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A Corollary for Nonsmooth Systems
N. Fischer, R. Kamalapurkar, W. E. Dixon

Abstract—In this note, two generalized corollaries to the
LaSalle-Yoshizawa Theorem are presented for nonautonomous
systems described by nonlinear differential equations with dis-
continuous right-hand sides. Lyapunov-based analysis methods
are developed using differential inclusions to achieve asymptotic
convergence when the candidate Lyapunov derivative is upper
bounded by a negative semi-definite function.

I. INTRODUCTION

For continuous systems, stability techniques such as the
LaSalle-Yoshizawa Theorem provide a convenient analysis
tool when the candidate Lyapunov function derivative is up-
per bounded by a negative semi-definite function. However,
adapting the LaSalle-Yoshizawa Theorem to systems where the
time derivative of the system states are not locally Lipschitz
remains an open problem. The concept of utilizing the LaSalle-
Yoshizawa Theorem for nonsmooth systems was introduced in
[1] as a remark, but no formal proof was provided.

In this note, we consider Filippov solutions for nonau-
tonomous nonlinear systems with right-hand side disconti-
nuities1 utilizing Lipschitz continuous and regular Lyapunov
functions whose time derivatives (in the sense of Filippov) can
be upper bounded by negative semi-definite functions.

II. PRELIMINARIES

Consider the system

ẋ = f (x, t) (1)

where x (t) ∈ D ⊂ Rn denotes the state vector, and f : D ×
[0,∞)→ Rn is a Lebesgue measurable and essentially locally
bounded [2] function. As is standard in literature [3], existence
and uniqueness of the continuous solution x (t) are provided
under the condition that the function f is Lipschitz continuous.
However, if f contains a discontinuity at any point in D, then
a solution to (1) may not exist in the classical sense. Thus,
it is necessary to redefine the concept of a solution. Utilizing
differential inclusions, the value of a generalized solution (e.g.,
Filippov [4] or Krasovskii [5] solutions) at a certain point can
be found by interpreting the behavior of its derivative at nearby
points. Generalized solutions will be close to the trajectories of
the actual system since they are a limit of solutions of ordinary
differential equations with a continuous right-hand side [6].
While there exists a Filippov solution for any arbitrary initial
condition x (t0) ∈ D, the solution is generally not unique [4],
[7].

Definition 1. (Filippov Solution) [4] A function x (t) is
called a solution of (1) on the interval [0,∞) if x (t) is

1Throughout the subsequent presentation, a discontinuous right-hand side
will refer to being discontinuous in x, and continuous in t.

absolutely continuous and for almost all t ∈ [0,∞),

ẋ ∈ K [f ] (x, t)

where

K [f ] (x, t) ,
⋂
δ>0

⋂
µN=0

cof (B (x, δ) \N, t) , (2)

⋂
µN=0

denotes the intersection over sets N of Lebesgue

measure zero, co denotes convex closure, and B (x, δ) =
{υ ∈ Rn| ‖x− υ‖ < δ}.

To facilitate the main results, three definitions are provided.

Definition 2. (Directional Derivative) [8] Given a function
f : Rm → Rn, the right directional derivative of f at x ∈ Rm
in the direction of v ∈ Rm is defined as

f ′ (x, v) = lim
t→0+

f (x+ tv)− f (x)

t
.

Additionally, the generalized directional derivative of f at x
in the direction of v is defined as

fo (x, v) = lim
y→x

sup
t→0+

f (y + tv)− f (y)

t
.

Definition 3. (Regular Function) A function f : Rm → Rn
is said to be regular at x ∈ Rm if for all v ∈ Rm, the right
directional derivative of f at x in the direction of v exists and
f ′ (x, v) = fo (x, v).2

Definition 4. (Clarke’s Generalized Gradient) [10] For a
function V : Rn × [0,∞) → R that is locally Lipschitz in
(x, t), define the generalized gradient of V at (x, t) by

∂V(x, t)=co {lim∇V(x, t) | (xi, ti)→(x, t), (xi, ti) /∈ ΩV }

where ΩV is the set of measure zero where the gradient of V
is not defined.

The following lemma provides a method for computing the
time derivative of a regular function V (x, t) using Clarke’s
generalized gradient [10] and K [f ] (x, t), from (2), along the
solution trajectories of (1).

Lemma 1. (Chain Rule) [11], [12] Let x (t) be a Filippov
solution of (1) and V : D×[0,∞)→ R be a locally Lipschitz,
regular function. Then V (x (t) , t) is absolutely continuous,
d
dtV (x (t) , t) exists almost everywhere (a.e.), i.e., for almost

all t ∈ [0,∞), and V̇(x(t), t)
a.e.
∈ ˙̃V(x(t), t), where

˙̃V (x, t) ,
⋂

ξ∈∂V (x,t)

ξT
(
K [f ] (x, t)

1

)
.

Remark 1. Throughout the subsequent discussion, for brevity
of notation, let a.e. refer to almost all t ∈ [0,∞).

2Note that any C1 continuous function is regular and the sum of regular
functions is regular [9].
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III. MAIN RESULT

For the system described in (1) with a continuous right-hand
side, existing Lyapunov theory can be used to examine the
stability of the closed-loop system using continuous techniques
such as those described in [3]. However, these theorems must
be altered for the set-valued map ˙̃V (x (t) , t) for systems
with right-hand sides which are not Lipschitz continuous
[6], [12], [13]. Lyapunov analysis for nonsmooth systems is
analogous to the analysis used for continuous systems. The
differences are that differential equations are replaced with
inclusions, gradients are replaced with generalized gradients,
and points are replaced with sets throughout the analysis.
The following presentation and subsequent proofs demonstrate
how the LaSalle-Yoshizawa Theorem can be adapted for such
systems.

The following auxiliary lemma from [11] and Barbalat’s
Lemma are provided to facilitate the proofs of the nonsmooth
LaSalle-Yoshizawa Corollaries.

Lemma 2. [11] Let x (t) be any Filippov solution to the
system in (1) and V : D× [0,∞)→ R be a locally Lipschitz,
regular function. If V̇ (x (t) , t)

a.e.
≤ 0, then V (x (t) , t) ≤

V (x (t0) , t0) ∀t > t0.

Proof: For the sake of contradiction, let there exist some
t > t0 such that V (x (t) , t) > V (x (t) , t0). Then,
ˆ t

t0

V̇ (x (σ) , σ) dσ = V (x (t) , t)− V (x (t) , t0) > 0.

It follows that V̇ (x (t) , t) > 0 on a set of positive Lebesgue
measure, which contradicts that V̇ (x (t) , t) ≤ 0, a.e.

Lemma 3. (Barbalat’s Lemma) [3] Let φ : R → R
be a uniformly continuous function on [0,∞). Suppose that
lim
t→∞

´ t
0
φ (τ) dτ exists and is finite. Then,

φ (t)→ 0 as t→∞.

Based on Lemmas 2 and 3, a nonsmooth corollary to the
LaSalle-Yoshizawa Theorem (c.f., [14, Theorem 8.4] and [15,
Theorem A.8]) is provided in Corollary 1.

Corollary 1. For the system given in (1), let D ⊂ Rn be
a domain containing x = 0 and suppose f is Lebesgue
measurable and essentially locally bounded on D × [0,∞).
Furthermore, suppose f (0, t) is uniformly bounded for all
t ≥ 0. Let V : D× [0,∞)→ R be continuously differentiable
in x, locally Lipschitz in t, and regular such that

W1 (x) ≤ V (x (t) , t) ≤W2 (x) ∀t ≥ 0, ∀x ∈ D, (3)

V̇ (x (t) , t)
a.e.
≤ −W (x) (4)

where W1 (x) and W2 (x) are continuous positive definite
functions, W (x) is a continuous positive semi-definite function
on D, choose r > 0 and c > 0 such that Br ⊂ D and
c < min

‖x‖=r
W1 (x) and x (t) is a Filippov solution to (1) where

x (t0) ∈ {x ∈ Br |W2 (x) ≤ c}. Then x (t) is bounded and
satisfies

W (x (t))→ 0 as t→∞. (5)

Proof: Since x (t) is a Filippov solution to (1),
{x ∈ Br |W1 (x) ≤ c} is in the interior of Br. Define a time-
dependent set Ωt,c by

Ωt,c = {x ∈ Br | V (x, t) ≤ c} .

From (3), the set Ωt,c contains {x ∈ Br |W2 (x) ≤ c} since

W2 (x) ≤ c⇒ V (x, t) ≤ c.

On the other hand, Ωt,c is a subset of {x ∈ Br |W1 (x) ≤ c}
since

V (x, t) ≤ c⇒W1 (x) ≤ c.

Thus,
{x ∈ Br |W2 (x) ≤ c} ⊂ Ωt,c,

Ωt,c ⊂ {x ∈ Br |W1 (x) ≤ c} ⊂ Br ⊂ D.

Based on (4), V̇ (x(t), t)
a.e.
≤ 0, hence, V (x (t) , t) is

non-increasing from Lemma 2. For any t0 ≥ 0 and any
x (t0) ∈ Ωt0,c, the solution starting at (x (t0) , t0) stays
in Ωt,c for every t ≥ t0. Therefore, any solution starting
in {x ∈ Br |W2 (x) ≤ c} stays in Ωt,c, and consequently
in {x ∈ Br |W1 (x) ≤ c}, for all future time. Hence, the
Filippov solution x (t) is bounded such that ‖x (t)‖ < r,
∀t ≥ t0.

From Lemma 2, V (x (t) , t) is also bounded such that
V (x (t) , t) ≤ V (x (t0) , t0). Since V̇ (x(t), t) is Lebesgue
measurable from (4),ˆ t

t0

W (x (τ)) dτ ≤ −
ˆ t

t0

V̇ (x (τ) , τ) dτ, (6)

−
ˆ t

t0

V̇(x(τ), τ)dτ=V(x(t0), t0)−V(x(t), t)≤V(x(t0), t0) .

Therefore,
´ t
t0
W (x (τ)) dτ is bounded ∀t > t0. Existence of

lim
t→∞

´ t
t0
W (x (τ)) dτ is guaranteed since the left-hand side of

(6) is monotonically nondecreasing (based on the definition
of W (x)) and bounded above. Since every absolutely con-
tinuous function is uniformly continuous, x (t) is uniformly
continuous. Because W (x) is continuous in x, and x is on
the compact set Br, W (x (t)) is uniformly continuous in t on
(t0,∞]. Therefore, by Lemma 3,

W (x (t))→ 0 as t→∞. (7)

Remark 2. From Def. 1, K [f ] (x, t) is an upper semi-
continuous, nonempty, compact and convex valued map. While
existence of a Filippov solution for any arbitrary initial con-
dition x (t0) ∈ D is provided by the definition, generally
speaking, the solution is non-unique [4], [7].

Note that Corollary 1 establishes (7) for a specific x (t).
Under the stronger condition that3 ˙̃V (x, t) ≤W (x) ∀x ∈ D,
it is possible to show that (7) holds for all Filippov solutions
of (1). The next corollary is presented to illustrate this point.

3The inequality ˙̃V (x, t) ≤ W (x) is used to indicate that every element
of the set ˙̃V (x, t) is less than or equal to the scalar W (x).
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Corollary 2. For the system given in (1), let D ⊂ Rn be
a domain containing x = 0 and suppose f is Lebesgue
measurable and essentially locally bounded on D × [0,∞).
Furthermore, suppose f (0, t) is uniformly bounded for all
t ≥ 0. Let V : D× [0,∞)→ R be continuously differentiable
in x, locally Lipschitz in t, and regular such that

W1 (x) ≤ V (x, t) ≤W2 (x) (8)

˙̃V (x, t) ≤ −W (x) (9)

∀t ≥ 0, ∀x ∈ D where W1 (x) and W2 (x) are continuous
positive definite functions, and W (x) is a continuous positive
semi-definite function on D. Choose r > 0 and c > 0 such that
Br ⊂ D and c < min

‖x‖=r
W1 (x). Then, all Filippov solutions

of (1) such that x (t0) ∈ {x ∈ Br |W2 (x) ≤ c} are bounded
and satisfy

W (x (t))→ 0 as t→∞. (10)

Proof: Let x (t) be any arbitrary Filippov solution of (1).
Then, from Lemma 1, and (9), V̇ (x (t) , t)

a.e.
≤ −W (x (t)),

which is the condition (4). Since the selection of x (t) is
arbitrary, Corollary 1 can be used to imply that the result in
(7) holds for each x (t). Hence, Corollary 2 holds.
Remark 3. In the case of some systems (e.g., closed loop error
systems with sliding mode control laws), it may be possible
to show that Corollary 2 is more easily applied. However, in
other cases, it may be difficult to satisfy the inequality in (9).
The usefulness of Corollary 1 is demonstrated in those cases
where it is difficult or impossible to show that the inequality
in (9) can be satisfied, but it is possible to show that (4) can
be satisfied for almost all time.

IV. CONCLUSION

In this note, the Lasalle-Yoshizawa Theorem is extended to
differential systems whose right-hand sides are discontinuous
in the state and piecewise continuous in time. The result
presents two theoretical tools applicable to nonautonomous
systems with discontinuities in the closed-loop error system.
Generalized Lyapunov-based analysis methods are developed
utilizing differential inclusions in the sense of Filippov to
achieve asymptotic convergence when the candidate Lyapunov
derivative is upper bounded by a negative semi-definite func-
tion.
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