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Abstract

We study an optimal targeting problem for super-modular games with
binary actions and finitely many players. The considered problem consists
in the selection of a subset of players of minimum size such that, when the
actions of these players are forced to a controlled value while the others are
left to repeatedly play a best response action, the system will converge to
the greatest Nash equilibrium of the game. Our main contributions consist
in showing that the problem is NP-complete and in proposing an efficient
iterative algorithm with provable convergence properties for its solution.
We discuss in detail the special case of network coordination games and its
relation with the notion of cohesiveness. Finally, we show with simulations
the strength of our approach with respect to naive heuristics based on
classical network centrality measures.

1 Introduction

In a game with multiple Nash equilibria, what is the minimum number of players
to target in order to force the system to move from an original Nash equilibrium
A to a desired Nash equilibrium B? This paper deals with such a problem for
the class of super-modular games with binary actions and where the two Nash
equilibria A and B are, respectively, the least and the greatest in the game.
Our contribution is twofold: we show that the problem is NP-complete and we
propose the design of an iterative algorithm for an efficient solution.
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The considered problem can be framed in the more general setting of study-
ing minimal intervention strategies needed to drive a multi-agent system gov-
erned by agents’ myopic utility maximization to a desired configuration. In
applications where the goal is to achieve a social optimum, such interventions
are often modeled as perturbations of the utility functions that lead to a modifi-
cation of the Nash equilibria of the game. This viewpoint is natural for instance
in analyzing the effect of taxes or subsidies in economic models or prices and tolls
in transportation systems. More recently, a similar approach has been proposed
in the context of network quadratic games [6] to model incentive interventions
for instance in school and economic systems.

A different viewpoint, that is the one considered in this paper, is that of
individuating a subset of nodes (hopefully small) that if suitably controlled will
lead the entire system to the desired equilibrium. The minimum cardinality of
this set can also be interpreted as a measure of resilience of the system’s equilib-
rium: the larger it is, the more energy is needed by an external intervention to
destabilize it. In the context of binary actions {0, 1} considered in this paper,
the control action simply amounts to force the set of chosen players, originally
playing action 0 state, to play action 1. This well models situations where action
1 indicates the use of a certain technology or the adoption of a new product and
the control action corresponds for instance to a marketing intervention where,
at the targeted individuals, a certain item is offered for free.

Super-modular games have received a great deal of attention in the recent
years as the basic way to model strategic complementarity effects [11]. Its
variegate applications include modeling of social and economic behaviors like
adoption of a new technology, participation to an event, provision of a public
good effort. They are typically endowed with multiple Nash equilibria that
admit a Pareto ordering and the problem of the minimal effort needed to push
the system from a lower to a greater equilibrium is natural and relevant in all
these applicative contexts.

A fundamental example of super-modular games is that of coordination
games over networks. The binary coordination game is analyzed in detail in
[16] where the key concept of cohesiveness of a set of players is introduced and
then used in order to characterize all Nash equilibria. Moreover, the question if
an initial seed of influenced players (that maintain action 1 in all circumstances)
is capable of propagating to the all network is addressed in the same paper and
an equivalent characterization of this spreading phenomenon is also expressed
in terms of cohesiveness.

This contagion phenomenon is the content of our analysis in the more general
framework of super-modular games. A subset of nodes from which propagation
is successful is called a sufficient control sets and our goal is to find such sets
of minimum possible cardinality. We notice that the condition proposed in [16]
is computationally quite demanding and in practice it cannot be used directly
to solve the optimization problem even for medium size games. Indeed, even to
determine if a single set is a sufficient control set, it requires a number of check
growing exponentially in the cardinality of the complement of such set.

The complementary problem of understanding (for binary coordination games)
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what is the maximum possible spreading of the state 1 starting from an initial
seed of a given number k of targeted players, was studied in a seminal paper
by [12]. While their problem and ours are related, they are independent, in the
sense that solving one does not provide a solution of the other. Another point
worth stressing is that, in their setting, [12] consider players equipped with ran-
dom independent activation thresholds and chose to optimize the expected size
of the maximum spreading. They prove that such functional is sub-modular
and then they design a greedy algorithm for obtaining sub-optimal solutions.
The randomness that they introduce is actually crucial in their approach, as
the functional considered is not sub-modular for deterministic choices of thresh-
olds. This lack of sub-modularity is actually a key feature of coordination games
where the utility functions present a threshold behavior and make it unfeasible
to try to approximate our targeting problem by iteratively adding target nodes
in a greedy way.

A targeting intervention problem, related to the one studied in [12], is con-
sidered in [7]. There, the authors consider the problem of a firm that sells a good
to a set of individuals organized through a social network. The firm, in order
to maximize its profit, chooses a set of individuals on which to concentrate its
advertising efforts or other marketing strategies relative to that specific good.
The role of the social network is either of propagating information (in a gossip
pairwise style) regarding the good so to push other people to buy it, or rather
to model a positive externality effect where the utility of an individual to buy
that product depends on the number of neighbors already using it. This second
instance is particularly related to the problem studied in [12] with the impor-
tant difference that here authors model the network in a mean field fashion only
considering the degree distribution.

A different targeting intervention problem is studied in [1] where authors
consider network quadratic games and individuate the k most influential players
by studying how the aggregate output decreases when this set of players is
removed from the network.

The general problem of determining the best set of nodes to exert the most
effective control in a networked system has recently appeared in other contexts.
In [13, 8, 17] this is studied in the context of controllability problems for general
linear network systems. In [24], [22], [9] authors focus on the problem of the
optimal position of stubborn influencers in voter models or in linear opinion
dynamics.

Our main contribution is twofold. First, we prove that the proposed prob-
lem is NP-complete, reducing it to the well known 3-SAT problem. Second,
we design an iterative randomized search algorithm with provable convergence
properties towards sufficient control sets of minimum cardinality. The core of
the algorithm is a time-reversible Markov chain over the family of all sufficient
control sets that starts with the full set, moves through all of them in an ergodic
way, and concentrates its mass on those of minimum cardinality.1

1A preliminary version of the second part of our results for the special case of network
coordination games and not containing any complexity analysis were presented at the 21st
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The rest of the paper is organized as follows. In the final part of this section
we report some basic notation used throughout the paper. Section 2 is dedi-
cated to the formal introduction of the problem and in particular of the concept
of sufficient control sets. Here we introduce the important notion of monotone
improvement path (appeared for other purposes in [2, 3]) and we give an equiv-
alent (but more operative) characterization of sufficient control sets. Section 4
is dedicated to the complexity analysis: we show that the problem is equivalent
to an instance of the 3-SAT problem and thus NP complete. In Section 5 we
present and analyze a distributed algorithm to find optimal sufficient control
sets and, in Section 6, we present some simulation results. Finally, a conclusive
Section 7 ends the paper.

We conclude this introduction with a few notational conventions to be adopted
throughout the paper. Vectors are indicated in bold-face letters x, y, z. We de-
fine the binary vectors δi: (δi)i = 1 and (δi)j = 0 for every j 6= i. For a subset
S ⊆ {1, . . . , n}, we put 1S =

∑
i∈S δi. Every x in {0, 1}n can be written as

x = 1S for some S ⊆ {1, . . . , n}. We use the notation 1 for the all-1 vector.

2 Problem formulation and basic properties

We consider finite strategic form games with set of players V = {1, . . . , n}
whereby each player i choses her action xi from a binary set A = {0, 1}. Let
X = An denote the (strategy) profile space, whose elements x will be referred
to as (strategy) profiles. We shall consider the standard partial order on the
strategy profile space X , given by

x ≤ y ⇐⇒ xi ≤ yi, ∀i ∈ V . (1)

As customary, given a strategy profile x in X and a player i, we indicate with
x−i the strategy profile of all players but i. Each player i is endowed with a
utility function ui : X → R, so that

ui(x) = ui(xi,x−i)

denotes the utility of player i when she plays action xi while the rest of the
players’ strategy profile is x−i. A game will be formally identified by the triple
(V,A, {ui}).

The best response for a player i in V is captured by the set-valued function

Bi(x−i) = argmaxa∈A ui(a,x−i) ,

while the set of pure strategy Nash equilibria is formally defined by

N = {x ∈ X |xi ∈ Bi(x−i)∀i ∈ V} .

Throughout the paper, we shall consider games satisfying the following in-
creasing difference property [14].

IFAC World Congress and published in its proceedings [4].
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Assumption 1. For every player i in V and every two strategy profiles x,y in
X such that x−i ≥ y−i,

ui(1,x−i)− ui(0,x−i) ≥ ui(1,y−i)− ui(0,y−i) . (2)

Assumption 1 states that the marginal utility of increasing player i’s action
from xi = 0 to xi = 1 is a non-decreasing function of the strategy profile
x−i of all the other players. For finite games, as is our case, such increasing
difference property is equivalent to super-modularity [20, 23, 21]. For this reason,
we will refer to a game (V,A, {ui}) satisfying (1) as to a finite super-modular
game. In the economic literature, these are also referred to as games of strategic
complements [15].

A standard result for super-modular games ensures that their set of pure
strategy Nash equilibria is always nonempty and there exist a minimal and a
maximal Nash equilibria with respect to the partial order (1). Throughout the
paper, we shall assume that such minimal and maximal pure strategy Nash
equilibria are the all-0 profile and, respectively, the all-1 profile 1. This as-
sumption implies no effective loss of generality since the presence of players
that maintain a strict preference for action 0 or action 1 independently from the
actions played by the other players can be easily integrated in our framework
by suitably modifying the other players’ utilities.

In this paper, we study the problem of finding subsets of players S ⊆ V of
minimal cardinality for which there exists an improvement path from S to the
whole player set V. This is formalized by the following definitions.

Definition 1. For a finite game with binary actions (V,A, {ui}), a sequence of
strategy profiles (xk)k=0,...,m is an improvement path from the set S ⊆ V to the
set T ⊆ V if

1. x0 = 1S , xm = 1T

2. for every k = 0, . . . ,m− 1 there exists ik in V \ S such that

• xk+1
−ik = xk−ik and xk+1

ik
6= xkik

• uik(xk+1) ≥ uik(xk)

Definition 2 (Sufficient control set). For a finite game with binary actions
(V,A, {ui}),

• S ⊆ V is a sufficient control set if there exists an improvement path from
S to V.

• A sufficient control set S ⊆ V is optimal if there exists no sufficient control
set of strictly smaller cardinality.

Notice that sufficient control sets always exist, as the whole set of players
V trivially is a sufficient control set. Our objective is to find optimal sufficient
control sets.
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A key fact is that, in dealing with the concept of sufficient control set, it
is not restrictive to consider exclusively improvement paths where all action
changes are from 0 to 1. Such improvement paths are formally defined below.

Definition 3 (Monotone Improvement path). For a finite game with binary
actions (V,A, {ui}), an improvement path (xk)k=0,...,m from the set S ⊆ V to
the set T ⊆ V is called monotone if there exists a sequence of distinct players
ik in T \ S for k = 0, . . . ,m− 1 such that xk+1 = xk + δik for k = 0, . . . ,m− 1.

Remark 1. Notice that a monotone improvement path from S to T is completely
specified by the sequence of players ik in T \S, k = 1, . . . ,m, which are sequen-
tially changing their actions from 0 to 1. Observe that T \ S = {i1, . . . , im}
and thus the path length m = |T \ S| coincides with the difference between the
cardinality of the arrival set T and the one of the departure set S.

The following result formalizes our previous claim.

Lemma 1. In a finite super-modular game with binary actions (V,A, {ui}), S ⊆
V is a sufficient control set if and only if there exists a monotone improvement
path from S to V.

Proof. Clearly, if there exists a monotone improvement path from S to V, then
S is a sufficient control set.

Conversely, if S is a sufficient control set, then there exists a (not necessarily
monotone) improvement path (yk)k=0,...,T in X from S to V. For every player
i in V \ S, define

k(i) = min{k = 1, . . . , T | yk = yk−1 + δi}

that is the first time that player i changes her action from 0 to 1 along the path
(yk)k=0,...,T . Now, let m = n− |S| and order the players in V \ S as i1, . . . , im
in such a way that k(i1) < k(i2) < · · · < k(im). Then, for every h = 0, 1, . . . ,m,
define

xh = 1S +

h∑
j=1

δij

and notice that xh−1 ≥ yk(ih)−1. Using the increasing difference property we
now obtain that

uih(xh)− uih(xh−1) ≥ uih(yk(ih))− uih(yk(ih)−1) ≥ 0 ,

for every h = 1, . . . ,m. This shows that (xk)k=0,...,m is an improvement path
from S to V. By construction, this improvement path is also monotone, thus
proving the claim.

This new characterization of sufficient control sets, allows for proving the
following intuitive fact.

Proposition 1 (monotonicity for inclusion). In a finite super-modular game
with binary actions (V,A, {ui}), if S ⊆ V is a sufficient control set then every
T ⊆ V such that S ⊆ T is also a sufficient control set.
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Proof. Assume that S is a sufficient control set and let T ⊇ S. Because of
Lemma 1, there exists a monotone improvement path (xk)k=0,...,m from S to
V. Consider the associated sequence of players (ik) for k = 1, . . . ,m such
that xk+1 − xk = δik for each k. Consider now the subsequence of points
ik1 , ik2 , . . . , ikm′ that are in V \T and put yh = max{1T ,xkh} for h = 1, . . . ,m′.
By construction, we have that yh ≥ xkh+1−1. By the increasing difference
property (2) and the fact that (xk)k=0,...,m is a monotone improvement path
from S it follows that, for every h, putting i = ikh+1

,

ui(y
h+1)− ui(yh) = ui(1,y

h
−i)− ui(0,yh−i)

≥ ui(1,x
kh+1−1
−i )− ui(0,x

kh+1−1
−i )

= ui(x
kh+1)− ui(xkh+1−1)

≥ 0

This says that (yk)k=0,...,m′ is a monotone improvement path from T to V.

Remark 2. The notion of sufficient control set introduced in Definition 2 can
be reinterpreted in terms of the asynchronous best response dynamics. Given
a subset S ⊆ V, consider the Markov chain Xt on the strategy profile space
X whose transitions are described as follows. At every discrete time, a player,
among those in V \ S, is chosen uniformly at random and updates her played
action choosing uniformly at random among the actions of her current best
response to the other players’ strategy profile. Notice that the existence of an
improvement path from S to V is equivalent to say that, for every initial state
X0 such that X0

i = 1 for all i in S, the Markov chain Xt will reach the all-1
profile 1 in finite time with positive probability.

Actually, more is true. Consider any strategy profile x in X such that X0
i = 1

for all i in S, equivalently such that x = 1S′ for some superset S ′ ⊇ S. If S is
a sufficient control set, it follows from Proposition 1 that also S ′ is a sufficient.
This implies that there exists a monotone improvement path from S ′ to V and
thusXt will also reach 1 from x in finite time with positive probability. If the all-
1 strategy profile 1 is a strict Nash equilibrium (in the sense that all players have,
in that profile, a best response consisting of the singleton 1) then this argument
proves that S ⊆ V is a sufficient control set if and only if the corresponding
Markov chain Xt is absorbed in 1 in finite time with probability one. In the
more general case, if there are players for which 0 and 1 are always indifferent
independently from the behavior of the other players, then the condition on the
Markov chain is replaced by the existence of a set of profiles containing 1 on
which the Markov chain Xt gets trapped in finite time with probability one and
within such set it moves ergodically.

3 Optimal targeting in network coordination games

A notable example of super-modular games with binary actions is that of net-
work coordination games. In this section, after reviewing this class of games, we
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study the optimal targeting problem for two special instances. We first study
coordination games on arbitrary undirected networks where the players have
homogeneous thresholds characterizing their best responses and we highlight,
for this case, the connection of our problem with the notion of cohesiveness [16].
The second case we consider is that of coordination games on a complete graph
with heterogeneous thresholds for which, we show that the optimal targeting
problem admits a relatively simple analytical solution (c.f. [10, 18]).

Let G = (V, E ,W ) be a finite weighted directed graph, whereby V is the set
of nodes, E ⊆ V × V is the set of directed links, and W in RV×V+ is the weight
matrix, such that Wij > 0 if and only if there is a link (i, j) in E directed from
its tail node i to its head node j. A positive entry Wij of the weight matrix W
represents the weight of the link (i, j). Let wi =

∑
j 6=iWij denote the out-degree

of a node i in V. We shall assume that G contains no self-loops, equivalently,
that the diagonal elements of the weight matrix W are all zero, and no sinks,
i.e., that wi > 0 for every i in V. We shall refer to the graph G as simple if
Wij = Wji in {0, 1} (in this case W is completely determined by E).

A network coordination game on a graph G = (V, E ,W ) is a game (V,A, {ui})
with binary action set A = {0, 1} and utilities

ui(x) =
∑
j 6=i

Wij ((1− xi)(1− xj) + xixj) + cixi , (3)

where the constant ci in [−wi, wi] models a possible bias of player i towards
action 0 (if ci < 0) or action 1 (if ci > 0). In fact, the best response functions
are given by

Bi(x−i) =


{0} if 1

wi

∑
j 6=iWijxj < θi

{0, 1} if 1
wi

∑
j 6=iWijxj = θi

{1} if 1
wi

∑
j 6=iWijxj > θi

(4)

where

θi =
wi − ci

2wi
(5)

is the threshold of player i in V. In the special case when the graph is simple
and ci = 0 (so that the threshold is θi = 1/2) for every player i in V, this is also
known as the majority game.

3.1 Homogeneous network coordination games

In this subsection, we focus on the special case when the players all have the same
threshold θi = θ in [0, 1]. Sufficient control sets in this case can be equivalently
formulated in terms of the graph-theoretic notion of cohesiveness introduced in
[16]. Specifically, a subset of nodes S ⊆ V is called α-cohesive in a graph G if∑

j∈S
Wij ≥ αwi , ∀i ∈ S , (6)
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Figure 1: An optimal sufficient control set for the complete graph

For a simple graph, the above means that every node in S has at least a fraction
α of its neighbors within S (equivalently, at most a fraction 1 − α outside S).
Considerations in [16] and in [11] yield the following characterization of sufficient
control sets. Define a subset S ⊆ V uniformly no more than θ-cohesive if no
subset S ′ ⊆ S is θ′-cohesive for some θ′ > θ. The following is a consequence of
this definition and explicitly proven in [11] (see Proposition 4 therein).

Proposition 2. S ⊆ V is a sufficient control set for the network coordination
game where all players have threshold θ if and only if V \S is uniformly no more
than (1− θ)-cohesive.

This reformulation of the concept of sufficient control set is of limited interest
from the computational point of view. Indeed, checking that the set V \ S is
uniformly no more than (1 − θ)-cohesive involves an analysis of all possible
subsets of V \ S. Nevertheless, this characterization can be used to analyze
specific cases.

Below we present examples of sufficient control sets for the special case of
the majority game for specific simple connected graphs.

Example 1. In this example the game we are considering is always the majority
game (namely the network coordination game where all players have threshold
1/2) on a simple and connected graph G = (V, E ,W ).

• Let G be the complete graph with n nodes. Then, all subsets consisting
of bn/2c nodes are optimal sufficient control sets. This is because every
subset of dn/2e or fewer nodes is not θ-cohesive for any θ > 1/2. This says
that every subset of dn/2e nodes is uniformly no more than 1/2-cohesive
and result follows from Proposition 2. Optimality follows directly from the
fact that smaller subsets are never sufficient control sets.

• Let G be a simple connected graph where every node has degree at most
2. Then, every set consisting of a single node is a sufficient control set
(and is automatically optimal). To see this, notice that every strict subset
of players S ( V must possess a node i in S with Wij > 0 for some j in
V \ S (otherwise the graph would not be connected). This implies that the
set S cannot be θ-cohesive for any θ > 1/2. We can then conclude as in
the previous item. An instance is depicted in Figure 2.

• Let G be a tree. Then, the set of the leaf nodes is always a sufficient
control set. Indeed let S be any subset of the nodes not containing leaves

9



Figure 2: Optimal sufficient control sets for graphs with nodes of degree at most
2.

Figure 3: Two examples of sufficient control sets for a tree: the one consisting
of the leaves in green and the one consisting of the neighbors of the leaves in
red. This second one is optimal.

and consider a path (a walk with no repeated nodes) of maximum length all
consisting of nodes in S, say (i1, . . . , il). Notice that i1 can not have other
neighbors in S otherwise the path could be extendable. On the other hand,
since i1 is not a leaf in the tree, it must have degree at least 2, namely, at
least one neighbor outside of S. This implies that S can not be θ-cohesive
for θ > 1/2. We conclude using again Proposition 2. In general, such sets
are not optimal. Indeed, the argument above shows that also the set of
nodes that are neighbors of the leaves is a sufficient control set, typically
of smaller cardinality than the set of leaves. An example is reported in
Figure 3.

• Let G be the d-dimensional grid graph having node set V and link set E
respectively given by

V = {0, . . . , k − 1}d , E =

{
(a,b) ∈ V × V |

∑k

h=1
|ah − bh| = 1

}
.

Put Sl = {(a1, . . . , ad) ∈ V |
∑
ai = l}. We claim that Sk−1 is a sufficient

control set. To see this, notice that any a in Sl has exactly d neighbors
in Sl+1 if l < k − 1. Similarly, any a in Sl has exactly d neighbors in
Sl−1 if l > k − 1. Considering that the degree of every node is at most 2d
in G, a simple induction argument then allows to construct a monotone
improvement path from Sk−1 to the whole of V. It can be checked directly
that this control set is optimal for d = 1 and d = 2, while is not for d ≥ 3.
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Figure 4: An optimal sufficient control set for a 2-dimensional grid.

The examples considered above show that optimal sufficient control sets for
the majority game may exhibit different relative sizes depending on the consid-
ered graph. In complete graphs, their size is a constant fraction of the number
n of players and we expect the same to hold in very well connected graphs as
for instance random Erdos-Renji graphs. This conjecture is corroborated by
numerical simulations presented in Section 6. In contrast, for more loosely con-
nected graphs (trees, grids), the size of optimal sufficient control sets scales as
a negligible fraction of the size n.

3.2 Heterogeneous coordination game on the complete graph

In this subsection, we focus on network coordination games on the complete
graph, whereby Wij = 1 for every i 6= j in V. In contrast with the previous
subsection, we shall allow for full heterogeneity of the players’ thresholds, that
in this case are given by

θi =
n− ci − 1

2(n− 1)
, i ∈ V .

Our results show that optimal sufficient control sets can be completely charac-
terized in terms of the threshold distribution function

F (z) =
1

n
|{i ∈ V : θi ≤ z}| , z ∈ [0, 1] .

First, we have the following technical result.

Lemma 2. Consider a heterogeneous network coordination game on the com-
plete graph with threshold distribution F (z). Then, ∅ is a sufficient control set
if and only if

F (z) ≥ z , ∀z ∈ [0, 1] . (7)

Proof. We start with a general consideration that will be used to prove both
implications. Fix S ⊆ V and let x = 1S . Put n1 = |S|. It follows from (4) that
for every player i such that xi = 0, it holds Bi(x−i) = {0} if only if

θi >
n1
n− 1

. (8)

11



Suppose ∅ is not a sufficient control set and let S ( V be a set of maximum
cardinality for which there exists a monotone improvement set from ∅ to S. Put
x = 1S and n1 = |S| ≤ n − 1. It follows from previous consideration that all
players i such that xi = 0, have a threshold θi satisfying (8). Therefore,

n− n1 ≤
∣∣∣∣{i ∈ V : θi >

n1
n− 1

}∣∣∣∣ = n

(
1− F

(
n1
n− 1

))
By dividing both sides by n and rearranging terms, we obtain

F

(
n1
n− 1

)
≤ n1

n
<

n1
n− 1

. (9)

This implies that (7) does not hold true.
Suppose instead that (7) does not hold true and let z in [0, 1] be such that

F (z) < z. By the way F is defined, there exists n1 in {0, 1, . . . , n− 1} such that
F (z) = n1/n. Observe that n1 = nF (z) < zn implies that n1 ≤ zn − 1 and,
consequently,

n1
n− 1

≤ zn− 1

n− 1
≤ z .

Then, by monotonicity of the threshold distribution function we get

F

(
n1
n− 1

)
≤ F (z) =

n1
n
. (10)

Let S be a set consisting of n1 players with the least possible threshold and
let x = 1S . It then follows from (10) that each player i playing xi = 0 has
threshold satisfying (8) and hence, as observed at the beginning of this proof,
it is such that Bi(x−i) = {0}. This implies that there cannot be a monotone
improvement path from S to V. Consequently S is not a sufficient control set
and neither is ∅ by Proposition 1.

As an application of Lemma 2 we obtain the following characterization of
the optimal sufficient control sets for heterogeneous network coordination games
on the complete graph.

Proposition 3. Consider a heterogeneous network coordination game on the
complete graph with threshold distribution F (z). Then, the minimal size of a
sufficient control set is

M =

⌈
n · sup

0≤z≤1
[z − F (z)]+

⌉
.

In particular, every S consisting of M players i in V with the M largest thresh-
olds θi gives an optimal sufficient control set.

Proof. First observe that a subset of players S ⊆ V is a sufficient control set for
the network coordination game with utilities (3) if and only if ∅ is a sufficient
control set for the modified network coordination game with utilities

ui(x) =

{ ∑
j 6=i((1− xi)(1− xj) + xixj) + (n− 1)xi if i ∈ S∑
j 6=i((1− xi)(1− xj) + xixj) + cixi if i ∈ V \ S , (11)
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whereby all the players i in S have modified threshold θi = 0 and the rest of the
players j in V \ S have the same threshold θj = θj . Let F (z) be the threshold
distribution function of this modified game and observe that

0 ≤ F (z)− F (z) ≤ |S|/n , ∀z ∈ [0, 1] . (12)

We now show that any subset S ⊆ V such that |S| < M can not be a
sufficient control set. If M = 0 there is nothing to prove. Assume now that
M ≥ 1 and notice that we can write

n · sup
0≤z′≤1

[z′ − F (z′)]+ = M − 1 + ε (13)

for some ε > 0. Notice that, since sup0≤z′≤1 [z′ − F (z′)]+ > 0, we have that

sup
0≤z′≤1

[z′ − F (z′)]+ = sup
0≤z′≤1

[z′ − F (z′)] (14)

If |S| < M , then (12), (13), and (14) imply that, for every z in [0, 1],

0 ≤ n
(
F (z)− F (z)

)
≤ |S| ≤M − 1 = n · sup

0≤z′≤1
[z′ − F (z′)]− ε ,

This yields

z − F (z) ≥ z − F (z)− sup
0≤z′≤1

[z′ − F (z′)] + ε/n , ∀z ∈ [0, 1] .

and taking the sup on both sides, we finally obtain

sup
0≤z≤1

[
z − F (z)

]
≥ ε/n > 0

Then, Lemma 2 implies that ∅ is not a sufficient control set for the modified
network coordination game with utilities (11) and, consequently, S is not a
sufficient control set for the original game.

To complete the proof, we now consider a set S of M players with the highest
thresholds. In this case,

F (z) = min{1, F (z) +M/n} ≥ min

{
1, F (z) + sup

0≤z′≤1
[z′ − F (z′)]+

}
≥ z ,

for every z in [0, 1]. It then follows from Lemma 2 that ∅ is a sufficient control
set for the modified network coordination game with utilities (11), thus showing
that S is a sufficient control set for the original game.

4 Complexity of finding a sufficient control set

In this section, we study the complexity of finding sufficient control sets for
arbitrary super-modular games and prove that it is an NP-complete problem
[19, Section 7.4].

Formally, given a binary super-modular game and a positive integer n we
define SCS to be the logical proposition ”there exists a sufficient control set of
size less then or equal to s for the game”.
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Theorem 1. The problem SCS is NP-complete.

In order to prove Theorem 1, we will first show that SCS belongs to the
complexity class NP (c.f., [19, Definition 7.19]) and then that it is NP-hard.

Lemma 3. The problem SCS belongs to NP.

Proof. We show that, given an instance of a finite binary-action super-modular
game and a witness consisting in subset of players S ⊆ V, checking if S is a
sufficient control set can be done in a time growing proportionally to the square
of n−s, where n = |V| and s = |S|. In fact, this can be achieved by an iterative
algorithm that starts with time index t = 0 and profile x(0) = 1S and then
proceeds as follows. If there exists at least one player i in V such that

xi(t) = 0 , 1 ∈ Bi(x−i(t)) , (15)

then arbitrarily chose one such player i, increase the time index t by one unit and
define the new profile x(t) with xi(t) = 1 and x−i(t) = x−i(t− 1). Otherwise, if
no player i satisfying (15) exists, then halt and return the current value of the
time index t. Since, by Proposition 1, every superset of a sufficient control set is
itself a sufficient control set, we have that S is a sufficient control set if and only
if the algorithm defined above terminates with t = n − s. Clearly, the number
of steps of the algorithm is at most n − s and at the t-th step, it is necessary
to compute the best responses of at most n − t players, so that the algorithm
effectively requires at most

∑n−s−1
t=0 (n− t) = (n− s)(n− s+ 1)/2 best response

computations. This proves that the problem belongs to the complexity class
NP.

We will now prove that SCS is NP-hard by showing that the 3-SAT problem
[19, Ch. 7.2] can be reduced, in polynomial time, to a particular instance of
SCS. Consider any instance I = (X,C) of the 3-SAT problem, consisting of a
set of variables X = {x1, x2 · · ·xs−1} and clauses C = {c1, c2, · · · cm}, such that
in every clause in C exactly three, possibly negated, variables from X appear.
Then, we associate to I a simple graph GI = (VI , EI) of order |VI | = 2s + 5m
and size |EI | = s+ 8m as follows. The node set VI is the union of the following
six disjoint sets of nodes:

• A set W = {w1, w2, . . . , wm}, whose elements correspond each to a clause
in C;

• A set Y = {y1, y2, . . . , ys−1}, whose elements correspond each to a variable
in I, with the interpretation that yi encodes xi if xi is true;

• A set Ȳ = {ȳ1, ȳ2, . . . , ȳs−1}, whose elements correspond each to a variable
in I, with the interpretation that ȳi encodes xi if xi is false;

• A single node z, whose role will be to break possible ties;

• Two sets of leaves L and M, of cardinality |L| = 3m and |M| = m+ 1.
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Ȳ

W zL M

Links in EI only connect pairs of nodes belonging to different sets and in par-
ticular:

(1) A node wj in W is connected to a node yi in Y if and only if the variable
xi appears in the clause cj and to a node ȳi in Ȳ if and only if the variable
x̄i appears in the clause cj ;

(2) For each clause containing the variable xi, node yi in Y is connected to a
different node in L, and for each clause containing the variable xi, node yi
in Y is connected to a different node in L, in such a way that the elements
of L are each connected to exactly one element either of Y or of Y;

(3) The node z is connected to every element of W and of M;

(4) For every i = 1, . . . , s− 1, node yi is connected to the corresponding node
ȳi.

There is a total of 3m links of type (1), 3m links of type (2), 2m + 1 links of
type (3), and s−1 links of type (4). Nodes in L andM all have degree 1, nodes
in W all have degree 4, node z has degree 2m+ 1, while the degree of a node yi
in Y (respectively yi in Y) is 1 plus twice the number of clauses the variable xi
(respectively, xi) appears in.

Now, we shall consider the majority game on the graph GI , whereby each
player in VI has action set {0, 1} and the utility of player i is equal to the number
of her neighbors that play the same action as her. We then ask the question ”is
there a sufficient control set of size less then or equal to s for this game?” We
will now show that the answer to this question is true if and only if the instance
of 3-SAT is satisfiable.

Lemma 4. Let I = (X,C) be an instance of the 3-SAT problem, and let GI =
(VI , EI) be the simple graph defined above. If I is satisfiable with a solution x∗

in {0, 1}s−1, then

S = {z} ∪ {yi : x∗i = 1} ∪ {yi : x∗i = 0}

is a sufficient control set of size s for the majority game on GI .

Proof. Since I is satisfied by x∗, for every clause cj in C there exists i in
{1, . . . , s − 1} such that either xi appears in cj and x∗i = 1 or xi appears in
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cj and x∗i = 1. Thus, in the graph GI , all clause-related nodes in W have at
least one neighbor in (Y∪Y)∩S. Since they are all connected to z in S also, and
have all degree 4 in GI , this implies that there exists a monotone improvement
path from S to S ∪W.

Now, consider a variable xi in X and let mi be the number of clauses it
appears in. Then, notice that, if the corresponding node yi in Y does not
belong to S, it necessarily has one neighbor in S (yi) as well as mi neighbors
in W (those corresponding to the clauses it belongs to). Since its degree in GI
is exactly 2mi + 1, this implies that S ∪W ∪ Y can be reached by a monotone
improvement path from S ∪ W, hence from S. Analogously, one proves that
S ∪W ∪ Y ∪ Y can be reached by a monotone improvement path from S.

Finally, since every remaining node in L∪M is of degree one and connected
to a node in Y ∪ Y ∪ {z}, we get that the monotone improvement path from
S can be extended to reach the whole node set VI , thus proving that S is a
sufficient control set.

We will now show that the converse of Lemma 4 holds true.

Lemma 5. Let I = (X,C) be an instance of the 3-SAT problem, and let GI =
(VI , EI) be the simple graph defined above. If there is a sufficient control set S
of size s for the majority game on GI , then I is solvable.

Proof. We will first show that there exists a sufficient control set S ′ of the same
size s containing z and exactly one node between yi and ȳi for 1 ≤ i ≤ s − 1.
We argue as follows. First, notice that, for every i = 1, . . . , s − 1, at least one
node among yi, ȳi, and the leaves in L connected to them must be in S for,
otherwise, it is easy to check that no improvement path would ever be able to
reach the pair {yi, ȳi}. Similarly, at least one element among z and the leaves
in M must be in S.
In case when neither yi nor ȳi belong to S, removing the leaf connected to them
that is in S and adding its sole neighbor (either yi or ȳi) maintains the control
set sufficient and preserves its size. We construct S ′ in this way replacing leaves
with variable nodes and finally applying the same substitution idea to include
the node z removing a leaf connected to it.

Now observe that, because of the structure of the graph and since S ′ contains
no leaves in L ∪M, in any monotone improvement path from S ′ to VI , a node
in (Y ∪ Y) \ S ′ can only appear after all nodes in W have already appeared.
Since all nodes in W have degree 4, this says that each of them must have at
least two neighbors in S ′. This implies that every node inW must have at least
one neighbor in S ′ \ {z} ⊆ Y ∪ Y.

Consider now the candidate solution x∗ in {0, 1}s−1 that has x∗i = 1 if and
only if yi in S ′. Then, it follows from the argument above that for every clause
cj there exists i in {1, . . . , s − 1} such that either xi appears in cj and x∗i = 1
or xi appears in cj and x∗i = 1. This proves that I is solvable.

Lemma 4 and Lemma 5 thus show that starting from an instance of the
3-SAT, we could build an instance of the SCS problem in polynomial time and
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of polynomial size, whose answer is the same as that of the 3-SAT. This shows
that SCS is NP-hard. Together with Lemma 3, this implies that SCS is an
NP-complete problem.

5 A distributed algorithm for optimal control
sets

The characterization of sufficient control sets through the concept of monotone
improvement paths (Lemma 1) suggests the possibility that such sets may be
searched for by starting from the all-1 profile 1 and iteratively replacing 1’s
with 0’s in the attempt to follow backwards a monotone improvement path. In
order to capture this intuition, in this section we introduce a family of discrete-
time Markov chains (Zεt )t≥0 on the strategy profile space X , parameterized by
a scalar ε in [0, 1]. We will then prove that, for 0 < ε ≤ 1, the Markov chain
(Zεt )t≥0 is time-reversible and that, as ε vanishes, its stationary distribution
concentrates on the family of optimal sufficient control sets.

The dynamics of the Markov chain Zεt are described as follows: at every
discrete time t = 0, 1 . . ., given that Zεt = z, a player i is chosen uniformly at
random from the whole player set V. Then, if ui(1, z−i) < ui(0, z−i), the state
is not changed, i.e., Zεt+1 = z. Otherwise, if ui(1, z−i) ≥ ui(0, z−i), then if the
current action of player i is zi = 1 it is changed to 0 with probability 1, while if
her current action is zi = 0, it is changed to 1 with probability ε. The transition
probabilities of this Markov chain are then given by

P εx,y =

 1/n if y = x− δi and ui(y) ≤ ui(x)
ε/n if y = x + δi and ui(y) ≥ ui(x)
0 if otherwise ,

(16)

for every x,y in X .
Notice that, for ε = 0, only transitions from 1 to 0 are allowed. In fact, in

this case, the Markov chain Z0
t has absorbing states. Specifically, let

Z = {x ∈ X | P(∃t0 ≥ 0 : Z0
t0 = x | Z0

0 = 1) > 0} (17)

be the set of all states that are reachable by the Markov chain Z0
t when started

from Z0
0 = 1 and let

Z∞ = {x ∈ X | P(∃t0 ≥ 0 : Z0
t = x∀t ≥ t0 | Z0

0 = 1) > 0} (18)

be the set of absorbing states reachable by Z0
t from Z0

0 = 1. We have the
following result.

Proposition 4. For a finite super-modular game with binary actions (V,A, {ui}),
let Z and Z∞ be defined as in (17) and (18), respectively. Then,

(i) S ⊆ V is a sufficient control set if and only if 1S in Z;

(ii) if S is a minimal sufficient control set then 1S in Z∞.
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Proof. (i) By definition, x = 1S belongs to the set of reachable states Z if and
only if there exists a sequence of strategy profiles (yk)k=0,...,l, such that y0 = 1,
yl = 1S , and

yk = yk−1 − δik , uik(yk) ≤ uik(yk−1) 1 ≤ k ≤ l . (19)

Notice that (19) is equivalent to say that the reversed path (xk)k=0,...,l with
xk = yl−k for 0 ≤ k ≤ l is a monotone improvement path from S to V. By
Lemma 1, this is equivalent to say that S is a sufficient control set.

(ii) If S is a minimal sufficient control set, we know from point (i) that the
strategy profile 1S belongs to the reachable set Z. Now if, by contradiction, 1S
did not belong to the set of reachable absorbing states Z∞, then, from x = 1S ,
the Markov chain Z0

t could reach, in one step, a different state x′ = 1S′ with
S ′ ( S, thus contradicting the minimality assumption on S.

Point (i) of Proposition 4 implies that the problem of finding optimal suffi-
cient control sets can be equivalently stated as the problem of finding strategy
profiles x in Z of minimal l1-norm ||x||1 =

∑
k xk, i.e., that S is an optimal

sufficient control set if and only if

1S ∈ argminx∈Z ||x||1 .

Point (ii) implies that we can actually restrict the minimization above to the set
Z∞ of absorbing states of the Markov chain Z0

t that are reachable from the all-1
strategy profile. However, as the example below shows, Z∞ may contain profiles
corresponding to sufficient control sets that are suboptimal and, possibly, not
even minimal.

Example 2. Consider the majority game on the ring graph with four nodes
{1, 2, 3, 4}. Then, z1 = (1, 0, 1, 0) in Z∞ corresponds to the sufficient control
set S = {1, 3}, but it is not minimal since {1} is also a sufficient control set.

As a consequence, by simply simulating the Markov chain Z0
t started from

Z0
0 = 1, we are not guaranteed to reach an optimal sufficient control set. To

overcome this issue, we will instead use the Markov chain Zεt with ε > 0, which,
as shown below, is time-reversible and ergodic on whole set Z of reachable
strategy profiles and, hence, it does not get trapped in non-optimal control sets,
and at the same time has a stationary distribution concentrating on the set of
optimal control sets as the parameter ε vanishes.

Theorem 2. For a finite super-modular game with binary actions (V,A, {ui}),
let Z be defined as in (17). Then, for ε > 0, the Markov chain Zεt with transition
probabilities (16)

(i) keeps the set Z invariant, namely, if Zε0 belongs to Z, then Zεt belongs to
Z for every t ≥ 0;

(ii) is time-reversible and ergodic on the set Z;
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(iii) has stationary probability

µεx :=
1

Kε
ε||x||1 , x ∈ Z , (20)

where Kε =
∑

x∈Z ε
||x||1 . In particular, µε converges to a probability

measure µ concentrated on the set of profiles corresponding to optimal
sufficient control sets as ε vanishes.

Proof. (i) Let x in Z be strategy profile that is reachable from the all-1 profile
by the Markov chain Z0

t and let y in X be a strategy profile such that P εx,y > 0.
We need to prove that y belongs to Z. If y = x − δi for some player i in V,
then it follows from (16) that 0 < P εx,y = 1/n and then P 0

x,y = 1/n > 0, thus
implying that the strategy profile y belongs to Z.

On the other hand, if y = x + δi for some player i in V, we argue as follows.
Since x in Z is a strategy profile reachable by the Markov chain Z0

t from the
all-1 profile, we can find a sequence of profiles (xk)k=0,...,l such that x0 = 1 and
xl = x and P 0

xk−1,xk > 0 for every k = 1, . . . , l. From (16), this is equivalent to

xk = xk−1−δik and uik(xk) ≤ uik(xk−1) for some ik in V, for every k = 1, . . . , l.
Let s in {1, . . . , l} be such that is = i and consider the sequence (zk)k=0,...,l−1
such that zk = xk for k ≤ s− 1 and zk = xk+1 + δi for k ≥ s. Notice that, for
k ≥ s,

zk = xk+1 + δi = xk + δi − δik+1
= zk−1 − δik+1

(21)

Relation (21) and the super-modularity property (2) yield

uik+1
(xk+1) ≤ uik+1

(xk)⇒ uik+1
(zk) ≤ uik+1

(zk−1)

for every k ≥ s − 1. This implies that P 0
zk−1,zk > 0 for every k = 1, . . . , l − 1.

Since zl−1 = xl + δi = y, this proves that the strategy profile y belongs to Z.
(ii) Notice that

ε||x||1P εx,y = ε||y||1P εy,x , (22)

for every two strategy profiles x and y in X . This implies that the Markov
chain Zεt is time-reversible with respect to the stationary distribution (20).

Since the transitions that have positive probability for the Markov chain Z0
t

have also positive probability for the Markov chain Zεt , we have that all profiles
in Z can be reached from the all-1 profile by the Markov chain Zεt . Moreover,
Equation (22) implies that a transition probability P εx,y is positive if and only
if the reverse transition P εy,x is positive. This implies that 1 is reachable from
any other profile in Z and thus we conclude that Zεt is ergodic on Z.

(iii) Ergodicity and Equation (22) imply that, for every ε > 0, the unique
stationary distribution of the Markov chain Zεt on the set Z has the form (20).
As ε vanishes, a direct check shows that the stationary distribution µε converges
to a uniform distribution on the set argminx∈Z ||x||1. Using Proposition 4, the
set argminx∈Z ||x||1 coincides with the set of optimal sufficient control sets, thus
completing the proof.
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Figure 5: Size of Control Sets for random graphs E(n, p) with p = 0.4 (left) and
p = 4 logn

n (right)

6 Numerical simulations

In this section, we briefly present some numerical simulations of the proposed
algorithm for the case of the majority game on Erdös-Renyi random graphs. The
Erdös-Renyi graph E(n, p) is a random undirected graph with n nodes where
undirected links between pairs of nodes are present with probability p in [0, 1]
independently from one another. We consider the order of the graph n ranging
up to 70 and two different scalings for the probability p. In the first case, we
consider a constant p = 0.4 independent from the graph order n, thus leading
to quite a densely connected graph. In contrast, in the second case, we choose
p = 4 logn

n , a choice leading to a more sparse graph that nevertheless remains
connected with high probability as the graph order n grows large [5, Theorem
2.8.1]. We run the randomized algorithm Zεt , with ε = 0.3, for a number of
steps proportional to the square of the size of the graph (exactly 100n2) and
the control set returned is the one of minimum cardinality during the walk. For
small values of n, an explicit comparison with the optimal solution, obtained
through exhaustive search, proves the efficiency of our approach. Simulations
are reported in Figure 5. In Figure 6 we have made a comparison with respect to
a naive heuristics selecting the highest degree nodes. Specifically, for each value
of n, we have considered the highest degree nodes set of the same cardinality
as the one found by our algorithm and we have plotted the percentage of the
graph nodes that would turn to 1 using that specific control set. When n is
sufficiently large this percentage is around 30% and shows how the degree is not
the right property to look at in the optimization of these control sets.

7 Conclusion

In this paper, we have studied a novel optimal targeting problem for super-
modular games with binary action set and finitely many players. The considered
problem consists in the selection of a subset of players of minimum size such
that, when the actions of these players are forced to the value 1, there exists
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Figure 6: Coverage obtained by taking the k highest degree node, with k the
size of the set found by the algorithm for random graphs E(n, p) with p = 0.4
(left) and p = 4 logn

n (right)

a monotone improvement path from the minimal to the maximal pure strategy
Nash equilibrium of the constrained super-modular game. Our main contribu-
tions consist in: (i) showing that this is an NP-complete problem; (ii) proposing
a computationally simple randomized algorithm that provably selects an opti-
mal solution with high probability. Finally, we have presented some numerical
simulations for the case of the majority game on Erdös-Renyi random graphs.
We have compared the performance of our algorithm with that of an exhaus-
tive search (for small problem sizes) and that of a simple heuristic where target
players are those with the highest centrality in the graph. The first such com-
parison validates our theoretical results. The second comparison shows that the
centrality-based heuristic performs as much as 70% worse than our algorithm
in this problem, thus highlighting the relevance of our analysis.

The problem studied in this paper can be considered a particular instance
of a control problem in a game-theoretic framework. Our results show how the
structure of the game, i.e., super-modularity, can be leveraged to get insight
into the solution of the control problem. Several directions for future research
can be considered. For instance, in the context of super-modular games, natural
generalizations include the extension to non-binary action sets and the consid-
eration of possibly more complex actions altering the utilities of the controlled
players rather than directly forcing their action to a desired one. Our techniques
strongly leverage on the super-modularity assumption. Extensions to more gen-
eral classes of games are challenging and would likely require the development
of different technical tools.
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