus, by Lemma 2 there ex-

ists a M+
s,0 ∈ R≥0 such that ‖R+

s,0(x0, J(x0); h)‖2 ≤ M+
s0

h.
Putting these facts together, we obtain that

R0(x0, J(x0); h3/2) =
√

h
∂s0

∂J
(J(x0)R+

J,0(x0, J(x0); h)

+
√

hR+
s,0(x0, J(x0); h) (56)

in (53) holds. Then by assumption s0 ∈ C2(R; Rn) (see
Assumption (A1)) and J(x0) ∈ J , there exits a Ls,0 ∈ R≥0
such that

‖∂s0

∂J
(J(x0)‖2 ≤ Ls,0. (57)

Then it follows that

‖R0(x0, J(x0); h3/2)‖2 ≤ M0h3/2

:= (M+
J,0Ls,0 + M+

s,0)h
3/2 (58)

and we can obtain that R0(x0, J(x0); h3/2) = O(h3/2),
thus, (53) is (52) for k = 0 and m = 1.

Step 2: Inductive Step. Assume that (52) holds for xm−1,
i.e., that the evolution of xk for k = 0, . . . , m− 1 reads

xm−1 = x0 +
√

h(α1 + α2)
m−2

∑
i=0

si(J(x0))

+ hα2

m−2

∑
i=0

∂si
∂J

(J(x0))si(J(x0))
>∇J(x0)

+ h(α1 + α2)
2

m−2

∑
i=0

i−1

∑
j=0

∂si
∂J

(J(x0))sj(J(x0))
>∇J(x0)

+ Rm−2(x0, J(x0); h3/2) (59)

and there exists a Mm−2 ∈ R≥0 such that
‖Rm−2(x0, J(x0); h3/2)‖2 ≤ Mm−2h3/2. Next we consider
the m-th step of (2) with (5), i.e.,

xm = xm−1 +
√

hα1sm−1(J(xm−1))

+
√

hα2sm−1

(
J
(

xm−1 +
√

hsm−1(J(xm−1))
))

. (60)

Again, as in Step 1, we apply Lemma 2 several times.
First for J(xm−1) where a(·) := J(·), b(x0, J(x0)) =
h−1/2(rhs. o f (59) − x0), z := x0, and y = [x>0 J(x0)]

>

in Lemma 2 are chosen such that a RJ,m−1(·, ·; h) as in (49)
exists, i.e.,

J(xm−1) = J(r.h.s. o f (59))

(Lemma 2)
= J(x0) +

√
h(α1 + α2)

m−2

∑
i=0

si(J(x0))
>∇J(x0)

+ R̄J,m−1(x0, J(x0); h) (61)

with R̄J,m−1 : Rn ×R×R>0 → R where

R̄J,m−1(x0, J(x0); h) = h∇J(x0)
>

×
(

α2

m−2

∑
i=0

si(J(x0))
∂si
∂J

(J(x0))
>

+ (α1 + α2)
2

m−2

∑
i=0

i−1

∑
j=0

sj(J(x0))
∂si
∂J

(J(x0))
>
)
∇J(x0)

+ Rm−2(x0, J(x0); h3/2) + RJ,m−1(x0, J(x0); h) (62)

with RJ,m−1 : Rn ×R×R≥0 → R. Secondly, Lemma 2
is applied on sm−1(J(xm−1)) where a(·) := sm−1(·),
b(x0, J(x0)) = h−1/2(rhs. o f (61) − J(x0)), z := J(x0),
and y = [x>0 J(x0)]

> in Lemma 2 are chosen such that
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a Rs,m−1(·, ·; h) as in (49) exists, i.e.,

sm−1(J(xm−1)) = sm−1(rhs. o f (61))
(Lemma 2)

= sm−1(J(x0)) +
√

h(α1 + α2)

×
m−2

∑
i=0

∂sm−1

∂J
(J(x0))si(J(x0))

>∇J(x0)

+ R̄s,m−1(x0, J(x0); h) (63)

with R̄s,m−1 : Rn ×R×R≥0 → Rn where

R̄s,m−1(x0, J(x0); h) =
∂sm−1

∂J
(J(x0)R̄J,m−1(x0, J(x0); h)

+ Rs,m−1(x0, J(x0); h) (64)

with Rs,m−1 : Rn × R × R≥0 → Rn. Thirdly,
Lemma 2 is applied on J(xm−1 +

√
hsm−1(J(xm−1)))

where a(·) := J(·), b(x0, J(x0)) = h−1/2(rhs. o f (59) −
x0) +

√
h(rhs. o f (63)), z := x0, and y = [x>0 J(x0)]

> in
Lemma 2 are chosen such that a R+

J,m−1(·, ·; h) as in (49)
exists, i.e.,

J(xm−1 +
√

hsm−1(J(xm−1)))

= J(rhs. o f (59) +
√

h(rhs. o f (63)))

(Lemma 2)
= J(x0) +

√
h(α1 + α2)

m−2

∑
i=0

si(J(x0))
>∇J(x0)

+
√

hsm−1(J(x0))
>∇J(x0)

+ R̄+
J,m−1(x0, J(x0); h) (65)

with R̄+
J,m−1 : Rn ×R×R≥0 → R where

R̄+
J,m−1(x0, J(x0); h)

= h∇J(x0)
>
(

α2

m−2

∑
i=0

si(J(x0))
∂si
∂J

(J(x0))
>

+ (α1 + α2)
2

m−2

∑
i=0

i−1

∑
j=0

sj(J(x0))
∂si
∂J

(J(x0))
>

× (α1 + α2)
m−2

∑
i=0

si(J(x0))
∂sm−1

∂J
(J(x0))

>
)
∇J(x0)

+ Rm−2(x0, J(x0); h3/2) +
√

hR̄s,m−1(x0, J(x0); h)

+ R+
J,m−1(x0, J(x0); h) (66)

with R+
J,m−1 : Rn × R × R≥0 →

R. Lastly, Lemma 2 is applied on
sm−1(J(xm−1 +

√
hsm−1(J(xm−1)))) where a(·) :=

sm−1(·), b(x0, J(x0)) = h−1/2(rhs. o f (65) − J(x0)),
z := J(x0), and y = [x>0 J(x0)]

> in Lemma 2 are chosen

such that a R+
s,m−1(·, ·; h) as in (49) exists, i.e.,

sm−1(J(xm−1 +
√

hsm−1(J(xm−1))))

= sm−1(rhs. o f (65))
(Lemma 2)

= sm−1(J(x0)) +
√

h

× (α1 + α2)
m−2

∑
i=0

∂sm−1

∂J
(J(x0))si(J(x0))

>∇J(x0)

+
√

h
∂sm−1

∂J
(J(x0))sm−1(J(x0))

>∇J(x0)

+ R̄+
s,m−1(x0, J(x0); h) (67)

with R̄+
s,m−1 : Rn ×R×R>0 → Rn where

R̄+
s,m−1(x0, J(x0); h) =

∂sm−1

∂J
(J(x0)R̄+

J,m−1(x0, J(x0); h)

+ R+
s,m−1(x0, J(x0); h) (68)

with R+
s,m−1 : Rn ×R×R≥0 → Rn.

Then with the same arguments as in Step 1, namely
by assumption J ∈ C2(Rn; R) (see Assumption (A1))
for every k = 0, . . . , m − 1, sk ∈ C2(R; Rn) (see
Assumption (A1)), xk, xk +

√
hsk(J(xk)) ∈ X , and

J(xk), J(xk +
√

hsk(J(xk))) ∈ J , thus, there exist
M̄J,m−1, M̄s,m−1, M̄+

J,m−1, M̄+
s,m−1 ∈ R≥0 such that

‖R̄J,m−1(x0, J(x0); h)‖2 ≤ M̄J,m−1h and so on. Note that
M̄J,m−1 is derived by (62) as

M̄J,m−1 = L2
J

(
α2

m−2

∑
i=0

Ks,iLs,i + (α1 + α2)
2

i−1

∑
i=0

Ks,iLs,i

)
+
√

hMm−2 + MJ,m−1 (69)

with LJ , Ks,i, Ls,i, Mm−2 ∈ R≥0, where ‖∇J(x0)‖2 ≤
LJ , ‖∇si(J(x0))‖2 ≤ Ks,i, ‖∂si/∂J J(x0)‖2 ≤ Ls,i, and
‖Rm−2(x0, J(x0); h3/2)‖2 ≤ M̄m−2h3/2. Additionally,
by Lemma 2 there exists a MJ,m−1 ∈ R>0 such that
‖RJ,m−1(x0, J(x0); h)‖2 ≤ MJ,m−1h. The constants
M̄s,m−1, M̄+

J,m−1, M̄+
s,m−1 are derived in the same manner

via (64), (66), and (68), respectively. Finally, plugging (63)
and (67) in (60) yields (52) with k = 0 and

Rm−1(x0, J(x0); h3/2) = Rm−2(x0, J(x0); h3/2)

+
√

hα1R̄s,m−1(x0, J(x0); h)

+
√

hα2R̄+
s,m−1(x0, J(x0); h), (70)

where,

‖Rm−1(x0, J(x0); h3/2)‖2 ≤ Mm−1h3/2

:= (Mm−2 + α1M̄s,m−1 + α1M̄+
s,m−1)h

3/2. (71)
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The following two lemmas state the sufficient part
of Cauchy’s interlacing inequalities [28] for real skew-
symmetric matrices. Hence, the imaginary part of the
eigenvalues of the principal submatrix can be chosen w.r.t.
certain inequalities depending on the eigenvalues of the
given skew-symmetric matrix.

Lemma 4. Let C ∈ Rp×p be a skew-symmetric matrix
with eigenvalues ±ηki, ηk ∈ R≥0, k = 1, . . . , dp/2e and let
ω` ∈ R≥0, ` = 1, . . . , dp/2e − 1 such that the inequality

η1 ≥ ω1 ≥ η2 ≥ ω2 · · · ≥ ηdp/2e−1

≥ ωdp/2e−1 ≥ ηdp/2e ≥ 0, (72)

is satisfied. Then there exists an unitary matrix Θ ∈ Rp×p

such that Q ∈ R(p−1)×(p−1) is a principal submatrix of
Θ>CΘ with eigenvalues ±ω`i.

For a proof, we refer to [29].

Lemma 5. Let C ∈ Rp×p be a skew-symmetric matrix
with eigenvalues ±η`i, η` ∈ R≥0, ` = 1, . . . , p, arranged
according to

η1 ≥ η2 ≥ . . . ≥ ηdp/2e ≥ 0. (73)

Then for ω1 ≥ ω2 ≥ . . . ≥ ωr with ωk ∈ R≥0 such that

ηk ≥ ωk ≥ ηdp/2e−r+k, (74)

there exists an unitary matrix Θ ∈ Rp×p such that Q ∈
R(2r)×(2r) is a principal submatrix of Θ>CΘ with eigen-
values ±ω`i, ` = 1, . . . , r.

Proof. Applying Lemma 4 dp/2e − r times, yields the re-
sult, similar to the proof of [30, Theorem 1].

Numerical validation of Conjecture 1

Due to the dependency of C(m) on m in (23), the inter-
lacing lemmas, see Lemma 4 and Lemma 5, are not appli-
cable, since the entries of C(m) change with dimension
due to ε(m). We verified numerically that the interlacing
property (26) holds for all m ≤ 10000. The correspond-
ing Matlab code is available in the ancillary file folder on
Arxiv. Moreover, in Figure 9 the interlacing property for
4 ≤ m ≤ 10 is visualized.

Note that m acts as the exploration sequences’ lengths
as introduced in (3) and (5), where in the worst case m =
4n (cf. (9)). This implies the property holds for sure for
n ≤ 2500 dimensional problems, which is a very high-
dimensional problem for derivative-free algorithms.

Lemma 6. Let W such that W1 = 0 be given and et T(W)
be as in (12) with [α1 α2] = [1/2 1/2]. Then the value in
the p-th row and q-th column of T(W) is equivalent to the

4 6 8 10
0

1

2

3

m

ω
k

Figure 9.. Illustration of the absolute value of the complex
conjugated eigenvalues ±ωki (•) of P̃ in (27) w.r.t. m for k =
1, . . . , dm/2e. The interlacing property (26) is apparent and visu-
alized by the arrows, mapping the eigenvalues to the next lower
dimension.

net area (cf. Gauss area formula in [24]) of the n-sided
polygon in the ep − eq plane with corner points

xp,i =
i−1

∑
k=0

e>p wk, yq,i =
i−1

∑
k=0

e>q wk (75)

for i = 0, . . . , m− 1 and p, q = 1, . . . , 2n, where xp,0 = 0
and yq,0 = 0.

Proof. The entry in the p-th row and q-th column of the
matrix T(W) in (12) with [α1 α2] = [1/2 1/2] is given by

T(W)pq =
m−1

∑
i=0

1
2

e>p wiw>i eq +
i−1

∑
j=0

e>p wiw>j eq. (76)

Condition W1 = 0 implies wm−1 = −∑m−1
i=0 wi such that

we have

T(W) =
m−2

∑
i=0

(1
2

wiw>i +
i−1

∑
j=0

wiw>j
)
+

1
2

wm−1w>m−1

+
m−2

∑
j=0

wm−1w>j

=
m−2

∑
i=0

(1
2

wiw>i +
i−1

∑
j=0

wiw>j +
1
2

m−2

∑
j=0

wiw>j

−
m−2

∑
j=0

wiw>j
)

=
1
2

m−2

∑
i=0

(
wiw>i +

i−1

∑
j=0

wiw>j −
m−2

∑
j=i

wiw>j
)

=
1
2

m−2

∑
i=0

( i−1

∑
j=0

wiw>j −
1
2

m−2

∑
j=i+1

wiw>j
)

=
1
2

m−2

∑
i=1

i−1

∑
j=0

(wiw>j − wjw>i ), (77)
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where the last line of (77) is obtained by the reindexing

m−2

∑
i=0

m−2

∑
j=i+1

wiw>j = w0(w1 + w2 + · · ·+ wm−2)
>

+ w1(w2 + w3 + · · ·+ wm−2)
>

+ . . .

+ wm−3w>m−2 =
m−2

∑
i=1

i−1

∑
j=0

wjw>i . (78)

Hence, it follows for the entry of T(W) in the p-th row and
q-th column

T(W)pq =
1
2

m−2

∑
i=1

i−1

∑
j=0

e>p wiw>j eq − e>p wjw>i eq. (79)

On the other hand, the net area formula of a n-sided poly-
gon with corner points {xp,i, yq,i}n

i=1 is given as

Apq =
1
2

n−1

∑
i=0

xp,i+1yq,i − xp,iyq,i+1. (80)

Plugging (75) with n = m in (80) and using ∑m−1
i=0 wi = 0

yields

Apq =
1
2

m−1

∑
i=0

( i

∑
j=0

e>p wj

)( i−1

∑
j=0

w>j eq

)
−
( i−1

∑
j=0

e>p wj

)( i

∑
j=0

w>j eq

)
=

1
2

m−2

∑
i=1

e>p wi

( i−1

∑
j=0

w>j eq

)
−
( i−1

∑
j=0

e>p wj

)
w>i eq. (81)

Consequently, Apq = T(W)pq holds.

B. PROOFS

B.1. Proof Theorem 1

The proof utilizes the result of Lemma 3. Consider the
m-th step of the evolution of (2) represented by (52) with
transition map (5). Let w` = [u>` v>` ]

> for ` = k, . . . , k +
m− 1 and

Y( f (z), g(z)) =
[

f (z)I g(z)I
]

, (82)

Ỹ( f (z), g(z)) =
[

∂ f
∂z (z)I ∂g

∂z (z)I
]

. (83)

Then plugging {w`}k+m−1
`=k , Y( f (J(xk)), g(J(xk))) and

Ỹ( f (J(xk)), g(J(xk))) into (52) yields

xk+m = xk +
√

h(α1 + α2)Y( f (J(xk)), g(J(xk)))
k+m−1

∑
i=k

wi

+ hỸ( f (J(xk)), g(J(xk)))

®
k+m−1

∑
i=k

(
α2wiw>i

+(α1 + α2)
2

i−1

∑
j=k

wiw>j

)}
Y( f (J(xk)), g(J(xk)))

>

×∇J(xk) +O(h3/2). (84)

The term in the curly brackets in (84) yields T(W) in (13)
and therefore (12) is recovered. �

B.2. Proof Lemma 1

Condition (15) implies

wm−1 = −
m−2

∑
i=0

wi. (85)

Plugging (85) into (13) yields

T(W) =
m−2

∑
i=0

(
α2wiw>i + (α1 + α2)

2
i−1

∑
j=0

wiw>j
)

+ α2wm−1w>m−1 + (α1 + α2)
2

m−2

∑
i=0

wm−1w>i

= α2

m−2

∑
i=0

(
wiw>i +

m−2

∑
j=0

wiw>j
)

+ (α1 + α2)
2

m−2

∑
i=0

( i−1

∑
j=0

wiw>j −
m−2

∑
j=0

wiw>j
)

= α2

m−2

∑
i=0

(
wiw>i +

m−2

∑
j=0

wiw>j
)

(86)

− (α1 + α2)
2

m−2

∑
i=0

m−2

∑
j=i

wiw>j

= (α2 − (α1 + α2)
2)

m−2

∑
i=0

m−2

∑
j=i

wiw>j

+ α2

m−2

∑
i=0

i

∑
j=0

wiw>j . (87)

Hence, P in (21) is recovered. �
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B.3. Proof Theorem 3

Consider (22) and the singular value decomposition of the
exploration sequence matrix

W = UΣV> (88)

with

• U = [a1 b1 · · · an bn], (89)

• Σ =

[
Σ0 0
0 0

]
, Σ0 = diag([σ1 · · · σr]) (90)

• V =

[
Θ− ε11>Θ m−1/21

−1>Θ + ε(m− 1)1>Θ m−1/2

]
with (91)

ε = (m− 1)−1(1−m−1/2) and some

Θ ∈ R(m−1)×(m−1) s.t. Θ>Θ = ΘΘ> = I

Hereby, a` ± b`i with a`, b` ∈ R2n for ` = 1, . . . , n are the
eigenvectors of Td. Since U, as defined in (89), is con-
structed by the real and imaginary parts of the eigenvec-
tors of the matrix Td, U is orthogonal [22]. Moreover,

X := U>TdU = diag([C1 · · · Cn]),

with C` =

[
γ` −δ`
δ` γ`

]
, ` = 1, . . . , n,

(92)

where γ` ± δ`i are the eigenvalues of Td with (2α2− (α1 +
α2)

2)γ` ∈ R≥0 and δ` ∈ R≥0. Note that γ` = 0 and δ` = 0
for ` > rk(Td).

The orthogonality of V, given in (91), is shown by direct
evaluation:

V>V =

[
V̂11 0
0 1

]
with (93)

V̂11 = I + (1− 2εm + ε2m(m− 1))Θ>11>Θ,

VV> =

[
Ṽ11 Ṽ12
Ṽ>12 Ṽ22

]
with (94)

Ṽ11 = I + (ε2(m− 1) + m−1 − 2ε)11>

Ṽ12 = −(ε2(m− 1)2 − 2ε(m− 1)−m−1 + 1)1

Ṽ22 = ε2(m− 1)3 − 2ε(m− 1)2 + m−1 + m− 1

where we used the fact that Θ in (91) is orthogonal. By
plugging ε = (m− 1)−1(1−m−1/2) into (93) and (94), the
orthogonality of V, i.e., VV> = V>V = I is recovered.
Now plugging (88) into (22) associated with (92) reveals[

Σ0 0
0 0

]
V>PV

[
Σ0 0
0 0

]
= X, (95)

where

Q := V>PV =

[
Q̃ ∗
∗ ∗

]
with Q̃ = Θ>P̃Θ and (96)

P̃ =
(

P− ε(11>P + P11>) + ε211>P11>
)

1:m−1 (97)

with P̃ ∈ R(m−1)×(m−1), which can be written as

P̃ = (α2 −
1
2
(α1 + α2)

2)

×
[
I + (m(m− 1)ε2 − 2mε + 1︸ ︷︷ ︸

=0

)11>
]

+
1
2
(α1 + α2)

2



0 d1 d2 . . . dm−2

−d1
. . . . . . . . .

...

−d2
. . . . . . . . . d2

...
. . . . . . . . . d1

−dm−2 · · · −d2 −d1 0


(98)

with di = 2iε− 1 for i = 1, . . . , m− 2 and ε defined in (91),
where P̃P̃> − P̃>P̃ = 0, hence P̃ normal. More precise,
P̃ has complex conjugated eigenvalues µ` ±ω`i with ` =
1, . . . , d(m− 1)/2ewhere µ` = µ = α2− 1/2(α1 + α2)

2 and
the skew-symmetric part is a Toeplitz matrix (third line of
(98)).

Eventually, (95) impose the conditions

X1:r = Σ0Q̃1:rΣ0, (99)
Xr+1:n = 0. (100)

with r = rk(Td). Then, (100) holds, since there exist n−
r− 1 eigenvalues identical to zero and U can be ordered,
accordingly. Additionally, let Θ in (91) be of the form such
that

Q̃1:r = diag([D1 · · · Ddr/2e])

with D` =

[
µ −ω̂`

ω̂` µ

]
, ` = 1, . . . , dr/2e

(101)

holds, where the imaginary part of the eigenvalues of the
principal submatrix Q̃1:r of Q̃ in (96) is denoted by ±ω̂ki
for k = 1, . . . , dr/2e.

Then (99) implies for k = 1, . . . , dr/2e

µσ2
2k−1 = µσ2

2k = γk and (102)

σ2k−1σ2kω̂k = δk. (103)

In the case of 2α2 − (α1 + α2)
2 = 0, Td and P̃ are skew-

symmetric due to the assumption in Theorem 3 and (98),
respectively. Hence, γ` = 0 for ` = 1, . . . , n, and µ = 0,
which implies that (102) is satisfied. Equation (103) is
satisfied for k = 1, . . . , dr/2e with

σ2k = δkω−1
k σ−1

2k−1 and σ2k−1 ∈ R>0 (104)

where m = r + 1 and therefore ω̂k = ωk. Then Θ is con-
structed as orthogonal transformation similar to U.

In the case 2α2− (α1 + α2)
2 6= 0, (102) and (103) together

yield

σ2
2k−1 = σ2

2k =
δk
ω̂k

=
γk
µ

, (105)
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for k = 1, . . . , dr/2e, hence

ω̂k =
δk
γk

µ (106)

has to be satisfied. Note that δk, γk, and µ are specified by
Td and α1, α2 and µ/γk ≥ 0 due to the positive definite-
ness condition in Theorem 3. Applying Lemma 5 to P̃ in
(96) implies that there exists a Θ such that (101) and the
interlacing property

ωk ≥ ω̂k ≥ ωd(m−1)/2e−dr/2e+k, k = 1, . . . , dr/2e (107)

holds, where ω̂k can be chosen in the given intervals. Note
that Lemma 5 can be applied to the normal matrix P̃, due
to the decomposition of a scaled unit and skew-symmetric
matrix [22]. W.l.o.g., δk/γk and ω̂k are in decreasing order.
Then by applying Conjecture 1 (cf. Remark 3) to P̃ in (97)
successively, there exists a m ≥ r + 1 such that (107) hold
with (106) for all k = 1, . . . , dr/2e. oooooooooooo �

B.4. Proof Theorem 4

Let 2α2 − (α1 + α2)
2 = 0 and T(W) = Td is partitioned

as in (16). Since Td has to be skew-symmetric (see also
Theorem 3), the eigenvalues of Td are purely imaginary.
Then condition (14) with T12 = −T>21 = −R ∈ Rn×n,
where R is arbitrary, reads

−I = g′(z) f (z)R> − f ′(z)g(z)R

+ f ′(z) f (z)T11 + g′(z)g(z)T22. (108)

Since, T11 = −T>11, T22 = −T>22, w.l.o.g. we can express R
as R = I + R̃, where diag(R̃) = 0. Hence, it has to hold

g′(z) f (z)− f ′(z)g(z) = −1, (109)

which is satisfied by the generating functions [31, Theorem
1]

g(z) = − f (z)
∫ 1

f 2(z)
dz. (110)

Assume that generating functions f and g as in (110) sat-
isfy (109), then condition (108) translates into

f ′(z) f (z)T11+g′(z)g(z)T22

= ( f ′(z)g(z) + g′(z) f (z))R̃, (111)

implying that R̃ = −R̃> holds. Next we consider three
cases:

Case 1: R̃ = 0. Hence,

f ′(z) f (z)T11 + g′(z)g(z)T22 = 0. (112)

Clearly, (112) is satisfied by T11 = T22 = 0 with f arbitrary
while satisfying g in (110), i.e., (30) results.

For the sub-case a−1T11 = b−1T22 =: Q arbitrary
skew-symmetric with a, b ∈ R>0, f and g have to sat-
isfy a f ′(z) f (z) + bg′(z)g(z) = 0, i.e., w.l.o.g. a f 2(z) +
bg2(z) = 1. Accordingly, with (110) and y′(z) = f−2(z) it
yields

y′(z) = a + by2(z). (113)

The unique solution of (113) with φ ∈ R is

y(z) =
…

a
b

tan
(√

abz + φ
)

(114)

and therefore with the definition of y(z) and (110) one
reveals (31).

Repeating the above calculations for a−1T11 =
−b−1T22 =: Q arbitrary skew-symmetric yields

y(z) =
…

a
b

tanh
(√

abz + φ
)

(115)

and therefore with the definition of y(z) and (110) one
reveals (32).

The remaining sub-case T11 6= ±aT22, implies that

f ′(z) f (z)T11 = 0 and g′(z)g(z)T22 = 0, (116)

since f ′(z) f (z)T11 + g′(z)g(z)T22 = 0 must hold. If
f ′(z) f (z) = 0 and T11 = Q arbitrary skew-symmetric, i.e.,
f 2(z) = a with a ∈ R>0, it implies that f (z) =

√
a. Hence,

with (110), g′(z)g(z) 6= 0 for all z ∈ R yields T22 = 0, i.e.
(33) results.

The same argumentation holds for g′(z)g(z) = 0 with
arbitrary skew-symmetric T22 such that (34) is recovered.

The circumstance that T11 6= T22 with T11 6= 0 and
T22 6= 0 is not valid due to (110) and (116). Specifically,
f ′(z) f (z) = 0 and g′(z)g(z) = 0 has to hold; obviously,
based on the above cases, f (z) =

√
a and g(z) =

√
a are

in conflict with (109).

Case 2: f ′(z)g(z) + g′(z) f (z) = 0 for all z ∈ R.
Hence,

f ′(z) f (z)T11+g′(z)g(z)T22 = 0 and (117)

f ′(z)g(z) + g′(z) f (z) = 0 (118)

has to be satisfied. Clearly, (117) is satisfied by T11 = T22 =
0, where (118) implies −a f (z)g(z) = 1 with a ∈ R>0.
Accordingly, with (110) and y′(z) = f−2(z) it yields

y′(z) = ay(z). (119)

The unique solution of (119) with c ∈ R is

y(z) = eaz + c (120)
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and therefore with the definition of y(z) and (110) one gets
(35).

The sub-cases where a−1T11 = b−1T22 =: Q arbitrary
skew-symmetric or T11 6= ±aT22 as discussed for Case
1 are not valid. With the same approach as above, i.e.,
y′(z) = f−2 it yields to y′(z) = 0 and therefore no solution
for f (z) (and g(z)) can be found or (117) and (118) are
not satisfied as discussed in the last paragraph of Case 1,
respectively.

Case 3: R̃ = −R̃> 6= 0. Hence,

f ′(z) f (z)T11+g′(z)g(z)T22

= ( f ′(z)g(z) + g′(z) f (z))R̃. (121)

Clearly, T11 = T22 = 0 is not valid, since ( f ′(z)g(z) +
g′(z) f (z))R̃ 6= 0 in this last case.

For the sub-case a−1T11 = b−1T22 =: Q = −Q> 6=
0 with a, b ∈ R>0, it has to hold that a f ′(z) f (z) +
bg′(z)g(z) = c( f ′(z)g(z) + g′(z) f (z)) and R̃ = cQ with
c ∈ R\{0}, i.e., w.l.o.g. a/2 f 2(z) + b/2g2(z)− c f (z)g(z) =
1. Accordingly, with (110) and y′(z) = f−2(z) it yields

y′(z) =
a
2
+ cy(z) +

b
2

y2(z). (122)

The unique solution of (122) with φ ∈ R is

y(z) =

√
ab− c2

b
tan

(√
ab− c2z + φ

)
(123)

and therefore with the definition of y(z) and (110) one
reveals (36).

The remaining sub-case T11 6= aT22, implies that

f ′(z) f (z)T11 − ( f ′(z)g(z) + g′(z) f (z))R̃ = 0 and

g′(z)g(z)T22 = 0, or (124)

g′(z)g(z)T22 − ( f ′(z)g(z) + g′(z) f (z))R̃ = 0 and

f ′(z) f (z)T11 = 0, (125)

since (121) must hold. However, we show in the sequel
that (124) and (125) lead to no new solution or is not valid,
respectively.

For (124), a−1T11 = c−1R̃ =: Q = −Q> 6= 0 with
a ∈ R>0 and c ∈ R\{0}, it has to hold that a f ′(z) f (z) =
c( f ′(z)g(z) + g′(z) f (z)), i.e., w.l.o.g.

a
2

f 2(z)− c f (z)g(z) = 1. (126)

Accordingly, with (110) and y′(z) = f−2(z) it yields

y′(z) =
a
2
+ cy(z). (127)

The unique solution of (125) with d ∈ R is

y(z) = decz − a
2c

(128)

and therefore with the definition of y(z) and (110)
one gets f (z) = (cd)−1/2exp(−c/2 z) and g(z) =
−(d/c)−1/2exp(c/2 z) such that T22 = 0. However, f , g
satisfying (126) for all z ∈ R only for a = 0, hence T11 = 0,
i.e, the same result as (35).

For (125), b−1T11 = c−1R̃ =: Q = −Q> 6= 0 with
a ∈ R>0 and c ∈ R\{0}, it has to hold that bg′(z)g(z) =
c( f ′(z)g(z) + g′(z) f (z)), i.e., w.l.o.g.

b
2

g2(z)− c f (z)g(z) = 1. (129)

Following the procedure above yields f (z) =
(2)−1/2c−1(bexp(c/2 z + d/2) − exp(−c/2 z − d/2)) and
g(z) = 21/2b−1exp(−c/2z − d/2) with d ∈ R. However,
(129) is only satisfied for d = −cz− ln(b) which leads to
f (z) = 0 and therefore no valid solution.

Notice that every feasible structure of the skew-
symmetric matrix Td is discussed above case by case,
and the differential equations arising in the analysis are
solved uniquely. Hence, we believe that the list of triples
(Td, f , g) in Theorem 4 for 2α2 − (α1 + α2)

2 = 0 and Td
skew-symmetric is essentially exhaustive, save for some
scaled version of the presented cases. �

B.5. Proof Theorem 5

Let Td be normal and (2α2 − (α1 + α2)
2)(Td + T>d ) be pos-

itive definite and let T(W) = Td be partitioned as in (16).
Then equation (14) reads

−I = f ′(z) f (z)T11 + f ′(z)g(z)T12

+ g′(z) f (z)T21 + g′(z)g(z)T22. (130)

Choosing Td (T(W) = Td) as in (37), it holds that (2α2 −
(α1 + α2)

2)(Td + T>d ) is positive definite, yielding

−1 = a
(

f ′(z) f (z) + g(z)′g(z)
)

+ g′(z) f (z)− f ′(z)g(z). (131)

This equation has been considered in [16]. We refer to the
proof of [16, Theorem 1] for the derivation of f and g as
specified in (37).

Case (38) is analogous to (31). First, note that (2α2 −
(α1 + α2))(Td + T>d ) is positive definite and normal with
the given Td in (38) and (2α2− (α1 + α2))(Q + Q>) is pos-
itive definite and normal, since

TdT>d − T>d Td =

[
QQ> −Q>Q 0

0 QQ> −Q>Q

]
(132)

and

Td + T>d =

[
Q + Q> 0

0 Q + Q>

]
, (133)
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such that the real part of the eigenvalues of Q is identical
to that of Td and therefore the definiteness property is con-
served. Hence, the derivation of the generating functions
f and g in this case goes along the lines of arguments as
used in the proof of Theorem 4 in Appendix B.4, specifi-
cally for the case (31), i.e. (113) and (114). �

The structure of normal matrices Td brings more de-
grees of freedom compared to Td skew-symmetric as in
Theorem 4 and thus the two cases listed in Theorem 5 are
not exhaustive.

C. CONSTRUCTION OF
EXPLORATION SEQUENCE
MATRIX

In this section we summarize the main steps to construct
an exploration sequence matrix W based on the construc-
tive proof of Theorem 3 in Appendix B.3. A MATLAB tool-
box of the described construction procedure in the sequel
can be found in the ancillary file folder on Arxiv.

C.1. Step-by-step Construction of W

The exploration sequence matrix W ∈ R2n×m with di-
mension of the optimization variable n and exploration
sequence length m is constructed by a singular-value de-
composition

W = UΣV> (134)

with U ∈ R2n×2n, Σ ∈ R2n×m, and V ∈ Rm×m, where m
has to be determined. In the following U, Σ, V as stated in
(89) to (91) are constructed.

Step 1: Choose design parameters. Select the map pa-
rameters α1, α2 ∈ R with α1 + α2 6= 0, and Td ∈ R2n×2n

according to Theorem 4 and Theorem 5 with r = rk(Td).
Step 2: Calculate eigenvalues and eigenvectors of Td. Cal-

culate eigenvalues of Td with γ` ± δ`i where γ` ∈ R, δ` ∈
R≥0 and eigenvectors of Td with a` ± b`i where a`, b` ∈
R2n for ` = 1, . . . , n. The eigenvalues are sorted according
to δ1 ≥ δ2 ≥ · · · ≥ δn ≥ 0. Note that γ` = 0 if Td skew-
symmetric and γp = 0, δp = 0 for p = dr/2e+ 1, . . . , n.

Step 3: Calculate U. Construct as specified in (89).
Step 4: Design Σ. The principal submatrix of Σ is con-

structed as Σ0 = diag(σ1, . . . , σr) ∈ Rr×r with the singular
values σk of W. This step has various degrees of freedom
to influence the sequence length m; distinguished in the
following:

I. Td skew-symmetric

i) m = r + 1

ii) m ≥ r + 1 (m determined in Step 5)

II. Td as in (39)

i) m = 2n + 1

ii) m ≥ 2n + 1 (m determined in Step 5)

III. Td normal and (2α2 − (α1 + α2)
2)(Td + T>d ) positive

definite (m determined in Step 5)

For I.i) and II.i), calculate the eigenvalues of P̃(m) in (27)
with µ± ωki for k = 1, . . . , dm/2e, µ ∈ R, ωk ∈ R≥0 and
ω1 ≥ ω2 ≥ · · · ≥ ωdm/2e ≥ 0. The choices of σ2`−1, σ2` for
` = 1, . . . , dr/2e for each case above is presented in the
following:

I.i) σ2` = δ`ω
−1
` σ−1

2`−1 and σ2`−1 ∈ R+

I.ii) σq ∈ R+, q = 1, . . . , r

II.i) σ2`−1 = σ2` = ω−1/2
`

II.ii) σ2`−1 = σ2` ∈ R+

III. σ2`−1 = σ2` = γ1/2
` (α2 − (α1 + α2)

2)−1/2

Note that Σ depends on m, i.e, for I.ii), II.ii), and III. m has
to be determined (see Step 5) first. Then, and for cases I.i)
and II.i) Σ = diag([Σ0 0m−r]) can be constructed.

Step 5: Determine sequence length m. If in Step 4, Σ was
constructed based on I.i) or II.i), m = r + 1 or m = 2n + 1,
respectively (proceed directly with Step 6). Otherwise,
calculate

ω̂π(`) = δ`
(
σ2`−1σ2`

)−1 (135)

with σ2`−1, σ2` as designed in Step 4 for ` = 1, . . . , br/2c
and permutation π : {1, . . . , br/2c} → {1, . . . , br/2c}
such that ω̂1 ≥ ω̂2 ≥ · · · ω̂br/2c ≥ 0 hold. Construct
the permutation matrix R̂(π) ∈ Rbr/2c×br/2c as

R̂(π) =
[
e2π(1)−1 e2π(1) · · · e2π(r)−1 e2π(r)

]
. (136)

Then, set m̂ = r + 1 and apply the following steps:

(a) Calculate P̃(m̂) as defined in (27).

(b) Calculate eigenvalues of P̃(m̂) with µ ± ωki where
µ ∈ R, ωk ∈ R≥0 for k = 1, . . . , dm̂/2e and ω1 ≥
ω2 ≥ · · · ≥ ωdm̂/2e.

(c) Check if the interlacing property

ωk ≥ ω̂k ≥ ωdm̂/2e−br/2c+k (137)

for every k = 1, . . . , br/2c is satisfied with ω̂k calcu-
lated in (135).

(d) If (c) is true, m = m̂. Otherwise, m̂← m̂ + 1 and goto
(a).
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Step 7: Calculate V. Construct V as specified in
(91). Therein, the required orthogonal matrix Θ ∈
R(m−1)×(m−1) is calculated as

Θ =

[
R̂(π) 0

0 I

]
Θ̃ (138)

with Θ̃ ∈ R(m−1)×(m−1) based on the construction proce-
dure for principle submatrices below (cf. Appendix C.2),
where in there

C = P̃(m)− I(α2 − (α1 + α2)
2) (139)

with P̃(m) in (27) and [ω̂k]k=1,...,br/2c calculated in (135)
has to be applied.

Step 8: Determine W. Finally, construct W according to
(134).

C.2. Construction Procedure of Principal
Submatrix

In this section we present a procedure to construct an
orthogonal matrix Θ ∈ Rp×p, such that for a given skew-
symmetric matrix C ∈ Rp×p with eigenvalues ±η`i, η` ∈
R≥0 for ` = 1, . . . , bp/2c, and for given values [ω̂k]k=1,...,q
(p ≥ 2q), which are satisfying the interlacing inequalities

ηk ≥ ω̂k ≥ ηdp/2e−q+k, k = 1, . . . , q; (140)

it holds that

Θ>CΘ =

[
Q ∗
∗ ∗

]
with

Q = diag([Q1 Q2 . . . Qq]), Qk =

[
0 −ω̂k

ω̂k 0

]
.

Thus, Q is the principal submatrix of C, where q and
[ω̂k]k=1,...,q can be chosen w.r.t. (140). The main proce-
dure to construct Θ is given in Algorithm 2 (p. 23) as an
iterative algorithm. In each iteration j = 1, . . . , dp/2e − q,
a Θj ∈ Rp×p is constructed, described in the sub-routine
Algorithm 4 (p. 24), such that

(Θ1Θ2 · · ·Θj)
>CΘ1Θ2 · · ·Θj =

[
Dj ∗
∗ ∗

]
(141)

is satisfied, where Dj ∈ R2b(p−j)/2c×2b(p−j)/2c is a
block diagonal skew-symmetric matrix with eigenvalues
±νki, νk ∈ R≥0, which are satisfying the interlacing in-
equalities

ηk ≥ νk ≥ ηj+k, (142)

for k = 1, . . . , bp/2c − j, where Dj is determined in the
sub-routine Algorithm 3 (p. 24).

In particular, the sub-routine given in Algorithm 4 (p.
24), constructs a Θ̂ ∈ Rr×r such that for two given skew-
symmetric matrices D1 ∈ Rr×r and D2 ∈ Rs×s in block
diagonal form, where s = 2b(r − 1)/2c (hence s always
even), it holds that

Θ̂D1Θ̂> =

[
D2 ∗
∗ ∗

]
, (143)

and the eigenvalues ±δki, δk ∈ R≥0 for k = 1, . . . , dr/2e of
D1 and the eigenvalues ±ζki, ζk ∈ R≥0 for k = 1, . . . , s/2
of D2 satisfy the interlacing inequality

δ1 ≥ ζ1 ≥ δ2 ≥ ζ2 ≥ . . . ≥ ζs/2 ≥ δdr/2e ≥ 0. (144)

The sub-routine given in Algorithm 3 (p. 24) con-
structs a block diagonal skew-symmetric matrix D̂ ∈
R2(dt/2e−1)×2(dt/2e−1) with eigenvalues ±νji, νj ∈ R≥0,
j = 1, . . . , dt/2e − 1, such that for a given skew-symmetric
matrix D ∈ Rt×t with eigenvalues ±γji, γj ∈ R≥0,
j = 1, . . . , dt/2e, the interlacing inequality

γ1 ≥ ν1 ≥ . . . ≥ νdt/2e−1 ≥ γdt/2e ≥ 0. (145)

is satisfied. Additionally, the interlacing inequalities

γk ≥ ω̂k ≥ γdt/2e−q+k, k = 1, . . . , q (146)

hold.
Summarizing, Algorithm 3 (p. 24) computes a principle

submatrix of a dimension that is two (or one in the first
iteration) less than in the previous iteration in Algorithm 2
(p. 23), while the interlacing property (140) is preserved
by (146). Then, Algorithm 4 (p. 24) constructs a Θj (it-
eration j = 1, . . . , dp/2e − q) based on Dj, calculated in
Algorithm 3 (p. 24), such that the computed principle
submatrix is obtained by an orthogonal transformation
as written in (141). This is repeated until the principal
submatrix is the block diagonal matrix with eigenvalues
[ω̂k]k=1,...,q.

Note that the function eigVal(·) in Algorithm 3 and
Algorithm 4 (p.24f) computes the eigenvalue of a ma-
trix in decreasing order w.r.t to the imaginary part (in
Algorithm 4 (p. 24) only skew-symmetric matrices are
present).

Remark 10. Note that Algorithm 4 (p. 24) is the con-
struction procedure of the sufficient interlacing eigenvalue
statement in Lemma 4, whereas Algorithm 2 (p. 23) is the
construction procedure of Lemma 5.

To verify this constructive approach we follow the lines
of the proof of [32, Lemma B.3.], in which symmetric ma-
trices that satisfy the interlacing property (72) are consid-
ered. Because of minor changes in the proof, we present
only the case for p odd; thus, we construct D̄1 ∈ Rp×p
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Algorithm 2. Calculate Θ
1: Given: C ∈ Rp×p, [ω̂k]k=1,...,q
2: if p = 2q then
3: [a` ± b`i]`=1,...,p/2 = eigVec(C)
4: Θ1 = [a1 b1 a2 b2 · · · ap/2 bp/2]
5: else (p > 2q)
6: D0 = C
7: for j = 1, . . . , dp/2e − q do
8: Dj = calcPSMatrix(Dj−1, [ω̂k]k=1,...,q)

9: Θ̂j = calcThetaSub(Dj−1, Dj)

10: Θj =

[
Θ̂j 0
0 I

]
∈ Rp×p

11: end for
12: end if
13: Θ← Θ1Θ2 · · ·Θdp/2e−q

Algorithm 3. Sub-routine: calculate principal submatrix

1: function D̂ = calcPSMatrix(D, [ω̂k]k=1,...,q)
2: [±γki]k=1,...,dt/2e = eigVal(D))
3: for j = 1, . . . , dt/2e − 2 do
4: ρ = {ω̂ ∈ [ω̂k]k=1,...,q : γj ≤ ω̂ ≤ γj+1}
5: νj = max{γj+1, ρ}
6: end for
7: νdt/2e−1 = max

(
ω̂q, γdt/2e−2

)
8: for j = 1, . . . , dt/2e − 1 do

9: Nj =

[
0 −νj
νj 0

]
10: end for
11: D̂ = diag([N1 N2 · · · Ndt/2e−1])
12: end function

with D2 ∈ R(p−1)×(p−1) and z ∈ Rp−1 as specified in
Algorithm 4 (p. 24). Then

g(λ) :=det(λI − D̄1) =
bp/2c

∏
i=1

(λ2 + δ2
i ), (147)

f (λ) :=det(λI − D2) =
bp/2c

∏
i=1

(λ2 + ν2
i )

=g(λ)(λ + z>(λI − D̄1)
−1z)

=λg(λ)
(

1 +
bp/2c

∑
i=1

z2
2i−1 + z2

2i

λ2 + δ2
i

)
(148)

hold. Let for j = 1, . . . , bp/2c

z2
2j−1 = z2

2j = −
( bp/2c

∏
i=1

(δ2
j − ν2

i )
)(

2
dp/2e−1

∏
i=1
i 6=j

(δ2
j − δ2

i )
)−1

(149)

then with λ = ±ν`i, ` = 1, . . . , bp/2c

bp/2c

∑
i=1

z2
2i−1 + z2

2i

λ2 + δ2
i

= −
bp/2c

∑
i=1

bp/2c

∏
k=1
k 6=`

(δ2
i − ν2

k )

bp/2c

∏
k=1
k 6=i

(δ2
i − δ2

k )

= −1. (150)

Thus, f (±ν`i) = 0, ` = 1, . . . , bp/2c and therefore ±ν`i
are the eigenvalues of D̄1, while the eigenvalues of the
principal submatrix D2 are ±δ`i, ` = 1, . . . , bp/2c.
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Algorithm 4. Sub-routine: calculate Θ̂

1: function Θ̂ = calcThetaSub(D1, D2)
2: [±δki]k=1,...,dr/2e = eigVal(D1))
3: [±ζki]k=1,...,s/2 = eigVal(D2))
4: for j = 1, . . . , dr/2e − 1 do

5: xj =
( br/2c

∏
i=1

(ζ2
j − δ2

i )
)

, yj =
(

2
dr/2e−1

∏
i=1
i 6=j

(ζ2
j −

ζ2
i )
)

6: end for
7: if r even then
8: for j = 1, . . . , r/2− 1 do
9: if yj == 0 then

10: z2j−1 = 0
11: z2j = 0
12: else
13: z2j−1 = (−xjy−1

j ν−1
j )1/2

14: z2j = z2j−1
15: end if
16: end for

17: zr−1 =
( r/2

∏
i=1

δi

)( r/2−1

∏
i=1

ζ−1
i

)
18: z = [z1 z2 · · · zr−2]

>

19: D̄1 =

 D2 0 z
0 0 zr−1
−z> −zr−1 0


20: [a` ± b`i]`=1,...,r/2 = eigVec(D1)
21: [c` ± d`i]`=1,...,r/2 = eigVec(D̄1)
22: Θ = [a1 b1 a2 b2 · · · ar/2 br/2]
23: Θ̄ = [c1 d1 c2 d2 · · · cr/2 dr/2]
24: else (r odd)
25: for j = 1, . . . , br/2c do
26: if yj == 0 then
27: z2j−1 = 0
28: z2j = 0
29: else
30: z2j−1 = (−xjy−1

j )1/2

31: z2j = z2j−1
32: end if
33: end for
34: z = [z1 z2 · · · zr−1]

>

35: D̄1 =

[
D2 z
−z> 0

]
36: [a` ± b`i]`=1,...,dr/2e = eigVec(D1)

37: [c` ± d`i]`=1,...,dr/2e = eigVec(D̄1)

38: Θ = [a1 b1 a2 b2 · · · abr/2c bbr/2c adr/2e]

39: Θ̄ = [c1 d1 c2 d2 · · · cbr/2c dbr/2c cdr/2e]
40: end if
41: Θ̂ = ΘΘ̄
42: end function
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