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Optimal parameter selection for the

alternating direction method of multipliers

(ADMM): quadratic problems
Euhanna Ghadimi, André Teixeira, Iman Shames, and Mikael Johansson

Abstract

The alternating direction method of multipliers (ADMM) hasemerged as a powerful technique for large-

scale structured optimization. Despite many recent results on the convergence properties of ADMM, a quantitative

characterization of the impact of the algorithm parameterson the convergence times of the method is still lacking.

In this paper we find the optimal algorithm parameters that minimize the convergence factor of the ADMM iterates

in the context ofℓ2-regularized minimization and constrained quadratic programming. Numerical examples show

that our parameter selection rules significantly outperform existing alternatives in the literature.

I. I NTRODUCTION

The alternating direction method of multipliers is a powerful algorithm for solving structured convex opti-

mization problems. While the ADMM method was introduced foroptimization in the 1970’s, its origins can

be traced back to techniques for solving elliptic and parabolic partial difference equations developed in the

1950’s (see [1] and references therein). ADMM enjoys the strong convergence properties of the method of

multipliers and the decomposability property of dual ascent, and is particularly useful for solving optimization

problems that are too large to be handled by generic optimization solvers. The method has found a large number

of applications in diverse areas such as compressed sensing[2], regularized estimation [3], image processing [4],

machine learning [5], and resource allocation in wireless networks [6]. This broad range of applications has

triggered a strong recent interest in developing a better understanding of the theoretical properties of ADMM[7],

[8], [9].

Mathematical decomposition is a classical approach for parallelizing numerical optimization algorithms. If the

decision problem has a favorable structure, decompositiontechniques such as primal and dual decomposition

allow to distribute the computations on multiple processors[10], [11]. The processors are coordinated towards

optimality by solving a suitable master problem, typicallyusing gradient or subgradient techniques. If problem
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parameters such as Lipschitz constants and convexity parameters of the cost function are available, the optimal

step-size parameters and associated convergence rates arewell-known (e.g., [12]). A drawback of the gradient

method is that it is sensitive to the choice of the step-size,even to the point where poor parameter selection

can lead to algorithm divergence. In contrast, the ADMM technique is surprisingly robust to poorly selected

algorithm parameters: under mild conditions, the method isguaranteed to converge for all positive values of its

single parameter. Recently, an intense research effort hasbeen devoted to establishing the rate of convergence

of the ADMM method. It is now known that if the objective functions are strongly convex and have Lipschitz-

continuous gradients, then the iterates produced by the ADMM algorithm converge linearly to the optimum in

a certain distance metric e.g. [7]. The application of ADMM to quadratic problems was considered in [9] and it

was conjectured that the iterates converge linearly in the neighborhood of the optimal solution. It is important

to stress that even when the ADMM method has linear convergence rate, the number of iterations ensuring a

desired accuracy, i.e. the convergencetime, is heavily affected by the choice of the algorithm parameter. We will

show that a poor parameter selection can result in arbitrarily large convergence times for the ADMM algorithm.

The aim of the present paper is to contribute to the understanding of the convergence properties of the

ADMM method. Specifically, we derive the algorithm parameters that minimize the convergence factor of the

ADMM iterations for two classes of quadratic optimization problems:ℓ2-regularized quadratic minimization and

quadratic programming with linear inequality constraints. In both cases, we establish linear convergence rates

and develop techniques to minimize the convergence factorsof the ADMM iterates. These techniques allow us

to give explicit expressions for the optimal algorithm parameters and the associated convergence factors. We

also study over-relaxed ADMM iterations and demonstrate how to jointly choose the ADMM parameter and the

over-relaxation parameter to improve the convergence times even further. We have chosen to focus on quadratic

problems, since they allow for analytical tractability, yet have vast applications in estimation [13], multi-agent

systems [14] and control[15]. Furthermore, many complex problems can be reformulated as or approximated

by QPs [16], and optimal ADMM parameters for QP’s can be used as a benchmark for more complex ADMM

sub-problems e.g.ℓ1-regularized problems [1]. To the best of our knowledge, this is one of the first works that

addresses the problem of optimal parameter selection for ADMM. A few recent papers have focused on the

optimal parameter selection of ADMM algorithm for some variations of distributed convex programming subject

to linear equality constraints e.g. [17], [18].

The paper is organized as follows. In Section II, we derive some preliminary results on fixed-point iterations

and review the necessary background on the ADMM method. Section III studies ℓ2-regularized quadratic

programming and gives explicit expressions for the jointlyoptimal step-size and acceleration parameter that

minimize the convergence factor. We then shift our focus to the quadratic programming with linear inequality

constraints and derive the optimal step-sizes for such problems in Section IV. We also consider two acceleration

techniques and discuss inexpensive ways to improve the speed of convergence. Our results are illustrated through

numerical examples in Section V. In Section V we perform an extensive Model Predictive Control (MPC) case

study and evaluate the performance of ADMM with the proposedparameter selection rules. A comparison

with an accelerated ADMM method from the literature is also performed. Final remarks and future directions
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conclude the paper.

A. Notation

We denote the set of real numbers withR and define the set of positive (nonnegative) real numbers asR++

(R+). Let Sn be the set of real symmetric matrices of dimensionn × n. The set of positive definite (semi-

definite)n × n matrices is denoted bySn
++ (Sn

+). With I and Im, we symbolize the identity matrix and the

identity matrix of a dimensionm×m, respectively.

Given a matrixA ∈ Rn×m, let N (A) , {x ∈ Rm| Ax = 0} be the null-space ofA and denote the range

space ofA by Im(A) , {y ∈ Rn| y = Ax, x ∈ Rm}. We say the nullity ofA is 0 (of zero dimensional)

whenN (A) only contains0. The transpose ofA is represented byA⊤ and forA with full-column rank we

defineA† , (A⊤A)−1A⊤ as the pseudo-inverse ofA. Given a subspaceX ⊆ Rn, ΠX ∈ Rn×n denotes the

orthogonal projector ontoX , while X⊥ denotes the orthogonal complement ofX .

For a square matrixA with an eigenvalueλ we call the space spanned by all the eigenvectors corresponding

to the eigenvalueλ the λ-eigenspace ofA. The i-th smallest in modulus eigenvalue is indicated byλi(·).
The spectral radius of a matrixA is denoted byr(A). The vector (matrix)p-norm is denoted by‖ · ‖p and

‖ · ‖ = ‖ · ‖2 is the Euclidean (spectral) norm of its vector (matrix) argument. Given a subspaceX ⊆ Rn and

a matrixA ∈ Rn×n, denote‖A‖X = maxx∈X
‖Ax‖
‖x‖ as the spectral norm ofA restricted to the subspaceX .

Givenz ∈ Rn, the diagonal matrixZ ∈ Rn×n with Zii = zi andZij = 0 for j 6= i is denoted byZ = diag(z).

Moreover,z ≥ 0 denotes the element-wise inequality,|z| corresponds to the element-wise absolute value ofz,

andI+(z) is the indicator function of the positive orthant defined asI+(z) = 0 for z ≥ 0 andI+(z) = +∞
otherwise.

Consider a sequence{xk} converging to a fixed-pointx⋆ ∈ Rn. The convergence factorof the converging

sequence is defined as

ζ , sup
k: xk 6=x⋆

‖xk+1 − x⋆‖
‖xk − x⋆‖ . (1)

The sequence{xk} is said to converge Q-sublinearly ifζ = 1, Q-linearly if ζk ∈ (0, 1), and Q-superlinearly if

ζ = 0. Moreover, we say that convergence is R-linear if there is a nonnegative scalar sequence{νk} such that

‖xk − x⋆‖ ≤ νk for all k and{νk} converges Q-linearly to0 [19] 1. In this paper, we omit the letter Q while

referring the convergence rate.

Given an initial conditionx0 such that‖x0 − x⋆‖ ≤ σ, we define theε-solution timeπε as the smallest

iteration count to ensure that‖xk‖ ≤ ε holds for allk ≥ πε. For linearly converging sequences withζ ∈ (0, 1)

the ε-solution time is given byπε ,
log(σ) − log(ε)

− log(ζ)
. If the 0-solution time is finite for allx0, we say that

the sequence converges in finite time. As for linearly converging sequencesζ < 1, the ε-solution timeπε is

reduced by minimizingζ.

II. BACKGROUND AND PRELIMINARIES

This section presents preliminary results on fixed-point iterations and the ADMM method.

1The letters Q and R stand for quotient and root, respectively.
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A. Fixed-point iterations

Consider the following iterative process

xk+1 = Txk, (2)

wherexk ∈ Rn andT ∈ Sn×n. AssumeT hasm < n eigenvalues at1 and letV ∈ Rn×m be a matrix whose

columns span the1-eigenspace ofT so thatTV = V .

Next we determine the properties ofT such that, for any given starting pointx0, the iteration in (2) converges

to a fixed-point that is the projection of thex0 into the1-eigenspace ofT , i.e.

x⋆ , lim
k→∞

xk = lim
k→∞

T kx0 = ΠIm(V )x
0. (3)

Proposition 1: The iterations (2) converge to a fixed-point in Im(V ) if and only if

r
(

T −ΠIm(V )

)

< 1. (4)

Proof: The result is an extension of [20, Theorem 1] for the case of1-eigenspace ofT with dimension

m > 1. The proof is similar to this citation and is therefore omitted.

Proposition 1 shows that whenT ∈ Sn, the fixed-point iteration (2) is guaranteed to converge to apoint given

by (3) if all the non-unitary eigenvalues ofT have magnitudes strictly smaller than 1. From (2) one sees that

xk+1 − x⋆ =
(

T −ΠIm(V )

)

xk =
(

T −ΠIm(V )

)

(xk − x⋆)

Hence, the convergence factor of (2) is the modulus of the largest non-unit eigenvalue ofT .

B. The ADMM method

The ADMM algorithm solves problems of the form

minimize f(x) + g(z)

subject to Ax+Bz = c
(5)

wheref and g are convex functions,x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp; see [1] for a

detailed review.

Relevant examples that appear in this form are, e.g. regularized estimation, wheref is the estimator loss and

g is the regularization term, and various networked optimization problems,e.g. [21], [1]. The method is based

on theaugmented Lagrangian

Lρ(x, z, µ) = f(x) + g(z) +
ρ

2
‖Ax+Bz − c‖22 + µT (Ax+Bz − c),

and performs sequential minimization of thex andz variables followed by a dual variable update:

xk+1 = argmin
x

Lρ(x, z
k, µk),

zk+1 = argmin
z

Lρ(x
k+1, z, µk), (6)

µk+1 = µk + ρ(Axk+1 +Bzk+1 − c),
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for some arbitraryx0 ∈ Rn, z0 ∈ Rm, andµ0 ∈ Rp. It is often convenient to express the iterations in terms

of the scaled dual variableu = µ/ρ:

xk+1 = argmin
x

{

f(x) +
ρ

2
‖Ax+Bzk − c+ uk‖22

}

,

zk+1 = argmin
z

{

g(z) +
ρ

2
‖Axk+1 +Bz − c+ uk‖22

}

,

uk+1 = uk +Axk+1 +Bzk+1 − c.

(7)

ADMM is particularly useful when thex- andz-minimizations can be carried out efficiently, for example when

they admit closed-form expressions. Examples of such problems include linear and quadratic programming,

basis pursuit,ℓ1-regularized minimization, and model fitting problems to name a few (see [1] for a complete

discussion). One advantage of the ADMM method is that there is only a single algorithm parameter,ρ, and

under rather mild conditions, the method can be shown to converge for all values of the parameter; see [1],

[22] and references therein. As discussed in the introduction, this contrasts the gradient method whose iterates

diverge if the step-size parameter is chosen too large. However,ρ has a direct impact on the convergence factor

of the algorithm, and inadequate tuning of this parameter can render the method slow. The convergence of

ADMM is often characterized in terms of the residuals

rk+1 = Axk+1 +Bzk+1 − c, (8)

sk+1 = ρA⊤B(zk+1 − zk), (9)

termed theprimal anddual residuals, respectively [1]. One approach for improving the convergence properties

of the algorithm is to also account for past iterates when computing the next ones. This technique is called

relaxationand amounts to replacingAxk+1 with hk+1 = αkAxk+1−(1−αk)(Bzk−c) in thez- andu-updates

[1], yielding

zk+1 = argmin
z

{

g(z) +
ρ

2

∥
∥hk+1 +Bz − c+ uk

∥
∥
2

2

}

,

uk+1 = uk + hk+1 +Bzk+1 − c.

(10)

The parameterαk ∈ (0, 2) is called therelaxation parameter. Note that lettingαk = 1 for all k recovers

the original ADMM iterations (7). Empirical studies show that over-relaxation,i.e. letting αk > 1, is often

advantageous and the guidelineαk ∈ [1.5, 1.8] has been proposed [23].

In the rest of this paper, we will consider the traditional ADMM iterations (6) and the relaxed version (10)

for different classes of quadratic problems, and derive explicit expressions for the step-sizeρ and the relaxation

parameterα that minimize the convergence factors.

III. O PTIMAL CONVERGENCE FACTOR FORℓ2-REGULARIZED QUADRATIC MINIMIZATION

Regularized estimation problems

minimize f(x) +
δ

2
‖x‖qp

where δ > 0 are abound in statistics, machine learning, and control. Inparticular,ℓ1-regularized estimation

wheref(x) is quadratic andp = q = 1, and sum of normsregularization wheref(x) is quadratic,p = 2,
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and q = 1, have recently received significant attention [24]. In thissection we will focus onℓ2-regularized

estimation, wheref(x) is quadratic andp = q = 2, i.e.

minimize
1

2
x⊤Qx+ q⊤x+

δ

2
‖z‖22

subject to x− z = 0,
(11)

for Q ∈ Sn
++, x, q, z ∈ Rn and constant regularization parameterδ ∈ R+. While these problems can be solved

explicitly and do not motivate the ADMM machinery per se, they provide insight into the step-size selection

for ADMM and allow us to compare the performance of an optimally tuned ADMM to direct alternatives (see

Section V).

A. Standard ADMM iterations

The standard ADMM iterations are given by

xk+1 = (Q+ ρI)−1(ρzk − µk − q),

zk+1 =
µk + ρxk+1

δ + ρ
,

µk+1 = µk + ρ(xk+1 − zk+1).

(12)

The z-update implies thatµk = (δ + ρ)zk+1 − ρxk+1, so theµ-update can be re-written as

µk+1 = (δ + ρ)zk+1 − ρxk+1 + ρ(xk+1 − zk+1) = δzk+1.

Hence, to study the convergence of (12) one can investigate how the errors associated withxk or zk vanish.

Inserting thex-update into thez-update and using the fact thatµk = δzk, we find

zk+1 =
1

δ + ρ

(

δI + ρ(ρ− δ) (Q+ ρI)
−1
)

︸ ︷︷ ︸

E

zk − ρ

δ + ρ
(Q + ρI)−1q.

(13)

Let z⋆ be a fixed-point of (13), i.e.z⋆ = Ez⋆ − ρ(Q+ ρI)−1

δ + ρ
q. The dual errorek+1 , zk+1 − z⋆ then evolves

as

ek+1 = Eek. (14)

A direct analysis of the error dynamics (14) allows us to characterize the convergence of (12):

Theorem 1:For all values of the step-sizeρ > 0 and regularization parameterδ > 0, bothxk andzk in the

ADMM iterations (12) converge tox⋆ = z⋆, the solution of optimization problem (11). Moreover,zk+1 − z⋆

converges at linear rateζ ∈ (0, 1) for all k ≥ 0. The pair of the optimal constant step-sizeρ⋆ and convergence

factor ζ⋆ are given as

ρ⋆ =







√

δλ1(Q) if δ < λ1(Q),

√

δλn(Q) if δ > λn(Q),

δ otherwise.

ζ⋆ =







(

1 +
δ + λ1(Q)

2
√

δλ1(Q)

)−1

if δ < λ1(Q),

(

1 +
δ + λn(Q)

2
√

δλn(Q)

)−1

if δ > λn(Q),

1

2
otherwise.

(15)

Proof: See appendix for this and the rest of the proofs.
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Corollary 1: Consider the error dynamics described by (14) andE in (13). Forρ = δ,

λi(E) = 1/2, i = 1, . . . , n,

and the convergence factor of the error dynamics (14) is independent ofQ.

Remark 1:Note that the convergence factors in Theorem 1 and Corollary1 are guaranteed for all initial

values, and that iterates generated from specific initial values might converge even faster. Furthermore, the

results focus on the dual error. For example, in Algorithm (12) with ρ = δ and initial conditionz0 = 0, µ0 = 0,

thex-iterates converge in one iteration sincex1 = −(Q+ δI)−1q = x⋆. However, the constraint in (11) is not

satisfied and a straightforward calculation shows thatek+1 = 1/2ek. Thus, althoughxk = x⋆ for k ≥ 1, the

dual residual‖ek‖ = ‖zk − z⋆‖ decays linearly with a factor of1/2.

Remark 2:The analysis above also applies to the more general case withcost function
1

2
x̄⊤Q̄x̄ + q̄⊤x̄ +

δ

2
z̄⊤P̄ z̄ whereP̄ ∈ Sn

++. A change of variablesz = P̄ 1/2z̄ is then applied to transform the problem into the

form (11) with x = P̄ 1/2x̄, q = P̄−1/2q̄, andQ = P̄−1/2Q̄P̄−1/2.

B. Over-relaxed ADMM iterations

The over-relaxed ADMM iterations for (11) can be found by replacing xk+1 by αxk+1 + (1 − α)zk in the

z− andµ-updates of (12). The resulting iterations take the form

xk+1 = (Q+ ρI)−1(ρzk − µk − q),

zk+1 =
µk + ρ(αxk+1 + (1 − α)zk)

δ + ρ
,

µk+1 = µk + ρ
(
α(xk+1 − zk+1) + (1− α)

(
zk − zk+1

))
.

(16)

The next result demonstrates that in a certain range ofα it is possible to obtain a guaranteed improvement of

the convergence factor compared to the classical iterations (12).

Theorem 2:Consider theℓ2-regularized quadratic minimization problem (11) and its associated over-relaxed

ADMM iterations (16). For all positive step-sizesρ > 0 and all relaxation parametersα ∈ (0, 2min
i
{(λi(Q) +

ρ)(ρ+ δ)/(ρδ+ ρλi(Q))}), the iteratesxk andzk converge to the solution of (11). Moreover, the dual variable

converges at linear rate‖zk+1 − z⋆‖ ≤ ζR‖zk − z⋆‖ and the convergence factorζR < 1 is strictly smaller than

that of the classical ADMM algorithm (12) if1 < α < 2min
i
{(λi(Q) + ρ)(ρ+ δ)/(ρδ + ρλi(Q))} The jointly

optimal step-size, relaxation parameter, and the convergence factor(ρ⋆, α⋆, ζ⋆R) are given by

ρ⋆ = δ, α⋆ = 2, ζ⋆R = 0. (17)

With these parameters, the ADMM iterations converge in one iteration.

Remark 3:The upper bound onα which ensures faster convergence of the over-relaxed ADMM iterations (16)

compared to (12) depends on the eigenvalues ofQ, λi(Q), which might be unknown. However, since(ρ +

δ)(ρ + λi(Q)) > ρ(λi(Q) + δ) the over-relaxed iterations are guaranteed to converge faster for all α ∈ (1, 2],

independently ofQ.
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IV. OPTIMAL CONVERGENCE FACTOR FOR QUADRATIC PROGRAMMING

In this section, we consider a quadratic programming (QP) problem of the form

minimize
1

2
x⊤Qx+ q⊤x

subject to Ax ≤ c
(18)

whereQ ∈ Sn
++, q ∈ Rn, A ∈ Rm×n is full rank andc ∈ Rm.

A. Standard ADMM iterations

The QP-problem (18) can be put on ADMM standard form (5) by introducing a slack vectorz and putting

an infinite penalty on negative components ofz, i.e.

minimize
1

2
x⊤Qx+ q⊤x+ I+(z)

subject to Ax− c+ z = 0.
(19)

The associatedaugmented Lagrangianis

Lρ(x, z, u) =
1

2
x⊤Qx+ q⊤x+ I+(z) +

ρ

2
‖Ax− c+ z + u‖22,

whereu = µ/ρ, which leads to the scaled ADMM iterations

xk+1 = −(Q+ ρA⊤A)−1[q + ρA⊤(zk + uk − c)],

zk+1 = max{0,−Axk+1 − uk + c},
uk+1 = uk +Axk+1 − c+ zk+1.

(20)

To study the convergence of (20) we rewrite it in an equivalent form with linear time-varying matrix operators.

To this end, we introduce a vector of indicator variablesdk ∈ {0, 1}n such thatdki = 0 if uk
i = 0 anddki = 1 if

uk
i 6= 0. From thez- andu- updates in (20), one observes thatzki 6= 0 → uk

i = 0, i.e. uk
i 6= 0 → zki = 0. Hence,

dki = 1 means that at the current iterate, the slack variablezi in (19) equals zero; i.e., theith inequality constraint

in (18) is active. We also introduce the variable vectorvk , zk+uk and letDk = diag(dk) so thatDkvk = uk

and (I − Dk)vk = zk. Now, the second and third steps of (20) imply thatvk+1 =
∣
∣Axk+1 + uk − c

∣
∣ =

F k+1(Axk+1 +Dkvk − c) whereF k+1 , diag
(
sign(Axk+1 +Dkvk − c)

)
and sign(·) returns the signs of the

elements of its vector argument. Hence, (20) becomes

xk+1 = −(Q+ ρA⊤A)−1[q + ρA⊤(vk − c)],

vk+1 =
∣
∣Axk+1 +Dkvk − c

∣
∣ = F k+1(Axk+1 +Dkvk − c),

Dk+1 =
1

2
(I + F k+1),

(21)

where theDk+1-update follows from the observation that

(Dk+1
ii , F k+1

ii ) =







(0, −1) if vk+1
i = −(Axk+1

i + uk
i − c)

(1, 1) if vk+1
i = Axk+1

i + uk
i − c

Since thevk-iterations will be central in our analysis, we will developthem further. Inserting the expression for

xk+1 from the first equation of (21) into the second, we find

vk+1 = F k+1
( (

Dk −A(Q/ρ+A⊤A)−1A⊤
)
vk
)

− F k+1
(

A(Q + ρA⊤A)−1(q − ρA⊤c) + c
)

. (22)
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Noting thatDk =
1

2
(I + F k) and introducing

M , A(Q/ρ+A⊤A)−1A⊤, (23)

we obtain

F k+1vk+1 − F kvk =

(
I

2
−M

)

(vk − vk−1) +
1

2

(
F kvk − F k−1vk−1

)
. (24)

We now relatevk andF kvk to the primal and dual residuals,rk andsk, defined in (8) and (9):

Proposition 2: Considerrk and sk the primal and dual residuals of the QP-ADMM algorithm (20) and

auxiliary variablesvk andF k. The following relations hold

F k+1vk+1 − F kvk = rk+1 − 1

ρ
Rsk+1 −ΠN (A⊤)(z

k+1 − zk), (25)

vk+1 − vk = rk+1 +
1

ρ
Rsk+1 +ΠN (A⊤)(z

k+1 − zk), (26)

‖rk+1‖ ≤ ‖F k+1vk+1 − F kvk‖, (27)

‖sk+1‖ ≤ ρ‖A‖‖F k+1vk+1 − F kvk‖. (28)

where

(i) R = A(A⊤A)−1 andΠN (A⊤) = I −A(A⊤A)−1A⊤, if A has full column-rank;

(ii) R = (AA⊤)−1A andΠN (A⊤) = 0, if A has full row-rank;

(iii) R = A−1 andΠN (A⊤) = 0, if A is invertible.

The next theorem guarantees that (24) convergence linearlyto zero in the auxiliary residuals (25) which

implies R-linear convergence of the ADMM algorithm (20) in terms of the primal and dual residuals. The

optimal step-sizeρ⋆ and the smallest achievable convergence factor are characterized immediately afterwards.

Theorem 3:Consider the QP (18) and the corresponding ADMM iterations (20). For all values of the step-

size ρ ∈ R++ the residualF k+1vk+1 − F kvk converges to zero at linear rate. Furthermore,rk and sk, the

primal and dual residuals of (20), converge R-linearly to zero.

Theorem 4:Consider the QP (18) and the corresponding ADMM iterations (20). If the constraint matrixA

is either full row-rank or invertible then the optimal step-size and convergence factor for theF k+1vk+1 −F kvk

residuals are

ρ⋆ =

(√

λ1(AQ−1A⊤)λn(AQ−1A⊤)

)−1

,

ζ⋆ =
λn(AQ

−1A⊤)

λn(AQ−1A⊤) +
√

λ1(AQ−1A⊤)λn(AQ−1A⊤)
.

(29)

Although the convergence result of Theorem 3 holds for all QPs of the form (18), optimality of the step-size

choice proposed in Theorem 4 is only established for problems where the constraint matrixA has full row-rank

or it is invertible. However, as shown next, the convergencefactor can be arbitrarily close to1 when rows of

A are linearly dependent.
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Theorem 5:Define variables

ǫk ,
‖M(vk − vk−1)‖

‖F kvk − F k−1vk−1‖ , δk ,
‖Dkvk −Dk−1vk−1‖
‖F kvk − F k−1vk−1‖ ,

ζ̃(ρ) , max
i: λi(AQ−1A⊤)>0

{∣
∣
∣
∣

ρλi(AQ
−1A⊤)

1 + ρλi(AQ−1A⊤)
− 1

2

∣
∣
∣
∣
+

1

2

}

,

andζk , |δk − ǫk|.
The convergence factorζ of the residualF k+1vk+1 − F kvk is lower bounded by

ζ , max
k

ζk < 1. (30)

Furthermore, given an arbitrarily smallξ ∈ (0, 1
2 ) andρ > 0, we have the following results:

(i) the inequalityζ < ζ̃(ρ) < 1 holds for allδk ∈ [0, 1] if and only if the nullity ofA is zero;

(ii) when the nullity ofA is nonzero andǫk ≥ 1− ξ, it holds thatζ ≤ ζ̃(ρ) +

√

ξ

2
;

(iii) when the nullity ofA is nonzero,δk ≥ 1− ξ, and‖ΠN (A⊤)(v
k−vk−1)‖/‖vk−vk−1‖ ≥

√

1− ξ2/‖M‖2,
it follows that ζ ≥ 1− 2ξ.

The previous result establishes that slow convergence can occur locally for any value ofρ when the nullity of

A is nonzero andξ is small. However, as section (ii) of Theorem 5 suggests, in these cases, (29) can still work

as a heuristic to reduce the convergence time ifλ1(AQ
−1A⊤) is taken as the smallest nonzero eigenvalue of

AQ−1A⊤. In Section V, we show numerically that this heuristic performs well with different problem setups.

B. Over-relaxed ADMM iterations

Consider the relaxation of (20) obtained by replacingAxk+1 in the z- andu-updates withαAxk+1 − (1 −
α)(zk − c). The corresponding relaxed iterations read

xk+1 = −(Q+ ρA⊤A)−1[q + ρA⊤(zk + uk − c)],

zk+1 = max{0,−α(Axk+1 − c) + (1− α)zk − uk},
uk+1 = uk + α(Axk+1 + zk+1 − c) + (1− α)(zk+1 − zk).

(31)

In next, we study convergence and optimality properties of these iterations. We observe:

Lemma 1:Any fixed-point of (31) corresponds to a global optimum of (19).

Like the analysis of (20), introducevk = zk + uk anddk ∈ Rn with dki = 0 if uk
i = 0 anddki = 1 otherwise.

Adding the second and the third step of (31) yieldsvk+1 =
∣
∣α(Axk+1 − c)− (1− α)zk + uk

∣
∣. Moreover,

Dk = diag(dk) satisfiesDkvk = uk and (I −Dk)vk = zk, so (31) can be rewritten as

xk+1 = −(Q+ ρA⊤A)−1[q + ρA⊤(vk − c)],

vk+1 = F k+1
(

α
(
Axk+1 +Dkvk − c

))

− F k+1
(

(1− α)(I − 2Dk)vk
)

,

Dk+1 =
1

2
(I + F k+1),

(32)

whereF k+1 , diag
(
sign

(
α(Axk+1 +Dkvk − c)− (1− α)(I − 2Dk)vk

))
. DefiningM , A(Q/ρ+A⊤A)−1A⊤

and substituting the expression forxk+1 in (32) into the expression forvk+1 yields

vk+1 = F k+1
( (

−αM + (2− α)Dk − (1− α)I
)
vk
)

− F k+1
(

αA(Q + ρA⊤A)−1(q − ρA⊤c) + αc
)

.

(33)
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As in the previous section, we replaceDk by
1

2
(I + F k) in (33) and formF k+1vk+1 − F kvk:

F k+1vk+1 − F kvk =
α

2
(I − 2M)

(
vk − vk−1

)
+ (1− α

2
)
(
F kvk − F k−1vk−1

)
. (34)

The next theorem characterizes the convergence rate of the relaxed ADMM iterations.

Theorem 6:Consider the QP (18) and the corresponding relaxed ADMM iterations (31). If

ρ ∈ R++, α ∈ (0, 2], (35)

then the equivalent fixed point iteration (34) converges linearly in terms ofF k+1vk+1−F kvk residual. Moreover,

rk andsk, the primal and dual residuals of (31), converge R-linearlyto zero.

Next, we restrict our attention to the case whereA is either invertible or full row-rank to be able to derive

the jointly optimal step-size and over-relaxation parameter, as well as an explicit expression for the associated

convergence factor. The result shows that the over-relaxedADMM iterates can yield a significant speed up

compared to the standard ADMM iterations.

Theorem 7:Consider the QP (18) and the corresponding relaxed ADMM iterations (31). If the constraint ma-

trix A is of full row-rank or invertible then the joint optimal step-size, relaxation parameter and the convergence

factor with respect to theF k+1vk+1 − F kvk residual are

ρ⋆ =

(√

λ1(AQ−1A⊤) λn(AQ−1A⊤)

)−1

, α⋆ = 2,

ζ⋆R =
λn(AQ

−1A⊤)−
√

λ1(AQ−1A⊤) λn(AQ−1A⊤)

λn(AQ−1A⊤) +
√

λ1(AQ−1A⊤) λn(AQ−1A⊤)

(36)

Moreover, when the iterations (34) are over-relaxed; i.e.α ∈ (1, 2] their iterates have a smaller convergence

factor than that of (24).

C. Optimal constraint preconditioning

In this section, we consider another technique to improve the convergence of the ADMM method. The

approach is based on the observation that the optimal convergence factorsζ⋆ and ζ⋆R from Theorem 4 and

Theorem 7 are monotone increasing in the ratioλn(AQ
−1A⊤)/λ1(AQ

−1A⊤). This ratio can be decreased

–without changing the complexity of the ADMM algorithm (20)– by scaling the equality constraint in (19) by

a diagonal matrixL ∈ Sm
++, i,e., replacingAx− c+ z = 0 by L (Ax − c+ z) = 0. Let Ā , LA, z̄ , Lz, and

c̄ , Lc. The resulting scaled ADMM iterations are derived by replacing A, z, andc in (20) and (31) by the new

variablesĀ, z̄, and c̄, respectively. Furthermore, the results of Theorem 4 and Theorem 7 can be applied to the

scaled ADMM iterations in terms of new variables. Although these theorems only provide the optimal step-size

parameters for the QP when the constraint matrices are invertible or have full row-rank, we use the expressions as

heuristics when the constraint matrix has full column-rank. Hence, in the following we considerλn(ĀQ
−1Ā⊤)

andλ1(ĀQ
−1Ā⊤) to be the largest and smallest nonzero eigenvalues ofĀQ−1Ā⊤ = LAQ−1A⊤L, respectively

and minimize the ratioλn/λ1 in order to minimize the convergence factorsζ⋆ andζ⋆R. A similar problem was

also studied in [25], [26].

Theorem 8:Let RqR
⊤
q = Q−1 be the Choleski factorization ofQ−1 and P ∈ Rn×n−s be a matrix

whose columns are orthonormal vectors spanning Im(R⊤
q A

⊤) with s being the dimension ofN (A) and let
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λn(LAQ
−1A⊤L) andλ1(LAQ

−1A⊤L) be the largest and smallest nonzero eigenvalues ofLAQ−1A⊤L. The

diagonal scaling matrixL⋆ ∈ Sm
++ that minimizes the eigenvalue ratioλn(LAQ

−1A⊤L)/λ1(LAQ
−1A⊤L) can

be obtained by solving the convex problem

minimize
t∈R, w∈Rm

t

subject to W = diag(w), w > 0,

tI −R⊤
q A

⊤WARq ∈ Sn
+,

P⊤(R⊤
q A

⊤WARq − I)P ∈ Sn−s
+ ,

(37)

and settingL⋆ = W ⋆1/2

.

So far, we characterized the convergence factor of the ADMM algorithm based on general properties of the

sequence{F kvk}. However, if we a priori know which constraints will be active during the ADMM iterations,

our parameter selection rules (29) and (36) may not be optimal. To illustrate this fact, we will now analyze

the two extreme situations where no and all constraints are active in each iteration and derive the associated

optimal ADMM parameters.

D. Special cases of quadratic programming

The first result deals with the case where the constraints of (18) are never active. This could happen, for

example, if we use the constraints to impose upper and lower bounds on the decision variables, and use very

loose bounds.

Proposition 3: Assume thatF k+1 = F k = −I for all epochsk ∈ R+ in (21) and (32). Then the modified

ADMM algorithm (34) attains its minimal convergence factorfor the parameters

α = 1, ρ → 0. (38)

In this case (34) coincide with (24) and their convergence factor is minimized:ζ = ζR → 0.

The next proposition addresses another extreme scenario when the ADMM iterates are operating on the active

set of the quadratic program (18).

Proposition 4: Suppose thatF k+1 = F k = I for all k ∈ R+ in (21) and (32). Then the relaxed ADMM

algorithm (34) attains its minimal convergence factor for the parameters

α = 1, ρ → ∞. (39)

In this case (34) coincides with (24) and their convergence factors are minimized:ζ = ζR → 0.

It is worthwhile to mention that when (18) is defined so that its constraints are active (inactive) then thesk

(rk) residuals of the ADMM algorithm remain zero for allk ≥ 2 updates.

V. NUMERICAL EXAMPLES

In this section, we evaluate our parameter selection rules on numerical examples. First, we illustrate the

convergence factor of ADMM and gradient algorithms for a family of ℓ2-regularized quadratic problems. These

examples demonstrate that the ADMM method converges fasterthan the gradient method for certain ranges of
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the regularization parameterδ, and slower for other values. Then, we consider QP-problemsand compare the

performance of the over-relaxed ADMM algorithm with an alternative accelerated ADMM method presented

in [27]. The two algorithms are also applied to a Model Predictive Control (MPC) benchmark where QP-problems

are solved repeatedly over time for fixed matricesQ andA but varying vectorsq andb.

A. ℓ2-regularized quadratic minimization via ADMM

We considerℓ2-regularized quadratic minimization problem (1) for aQ ∈ S100
++ with condition number

1.2× 103 and for a range of regularization parametersδ. Fig. 1 shows how the optimal convergence factor of

ADMM depends onδ. The results are shown for two step-size rules:ρ = δ and ρ = ρ⋆ given in (15). For

comparison, the gray and dashed-gray curves show the optimal convergence factor of the gradient method

xk+1 = xk − γ(Qxk + q + δxk),

with step-sizeγ < 2/(λn(Q) + δ) and a multi-step gradient iterations on the form

xk+1 = xk − a(Qxk + q + δxk) + b(xk − xk−1),

This latter algorithm is known as the heavy-ball method and significantly outperforms the standard gradient

method on ill-conditioned problems [28]. The algorithm hastwo parameters:a < 2(1 + b)/(λn(Q) + δ), and

b ∈ [0, 1]. For our problem, since the cost function is quadratic and its Hessian∇2f(x) = Q+ δI is bounded

betweenl = λ1(Q)+ δ andu = λn(Q)+ δ, the optimal step-size for the gradient method isγ⋆ = 2/(l+u) and

the optimal parameters for the heavy-ball method area⋆ = 4/(
√
l+

√
u)2, andb⋆ = (

√
u−

√
l)2/(

√
l+

√
u)2[28].

Figure 1 illustrates the convergence properties of the ADMMmethod under both step-size rules. The optimal

step-size rule gives significant speedups of the ADMM for small or large values of the regularization parameter

δ. This phenomena can be intuitively explained based on the interplay of the two parts of the objective function

in (11). For extremely small values ofδ, one sees that thex-th part of the objective is becoming dominant

compared toz-th part. Consequently, using the optimal step-size in (15), z- is dictated to quickly follow the

value ofx-update. A similar reasoning holds whenδ is large, in which thex- has to obey thez-update.

It is interesting to observe that ADMM outperforms the gradient and heavy-ball methods for smallδ (an

ill-conditioned problem), but actually performs worse asδ grows large (i.e. when the regularization makes the

overall problem well-conditioned). It is noteworthy that the relaxed ADMM method solves the same problem

in one step (convergence factorζ⋆R = 0).

B. Quadratic programming via ADMM

Next, we evaluate our step-size rules for ADMM-based quadratic programming and compare their performance

with that of other accelerated ADMM variants from the literature.
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Fig. 1. Convergence factor of the ADMM, gradient, and heavy-ball methods forℓ2 regularized minimization with fixedQ-matrix and

different values of the regularization parameterδ.

1) Accelerated ADMM:One recent proposal for accelerating the ADMM-iterations is calledfast-ADMM [27]

and consists of the following iterations

xk+1 = argmin
x

Lρ(x, ẑ
k, ûk),

zk+1 = argmin
z

Lρ(x
k+1, z, ûk),

uk+1 = ûk +Axk+1 +Bzk+1 − c,

ẑk+1 = αkzk+1 + (1− αk)zk,

ûk+1 = αkuk+1 + (1− αk)uk.

(40)

The relaxation parameterαk in the fast-ADMM method is defined based on the Nesterov’s order-optimal

method [12] combined with an innovative restart rule whereαk is given by

αk =







1 +
βk − 1

βk+1
if

max(‖rk‖, ‖sk‖)
max(‖rk−1‖, ‖sk−1‖) < 1,

1 otherwise,
(41)

whereβ1 = 1, andβk+1 =
1 +

√

1 + 4βk2

2
for k > 1. The restart rule assures that (40) is updated in the

descent direction with respect to the primal-dual residuals.

To compare the performance of the over-relaxed ADMM iterations with our proposed parameters to that

of fast-ADMM, we conducted several numerical examples. Forthe first numerical comparison, we generated

several instances of (18); Figure 2 shows the results for thetwo representative examples. In the first case,

A ∈ R50×100 andQ ∈ S100
++ with condition number1.95×103; 32 constraints are active at the optimal solution.

In the second case,A ∈ R200×100 andQ ∈ S100
++ , where the condition number ofQ is 7.1×103. The polyhedral

constraints correspond to random box-constraints, of which 66 are active at optimality. We evaluate for four

algorithms: the ADMM iterates in (31) with and without over-relaxation and the corresponding tuning rules

developed in this paper, and the fast-ADMM iterates (40) with ρ = 1 as proposed by [27] andρ = ρ⋆ of our

paper. The convergence of corresponding algorithms in terms of the summation of primal and dual residuals

‖rk‖ + ‖sk‖ are depicted in Fig. 2. The plots exhibit a significant improvement of our tuning rules compared
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to the fast-ADMM algorithm.

To the best of our knowledge, there are currently no results about optimal step-size parameters for the

fast-ADMM method. However, based on our numerical investigations, we observed that the performance of

fast-ADMM algorithm significantly improved by employing our optimal step-sizeρ⋆ (as illustrated in 2). In the

next section we perform another comparison between three algorithms, using the optimalρ-value for fast-ADMM

obtained by an extensive search.

200 400 600 800 1000
10
−4

10
−2

10
0

10
2

no. iterations

‖
r
k
‖+

‖
s
k
‖

(ρ*,α=1)

(ρ*,α*)

Fast−Admm−ρ=1

Fast−Admm−ρ*

(a) n = 100, m = 50.

200 400 600 800 1000
10
−4

10
−2

10
0

10
2

no. iterations

‖
r
k
‖
+

‖
s
k
‖

(ρ*,α=1)

(ρ*,α*)

Fast−Admm−ρ=1

Fast−Admm−ρ*

(b) n = 100, m = 200

Fig. 2. Convergence of primal plus dual residuals of four ADMM algorithms withn decision variables andm inequality constraints.

2) Model Predictive Control:Consider the discrete-time linear system

xt+1 = Hxt + Jut + Jrr, (42)

wheret ≥ 0 is the time index,xt ∈ Rnx is the state,ut ∈ Rnu is the control input,r ∈ Rnr is a constant

reference signal, andH ∈ Rnx×nx , J ∈ Rnx×nu , and Jr ∈ Rnx×nr are fixed matrices. Model predictive

control aims at solving the following optimization problem

minimize
{ui}

Np−1

0

1

2

∑Np−1
i=0 (xi − xr)

⊤Qx(xi − xr) + (ui − ur)
⊤R(ui − ur) + (xNp − xr)

⊤QN(xNp − xr)

subject to xt+1 = Hxt + Jut + Jrr ∀t,
xt ∈ Cx ∀t,
ut ∈ Cu ∀t,

(43)

wherex0, xr , and ur are given,Qx ∈ Snx
++, R ∈ Snu

++, andQN ∈ Snx
++ are the state, input, and terminal

costs, and the setsCx andCu are convex. Suppose that the setsCx andCu correspond to component-wise lower

and upper bounds, i.e.,Cx = {x ∈ Rnx |1nx x̄min ≤ x ≤ 1nx x̄max} and Cu = {u ∈ Rnu |1nu ūmin ≤ u ≤
1nu ūmax}. Definingχ = [x⊤

1 . . . x⊤
Np

]⊤, υ = [u⊤
0 . . . u⊤

Np−1]
⊤, υr = [r⊤ . . . r⊤]⊤, (42) can be rewritten as

χ = Θx0 +Φυ +Φrυr. The latter relationship can be used to replacext for t = 1, . . . , Np in the optimization

problem, yielding the following QP:

minimize
υ

1

2
υ⊤Qυ + q⊤υ

subject to Aυ ≤ b,
(44)
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(a) α = 1, L = I
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(b) α = 2, L = I
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(c) α = 1, L = L⋆
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Fig. 3. Number of iterationsk : max{‖rk‖, ‖sk‖} ≤ 10−5 for ADMM applied to the MPC problem for different initial statesx0. The

dashed green line denotes the minimum number of iterations taken over all the initial states, the dot-dashed blue line corresponds to the

average, while the red solid line represents the maximum number of iterations.

where

Q̄ =




INp−1 ⊗Qx 0

0 QN



 , R̄ = INp ⊗R, A =











Φ

−Φ

I

−I











, b =











1nxNp x̄max −Θx0 − Φrυr

1nxNp x̄min +Θx0 +Φrυr

1nuNp ūmax

1nuNp ūmin











, (45)

andQ = R̄+Φ⊤Q̄Φ andq⊤ = x⊤
0 Θ

⊤Q̄Φ+ υ⊤
r Φ

⊤
r Q̄Φ− x⊤

r

(

1⊤Np
⊗ Inx

)

Q̄Φ− u⊤
r

(

1⊤Np
⊗ Inu

)

R̄.

Below we illustrate the MPC problem for the quadruple-tank process [29]. The state of the processx ∈ R4

corresponds to the water levels of all tanks, measured in centimeters. The plant model was linearized at a

given operating point and discretized with a sampling period of 2 s. The MPC prediction horizon was chosen

asNp = 5. A constant reference signal was used, while the initial condition x0 was varied to obtain a set of

MPC problems with different non-empty feasible sets and linear cost terms. In particular, we considered initial

states of the formx0 = [x1 x2 x3 x4]
⊤ wherexi ∈ {10, 11.25, 12.5, 13.75, 15} for i = 1, . . . , 4. Out of the

possible625 initial values,170 yields feasible QPs (each withn = 10 decision variables andm = 40 inequality
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Fig. 4. Number of iterationsk : max{‖rk‖, ‖sk‖} ≤ 10−5 for ADMM with L = I andα = 2 and fast-ADMM algorithms applied to

the MPC problem for different initial statesx0. The line in blue denotes the minimum number of iterations taken over all the initial states,

while the red line represents the maximum number of iterations.

constraints). We have made these QPs publically available as aMATLAB formatted binary file [30]. To prevent

possible ill-conditioned QP-problems, the constraint matrix A and vectorb were scaled so that each row ofA

has unit-norm.

Fig. 3 illustrates the convergence of the ADMM iterations for the 170 QPs as a function of the step-size

ρ, scaling matrixL, and over-relaxation factorα. SinceA⊤ has a non-empty null-space, the step-sizeρ⋆ was

chosen heuristically based on Theorem 4 asρ⋆ = 1/
√

λ1(AQ−1A⊤)λn(AQ−1A⊤), whereλ1(AQ
−1A⊤) is

the smallest nonzero eigenvalue ofAQ−1A⊤. As shown in Fig. 3, our heuristic step-sizeρ⋆ results in a number

of iterations close to the empirical minimum. Moreover, performance is improved by choosingL = L⋆ and

α = 2.

The performance of the Fast-ADMM and ADMM algorithms is compared in Fig. 4 forL = I andα = 2.

The ADMM algorithm with the optimal over-relaxation factorα = 2 uniformly outperforms the Fast-ADMM

algorithm, even with suboptimal scaling matrixL.

3) Local convergence factor:To illustrate our results on the slow local convergence of ADMM, we consider

a QP problem of the form (44) with

Q =




40.513 0.069

0.069 40.389



 , q = 0

A =








−1 0

0 −1

0.1151 0.9934







, b =








6

6

−0.3422







.

(46)

The ADMM algorithm was applied to the former optimization problem withα = 1 andL = I. Given that the

nullity of A is not0, the step-size was chosen heuristically based on Theorem 4 asρ⋆ = 1/
√

λ1(AQ−1A⊤)λn(AQ−1A⊤) =

28.6 with λ1(AQ
−1A⊤) taken to be the smallest nonzero eigenvalue ofAQ−1A⊤. The resulting residuals are

shown in Fig. 5, together with the lower bound on the convergence factorζ evaluated at each time-step.
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Fig. 5. Slow convergence of ADMM algorithm for the example in(46) with α = 1 andL = I. The residualsrk, sk, andF k+1vk+1 −

F kvk and the lower bound on the convergence factorζk are shown in the left, while the number of iterations forρ ∈ [0.1ρ⋆ 10ρ⋆] are

shown in the right.

As expected from the results in Theorem 3, the residualF k+1vk+1 − F kvk is monotonically decreasing.

However, as illustrated byζk, the lower bound on the convergence factor from Theorem 5, the auxiliary residual

F k+1vk+1 − F kvk and the primal-dual residuals show a convergence factor close to1 over several time-steps.

The heuristic step-size rule performs reasonably well as illustrated in the right subplot of Fig. 5.

VI. CONCLUSIONS ANDFUTURE WORK

We have studied optimal parameter selection for the alternating direction method of multipliers for two

classes of quadratic problems:ℓ2-regularized quadratic minimization and quadratic programming under linear

inequality constraints. For both problem classes, we established global convergence of the algorithm at linear

rate and provided explicit expressions for the parameters that ensure the smallest possible convergence factors.

We also considered iterations accelerated by over-relaxation, characterized the values of the relaxation parameter

for which the over-relaxed iterates are guaranteed to improve the convergence times compared to the non-relaxed

iterations, and derived jointly optimal step-size and relaxation parameters. We validated the analytical results

on numerical examples and demonstrated superior performance of the tuned ADMM algorithms compared to

existing methods from the literature. As future work, we plan to extend the analytical results for more general

classes of objective functions.
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APPENDIX

A. Proof of Theorem 1

From Proposition 1, the variablesxk and zk in iterations (12) converge to the optimal valuesx⋆ and z⋆

of (11) if and only if the spectral radius of the matrixE in (13) is less than one. To express the eigenvalues of

E in terms of the eigenvalues ofQ, let λi(Q), i = 1, . . . , n be the eigenvalues ofQ sorted in ascending order.

Then, the eigenvaluesζ(ρ, λi(Q)) of E satisfy

ζ(ρ, λi(Q)) =
ρ2 + λi(Q)δ

ρ2 + λi(Q)δ + (λi(Q) + δ)ρ
. (47)

Sinceλi(Q), ρ, δ ∈ R++, we have0 ≤ ζ(ρ, λi(Q)) < 1 for all i, which ensures convergence.

To find the optimal step-size parameter and the associated convergence factor(ρ⋆, ζ⋆), note that, for a fixed

ρ, the convergence factorζ(ρ) = maxek ‖ek+1‖/‖ek‖ corresponds to the spectral radius ofE, i.e. ζ(ρ) =

maxi {ζ(ρ, λi(Q))}. It follows that the optimal pair(ρ⋆, ζ⋆) is given by

ρ⋆ = argmin
ρ

max
i

{ζ(ρ, λi(Q))} , ζ⋆ = max
i

{ζ(ρ⋆, λi(Q))} . (48)

From (47), we can see thatζ(ρ, λi(Q)) is monotone decreasing inλi(Q) when ρ > δ and monotone

increasing whenρ < δ. Hence, we consider these two cases separately.

When ρ > δ, the largest eigenvalue ofE is given by ζ(ρ, λ1(Q)) and ρ⋆ = argminρζ(ρ, λ1(Q)). By the

first-order optimality conditions and the explicit expressions in (47) we have

ρ⋆ =
√

δλ1(Q), ζ⋆ = ζ(ρ⋆, λ1(Q)) = (1 +
δ + λ1(Q)

2
√

δλ1(Q)
)−1.

However, this value ofρ is larger thanδ only if δ < λ1(Q). When δ ≥ λ1(Q), the assumption thatρ > δ

implies that0 ≤ (ρ− δ)2 ≤ (ρ− δ)(ρ− λ1(Q)), so

ζ(ρ, λ1(Q)) =
ρ2 + λi(Q)δ

ρ2 + λi(Q)δ + (λi(Q) + δ)ρ
≥

ρ2 + λ1(Q)δ

ρ2 + λ1(Q)δ + (λ1(Q) + δ)ρ+ (ρ− δ)(ρ− λ1(Q))
=

1

2
.

Sinceρ = δ attainsζ(δ, λ1(Q)) = 1/2 it is optimal.

A similar argument applies toρ < δ. In this case,maxi ζ(ρ, λi(Q)) = ζ(ρ, λn(Q)) and whenδ > λn(Q),

ρ⋆ =
√

δλn(Q) is the optimal step-size and the associated convergence factor is

ζ⋆ =

(

1 +
δ + λn(Q)

2
√

δλn(Q)

)−1

.

For δ ≤ λn(Q), the requirement thatρ < δ implies the inequalities0 ≤ (δ − ρ)2 ≤ (λn(Q) − ρ)(δ − ρ) and

that ζ(ρ, λn(Q)) ≥ 1

2
, which leads toρ = δ being optimal.
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B. Proof of Corollary 1

The proof is a direct consequence of evaluating (47) atρ = δ for i = 1, . . . , n.

C. Proof of Theorem 2

The z-update in (16) implies thatµk = (δ + ρ)zk+1 − ρ(αxk+1 + (1− α)zk), and that theµ-update in (16)

can be written asµk+1 = δzk+1. Similarly to the analysis of the previous section, inserting thex-update into

the z-update, we find

zk+1 =
1

δ + ρ

(

δI + ρ
(

α(ρ− δ) (Q+ ρI)
−1

+ (1− α)I
))

︸ ︷︷ ︸

ER

zk − 1

δ + ρ
ρα(Q + ρI)−1q.

Consider the fixed-point candidatez⋆ satisfyingz⋆ = ERz
⋆− 1

δ + ρ
ρα(Q+ρI)−1q andzk+1−z⋆ = ER(z

k−z⋆).

The zk-update in (16) converges (and so does the ADMM algorithm) ifand only if the spectral radius of the

error matrix in the above linear iterations is less than one.The eigenvalues ofER can be written as

ζR(α, ρ, λi(Q)) = 1− αρ(λi(Q) + δ)

(ρ+ λi(Q))(ρ+ δ)
. (49)

Sinceρ, δ, andλi(Q) ∈ R++, we see that0 < α < 2min
i

(ρ+ δ)(ρ+ λi(Q))

ρ(λi(Q) + δ)
implies that|ζR(α, ρ, λi(Q))| < 1

for all i, which completes the first part of the proof.

For a fixedρ and δ, we now characterize the values ofα that ensure that the over-relaxed iterations (16)

have a smaller convergence factor and thus a smallerε-solution time than the classical ADMM iterates (12),

i.e. ζR − ζ < 0. From (47) and (49) we haveargmaxi ζR(α, ρ, λi(Q)) = argmaxi ζ(ρ, λi(Q)), sinceζR and

ζ are equivalent up to an affine transformation and they have the same sign of the derivative with respect to

λi(Q). For any givenλi(Q) we have

ζR − ζ =
ρ(1− α)(λi(Q) + δ)

ρ2 + (λi(Q) + δ)ρ+ λi(Q)δ

and we conclude thatζR − ζ < 0 whenα ∈
(

1,
2(ρ+ δ)(ρ+ λi(Q))

ρ(λi(Q) + δ)

)

. Recalling the first part of the proof

we conclude that, for givenρ, δ ∈ R++, the over-relaxed iterations converge with a smaller convergence factor

than classical ADMM for1 < α < 2min
i

(ρ+ δ)(ρ+ λi(Q))

ρ(λi(Q) + δ)
.

To find (ρ⋆, α⋆, ζ⋆R), we define

(ρ⋆, α⋆) = argmin
ρ,α

max
i

|ζR(ρ, α, λi(Q))| , ζ⋆R = max
i

|ζR(ρ⋆, α⋆, λi(Q))| . (50)

One readily verifies thatζR(δ, 2, λi(Q)) = 0 for i = 1, . . . n. Since zero is the global minimum of|ζR| we

conclude that the pair(ρ⋆, α⋆) = (δ, 2) is optimal. Moreover, for(ρ⋆, α⋆) = (δ, 2) the matrixER is a matrix

of zeros and thus the algorithm (16) converges in one iteration.

D. Proof of Proposition 2

For the sake of brevity we derive the expressions only forwk+1
− , F k+1vk+1−F kvk, as similar computations

also apply towk+1
+ , vk+1 − vk. First, sincevk = zk + uk, it holds thatF kvk = (2Dk − I)vk = 2Dkvk −

uk − zk. From the equalityDkvk = uk we then haveF kvk = uk − zk. The residualwk+1
− can be rewritten
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as wk+1
− = uk+1 − uk − zk+1 + zk. From (8) and (20) we observe thatuk+1 − uk = rk+1, so wk+1

− =

rk+1 − (zk+1 − zk). Decomposingzk+1 − zk asΠIm(A)(z
k+1 − zk) +ΠN (A⊤)(z

k+1 − zk) we then conclude

thatwk+1
− = rk+1−ΠIm(A)(z

k+1−zk)−ΠN (A⊤)(z
k+1−zk). We now examine each case(i)−(iii) separately:

(i) WhenA has full column rank,ΠIm(A) = A(A⊤A)−1A⊤ andΠN (A⊤) = I −ΠIm(A). In the light of the

dual residual (9) we obtainΠIm(A)(z
k+1 − zk) = 1/ρA(A⊤A)−1sk+1.

(ii) Note that the nullity ofA⊤ is 0 if A is full row-rank. Thus,ΠN (A⊤) = 0 andΠIm(A) = I. Moreover,

sinceAA⊤ is invertible,zk+1 − zk = (AA⊤)−1AA⊤(zk+1 − zk) = 1/ρ(AA⊤)−1Ask+1.

(iii) When A is invertible, the result easily follows.

We now relate the norm ofrk+1 andsk+1 to the one ofwk+1
− . From (25) and (26), we have

‖rk+1‖ =
1

2
‖wk+1

− + wk+1
+ ‖ ≤ 1

2
(‖wk+1

− ‖+ ‖wk+1
+ ‖) ≤ ‖wk+1

− ‖,

where the first inequality is the triangle inequality and thelast inequality holds asvk ’s are positive vectors,

‖wk+1
+ ‖ = ‖vk+1 − vk‖ ≤ ‖F k+1vk+1 − F kvk‖ = ‖wk+1

− ‖.

For the dual residual, it can be verified that in case (i) and (ii) A⊤(wk+1
+ − wk+1

− ) =
2

ρ
sk+1, so

‖sk+1‖ =
ρ

2
‖A⊤(wk+1

− − wk+1
+ )‖ ≤ ρ

2
‖A‖

(
‖wk+1

− − wk+1
+ ‖

)

≤ ρ

2
‖A‖

(
‖wk+1

− ‖+ ‖wk+1
+ ‖

)
≤ ρ‖A‖‖wk+1

− ‖.

In case (iii), one findsA(wk+1
+ − wk+1

− ) =
2

ρ
sk+1 and again the same bound can be achieved (by replacing

A⊤ with A in above equality), thus concluding the proof.

E. Proof of Theorem 3

Note that sincevk is positive andF k is diagonal with elements in±1, F k+1vk+1 = F kvk impliesvk+1 = vk.

Hence, it suffices to establish the convergence ofF kvk. From (24) we have

∥
∥F k+1vk+1 − F kvk

∥
∥ ≤ 1

2
‖2M − I‖

∥
∥vk − vk−1

∥
∥+

1

2

∥
∥F kvk − F k−1vk−1

∥
∥ .

Furthermore, asvks are positive vectors,
∥
∥vk − vk−1

∥
∥ ≤

∥
∥F kvk − F k−1vk−1

∥
∥, which implies

∥
∥F k+1vk+1 − F kvk

∥
∥ ≤

(
1

2
‖2M − I‖+ 1

2

)

︸ ︷︷ ︸

ζ

∥
∥F kvk − F k−1vk−1

∥
∥ . (51)

We conclude that if‖2M − I‖ < 1, thenζ < 1 and the iterations (24) converge to zero at a linear rate.

To determine for what values ofρ the iterations (24) converge, we characterize the eigenvalues ofM . By

the matrix inversion lemmaM = ρAQ−1A⊤ − ρAQ−1A⊤(I + ρAQ−1A⊤)−1ρAQ−1A⊤. From [31, Cor.

2.4.4], (I + ρAQ−1A⊤)−1 is a polynomial function ofρAQ−1A⊤ which implies thatM = f(ρAQ−1A⊤) is

a polynomial function ofρAQ−1A⊤ with f(t) = t− t(1 + t)−1t. Applying [31, Thm. 1.1.6], the eigenvalues

of M are given byf(λi(ρAQ
−1A⊤)) and thus

λi(M) =
λi(ρAQ

−1A⊤)

1 + λi(ρAQ−1A⊤)
. (52)

If ρ > 0, thenλi(ρAQ
−1A⊤) ≥ 0 andλi(M) ∈ [0, 1). Hence‖2M − I‖ ≤ 1 is guaranteed for allρ ∈ R++

and equality only occurs ifM has eigenvalues at0. If A is invertible or has full row-rank, thenM is invertible and
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all its eigenvalues are strictly positive, so‖2M − I‖ < 1 and (24) is guaranteed to converge linearly. The case

whenA is tall, i.e.,A⊤ is rank deficient, is more challenging sinceM has zero eigenvalues and‖2M − I‖ = 1.

To prove convergence in this case, we analyze the0-eigenspace ofM and show that it can be disregarded.

From thex-iterates given in (21) we havexk+1 − xk = −(Q/ρ+A⊤A)−1A⊤(vk − vk−1). Multiplying the

former equality byA from the left on both sides yieldsA(xk+1 − xk) = −M(vk − vk−1). Consider a nonzero

vectorvk − vk−1 in N (M). Then we have eitherxk+1 = xk or xk+1 − xk ∈ N (A). Having assumed thatA

is full column-rank denies the second hypothesis. In other words, the0-eigenspace ofM corresponds to the

stationary points of the algorithm (21). We therefore disregard this eigenspace and the convergence result holds.

Finally, the R-linear convergence of the primal and dual residuals follows from the linear convergence rate of

F k+1vk+1 − F kvk and Proposition 2.

F. Proof of Theorem 4

From the proof of Theorem 3 recall that

∥
∥F k+1vk+1 − F kvk

∥
∥ ≤

(
1

2
‖2M − I‖+ 1

2

)
∥
∥F kvk − F k−1vk−1

∥
∥ .

Define

ζ ,
1

2
‖2M − I‖+ 1

2
= max

i

1

2
|2λi(M)− 1|+ 1

2
= max

i

∣
∣
∣
∣

ρλi(AQ
−1A⊤)

1 + ρλi(AQ−1A⊤)
− 1

2

∣
∣
∣
∣
+

1

2

where the last equality follows from the definition ofλi(M) in (52). Sinceρ > 0 and for the case whereA is

either invertible or has full row-rank,λi(AQ
−1A⊤) > 0 for all i, we conclude thatζ < 1.

It remains to findρ⋆ that minimizes the convergence factor,i.e.

ρ⋆ = argmin
ρ

max
i

{∣
∣
∣
∣

ρλi(AQ
−1A⊤)

1 + ρλi(AQ−1A⊤)
− 1

2

∣
∣
∣
∣
+

1

2

}

. (53)

Since
ρλi(AQ

−1A⊤)

1 + ρλi(AQ−1A⊤)
is a monotonically increasing function inλi(AQ

−1A⊤), the maximum values ofζ

happen for the two extreme eigenvaluesλ1(AQ
−1A⊤) andλn(AQ

−1A⊤):

max
i

{
ζ(λi(AQ

−1A⊤), ρ)
}
=







1

1 + ρλ1(AQ−1A⊤)
if ρ ≤ ρ⋆,

ρλn(AQ
−1A⊤)

1 + ρλn(AQ−1A⊤)
if ρ > ρ⋆.

(54)

Since the left brace ofmaxi
{
ζ(λi(AQ

−1A⊤), ρ)
}

, i.e.
1

1 + ρλ1(AQ−1A⊤)
is monotone decreasing inρ and

the right brace is monotone increasing, the minimum with respect toρ happens at the intersection point (29).

G. Proof of Theorem 5

First we derive the lower bound on the convergence factor andshow it is strictly smaller than1. From (24)

we have
∥
∥F k+1vk+1 − F kvk

∥
∥ =

∥
∥Dkvk −Dk−1vk−1 −M(vk − vk−1)

∥
∥ . By applying the reverse triangle

inequality and dividing by‖F kvk − F k−1vk−1‖, we find

‖F k+1vk+1 − F kvk‖
‖F kvk − F k−1vk−1‖ ≥ |δk − ǫk|.
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Recalling from (1) that the convergence factorζ is the maximum overk of the left hand-side yields the lower

bound (30). Moreover, the inequality1 > ζ ≥ ζ follows directly from Theorem 3.

The second part of the proof addresses the cases (i)-(iii) for ρ > 0. Consider case (i) and letN (A⊤) =

{0}. It follows from Theorem 4 that the convergence factor is given by ζ̃(ρ), thus proving the sufficiency of

N (A⊤) = {0} in (i). The necessity follows directly from statement (iii), which is proved later.

Now consider the statement (ii) and supposeN (A⊤) is not zero-dimensional. Recall thatλ1(AQ
−1A⊤) is

the smallest nonzero eigenvalue ofAQ−1A⊤ and suppose thatǫk ≥ 1 − ξ. Next we show thatǫk ≥ 1 − ξ

implies ‖ΠN (A⊤)(v
k − vk−1)‖/‖vk − vk−1‖ ≤ √

2ξ. SinceMΠN (A⊤) = 0, ‖M‖ < 1, and‖vk − vk−1‖ ≤
‖F kvk − F k−1vk−1‖ we have

ǫ2k =
‖M(I − ΠN (A⊤))(v

k − vk−1)‖2
‖F kvk − F k−1vk−1‖2 ≤

‖ΠIm(A)(v
k − vk−1)‖2

‖vk − vk−1‖2 = 1− ‖ΠN (A⊤)(v
k − vk−1)‖2

‖vk − vk−1‖2 .

Using the above inequality andǫ2k ≥ (1−ξ)2 we obtain‖ΠN (A⊤)(v
k−vk−1)‖/‖vk−vk−1‖ ≤

√

2ξ − ξ2 ≤ √
2ξ.

The latter inequality allows us to derive an upper-bound onζ as follows. Recalling (24), we have

ζ ≤ ‖F k+1vk+1 − F kvk‖
‖F kvk − F k−1vk−1‖ ≤ 1

2
+

1

2

‖(I − 2M)(vk − vk−1)‖
‖F kvk − F k−1vk−1‖

=
1

2
+

1

2

√

‖(I − 2M)ΠIm(A)(v
k − vk−1)‖2

‖F kvk − F k−1vk−1‖2 +
‖ΠN (A⊤)(v

k − vk−1)‖2
‖F kvk − F k−1vk−1‖2 .

(55)

Using the inequalities‖vk − vk−1‖ ≤ ‖F kvk − F k−1vk−1‖ and
√
a2 + b2 ≤ a + b for a, b ∈ R+, the

inequality (55) becomesζ ≤ 1

2
+

1

2
‖(I − 2M)ΠIm(A)‖ +

√

ξ

2
≤ ζ̃(ρ) +

√

ξ

2
, which concludes the proof of

(ii).

As for the third case (iii), note thatǫk ≤ ξ holds if ‖ΠN (A⊤)(v
k − vk−1)‖/‖vk − vk−1‖ ≥

√

1− ξ2/‖M‖2,
as the latter inequality implies that

ǫk =
‖MΠIm(A)(v

k − vk−1)‖
‖F kvk − F k−1vk−1‖ ≤ ‖M‖

‖ΠIm(A)(v
k − vk−1)‖

‖vk − vk−1‖ ≤ ξ.

Supposing that there exists a non-empty setK such thatδk ≥ 1− ξ and‖ΠN (A⊤)(v
k − vk−1)‖/‖vk− vk−1‖ ≥

√

1− ξ2/‖M‖2 holds for allk ∈ K, we haveζ ≥ maxk∈K δk − ǫk ≥ 1− 2ξ regardless the choice ofρ.

H. Proof of Lemma 1

Let (x⋆, z⋆, u⋆) denote a fixed-point of (31) and letµ be the Lagrange multiplier associated with the equality

constraint in (19). For the optimization problem (19), the Karush-Kuhn-Tucker (KKT) optimality conditions [12]

are
0 = Qx+ q +A⊤µ, z ≥ 0,

0 = Ax+ z − b, 0 = diag(µ)z.

Next we show that the KKT conditions hold for the fixed-point(x⋆, z⋆, u⋆) with µ⋆ = 1/ρu⋆. From the

u−iterations we have0 = α(Ax⋆ − c) − (1 − α)z⋆ + z⋆ = α(Ax⋆ + z⋆ − c). It follows that z⋆ is given

by z⋆ = max{0,−α(Ax⋆ + z⋆ − c) + z⋆ − u⋆} = max{0, z⋆ − u⋆} ≥ 0. The x−iteration then yields0 =

Qx⋆ + q+ ρA⊤(Ax⋆ + z⋆− c+u⋆) = Qx⋆ + q+A⊤µ⋆. Finally, fromz⋆ ≥ 0 and thez−update, we have that

z⋆i > 0 ⇒ u⋆
i = 0 andz⋆i = 0 ⇒ u⋆

i ≥ 0. Thus,ρ diag(µ⋆)z⋆ = 0.
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I. Proof of Theorem 6

Taking the Euclidean norm of (34) and applying the Cauchy-Schwarz inequality yields

∥
∥F k+1vk+1 − F kvk

∥
∥ ≤ |α|

2
‖2M − I‖

∥
∥vk − vk−1

∥
∥+ |1− α

2
|
∥
∥F kvk − F k−1vk−1

∥
∥ .

Note that sincevks are positive vectors we have
∥
∥vk − vk−1

∥
∥ ≤

∥
∥F kvk − F k−1vk−1

∥
∥ and thus

∥
∥F k+1vk+1 − F kvk

∥
∥

‖F kvk − F k−1vk−1‖ ≤
( |α|

2
‖2M − I‖+

∣
∣
∣1− α

2

∣
∣
∣

)

︸ ︷︷ ︸

ζR

. (56)

Note thatρ ∈ R++ and recall from the proof of Theorem 3 that the0-eigenspace ofM can be disregarded.

Therefore,
1

2
‖2M − I‖N (M)⊥ ∈ [0,

1

2
). Defining τ ,

1

2
‖2M − I‖N (M)⊥ we have

ζR = ατ + |1− α

2
| < α

2
+ |1− α

2
|

Hence, we conclude that forρ ∈ R++ andα ∈ (0, 2], it holds thatζR < 1 , which implies that (34) converges

linearly to a fixed-point. By Lemma 1 this fixed-point is also aglobal optimum of (18). Now, denotewk+1
− ,

F k+1vk+1 − F kvk andwk+1
+ , vk+1 − vk. Following the same steps as Proposition 2, it is easily verified that

wk+1
− = uk+1 − uk + zk − zk+1 andwk+1

+ = uk+1 − uk + zk+1 − zk from which combined with (31) one

obtains

sk+1 = ρ
A⊤

2
(wk+1

+ − wk+1
− ), rk+1 =

1

2
wk+1

+ +
2− α

2α
wk+1

− .

We only upper-bound‖rk+1‖, since an upper bound for‖sk+1‖ was already established in (28). Taking the

Euclidean norm of the second equality above and using the triangle inequality

‖rk+1‖ ≤ 1

2
‖wk+1

+ ‖+ 2− α

2α
‖wk+1

− ‖ ≤ 1

α
‖wk+1

− ‖. (57)

The R-linear convergence of the primal and dual residuals now follows from the linear convergence rate of

F k+1vk+1 − F kvk and the bounds in (28) and (57).

J. Proof of Theorem 7

Define

ζR(ρ, α, λi(AQ
−1A⊤)) = α

∣
∣
∣
∣

ρλi(AQ
−1A⊤)

1 + ρλi(AQ−1A⊤)
− 1

2

∣
∣
∣
∣
+ 1− α

2
,

ζ⋆R = max
i

min
ρ,α

{ζR(ρ, α, λi(AQ
−1A⊤))}.

(58)

Since

∣
∣
∣
∣

ρλi(AQ
−1A⊤)

1 + ρλi(AQ−1A⊤)
− 1

2

∣
∣
∣
∣
<

1

2
, it follows that ζR(ρ, α, λi(AQ

−1A⊤)) is monotone decreasing inα.

Thus,ζR(ρ, α, λi(AQ
−1A⊤)) is minimized byα⋆ = 2. To determine

ρ⋆ = argmin
ρ

max
i

{
ζR(ρ, 2, λi(AQ

−1A⊤))
}
, (59)

we note that (53) and (59) are equivalent up to an affine transformation, hence we have the same minimizerρ⋆.

It follows from the proof of Theorem 4 thatρ⋆ = 1/
√

λ1(AQ−1A⊤) λn(AQ−1A⊤). Using ρ⋆ in (58) results

in the convergence factor (36).
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For givenA, Q, andρ, we can now find the range of values ofα for which (31) have a smaller convergence

factor than (20), i.e. for whichζR − ζ < 0. By (51) and (56) it holds that

ζR − ζ =
α

2
‖2M − I‖+ 1− α

2
− 1

2
‖2M − I‖ − 1

2
= (1− α)

(
1

2
− 1

2
‖2M − I‖

)

.

This means thatζR − ζ < 0 when α > 1. Therefore, the iterates produced by the relaxed algorithm(31)

have smaller convergence factor than the iterates producedby (20) for all values of the relaxation parameter

α ∈ (1, 2]. This concludes the proof.

K. Proof of Theorem 8

Note that the non-zero eigenvalues ofLAQ−1A⊤L are the same as the ones ofR⊤
q A

⊤WARq whereW = L2

andR⊤
q Rq = Q−1 is its Choleski factorization [31]. Definingλn(R

⊤
q A

⊤WARq) andλ1(R
⊤
q A

⊤WARq) as the

largest and smallest nonzero eigenvalues ofLAQ−1A⊤L, the optimization problem we aim at solving can be

formulated as
minimize

λ̄∈R, λ∈R, l∈Rm
λ̄/λ

subject to λ̄ > λn(R
⊤
q A

⊤WARq),

λ1(R
⊤
q A

⊤WARq) > λ,

W = diag(w), w > 0.

(60)

In the proof we show that the optimization problem (60) is equivalent to (37).

DefineT (λ̄) , λ̄I−R⊤
q A

⊤WARq. First observe that̄λ ≥ λn(R
⊤
q A

⊤WARq) holds if and only ifT (λ̄) ∈ Sn
+,

which proves the first inequality in the constraint set (37).

To obtain a lower bound onλ1(R
⊤
q A

⊤WARq) one must disregard the zero eigenvalues ofR⊤
q A

⊤WARq (if

they exist). This can be performed by restricting ourselvesto the subspace orthogonal toN (R⊤
q A

⊤WARq) =

N (ARq). In fact, lettings to be the dimension of the nullity ofARq or simplyA and denotingPn×n−s as a

basis of Im(R⊤
q A

⊤), we have thatλ ≤ λ1 if and only if x⊤P⊤T (λ)Px ≤ 0 for all x ∈ Rn−s. Note that for the

case when the nullity ofA is 0 (s = 0), all the eigenvalues ofR⊤
q A

⊤WARq are strictly positive and, hence, one

can setP = I. We conclude thatλ ≤ λ1(R
⊤
q A

⊤WARq) if and only if P⊤
(
R⊤

q A
⊤WARq − λI

)
P ∈ Sn−s

+ .

Note thatλ1(R
⊤
q A

⊤WARq) > 0 can be chosen arbitrarily by scalingW , which does not affect the ratio

λn(R
⊤
q A

⊤WARq)/λ1(R
⊤
q A

⊤WARq). Without loss of generality, one can supposeλ⋆ = 1 and thus the lower

bound onλ1(R
⊤
q A

⊤WARq) ≥ λ⋆ = 1 corresponds to the last inequality in the constraint set of (37). Observe

that the optimization problem now reduces to minimizingλ̄. The proof concludes by rewriting (60) as (37),

which is a convex problem.

L. Proof of Proposition 3

AssumingF k+1 = F k = −I, (33) reduces tovk+1 − vk = ((1− α)I + αM) (vk − vk−1). By taking the

Euclidean norm of both sides and applying the Cauchy inequality, we find

‖vk+1 − vk‖ ≤ ‖(1− α)I + αM‖‖vk − vk‖.
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Since the eigenvaluesM are
ρλi(AQ

−1A⊤)

1 + ρλi(AQ−1A⊤)
, the convergence factorζR is

ζR(ρ, α, λi(AQ
−1A⊤)) = 1− α+ α

ρλi(AQ
−1A⊤)

1 + ρλi(AQ−1A⊤)
.

It is easy to check that the smallest value of|ζR| is obtained whenα = 1 andρ → 0. Sinceα = 1 the relaxed

ADMM iterations (31) coincide with (20) and consequentlyζ = ζR.

M. Proof of Proposition 4

The proof follows similarly to the one of Proposition 3 but with F k+1 = F k = I.
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