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Optimal parameter selection for the
alternating direction method of multipliers

(ADMM): quadratic problems
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Abstract

The alternating direction method of multipliers (ADMM) hasnerged as a powerful technique for large-
scale structured optimization. Despite many recent resultthe convergence properties of ADMM, a quantitative
characterization of the impact of the algorithm parameberthe convergence times of the method is still lacking.
In this paper we find the optimal algorithm parameters thatimize the convergence factor of the ADMM iterates
in the context of/»-regularized minimization and constrained quadratic pmogning. Numerical examples show
that our parameter selection rules significantly outpenfexisting alternatives in the literature.

I. INTRODUCTION

The alternating direction method of multipliers is a powérdigorithm for solving structured convex opti-
mization problems. While the ADMM method was introduced égtimization in the 1970’s, its origins can
be traced back to techniques for solving elliptic and palialjmartial difference equations developed in the
1950's (seel[l] and references therein). ADMM enjoys thergrconvergence properties of the method of
multipliers and the decomposability property of dual ascand is particularly useful for solving optimization
problems that are too large to be handled by generic opttinizaolvers. The method has found a large number
of applications in diverse areas such as compressed sd@kimggularized estimation [3], image processing [4],
machine learning |5], and resource allocation in wirelessvorks [6]. This broad range of applications has
triggered a strong recent interest in developing a bettderstanding of the theoretical properties of ADMM][7],
[, [.

Mathematical decomposition is a classical approach foalfgdizing numerical optimization algorithms. If the
decision problem has a favorable structure, decomposdiiohniques such as primal and dual decomposition
allow to distribute the computations on multiple procesgtfi], [11]. The processors are coordinated towards

optimality by solving a suitable master problem, typicallsing gradient or subgradient techniques. If problem
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parameters such as Lipschitz constants and convexity aeasnof the cost function are available, the optimal
step-size parameters and associated convergence rateglakmown .9, [12]). A drawback of the gradient
method is that it is sensitive to the choice of the step-s&xen to the point where poor parameter selection
can lead to algorithm divergence. In contrast, the ADMM teghe is surprisingly robust to poorly selected
algorithm parameters: under mild conditions, the methaguisranteed to converge for all positive values of its
single parameter. Recently, an intense research efforbéas devoted to establishing the rate of convergence
of the ADMM method. It is now known that if the objective fuiars are strongly convex and have Lipschitz-
continuous gradients, then the iterates produced by the MDdigorithm converge linearly to the optimum in
a certain distance metric e.g! [7]. The application of ADMddquadratic problems was considered(ih [9] and it
was conjectured that the iterates converge linearly in #ighiorhood of the optimal solution. It is important
to stress that even when the ADMM method has linear convergete, the number of iterations ensuring a
desired accuracy, i.e. the convergetines is heavily affected by the choice of the algorithm paramé&te will
show that a poor parameter selection can result in arbijtdarge convergence times for the ADMM algorithm.

The aim of the present paper is to contribute to the undetstgnof the convergence properties of the
ADMM method. Specifically, we derive the algorithm paramstthat minimize the convergence factor of the
ADMM iterations for two classes of quadratic optimizatiormplems:¢s-regularized quadratic minimization and
quadratic programming with linear inequality constraintsboth cases, we establish linear convergence rates
and develop technigues to minimize the convergence facofoitse ADMM iterates. These techniques allow us
to give explicit expressions for the optimal algorithm paeders and the associated convergence factors. We
also study over-relaxed ADMM iterations and demonstrate twjointly choose the ADMM parameter and the
over-relaxation parameter to improve the convergencestieven further. We have chosen to focus on quadratic
problems, since they allow for analytical tractabilityt ygve vast applications in estimatian [13], multi-agent
systems|[[14] and control[15]. Furthermore, many compleobfams can be reformulated as or approximated
by QPs [16], and optimal ADMM parameters for QP’s can be used benchmark for more complex ADMM
sub-problems e.¢/;-regularized problems [1]. To the best of our knowledges thione of the first works that
addresses the problem of optimal parameter selection faMKDA few recent papers have focused on the
optimal parameter selection of ADMM algorithm for some wa#ions of distributed convex programming subject
to linear equality constraints e.qg. [17], [18].

The paper is organized as follows. In Secfidn I, we deriveas@reliminary results on fixed-point iterations
and review the necessary background on the ADMM method.i@®elll studies ¢>-regularized quadratic
programming and gives explicit expressions for the joirdjptimal step-size and acceleration parameter that
minimize the convergence factor. We then shift our focush quadratic programming with linear inequality
constraints and derive the optimal step-sizes for suchlpnubin Section IV. We also consider two acceleration
techniques and discuss inexpensive ways to improve thel sgemnvergence. Our results are illustrated through
numerical examples in Sectiéd V. In Sectloh V we perform atersive Model Predictive Control (MPC) case
study and evaluate the performance of ADMM with the propogathmeter selection rules. A comparison

with an accelerated ADMM method from the literature is alssfprmed. Final remarks and future directions
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conclude the paper.

A. Notation

We denote the set of real numbers withand define the set of positive (nonnegative) real numbef as
(R,). Let S be the set of real symmetric matrices of dimensiox n. The set of positive definite (semi-
definite) n x n matrices is denoted b§?, (S7). With I and I,,, we symbolize the identity matrix and the
identity matrix of a dimensiomn x m, respectively.

Given a matrixA € R™*™, let N(A) £ {x € R™| Az = 0} be the null-space oft and denote the range
space ofd by Im(A) 2 {y € R"| y = Az, 2 € R™}. We say the nullity of4 is 0 (of zero dimensional)
when N (A) only contains0. The transpose ofl is represented byl " and for A with full-column rank we
define AT 2 (AT A)"1AT as the pseudo-inverse of. Given a subspacd& C R”, Iy € R™*" denotes the
orthogonal projector ont&’, while X+ denotes the orthogonal complement6f

For a square matrixd with an eigenvalue\ we call the space spanned by all the eigenvectors corresmpnd
to the eigenvalue\ the A-eigenspace ofd. The i-th smallest in modulus eigenvalue is indicated ky-).
The spectral radius of a matrik is denoted byr(A). The vector (matrix)p-norm is denoted by - ||, and

| = | - ||z is the Euclidean (spectral) norm of its vector (matrix) angut. Given a subspack C R" and

- )
a matrixA € R™*", denote||A|| x = max,ex % as the spectral norm of restricted to the subspace.
x

Givenz € R", the diagonal matriZ € R™*" with Z;; = z; andZ,; = 0 for j # i is denoted byZ = diag(z).

Moreover,z > 0 denotes the element-wise inequaliy, corresponds to the element-wise absolute value, of
andZ, (z) is the indicator function of the positive orthant definedZagz) = 0 for z > 0 andZ(z) = +o0
otherwise.

Consider a sequender®} converging to a fixed-point* € R™. The convergence factoof the converging

sequence is defined as

(£ sup 1)

The sequencéz”} is said to converge Q-sublinearly §f= 1, Q-linearly if ¢¥ € (0, 1), and Q-superlinearly if
¢ = 0. Moreover, we say that convergence is R-linear if there i®m@negative scalar sequenfe,} such that
|z — z*|| < vy for all k and {v;,} converges Q-linearly to [19] H In this paper, we omit the letter Q while
referring the convergence rate.

Given an initial conditionz’ such that|z° — 2*|| < o, we define thes-solution timer. as the smallest
iteration count to ensure thit:, || < e holds for allk > .. For linearly converging sequences witke (0, 1)

o 1 —1 o
the -solution time is given byr, £ M. If the 0-solution time is finite for allz®, we say that

—log(¢)

the sequence converges in finite time. As for linearly cogvey sequenceg < 1, the e-solution timer, is

reduced by minimizing.

Il. BACKGROUND AND PRELIMINARIES

This section presents preliminary results on fixed-pognaitions and the ADMM method.

1The letters Q and R stand for quotient and root, respectively
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A. Fixed-point iterations

Consider the following iterative process
F = Tk, (2)

wherezF € R™ andT € S™*". AssumeTl hasm < n eigenvalues at and letV’ € R"*™ be a matrix whose
columns span thé-eigenspace of’ so thatT'V = V.
Next we determine the properties Bfsuch that, for any given starting point, the iteration in[(R) converges

to a fixed-point that is the projection of th€ into the 1-eigenspace of’, i.e.

*x D 7 k _ 71: k0 __ 0
x —klg{.low —klg{.loT 2" =ImaHz 3)

Proposition 1: The iterations[{R) converge to a fixed-point in(I/) if and only if

P (7= Tmgy ) < 1. )

Proof: The result is an extension df [20, Theorem 1] for the caseé-efgenspace of" with dimension
m > 1. The proof is similar to this citation and is therefore oeult [ |
Propositior ]l shows that wheh € 8™, the fixed-point iteratior (2) is guaranteed to converge poiat given

by (@) if all the non-unitary eigenvalues @f have magnitudes strictly smaller than 1. Frdrh (2) one ses th

gt gt = (T — Hlm(v)) ak = (T — Hlm(v)) (z% —2%)

Hence, the convergence factor bf (2) is the modulus of thgekirnon-unit eigenvalue &f.

B. The ADMM method
The ADMM algorithm solves problems of the form

minimize  f(z) + g(z) (5)
subject to Az + Bz =c¢

where f and g are convex functionsy € R™, z € R™, A € RP*", B € RP*™ andc¢ € RP; see [1] for a
detailed review.

Relevant examples that appear in this form are, e.g. régathestimation, wher¢ is the estimator loss and
g is the regularization term, and various networked optitiizaproblemse.g.[21], [1]. The method is based

on theaugmented Lagrangian
Ly(z,z,p1) = f(x)+g(z) + g”Am + Bz —c||3 + u" (Az + Bz — ¢),

and performs sequential minimization of theand > variables followed by a dual variable update:

2F*1 = argmin L,(z, 2% k),

x
2+ = argmin L,
z

Mk+1 —_ Mk +p(A:L'k+1 +sz+1 76),

April 15, 2014 DRAFT



for some arbitraryz® € R”, 20 € R™, andu® € RP. It is often convenient to express the iterations in terms
of the scaled dual variable = p/p:

zF*1 = argmin {f(x) + gHAx +BzF —c+ ukH%} ,

g,-

PR :argmin{g(z)JrgHAkarlJrBzfchukH%}, (7

ubth =k j—Awk‘H + Bz — ¢
ADMM is particularly useful when the:- and z-minimizations can be carried out efficiently, for exampleen
they admit closed-form expressions. Examples of such problinclude linear and quadratic programming,
basis pursuit{;-regularized minimization, and model fitting problems tareaa few (seel 1] for a complete
discussion). One advantage of the ADMM method is that therenly a single algorithm parameter, and
under rather mild conditions, the method can be shown to exgevfor all values of the parameter; seé [1],
[22] and references therein. As discussed in the introdogcthis contrasts the gradient method whose iterates
diverge if the step-size parameter is chosen too large. Memve has a direct impact on the convergence factor
of the algorithm, and inadequate tuning of this parameter resoder the method slow. The convergence of

ADMM is often characterized in terms of the residuals
PRl = Agh+l 4 B2RHL ¢ (8)
sFHL = pAT B(F — 20, (9)

termed theprimal anddual residuals, respectively|[1]. One approach for improving tonvergence properties
of the algorithm is to also account for past iterates whenpating the next ones. This technique is called
relaxationand amounts to replacingz*+! with h*+! = o* Az*+1 — (1 —a*)(B2z* —¢) in the z- andu-updates
[A], yielding
2Pl = argmin {g(z) + g |h**1 + Bz —c+ ukHz} :
- (10)
WF L =k 1 Bkl
The parametern”* € (0,2) is called therelaxation parameterNote that lettinga® = 1 for all k recovers
the original ADMM iterations [(7). Empirical studies showathover-relaxationj.e. letting o* > 1, is often
advantageous and the guidelin& € [1.5,1.8] has been proposed [23].
In the rest of this paper, we will consider the traditional MBI iterations [6) and the relaxed versidn110)
for different classes of quadratic problems, and derivdiexgxpressions for the step-sizeand the relaxation

parametery that minimize the convergence factors.
I1l. OPTIMAL CONVERGENCE FACTOR FOR/2-REGULARIZED QUADRATIC MINIMIZATION
Regularized estimation problems
I 8, g
minimize f(z) + §||z|\p

whereé > 0 are abound in statistics, machine learning, and contropdrticular, ¢,-regularized estimation

where f(z) is quadratic any = ¢ = 1, andsum of normsegularization wheref(x) is quadraticp = 2,
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and ¢ = 1, have recently received significant attention/[24]. In teéction we will focus orés-regularized

estimation, wheref (x) is quadratic angp = ¢ = 2, i.e.

minimize %JITQ$+QTJJ+ gHzH% 1)
subjectto z — 2z =0,

forQ € 87, z,q,z € R™ and constant regularization paramefet R . While these problems can be solved

explicitly and do not motivate the ADMM machinery per se,yth®ovide insight into the step-size selection

for ADMM and allow us to compare the performance of an optlynained ADMM to direct alternatives (see

SectionlY).

A. Standard ADMM iterations

The standard ADMM iterations are given by

" = (Q + pI) T (pzF — pF —q),
b uF + pritl
o+p

PEHL = i (kT — R,

(12)

)

The z-update implies that* = (§ + p)z*+! — px**+1, so theu-update can be re-written as
Mk+1 _ (5+p)2k+1 o p$k+1 +p(:rk+1 o Zk+1) — 5Zk+1.

Hence, to study the convergence bfl(12) one can investigatethe errors associated wittf or z* vanish.

Inserting thez-update into thex-update and using the fact that = §2*, we find

et _ L (51 +p(p—0)(Q + pI)’l) * - L@+ o).

T o+p o+ (13)
E
. . . 1)t
Let 2* be a fixed-point of {13), i.ez* = Ez* — %q. The dual erroe*t! £ z++1 _ »* then evolves
0
as
eftl = EeF, (14)

A direct analysis of the error dynamids{14) allows us to abterize the convergence ¢f (12):

Theorem 1:For all values of the step-size> 0 and regularization parametér> 0, both z* andz* in the
ADMM iterations [12) converge ta* = z*, the solution of optimization probleri{lL1). MoreovefFt! — 2*
converges at linear ratee (0, 1) for all £ > 0. The pair of the optimal constant step-sizeand convergence
factor ¢* are given as

- d+M(Q)
Q) i< M(Q), 2./00(Q)

-1
) if 6 < \i(Q),
PP=9VM(Q)  ifi>N(Q), ¢ = <1+ 5+An(Q)>1 it 5> A (Q), (15)

: 2¢/6A(Q)
] otherwise 1
- otherwise
2
Proof: See appendix for this and the rest of the proofs. ]
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Corollary 1: Consider the error dynamics described byl (14) @&ih (I3). Forp = 4,
Ni(E) =1/2, i=1,...,n,

and the convergence factor of the error dynanic$ (14) ispeddent of@Q.

Remark 1:Note that the convergence factors in Theofgm 1 and CordIhaye guaranteed for all initial
values, and that iterates generated from specific initiflesa might converge even faster. Furthermore, the
results focus on the dual error. For example, in Algorith®) (ith p = § and initial conditionz® = 0, u° = 0,
the z-iterates converge in one iteration since= —(Q + 1)~ !¢ = z*. However, the constraint i (IL1) is not
satisfied and a straightforward calculation shows #fdt' = 1/2¢*. Thus, althought® = 2* for k > 1, the
dual residual|e*|| = ||z* — 2*| decays linearly with a factor of /2.

. . . o1
Remark 2: The analysis above also applies to the more general casecmslhfunctlon?fTQ:f +q'z+

0 _+= _ . _ . . .
izTPZ where P € S ,. A change of variables = P'/2% is then applied to transform the problem into the

form () withz = P'/2z, ¢ = P~1/2G, andQ = P~1/2QP~1/2,

B. Over-relaxed ADMM iterations

The over-relaxed ADMM iterations fof (11) can be found bylaging 2**! by ax*+! + (1 — a)2z* in the

z— and p-updates of[{12). The resulting iterations take the form

(Q+ pI) " (pz* — pk — q),
R n* + P(afc’“;:; (1- a)zk), (16)

PR S (a(wk-q—l _ M) 4 (1 - a) (Zk _ zk+1)) .

The next result demonstrates that in a certain range ibfis possible to obtain a guaranteed improvement of

:L.k+1

the convergence factor compared to the classical itersi{).

Theorem 2:Consider the/>-regularized quadratic minimization problem11) and &saxiated over-relaxed
ADMM iterations [186). For all positive step-sizes> 0 and all relaxation parameterse (0, 2min{(\;(Q) +
p)(p+98)/(pd+ pri(Q))}), the iteratess® and 2* converge to the solution of (IL1). Moreover, ':he dual vaeabl
converges at linear rafe:*+! — 2*|| < (g||2* — 2*|| and the convergence factgr < 1 is strictly smaller than
that of the classical ADMM algorithni(12) if < o < Qmiin{()\i(Q) +p)(p+8)/(pd + pAi(Q))} The jointly

optimal step-size, relaxation parameter, and the connemgtactor(p*, o*,(},) are given by
pr=0, a*=2 (=0 a7

With these parameters, the ADMM iterations converge in deeiion.

Remark 3: The upper bound on which ensures faster convergence of the over-relaxed ADMMKiions[(16)
compared to[(12) depends on the eigenvalue§)of\;(Q), which might be unknown. However, sindg +
N (p+ Mi(Q)) > p(Xi(Q) + ) the over-relaxed iterations are guaranteed to converderfés all o € (1, 2],
independently ofy.
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IV. OPTIMAL CONVERGENCE FACTOR FOR QUADRATIC PROGRAMMING
In this section, we consider a quadratic programming (QBblem of the form
1
inimi T T
minimize —-z'Qx+q'zx
2 (18)
subjectto Az <c¢

where@ € S8t , g € R", A€ R™*" is full rank andc € R™.

A. Standard ADMM iterations

The QP-problem[{18) can be put on ADMM standard fofth (5) byoidticing a slack vectotr and putting

an infinite penalty on negative componentszoi.e.

L 1
minimize gazTQw +qz+7Z(2)

(19)
subjectto Az —c+ 2z =0.
The associatedugmented Lagrangiais
1
Ly(w,z,u) = 50" Qo +q w+ Lo (2) + Sl Av — c+ 2+ uf},

whereu = u/p, which leads to the scaled ADMM iterations

bt = —(Q + pATA) g + pAT (28 +uF — o)),

ML = max{0, —Az* ! —uF + ¢}, (20)

uk+1 — uk + A$k+1 _ CJerJrl.

To study the convergence &f {20) we rewrite it in an equivialerm with linear time-varying matrix operators.
To this end, we introduce a vector of indicator variabléss {0, 1}" such thatd¥ = 0 if u¥ =0 andd¥ = 1 if
u¥ # 0. From thez- andu- updates in[(20), one observes thfit# 0 — u¥ = 0, i.e. u¥ # 0 — 2¥ = 0. Hence,
d¥ = 1 means that at the current iterate, the slack variapie (I9) equals zero; i.e., thé" inequality constraint
in (I8) is active. We also introduce the variable veatbr= z* 4+ v* and letD* = diag(d*) so thatD*vF = ¥
and (I — D*)v* = z*. Now, the second and third steps &f(20) imply thdt! = |Az*T! +u* —¢| =
FF1(Azk+! 4 Dko* — ¢) where F¥+1 £ diag(sign(Az**! + Dok — ¢)) and sigit-) returns the signs of the

elements of its vector argument. Hende,] (20) becomes

o f(QquATA)*l[qupAT(Uk —c)],
R+l _ ‘Axk"’_l + Dkyk — C| — Fk-i—l(Axk-i-l + DFuF — C), (21)
DE+1 — E(IJrFkJrl)

2 )

where theD**+!-update follows from the observation that
(0, —1) if oF*t = —(AzFt! 4k — o)

(D B = £ k1 k+1 k
(1,1) if v/ =Ax;"T +ui —c

Since thev*-iterations will be central in our analysis, we will develtgem further. Inserting the expression for

xk*1 from the first equation of(21) into the second, we find

oL — Fk+1((Dk —AQ/p+ ATA)IAT) Uk) —F"”’“(A(Q 4 pATA) (g — pATe) +C)_ (22)
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. 1 . .
Noting that D = 5(I + F*) and introducing
M2 AQ/p+ATA)TTAT, (23)
we obtain

1

5 (FFob — Fr=tyk=1) (24)

FhHlphtl _ phyk — (g - M) (v* — Ry +

We now relatev® and F¥v* to the primal and dual residualg® and s*, defined in[(8) and{9):
Proposition 2: Considerr* and s* the primal and dual residuals of the QP-ADMM algorithin](2@)da

auxiliary variablesy” and F*. The following relations hold

1
FhAlhtl _ phok _ k1 ;Rsk-'rl _ HN(AT)(Z]C-‘FI 2k, (25)
1
S N S ;Rskﬂ n HN(AT)(Z]C-‘FI 2k, (26)
HTk-i_lH S HFk—‘,-IUk-‘,-l _ Fk’UkH, (27)
5+ < plIANIER oA+t — Fro (8)

where

(i) R=A(ATA) andIly 47y =1— A(ATA)"*AT, if A has full column-rank;

(i) R=(AAT)" A andIly 4y = 0, if A has full row-rank;
(i) R=A"1 andIly 4y = 0, if Ais invertible.

The next theorem guarantees thaf] (24) convergence linéarkero in the auxiliary residual§ (P5) which
implies R-linear convergence of the ADMM algorithin 120) ierms of the primal and dual residuals. The
optimal step-size* and the smallest achievable convergence factor are chareat immediately afterwards.

Theorem 3:Consider the QF(18) and the corresponding ADMM iterati®@@.(For all values of the step-
sizep € R, the residualF*t1v*+! — Fkyk converges to zero at linear rate. Furthermofeand s*, the
primal and dual residuals df (R0), converge R-linearly tooze

Theorem 4:Consider the QP_(18) and the corresponding ADMM iterati@®.(If the constraint matrixd
is either full row-rank or invertible then the optimal stsjze and convergence factor for thé+1o++1 — Fhyk

residuals are

-1
P = <\/A1(AQ1AT)M(AQ1AT>> :
(29)
o An(AQTAT)

M (AQTTAT) + /A (AQ AN (AQ—TAT)
Although the convergence result of Theorgim 3 holds for als @Pthe form [IB), optimality of the step-size

choice proposed in Theordm 4 is only established for problatmere the constraint matrig has full row-rank
or it is invertible. However, as shown next, the convergefacéor can be arbitrarily close tb when rows of

A are linearly dependent.
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10

Theorem 5:Define variables
[ M (0* — o1
||Fk’l)k _ kalkalH ’
pA(AQTAT) 1’ 1}

s HDkvk _ Dk—lvk—lH
||Fkvk _ kalkaln ’

(1>

€k Ok

A
i /\i(A%liif(AT)>0 {’ 1+ p)\Z(AQilAT) 2

2

Ay

—

s

=
I

andg"”’ £ |6k — 6k|.

The convergence factar of the residualf’**1vk+1 — F*y* is lower bounded by

Qé mkax gk < 1. (30)

Furthermore, given an arbitrarily smalle (0, ) andp > 0, we have the following results:

(i) the inequality¢ < f(p) < 1 holds for all§; € [0, 1] if and only if the nullity of A is zero;
(i) when the nullity of A is nonzero and;, > 1 — ¢, it holds that¢ < f(p) + \/g;
(i) when the nullity of A is nonzerog;, > 1—¢, and [Ty am(v* —v* 1) /[[v* —vF =1 > /1T = /[ M]?,

it follows that¢ > 1 — 2¢.
The previous result establishes that slow convergence ceur docally for any value op when the nullity of
A is nonzero and is small. However, as section (ii) of Theor&m 5 suggestshésé cased, (R9) can still work
as a heuristic to reduce the convergence timg fAQ 1 A") is taken as the smallest nonzero eigenvalue of

AQ7'AT. In SectiorY, we show numerically that this heuristic pemie well with different problem setups.

B. Over-relaxed ADMM iterations

Consider the relaxation of (20) obtained by replacitig*! in the z- and u-updates witho Az*+1 — (1 —

a)(z* — ¢). The corresponding relaxed iterations read

ab T = —(Q + pATA) Mg+ pAT (28 +uF — o)),
ZFl = max{0, —a(AzF T —¢) + (1 — a)2F — uF}, (31)
uFtl = pa(Axht 4 2R o) 4 (1 — ) (2R - 2R).

In next, we study convergence and optimality propertiesheke iterations. We observe:
Lemma 1:Any fixed-point of [31) corresponds to a global optimum [of}(19
Like the analysis of((20), introduce® = 2* + v* andd* € R™ with d¥ = 0 if u¥ =0 andd’ = 1 otherwise.
Adding the second and the third step Bf1(31) yields™ = |a(Az*™ —¢) — (1 — a)z* 4 u*|. Moreover,
DF = diagd*) satisfiesD*v* = v* and (I — D*)v* = 2*, so [31) can be rewritten as
Pt = —(Q + pATA) g + pAT (V8 — ¢)],
vl = kel (a (Azk+1 + DRoF —¢) ) — Fk+l ((1 —a)( - 2Dk)vk)7 (32)
Dkl — %(I_FF;CH)’
whereF* 1 £ diag(sign(a(Az**! + D*o% — ¢) — (1 — a)(I — 2D*)v*)). DefiningM £ A(Q/p+ATA)~*AT
and substituting the expression fef*! in (32) into the expression far*+! yields

o = P ((—aM + (2 - a)DF — (1= a)T) o) = F¥* (aA(Q + pAT 4) " (g — pATe) + ac).
(33)
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As in the previous section, we replad¥ by — (I + F*) in @3) and formFkt+ipktl — phoyk:
PRI phyb = % (I —2M) (v* =0 1)+ (1- %) (FFokF — Pr=1pht) (34)

The next theorem characterizes the convergence rate oéliveed ADMM iterations.
Theorem 6:Consider the QF_(18) and the corresponding relaxed ADMMdiiens [31). If

pe R++a Q€ (07 2]7 (35)

then the equivalent fixed point iteratidn {34) convergesdity in terms ofF’*+1y*+1 — ['*yF residual. Moreover,
r* and s*, the primal and dual residuals ¢f{31), converge R-linegslyero.
Next, we restrict our attention to the case wherds either invertible or full row-rank to be able to derive
the jointly optimal step-size and over-relaxation parameds well as an explicit expression for the associated
convergence factor. The result shows that the over-rel@®®@®M iterates can yield a significant speed up
compared to the standard ADMM iterations.

Theorem 7:Consider the QH(18) and the corresponding relaxed ADMMitens [31). If the constraint ma-
trix A is of full row-rank or invertible then the joint optimal stegize, relaxation parameter and the convergence

factor with respect to thé&*+1y++1 — Fkyk residual are

(36)

M(AQTTAT) — /A (AQ~LAT) N\, (AQ—1AT)

M (AQTAT) + /A (AQ—LAT) X\, (AQ—1AT)

Moreover, when the iteration§(34) are over-relaxed; icec (1, 2] their iterates have a smaller convergence
factor than that of[(24).

CR=7

o = (\/Al(AQ—lAT) (AQ-1AT) )
)
) A

C. Optimal constraint preconditioning

In this section, we consider another technique to improwe dbnvergence of the ADMM method. The
approach is based on the observation that the optimal cgenee factors* and ¢}, from Theorenl}# and
Theorem7 are monotone increasing in the ratig AQ—1AT)/A\(AQ=*AT). This ratio can be decreased
—without changing the complexity of the ADMM algorithin_{20by scaling the equality constraint in_{19) by
a diagonal matrix. € ST, , i,e., replacingdz —c+z=0by L (Az —c+2) =0. Let A £ LA 22 Lz and
¢ £ Le. The resulting scaled ADMM iterations are derived by replgcd, z, andc in (20) and [(31) by the new
variablesA, z, andg, respectively. Furthermore, the results of Theofém 4 arebfén{ ¥ can be applied to the
scaled ADMM iterations in terms of new variables. Althouglkede theorems only provide the optimal step-size
parameters for the QP when the constraint matrices aretilbleeor have full row-rank, we use the expressions as
heuristics when the constraint matrix has full column-rar&nce, in the following we considey, (AQ1AT)
and)\; (AQ~'AT) to be the largest and smallest nonzero eigenvaluegpf' AT = LAQ~'AT L, respectively
and minimize the ratio\,, /A; in order to minimize the convergence factgrsand(y,. A similar problem was
also studied in[[25],[126].

Theorem 8:Let R,R; = Q™' be the Choleski factorization of)~! and P € R"*"~* be a matrix

whose columns are orthonormal vectors spanningRinA ") with s being the dimension afV'(A) and let
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M (LAQ™TATL) and A\ (LAQ~'AT L) be the largest and smallest nonzero eigenvaludsA) AT L. The
diagonal scaling matrix* € S7", that minimizes the eigenvalue ratg,(LAQ*ATL)/Ai(LAQ™*ATL) can

be obtained by solving the convex problem

minimize ¢
tER, wER™
subjectto W =diagw), w > 0,
T AT n
tI— R, A'WAR, € SY,

PT(RJATWAR, —I)P € §7°,

(37)

and settingl* = W*"'*.

So far, we characterized the convergence factor of the ADMirahm based on general properties of the
sequencd F*v*}. However, if we a priori know which constraints will be aetiduring the ADMM iterations,
our parameter selection rulds {29) and](36) may not be optifimaillustrate this fact, we will now analyze
the two extreme situations where no and all constraints etigeain each iteration and derive the associated

optimal ADMM parameters.

D. Special cases of quadratic programming

The first result deals with the case where the constraintE8f &re never active. This could happen, for
example, if we use the constraints to impose upper and lowends on the decision variables, and use very
loose bounds.

Proposition 3: Assume thatF*+! = F¥ = —T for all epochsk ¢ R, in (21) and [(3R). Then the modified

ADMM algorithm (34) attains its minimal convergence facfor the parameters
a=1, p—0. (38)

In this case[(34) coincide witlhi (P4) and their convergenctofais minimized:( = (g — 0.
The next proposition addresses another extreme scenagn thie ADMM iterates are operating on the active
set of the quadratic prograrm_{18).

Proposition 4: Suppose thaf'**! = F¥ = I for all k € R, in (21) and [3R). Then the relaxed ADMM

algorithm [34) attains its minimal convergence factor fog parameters

a=1, p— oo (39)

In this case[(34) coincides with {24) and their convergemectofs are minimized; = (g — 0.
It is worthwhile to mention that wherf_(18) is defined so thatdonstraints are active (inactive) then tfe

(r*) residuals of the ADMM algorithm remain zero for &l> 2 updates.

V. NUMERICAL EXAMPLES

In this section, we evaluate our parameter selection rutesiuumerical examples. First, we illustrate the
convergence factor of ADMM and gradient algorithms for a ifsrof ¢5-regularized quadratic problems. These

examples demonstrate that the ADMM method converges fest@rthe gradient method for certain ranges of
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the regularization parametér and slower for other values. Then, we consider QP-probkenascompare the
performance of the over-relaxed ADMM algorithm with an eltative accelerated ADMM method presented
in [27]. The two algorithms are also applied to a Model PrizadicControl (MPC) benchmark where QP-problems

are solved repeatedly over time for fixed matricgsand A but varying vectorsy andb.

A. {>-regularized quadratic minimization via ADMM

We consider/,-regularized quadratic minimization probleifd (1) forca € S1% with condition number
1.2 x 10% and for a range of regularization parametérsig.[d shows how the optimal convergence factor of
ADMM depends ond. The results are shown for two step-size rules= § and p = p* given in [15%). For

comparison, the gray and dashed-gray curves show the dptoneergence factor of the gradient method
$k+1 _ .I'k _’Y(ka +q+6$k),
with step-sizey < 2/(A\,(Q) + §) and a multi-step gradient iterations on the form

2P = ok — 0 (QaF 4 ¢ + 52F) 4 b2k — 2F7Y),

This latter algorithm is known as the heavy-ball method aigdiiicantly outperforms the standard gradient
method on ill-conditioned problems[28]. The algorithm la® parameterse < 2(1 4+ b)/(\.(Q) + 9), and
b € [0, 1]. For our problem, since the cost function is quadratic asdHiéssianv?f(x) = Q + 1 is bounded
between/ = A\ (Q)+4d andu = )\, (Q) + 4, the optimal step-size for the gradient methodis= 2/(l +u) and
the optimal parameters for the heavy-ball methodare- 4/(v/1+/u)?, andb* = (vu—v1)?/(V14/u)?[28].

Figure[1 illustrates the convergence properties of the ADMEthod under both step-size rules. The optimal
step-size rule gives significant speedups of the ADMM for lsoralarge values of the regularization parameter
4. This phenomena can be intuitively explained based on tieeglay of the two parts of the objective function
in (LT). For extremely small values @f one sees that the-th part of the objective is becoming dominant
compared toz-th part. Consequently, using the optimal step-size id,(15)s dictated to quickly follow the
value ofz-update. A similar reasoning holds whéris large, in which thez- has to obey the-update.

It is interesting to observe that ADMM outperforms the geadiand heavy-ball methods for small(an
ill-conditioned problem), but actually performs worsedagrows large (i.e. when the regularization makes the
overall problem well-conditioned). It is noteworthy théetrelaxed ADMM method solves the same problem

in one step (convergence factgy = 0).

B. Quadratic programming via ADMM

Next, we evaluate our step-size rules for ADMM-based quadpaogramming and compare their performance

with that of other accelerated ADMM variants from the liteenz.
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Fig. 1. Convergence factor of the ADMM, gradient, and hebai-methods forés regularized minimization with fixed)-matrix and
different values of the regularization parameter

1) Accelerated ADMM:One recent proposal for accelerating the ADMM-iteratiansdlledfast-ADMM [27]

and consists of the following iterations

*tl = argmin L, (z, 2%, 4%),
xT
2P = argmin L, (2%, 2, 4%),
uk+1 — ,&k j—Awk"_l + sz-i—l —c, (40)
SRl = Rkl (1 - k) 2k,
kTl = gFyFtt + (1 _ ak)uk.

The relaxation parametet® in the fast-ADMM method is defined based on the Nesterov'sleaptimal

method [12] combined with an innovative restart rule whefeis given by

k_1 k k
k 1+ﬁ k+1 i maX(IUT1||7HSkH)1 < 1’
of = prt max(||[rs= [, [[s* 1) (41)
1 otherwise
14 1/1+ 48K . .
where 3! = 1, and g+*! = — for k > 1. The restart rule assures thai](40) is updated in the

descent direction with respect to the primal-dual resislual

To compare the performance of the over-relaxed ADMM iterati with our proposed parameters to that
of fast-ADMM, we conducted several numerical examples. ther first numerical comparison, we generated
several instances of (I18); Figuré 2 shows the results fortwlmerepresentative examples. In the first case,
A € R0 and@ € S1% with condition numbei.95 x 10%; 32 constraints are active at the optimal solution.
In the second case} € R20°*1% and@ e S1%, where the condition number 6f is 7.1 x 10°. The polyhedral
constraints correspond to random box-constraints, of vl are active at optimality. We evaluate for four
algorithms: the ADMM iterates in[(31) with and without ovextaxation and the corresponding tuning rules
developed in this paper, and the fast-ADMM iterafes (40hwit= 1 as proposed by [27] and = p* of our
paper. The convergence of corresponding algorithms ingesfrthe summation of primal and dual residuals

7% + ||s*| are depicted in Fig.]2. The plots exhibit a significant imgnment of our tuning rules compared
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to the fast-ADMM algorithm.

To the best of our knowledge, there are currently no resitsukoptimal step-size parameters for the
fast-ADMM method. However, based on our numerical invegtans, we observed that the performance of
fast-ADMM algorithm significantly improved by employing oaptimal step-size* (as illustrated i 2). In the

next section we perform another comparison between thgegitims, using the optimalvalue for fast-ADMM

obtained by an extensive search.

2 2

10 10 =
- (p ,o=1)
=T so)
= 10° =1 o — Fast—Admm—p*=1
» A R = = =Fast-Admm-—p
= ' * o
_ — (" ,0=1 ~
;102: (P*(X*) ;102
1 =TT (o)
: — Fast-Admm—p=1
i - = -Fast-Admm—p" o
10 =
200 400 600 800 1000 10 200 400 600 800 1000
no. iterations no. iterations
(@) n =100, m = 50. (b) n =100, m =200

Fig. 2. Convergence of primal plus dual residuals of four ARMIgorithms withn decision variables angh inequality constraints.

2) Model Predictive Control:Consider the discrete-time linear system
Ti41 = Hl't + J’ut + JTT, (42)

wheret > 0 is the time indexx,; € R"= is the stateu, € R™« is the control inputy € R" is a constant
reference signal, an@dl € R"=*"=, J € R"=*" and.J,. € R"=*"" are fixed matrices. Model predictive

control aims at solving the following optimization problem

. 1 _
minimize 3 Zfipo 1(301- — )" Qu (i — ) + (u; — ur) T R(ui — up) + (xn, — xT)TQN(ach — X))

{ui}g? ™"

subjectto xi11 = Hxy + Jug + Jpr Vi,
r: € Cy Vi,
ug € Cy Vt,

(43)
where zg, x,, andu, are given,Q, € S%, R € S, andQy € S!7. are the state, input, and terminal
costs, and the sets, andC,, are convex. Suppose that the sétsandC,, correspond to component-wise lower
and upper bounds, i.eC, = {x € R™ |14, Zmin < T < lp, Trmae} aNdCy = {u € R™ |1, Umin < u <
Ly, Gmaq ). Definingx = [z] ... 2% 1T, v=[ug ...uy 4|7, v, = [r" ... 77|, (@2) can be rewritten as
X = Oz + ®v + ®,v,.. The latter relationship can be used to replagdor t = 1,..., N, in the optimization
problem, yielding the following QP:

minimize %’UTQ’U +q"v (44)
subject to Av < b,
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Fig. 3. Number of iterationg : max{||7*||, ||s*||} < 10~° for ADMM applied to the MPC problem for different initial $&52¢. The
dashed green line denotes the minimum number of iteratiakantover all the initial states, the dot-dashed blue lineesponds to the
average, while the red solid line represents the maximumbeuraf iterations.

where
@ 1nmijmaJ; - @.I'O - (I)TUT
_ In 1®Q;, 0 _ - 1o, N, Tmin + Ox9 + Orvy
o= | 0% M Rengen a=| 0w | ’ . )
0 QN 1 1nuNpﬁmax
-1 1nuNpamin

andQ = R+ 37Qd andq” = 2] 0TQd + v T QB — (1]Tvp ® Inm) 0D —ul (1}17 ® Inu) R.

Below we illustrate the MPC problem for the quadruple-tanigess[[29]. The state of the process R*
corresponds to the water levels of all tanks, measured itingeters. The plant model was linearized at a
given operating point and discretized with a sampling kb2 s. The MPC prediction horizon was chosen
as N, = 5. A constant reference signal was used, while the initialdition =, was varied to obtain a set of
MPC problems with different non-empty feasible sets anddincost terms. In particular, we considered initial
states of the formyy = [z1 75 x5 24] T wherez; € {10, 11.25, 12.5, 13.75, 15} for i = 1,...,4. Out of the
possible625 initial values,170 yields feasible QPs (each with= 10 decision variables aneh = 40 inequality
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Fig. 4. Number of iteration& : max{||r¥||, ||s*||} < 107> for ADMM with L = I anda = 2 and fast-ADMM algorithms applied to
the MPC problem for different initial states;. The line in blue denotes the minimum number of iteratiokenaover all the initial states,

while the red line represents the maximum number of itematio

constraints). We have made these QPs publically availabeeMATLAB formatted binary file[[30]. To prevent
possible ill-conditioned QP-problems, the constraintrinatl and vectorb were scaled so that each row af
has unit-norm.

Fig. 3 illustrates the convergence of the ADMM iterations foe 170 QPs as a function of the step-size
p, scaling matrixL, and over-relaxation factax. SinceA” has a non-empty null-space, the step-gizevas
chosen heuristically based on Theorgn 4pas= 1/\/ A\ (AQ1AT)\,(AQ1AT), where X (AQ~1AT) is

the smallest nonzero eigenvalue4f) ' AT. As shown in Fig[B, our heuristic step-sige results in a number

of iterations close to the empirical minimum. Moreover, fpenance is improved by choosing = L* and
a=2.

The performance of the Fast-ADMM and ADMM algorithms is cargd in Fig[4 forL = I anda = 2.
The ADMM algorithm with the optimal over-relaxation facter= 2 uniformly outperforms the Fast-ADMM
algorithm, even with suboptimal scaling matrix

3) Local convergence factorTo illustrate our results on the slow local convergence ofMD, we consider

a QP problem of the forni{(#4) with

40513 0.069
Q= , q=20
0.069  40.389
[ 0 ] 6 (46)
A=1| o0 1|, b= 6
0.1151 0.9934 —0.3422

The ADMM algorithm was applied to the former optimizatioroplem witha = 1 and L = I. Given that the
nullity of A is not0, the step-size was chosen heuristically based on Thedrampd=a1/\/ A1 (AQ-1AT)\,(AQ1AT) =

28.6 with \;(AQ~1AT) taken to be the smallest nonzero eigenvaluelgf-1 AT. The resulting residuals are

shown in Fig.[5, together with the lower bound on the convecgefactor( evaluated at each time-step.

April 15, 2014 DRAFT



18

10

10

—lIs*1
. *
— | <P

J | Fh+1gh+t — phyk||

10

10

10

0.5

/! VN NN 10
5 10 15 2](3 25 30 35 40 0 100 p 200 300
(@ a (b) b

Fig. 5. Slow convergence of ADMM algorithm for the examplef@@) with o« = 1 and L = I. The residuals-*, s*, and Fk+1yk+1 —
F*o* and the lower bound on the convergence fag%rare shown in the left, while the number of iterations foE [0.1p* 10p*] are
shown in the right.

As expected from the results in Theorém 3, the residbét!'v*+! — FFy* is monotonically decreasing.
However, as illustrated bg/“ the lower bound on the convergence factor from Thedremesatkxiliary residual
Frtlyk+l _ pkyk and the primal-dual residuals show a convergence factsedol over several time-steps.

The heuristic step-size rule performs reasonably welllastiated in the right subplot of Figl 5.

VI. CONCLUSIONS ANDFUTURE WORK

We have studied optimal parameter selection for the altempalirection method of multipliers for two
classes of quadratic problem&:-regularized quadratic minimization and quadratic prograng under linear
inequality constraints. For both problem classes, we &skaddl global convergence of the algorithm at linear
rate and provided explicit expressions for the parametesdnsure the smallest possible convergence factors.
We also considered iterations accelerated by over-retaxatharacterized the values of the relaxation parameter
for which the over-relaxed iterates are guaranteed to ingtioe convergence times compared to the non-relaxed
iterations, and derived jointly optimal step-size and xat@on parameters. We validated the analytical results
on numerical examples and demonstrated superior perfa@naihthe tuned ADMM algorithms compared to
existing methods from the literature. As future work, werpta extend the analytical results for more general

classes of objective functions.
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APPENDIX
A. Proof of Theorerf]1

From Propositiori]1, the variableg® and z* in iterations [IR2) converge to the optimal values and z*
of (IJ) if and only if the spectral radius of the matiixin (I3) is less than one. To express the eigenvalues of
E in terms of the eigenvalues @}, let \;(Q),i = 1,...,n be the eigenvalues @) sorted in ascending order.
Then, the eigenvaluegp, A\;(Q)) of E satisfy
_ P> +2i(Q)d

P+ Xi(Q)0 + (Mi(Q) +6)p’
Since\;(Q), p,6 € R4, we haved < ((p, A;(Q)) < 1 for all i, which ensures convergence.

(47)

To find the optimal step-size parameter and the associateceagence facto(p*, ¢*), note that, for a fixed
p, the convergence factaj(p) = max.x ||e**1]|/|e¥|| corresponds to the spectral radius Bf i.e. ((p) =

max; {C(p, A:(Q))}. It follows that the optimal pai(p*, ¢*) is given by
p" = argmin max {¢(p, \i(Q))}, " = max {((p" \i(@))}- (48)
P

From [4T), we can see thgip, \;(Q)) is monotone decreasing ik;(Q) when p > § and monotone
increasing wherm < §. Hence, we consider these two cases separately.
When p > 4, the largest eigenvalue df is given by ((p, A1(Q)) and p* = argmin,((p, \1(Q)). By the
first-order optimality conditions and the explicit expriess in [47) we have
d+M(Q) | 4
pr=voM(Q), ¢ =¢p\ @) =0+ —F—=) -
' ' 2,/5M(Q)

However, this value op is larger thand only if 6 < A\ (Q). Whend > A\(Q), the assumption that > ¢
implies that0 < (p — 6)2 < (p — 8)(p — M1 (Q)), S0
_ P> +Xi(Q)d
M) = @ @) 0
PP+ AM(Q)d 1

P+ A(Q)d + (M(Q) +8)p+ (p =) (p—M(Q)) 2
Sincep = § attains¢(d, A\ (Q)) = 1/2 it is optimal.
A similar argument applies tp < 4. In this casemax; ((p, \:(Q)) = {(p, \n(Q)) and whens > A, (Q),
pr = \/m is the optimal step-size and the associated convergent fac
¢C+§ngo
For § < \,(Q), the requirement that < § implies the inequalitie® < (5 — p)? < (A\.(Q) — p)(d — p) and
that{(p, A, (Q)) > % which leads tg = § being optimal.
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B. Proof of Corollary[1

The proof is a direct consequence of evaluating (47) até fori =1,...,n.

C. Proof of Theorerfl2

The z-update in[(IB) implies that* = (6 + p)z**! — p(az®*! + (1 — a)z*), and that theu-update in [(I6)
can be written ag/**! = §z**1. Similarly to the analysis of the previous section, inseytthe z-update into

the z-update, we find

1 _ 1
= = (0140 (alp =) @+ pD)7 4 (L= a)]) )b = s pal@ -+ p1) g

Er

. . . . L 1
Consider the fixed-point candidaté satisfyingz* = ERz*—Fpa(QerI)—lq andzFtl—z* = Er(2F—2%).
P

The z*-update in[[Ib) converges (and so does the ADMM algorithnanidl only if the spectral radius of the
error matrix in the above linear iterations is less than drie eigenvalues of/z can be written as

L ap(@ +0)

(p+0)(p+X(Q))
p(Ai(Q) +0)

Sincep, 6, and\;(Q) € R, ., we see thab < o < 2min implies that|Cr (o, p, A (Q))] < 1
for all 4, which completes the first part of the proolf.

For a fixedp and §, we now characterize the values @fthat ensure that the over-relaxed iterations (16)
have a smaller convergence factor and thus a smalmiution time than the classical ADMM iteratds {(12),
i.e. Cr — ¢ < 0. From [4T) and[(49) we havergmax; (r(a, p, \;(Q)) = argmax; ((p, A;(Q)), since(r and
¢ are equivalent up to an affine transformation and they hageséitme sign of the derivative with respect to

A:(Q). For any given\;(Q) we have

n = — L= Q) +9)
P+ (Xi(Q) 4+ 6)p + Xi(Q)d

and we conclude thajr — { < 0 whena € <1, 2(p +(5)((p)++)\6§Q))>. Recalling the first part of the proof
we conclude that, for givep,§ € R, _, the over-relaxed iterations converge with a smaller cayemce factor

- _(p+6)(p+2i(Q))
than classical ADMM forl < a < 2min .

_ _ i p(N(Q) +9)
To find (p*, a*, (%), we define
(0", ") = argmin max [(r(p, @, Mi(Q))] - (k= max|Cr(p", ™, A:(Q))]- (50)

P,
One readily verifies thafr (9,2, A\;(Q)) = 0 for ¢ = 1,...n. Since zero is the global minimum ¢fz| we
conclude that the paifp*, o*) = (4, 2) is optimal. Moreover, for(p*, a*) = (4,2) the matrix Er is a matrix

of zeros and thus the algorithin {16) converges in one iterati

D. Proof of Propositiod 2

For the sake of brevity we derive the expressions onlyfor! £ Fr+lyk+l _ Fkyk as similar computations
also apply tow"™ & vk+1 — ¥, First, sincev® = 2* + ¥, it holds thatF*v* = (2DF — I)v* = 2D*ok —

uF — z*. From the equalityD*v* = u* we then haveF*v* = u*¥ — z*. The residuak*** can be rewritten
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aswhtl = okt — yk — k1 4 2k From [8) and[(20) we observe that*t! — u* = k1 so k! =
At — (R — oK), Decomposing"*! — 2* asIljy ) (2" *! = 2%) + TLyra) (2! — 2*) we then conclude
thatw™*! = p*H1 — Tl ) (2FF! = 2F) = T4y (257! — 2*). We now examine each cagg — (iii) separately:

i) When A has full column rank]I =AATA)TTAT andIly 47y =1 —1I . In the light of the

Im(a) N(AT) Im(a)

dual residuall(9) we obtaifly 4 (2" " — 2*) = 1/pA(ATA)~sF 1.

, . T _ B

= . y A — — . y

(ii) Note that the nullity of A" is 0 if A is full row-rank. Thus,IT 47y = 0 and Hlm(A) 1. Moreover
since AAT is invertible, 2K ! — 2F = (AAT)7LAAT (2K — 2F) = 1/p(AAT) "1 Ask+L,

(iii) When A is invertible, the result easily follows.

We now relate the norm af*+! ands*t! to the one ofw**!. From [25) and[(26), we have

kil _ -
I+ = 5
where the first inequality is the triangle inequality and thst inequality holds a$”*’s are positive vectors,
lwi

wh T < g (Ilw’”lll + i) < )

= oA — o < R - FRE| = ),

2
For the dual residual, it can be verified that in case (i) ajdAT (w' ™' — w*™) = Zs++1, so
Jo

p
"1 =S AT (i - whith| < £ I ([l — w2
HAH (=M ]+ 1) < pll Al

k+1 wliJrl)

In case (i), one findsA(w? = gs"”rl and again the same bound can be achieved (by replacing

AT with A in above equality), thus concluding the proof.

E. Proof of Theorera] 3

Note that since* is positive and<'” is diagonal with elements i1, Fk+1oF+l = FEyk impliesvk ! = ok,

Hence, it suffices to establish the convergencé'bf*. From [24) we have
HFk+1’Uk+17Fk’UkH S %H2M*I|| H,Uk k 1H+ HFk k kalkalu.
Furthermore, as*s are positive vectorg[v” — v*~1|| < || FFv* — FE=1ok=1 || which implies

et oot < (L iaar - 1 ) s ptunes) S

¢
We conclude that if|2M/ — I]| < 1, then¢ < 1 and the iterationd (24) converge to zero at a linear rate.

To determine for what values of the iterations[(24) converge, we characterize the eigaasabf M. By
the matrix inversion lemma/ = pAQ 'AT — pAQ AT (I + pAQ~TAT)"1pAQ~'AT. From [31, Cor.
2.4.4],(I + pAQ—*AT)~1 is a polynomial function opAQ A" which implies thatM = f(pAQ~'A") is
a polynomial function ofpAQ AT with f(¢) =t — t(1 +t)~'t. Applying [31, Thm. 1.1.6], the eigenvalues
of M are given byf(\;(pAQ™1AT)) and thus

\i(pAQLAT)

Ai(M) = .
(M) L+ XN (pAQ—1AT)
If p> 0, thenX;(pAQ~TAT) > 0 and);(M) € [0,1). Hence||2M — I < 1 is guaranteed for app € R,

(52)

and equality only occurs i#/ has eigenvalues 8t If A is invertible or has full row-rank, thef/ is invertible and
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all its eigenvalues are strictly positive, §8M — I|| < 1 and [24) is guaranteed to converge linearly. The case
whenA is tall, i.e., AT is rank deficient, is more challenging sin&€ has zero eigenvalues afjgdM — I|| = 1.

To prove convergence in this case, we analyze(tteigenspace of\/ and show that it can be disregarded.
From the z-iterates given in[(21) we have**! — 2% = —(Q/p+ ATA)~LAT (vF — v*~1). Multiplying the
former equality byA from the left on both sides yieldd (z*+! — %) = — M (v* — v¥~1). Consider a nonzero
vectorv® —v*=1in A/(M). Then we have either*+! = 2* or z¢*+1 — 2¥ € N'(A). Having assumed that

is full column-rank denies the second hypothesis. In otherds, the0-eigenspace of\/ corresponds to the
stationary points of the algorithrhi (21). We therefore djarel this eigenspace and the convergence result holds.
Finally, the R-linear convergence of the primal and dualdwals follows from the linear convergence rate of

Frtlpk+l _ FRyk and Proposition]2.

F. Proof of Theoreml4

From the proof of Theorer 3 recall that

okt = po| < (G = 04 g ) e - Pt

Define

I+ pN(AQTAT) 2

where the last equality follows from the definition (M) in (B2). Sincep > 0 and for the case wheré is

1 1 1 1
A - _ i _ . — — =
¢= 2H2M I|| + 5 mlax2|2)\z(M) 1]+ 5 = max 5

PA(AQIAT) 1‘ 1

either invertible or has full row-ranky;(AQ~*AT) > 0 for all i, we conclude that < 1.

It remains to findp* that minimizes the convergence factoe.

{‘ PN (AQ™LAT) 1‘ 1}'

T+ pn(AQTAT) 2|72

- (53)

p* = argmin max
p [
pAi(AQTAT)
L+ pX(AQ TAT)
happen for the two extreme eigenvaluggAQ*A") and )\, (AQ1AT):
1

Since is a monotonically increasing function ik, (AQ~1AT), the maximum values of

——= I p<p,
max {C(AQ AT p} =4 UG AD (54
T oA (AQ1aT) T PP
1

Since the left brace ofnax; {¢(\;(AQ™'AT), is monotone decreasing jmand

, 1.e.
Pb e T g AT
the right brace is monotone increasing, the minimum witlpeestop happens at the intersection pointl(29).

G. Proof of Theorer]5

First we derive the lower bound on the convergence factorsiimy it is strictly smaller thari. From [24)
we have||FFHlphtl — FRok| = || DRk — DF=1ok=1 — M(v® — v¥=1)||. By applying the reverse triangle
inequality and dividing byl| F*v* — FF=1y%=1]||, we find

||Fk+11)k+1 _ Fkka
>
||Fkvk _ Fk—lvk—lll -
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Recalling from [(1) that the convergence factois the maximum ovek of the left hand-side yields the lower
bound [3D). Moreover, the inequality> ¢ > ¢ follows directly from Theoren]3.

The second part of the proof addresses the cases (i)-(iiipfo 0. Consider case (i) and leV(AT) =
{0}. It follows from Theoreni}4 that the convergence factor isegivy ((p), thus proving the sufficiency of
N(AT) = {0} in (i). The necessity follows directly from statement (iNyhich is proved later.

Now consider the statement (ii) and suppdgéA ") is not zero-dimensional. Recall that(AQ1AT) is
the smallest nonzero eigenvalue 4f) ' AT and suppose that, > 1 — ¢. Next we show that, > 1 — ¢
implies [[TLy 47y (vF — o= 1)[|/[[vF — oF 1| < \/2€. Since MTI 47y = 0, |[M]| < 1, and|[v* — vF71]| <
| Fko* — FE=1yk=1|| we have

2 = [M(I = IMyam))(0* =" )2 < Iima ’(U’“ -2 _ My (am) (0 —oF 2
||Fk’l)k Fk 1’Uk 1”2 ||’Uk _ Uk 1”2 ||’Uk Uk 1”2
Using the above inequality ang > (1—¢)2 we obtain|[ Ly 4 (v* —vF=1)||/[[o* —vF—1| < /26 — €2 < 2€E.

The latter inequality allows us to derive an upper-bound axs follows. Recallingl(24), we have
(< 1, 1 —2M)(F — b))

2 — HFkUk _ kalkaln - 92 2 HFk’Uk _ kalkalH

(55)
(1 = 2M) Iy ) (0F = 0* D2 Ty (0% — 0% 1))
||Fk k Fk LUk 1”2 |‘Fkvk7Fk71Uk71||2 :

||Fk+1,Uk+1 _ FkUkH

Using the inequalitieg|v* — k—1|\ < ||Fk kF— FF=1pk=1| and Va2 + b2 < a + b for a,b € Ry, the
inequality [55) becomeg < — —||( M)l + \/g < {(p) + ¢

27 which concludes the proof of
(ii).

As for the third case (iii), note tha, < & holds if [Ty 4y (v" — v~ 1)||/|JoF — ok 1| > /1 — /| M]]?,
as the latter inequality implies that
|MTT g (0" = 0]

||Fk’l)k _ kalkalH

T4 (0° = 07| ¢
[0k —ok=tf =

€ = < |||

Supposing that there exists a non-empty/Sefuch thaty, > 1 — ¢ and||TLy (47 (vF — v~ 1) | /[[o* —v* 1| >
1 —&2/||M||* holds for allk € KC, we have( > maxyex dr — € > 1 — 2 regardless the choice of

H. Proof of Lemmall

Let (z*, z*, u*) denote a fixed-point of (31) and lptbe the Lagrange multiplier associated with the equality
constraint in[(IP). For the optimization problem}19), tharésh-Kuhn-Tucker (KKT) optimality conditions [112]
are

0=Qr+q+ATu, 2>0,

0=Az+ 2z —b, 0 = diag(p)z.
Next we show that the KKT conditions hold for the fixed-point*, z*, «*) with u* = 1/pu*. From the
u—iterations we havd) = a(Az* —c¢) — (1 — a)z* + 2z* = a(Az* + z* — ¢). It follows that z* is given
by z* = max{0, —a(Az* + z* — ¢) + z* — u*} = max{0, z* — u*} > 0. The x—iteration then yieldd =
Qr* +q+ pAT (Ax* +2* —c+u*) = Qz* +q+ AT p*. Finally, from z* > 0 and thez—update, we have that
zF>0=u=0andzf =0= u} > 0. Thus,pdiagu*)z* = 0.
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I. Proof of Theoreni]6

Taking the Euclidean norm of (B4) and applying the Cauchlyw&ez inequality yields
HFk-l—lvk-i—l _ Fkka < % 12M — 1| Hvk _ vk—l” . %| ||Fkvk B Fk—lvk—lu _
Note that since/*s are positive vectors we hajje” — v*~!|| < ||F*v* — FF=1y*~1|| and thus

HF’“‘Hvk‘H —FkUkH || o

Cr
Note thatp € R, and recall from the proof of Theorem 3 that theigenspace o/ can be disregarded.

1 1 - 1
Therefore,5 12M = Il prany+ € [0, 5). Defining £ 3 [12M = I|| pr(pry We have
« o «
= 1|l —41—=
Cr=or+1-Zl<S+1-3]

Hence, we conclude that fgre R anda € (0, 2], it holds that(z < 1 , which implies that[(34) converges
linearly to a fixed-point. By Lemm@l 1 this fixed-point is alsalabal optimum of [IB). Now, denote”*! £
FhAlyktl _ phok andwh ™ 2 o#+1 — ok Following the same steps as Proposifion 2, it is easilyfieerihat
Wt = gl — k2R 2R and wht = yFt - yk 4 2R+ 2k from which combined with[{31) one
obtains

1 2 -«
1 k41 k+1 1 k+1 k+1
skl =p 5 (Wht — kTt gkt :§w++ + 5 whtt,
o

We only upper-bound**!|, since an upper bound fdfs**!|| was already established il {28). Taking the
Euclidean norm of the second equality above and using thagie inequality

2—a|

1
RH1)| < 2okt
I < Skt + S

, 1
] < [l (57)

The R-linear convergence of the primal and dual residuals faflows from the linear convergence rate of
Frtlpk+l _ FRyk and the bounds il (28) and (57).

J. Proof of Theorerhl7

Define \ (AQ*lAT) .
) —1 4Ty PA; 1 _«

(r = maxmin{Cr(p, o, A; (AQilAT))}-
i p,a

(58)

, pAi(AQTAT) 1 1. AT _
Since T+ pM(AQTAT) 2 <35 it follows that (r(p, a, \;(AQ~1AT)) is monotone decreasing in.

Thus,(r(p, o, A\ (AQ™1AT)) is minimized bya* = 2. To determine

p* = argmin max {Cr(p, 2, \i(AQ"AT))}, (59)
o i

we note that[{53) and (59) are equivalent up to an affine toamettion, hence we have the same minimjzer
It follows from the proof of Theorerl4 that* = 1/\/A\1(AQ~1AT) \,(AQ—1AT). Using p* in (58) results
in the convergence factdr (36).
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For givenA4, @, andp, we can now find the range of values @ffor which (31) have a smaller convergence
factor than[(2D), i.e. for whicljr — ¢ < 0. By (&1) and [(5b) it holds that

o a 1 1 1 1
—(=—2M-I| 41— = —Z|2M —I||— = =(1— ———l2M -1 ).
Gr=C=GIM =1 +1-5 = 3 l2M ~ 1] - 5 = (L-a) (5 - 51207 - 11
This means thatr — ¢ < 0 whena > 1. Therefore, the iterates produced by the relaxed algori&i)
have smaller convergence factor than the iterates prodoge@Q) for all values of the relaxation parameter

€ (1,2]. This concludes the proof.

K. Proof of Theoreml8

Note that the non-zero eigenvaluesiol@Q ' AT L are the same as the onesif AT W AR, whereW = L?
andR] R, = Q' is its Choleski factorizatiori [31]. Defining,, (R, A" W AR,) and\, (R, A" W AR,) as the
largest and smallest nonzero eigenvalues.df) ' A" L, the optimization problem we aim at solving can be

formulated as

~ minimize M
XER, AER, IER™
subject to A> A\ (R] ATWAR,),

(60)
M (R ATWAR,) > A,

W = diaglw), w > 0.
In the proof we show that the optimization problem](60) is ieglent to [37).

DefineT (\) £ A\I—R] ATW AR,. First observe that > \,(R] ATW AR,) holds if and only if"(\) € S*,
which proves the first inequality in the constraint $efl (37).

To obtain a lower bound o (R] ATW AR,) one must disregard the zero eigenvalueRgfd " W AR, (if
they exist). This can be performed by restricting ourseteethe subspace orthogonaIM(R;ATWARq) =
N(ARy). In fact, lettings to be the dimension of the nullity o R, or simply A and denotingP”*"~* as a
basis of IM{z,] A™), we have tha < \, if and only if 2T PTT'(A\) Pz < 0 for all z € R"~*. Note that for the
case when the nullity ofl is 0 (s = 0), all the eigenvalues oRqTATWARq are strictly positive and, hence, one
can setP = I. We conclude thah < \;(R; ATWAR,) if and only if PT (RJ ATWAR, — M) P € S}™°.

Note that)q(R;rATWARq) > 0 can be chosen arbitrarily by scalii§, which does not affect the ratio
A (R, ATWAR,)/M(R] ATW AR,). Without loss of generality, one can suppdse= 1 and thus the lower
bound on)\l(RqTATWARq) > A" =1 corresponds to the last inequality in the constraint seB@j.(Observe
that the optimization problem now reduces to minimizingThe proof concludes by rewriting (60) ds {37),

which is a convex problem.

L. Proof of Propositio 3

Assuming F*+1 = F*F = —, (33) reduces ta**! — vF = ((1 — a)I + aM) (v* — vk~1). By taking the
Euclidean norm of both sides and applying the Cauchy inéguale find

[ =M < (1 = )] + aM|[]]o" — o*].
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pA(AQTIAT)

Since the eigenvaluell are
g 1+ ph(AQ—TAT)

, the convergence facta, is
pA(AQTAT)
L+ pAi(AQ™TAT)
It is easy to check that the smallest value|©f| is obtained wherx = 1 andp — 0. Sincea = 1 the relaxed

ADMM iterations [31) coincide with[{20) and consequently= r.

Crlp,a, M(AQT'AT)) =1—a+a

M. Proof of Propositiol 4

The proof follows similarly to the one of Propositibh 3 butthvie*+1 = F* = T.
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