Mathematics and Computcr
ANL--88-46
DE89 005376

Distribution Category:
Science (UC405)

ANL-88-46

9700 South Cass Avenue
Argonne, Ilinois 60439-4801

ARGONNE NATIONAL LABORATORY

DISCLAIMER

This report was preparcd as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employces, makes any warranty, cXpress or implied, or assumes any legal liabitity or responsi-
bility for the accuracy, completencss, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refez-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise dots not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or aay agency thereol. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thercof.

November 1988

Vectorizing Compilers: A Test Suite and Results
by
David Callahan, * Jack Dongarra, and David Levine
Mathematics and Computer Science Division

MASTER

Current address: Tera Computer Company, 400 North 34th Street, Suite 300, Seattle, Washington 98103,
This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy

Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

*

LEGIBILITY NOTICE

A ““major- purpose of the
Technical Information Center is to
provide the broadest dissemination
possible of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although portions of this report
are not reproducible, it is being
made available in microfiche to
facilitate the availability of those
parts of the document which are
legible.

3

Contents

ADSITACL. ..ottt st st s s e sr s st sa s s s b s b e snas s bnass s be s e s aren s e e st e e eEbenenasnaas 1
1. INIEOAUCTIONoovecieereciaereece s esrss esesre s snsssssseesveasssarsersssrassensesnneraesssnessnassesrssssneesnseseesssansens 1
2. TRE TESE SUILEc..eveerereecrecrnerneessmssrecrmeseaesesrsesssresseesasssassnsesmerasessssassarsesass essmases snsessesasesnsessassasss 1
2.1, Dependence ANAIYSIS..........ccovoceueecrorerrerraneer o sosssesessassesssassessesssasesnssrsnanessess snesesssssssans 2
2.2, VECIOTIZALON.eeeeieeeeiereerenreeestesieesesrtee e erassssesress s sessesssesassstasssnas anssessesessessnevasesnrssessers 2
2.3, Tdiom RECOGMILONoeeccecrrerre st nerieescsencsessasmsseesnesneas e sansers et nansssannsessasaeesesesnssss sussesannes 3
2.4, Language COMPIELENIESScccerviseirrieniorrrcnasrsencesnsseensaessessasssseeserssssncasessesesasessessesenessenens 3
3. TeStng MEthOQOLIOZYc.cooreeerrrrecrrereoreeisessssneaser st sacsanesessassesmemssrssssensss snes sssasersesessansssossscrnsses 4
4. LOOP SCOTINEccverreeenirnenereisieserarasessssssasenessntensssessesesstsesssssransasesestasssssasessssassseasenssse st sessassssssesns 4
5. RESUILS ... rrecr s s e e s esm e e o ne s sassnsrsassessess e sess r e seesans sesesnesnarasasansestensnsaressen 5
6. ANALYSIS OF RESUILScooicieiieiee it cccienece s resieesasnesmr et e st e se s e rbas e s s sstesnesans easesnteentensennns 8
6.1, Dependence ANALYSIS....c.. ccrrerrmererearmersersioossniresisnssrasssssrssressessessesssssrassarsssssssnsantessanssras 9
6.2, VECIOMZALION. 1u0uivtieiinesrinasnsenionsssssesinsnisessinsssnerssesssiasisssnsssessss atsssseasssssvassessasssnssssssnesnseneres 9
6.3, 1diom RECOBNMILONuciiiiinisiiirinciiniiieniniiissisiie st sesanrsssnas sarsesstsessues srese seanstnsttesnessessessssaens 9
6.4, Language COmPIELeNESS......cccotiimiiimasieaiseivnnseriisinissssinsierenses seistassntotenss i ssss sonessassensnsans 10
7. DHSCUSSION. c.otvisversirnrreresreraosnisrsiesnostsnesmsassosssssranssssssssessssssisesesssesssesstosassssss eerssasssssssnsssssssssnssses 10
TLL. COVEIAZE ...t cae et e st e s vee e e s essme s ste st e s ste e epasaseamer ot eenmensespass st asesnessebenteasrantesseens 10
T2, SUTESS..ccvrririeeesierisesnessesisbeseenes seaer e atbobessttbe e tborbn e baseneaesaebensenrnot tubess et oueb b ressssaebarrnesreenes 12
T3, ACCULACY .cverie e ceniresssinsesine assssnssssbsene e s ensana s bebetesonen et s sbasssersstsutns nstbotbrarstssersessarans 12
B. CONCIUSIONcoveviiircrrenarsienticsirnsnara s st erasnsesssasnsonsrnsasensenessens socsessrosmnssssassasseessanesassnsnseanarenes 12
ACKNOWIEAZIMENISvimiiiiiiiiisiiiisiisis e it st ss e bbb st sesssnsbsaassas s bt sn s b s s 13
REFETEIICES........coerrecreretrectenrieetr st sesn e seb s eram b bt see b b san b s br o aeare ot 440 4e o4 b0 BRebEbORHRN SR 400000000 e000obbarn 13
Appendix A: Results by Loops for All COMPILErs........coooo oottt resicnieisi e 15
Appendix B: Source Code for Loops USedccoeceiinneninnnieeniinmerismsereesesssesesesssnesessssesensssonse 23

it i

Vectorizing Compilers: A Test Suite and Results
by

David Callahan, Jack Dongarra, and David Levine

Abstract

This report describes a collection of 100 Fortran loops used to test the effectiveness of an
automatic vectorizing compiler. We present the results of compiling these loops using
commercially available, vectorizing Fortran compilers on a variety of supercomputers, mini-
supercomputers, and mainframes.

1. Introduction

This report describes a collection of 100 Fortran loops used to test the effectiveness of an
automatic vectorizing compiler. An automatic vectorizing compiler is one that takes code written
in a serial language (usually Fortran) and translaics it into vecior instructions. The vector instruc-
tions may be rmachine specific or in a source form such as the proposed Fortran-8x array exten-
sions or as subroutine calls to a vector library.

The loops in the test suite were written by people involved in the development of vectoniz-
ing compilers. Several of the loops we wrote ourselves. All of the loops test a compiler for a
specific feature. These loops reflect constructs whose vectorization ranges from easy to challeng-
ing to extremely difficult. We have collected the results from compiling these loops using com-
mercially available, vectonizing Fortran compilers on a variety of supercomputers, mini-
supercomputers, and mainframes.

This paper is organized into eight sections. Section 2 categorizes the collection of loops
used in the test. Section 3 describes the methodology used to perform the test. Section 4 explains
how the results were scored. Section 5 presents the results of our testing, and Section 6 analyzes
the results. Section 7 contains a discussion of the test suite. In Section 8 we make a few conclud-
ing remarks.

2. The Test Suite

The objective of the test suite is to test four broad areas of a vectorizing compiler. depen-
dence analysis, vectorization, idiom recognition, and language completeness. For each of these
areas, we have identified a number of subcategories. All of the loops in this test are classified into
one of these categories*. Appendix B contains 2 listing of the source code for the loops used in
this test.

.We define all terms and transformation names but discuss dependence analysis and program
transformation only briefly. Recent discussions of these topics can be found in Allen and Ken-
nedy [1] and Padua and Wolfe (3] .

* Not all the subcategorics listed are represented in this report. Missing are subcategories 1.4, 2.6, 2.10, 4.3,
4.9, and 4.12. Over time we plan to acd tests for these categories o complete the current set.

-2- November 11, 1988

2.1, Dependence Analysis

Dependence analysis comprises two areas: global data flow analysis and dependeace testing.
Global data flow analysis refers to the process of collecting information about array subscripts.
Dependence testing refers to the process of testing for memory overlaps between pairs of vari-
ables in the context of the global data flow information.

Dependence analysis is the heart of vectorization, but it can be done with very different lev-
els of sophistication ranging from simple pattem matching to complicated procedures that solve
systems of linear equations. Many of the loops in this section test the aggressiveness of the com-
piler in normalizing subscript expressions into linear form for the purpose of enhanced depen-
dence testing.

1. Linear Dependence Testing. Given a pair of array references whose subscripts are linear
functions of the loop control variables that enclose the references (e.g., the statement
A(D=A(I-1)+A(]) is vectorizable inside a DO I=1,N,2 loop but not a DO I=1N,1 loop)
decide whether the two references ever access the same memory location. When the refer-
ences do interact, additional information can be derived to establish the safety of loop res-
tructuring transformations.

2. Induction Variable Recognition. Recognize auxiliary induction variables (e.g., variables
defined by statements such as !=I+1 inside the loop). Once recognized, occurrences of the
induction variable can be replaced with expressions involving loop control variables and
loop invariant expressions.

32 Global Data Flow Analysis. Ccllect global (entire subroutine) data flow information, such
as constant propagation or linear relationships among variables, to improve the precision of
dependence testing.

4, Nonlinear Dependence Testing. Given a pair of array references whose subscripts are not
linear functions, test for the existence of data dependencies and other information.

5. Interprocedural Data Flow Analysis. Use the context of a subroutine in a particular pro-
gram to improve vectorization. Possibilities include in-line expansion, summary informa-
tion {e.g., which variables may or must be modified by an extemal routine), and interpro-
cedural constant propagation.

6. Control Flow. Test 10 see whether certain vectorization hazards exist and whether there are
implied dependencies of a statement on statements that control its execution.

7. Symbolics. Test to see whether subscripts are linear after certain symbolic information is
factored out or whether the results of dependence testiag do not, in fact, depend on the value
of symbolic variables,

2.2. Vectorization

A simple vectorizer would recognize single-statement Fortran DO loops that are equivalent
to hardware vector instructions. When this strict syntactic requirement is not satisfied, more
sophisticated vectorizers can restructure programs so that it is. Here, program restructuring is
divided into two categories: transformations to enhance vectorization and idiom recognition. The
first is described here, and the other in the next section.

1. Statement Reordering. Reorder statements in a loop body to allow vectorization.

2. Loop Distribution. 3plit a loop into two or more loops to allow partial vectorization or
more effective vectorization.

3. Loop Interchange. Change the order of Joops in a loop nest to allow or improve vectoriza-
tion. In particular, make a vectorizable outer loop the innermost in the loop nest.

4. Node Splitting. Break up a statement within a loop to allow (partial) vectorization,

5. Scalar and Array Expansion. Expand a scalar into an array or an array into a higher dimen-
sional array to allow vectorization and loop distribution.

-3- November 11, 1988

6. Scalar Renaming. Rename instances of a scalar variable. Scalar renaming eliminates some
interactions that exist only because of reuse of a temporary variable and allows more
effective scalar expansion and loop distribution.

~d

Control Flow. Convernt forward branching in a loop into masked vector operations; recog-
nize loop invariant IF’s (loop unswitching).

8. Crossing Thresholds (Index Set Splitting). Allow vectorization by blocking into two sets.
For example, vectorize the statement A(I) = A(N-I) by splitting iterations of the I loop into
iterations with I less than N/2 and iterations with I greater than N/2.

9. Loop Peeling. Unroll the first or last iteration of a loop to eliminate anomalies in control
flow or aitributes of scalar variables.

10. Diagonals. Vectorize diagonal accesses (e.g., A(LD).

2.3. Idiom Recognition

Idiom recognition refers to the identification of particular program forms that have (presum-
ably faster) special im3lementations.

1. Reductions. Computation of a scalar value or values from a vector, such as sum reductions,
min/max reductions, dot products, and product reductions.

2. Recurrences. Special first- and second-order recurrences that have logarithmically faster
solutions or hardware support.

3. Search Loops. Searching for the first or last instance of a condition, possibly saving index
value(s).

4. Packing. Scatter or Gather a sparse vector from or into a dense vector under the control of a
bit-mask or an indirection vector.

2.4. Language Completeness

This section tests how effectively the compilers understand the complete Fortran language.
Simple vectorizers might limit analysis to DO loops containing only floating point and integer
assignments. More sophisticated compilers will analyze all loops and vectorize wherever possi-
ble.

1. Loop Recognition. Recognition and vectorization of loops formed by backward GO TO’s.

2. Stworage Classes and Equivalencing. Understanding of the scope of local vs. common
storage; correct handling of equivalencing.

3. Parameters. Analysis of symbolic named constants and vectorization of statements that
refer to them.

4. Non-logical IF's. Vectorization of loops containing computed GO TO's, assigned GO TO’s,
arithmetic GO TO’s, altemative returns from CALL statements, and END= clauses on I/O
statements,

5. Intrinsic Functions. Vectorization of or around functions that have elemental (vector) ver-
sions such as SIN and COS or known side effects.

6. /0 Statements. Vectorization of statements in loops that contain I/O statements,

7. Call Statements. Vectorization of statements in loops that contain CALL statements or
extemal function invocations.

8. Non-local GO TO's. Branches out of loops, RETURN or STOP statements inside loops.
. Vector Semantics. Load before store and preservation of order of stores.
10. Data Types. Vectorization of COMPLEX and INTEGER as well as REAL.

11. Indirect Addressing. Vectorization of subscripted subscript references (c.g, A(INDEX(I)))
as Gather/Scatter.

-4 - November 11, 1988

12. Statement Fur :tions. Vectorization of statements that refer to Fortran statement functions.

3. Testing Methodology

Vendors were mailed a magnetic tape containing all the loops we had collected. They were
asked to compile the loops without making any changes* using only the compiler options for
automatic vectorization. Thus, the use of compiler directives or interactive compilation features
10 gain additional vectorizations was not tested. Further, many runtime details of vectorization
and what Amold [2] and Wolfe [4] refer to as ‘*vector optimization'’ are not tested.

After compiling the loops, the vendors sent back the compiler’s cutput listing (source echo,
diagnostics, and messages). We then examined these listings to see which loops had been vector-
ized. No attempt was made to execute the loops to verify the correctness of the compiler-
generated code or to measure the efficiency of the code when run,

We mailed a total of approximately 240 loops to each vendor. These consisted of all the
different loops we had collected over the past several years. From this set we selected the 100
whose results are presented in this paper. This was done by eliminating loops that tested the same
or similar features, tested vector optimization, or contained errors of some sort. The selection of
which loops to include was made previous to, and independent of, receiving the results from the
vendors.

4. Loop Scoring

We define a statement as vectorizable if one or more of the expressions in the statement
involve array references or may be converted to that form. All loops in the test suite consist of
one or more such statements.

We define three possible resulis for a compiler attempting to vectorize a loop. A loop is
veclorized if the compiler generates vector instructions for all vectorizable statements in the loop.
A loop is partially vectorized if the compiler generates vector instructions for some, but not all,
vectorizable statements in the loop. No threshold is defined for what percentage of a loop needs
to be vectorized to be listad in this category, only that some expression in a statement in the loop
is vectorized. A loop is not vectorized if the compiler does not generate vector instructions for
any vectorizable statements within the loop.

For a few loops the IBM and Amdahl compilers generated scalar code even though the com-
piler indicated vector code was possible. This was because for those loops, scalar code was more
efficient for their machines. These loops have been scored as vectorized and partially vectorized,
as appropriate, and are footnoted in Appendix A.

The Cray CF77, CFT77, and Unisys compiler’s conditionally vectorized ceriain loops. This
means that for loops with ambiguous subscripts, a runtime test was compiled that selected a safe
vector lengtht. These loops have been scored as either vectorized or not vectorized according to
whether or not vectorized code would actually be executed at runtime. They are marked with a
footnote in Appendix A.

For some loops the Cray CFT compiler generated a runtime IF-THEN-ELSE test which
executed either a scalar loop or a vectorized loop. These loops have been scored as either vector-
ized or not vectorized according to whether or not vectorized code would actually be executed at
runtime. They are marked with a footnote in Appendix A.

* Separate compilation of the subroutines used for inierprocedural analysis testing was permitted.

t A safe vector length is one which allows the compiler to execute vector instructions and still produce the
correct result. E.g., the statement A(I)=A(l-7) with loop increment one may be executed in vector mode with
any vector length less than or equal to 7.

-5- November 11, 1988

The Alliant, Ardent, Convex, Cray CF77, and Stellar compilers support the generation of
both parallel and vector code. For some loops the Alliant, Ardent, Convex, and Cray CF77
compilers generated paraliel code but not vector code. This may be because the loop was difficult
to vectorize but simple to parallelize, or because parallel execution was the most efficient on these
machines. These loops have becn scored as not vectorized, and are footnoted in Appendix A.

Some of the loops are really tests of the underlying hardware and may not accurately reflect
the ability of the compiler itself. For example, in the statement A(I)=B(INDEX(I)) a compiler
may detect the indirect addressing of array B but not generate vector instructions because the
computer does not have hardware suppont for array references of this form. In this and similar
cases, the loop is still scored as not vectorized.

5. Results

Tables 1-6 list the results of compiling this set of loops on different computers. Table 1
summarizes the results for all 100 loops. Table 2 is also a summeary of all the loops; here,
however, the column P/V gives a count of loops that were either fully or partially vectorized.
Tables 3-6 contain results by category as defined in Section 2.

Table 1. Summary of Test Suite (100 loops)

Machine Compiler v P N
Alliant FX/8 FX/Fortran V4.0 68 5 27
Amdahl VP-E Series Fortran 77/VP V10L30 62 11 27
Ardent Titan-1 Fortran V1.0 62 6 32
CDC Cyber 205 VAST-2 V221 62 5 33
CDC Cyber 990E/995E VFIN V2.1 25 11 64
Convex C Series FC5.0 69 5 26
Cray Series CF7Vv3.0 69 3 28
CRAY X-MP CFT V1.15 50 1 49
Cray Series CFT77 V3.0 50 1 49
CRAY-2 CFT2V3.la 27 | R
ETA-10 FTN 77 V1.0 62 7 3
Gould NP1 GCF 2.0 60 7 13
Hitachi 5-810/820 FORT77/HAP V20-2B 67 4 29
IBM 3090/VF VS Fortran V2.4 52 4 44
Intel iPSC/2-VX VAST-2V223 56 g8 36
NEC $X/2 FORTRANT77/SX V.040 66 5 29
SCS40 CFT x13g 24 1 75
Stellar GS 1000 F77 prerelease 48 11 41
Unisys ISP UFIN4.1.2 67 13 20

Key to symbols for Tables 1-6

-~ vectorized

-- partially vectorized

not vectorized

/P -- [fully or partially vectorized

CZ U<

-6- November 11, 1988

Table 2. Fuli and Partial Vectorization (100 loops)

Machine Compiler V/iP N
Altiant FX/8 FX/Foriran V4.0 73 27
Amdahl VP-E Series Fortran 77/VP V10L30 73 27
Ardent Titan-1 Fortran V1.0 68 32
CDC Cyber 205 VAST-2 V2.21 67 33
CDC Cyber 990EP95E VFTN V2.1 36 o4
Convex C Series FC5.0 74 26
Cray Series CF77 V3.0 72 28
CRAY X-MP CFT V1.15 51 49
Cray Series CFT77 V3.0 51 49
CRAY-2 CFT2 Vi.la 28 72
ETA-10 FIN 77 V1.0 69 31
Gould NP1 GCF 2.0 67 33
Hitachi S-810/820 FORT77/HAP V20-2B 71 29
IBM 3090/VF VS Fortran V2.4 56 44
Intel iPSC/2-VX VAST-2 V2.23 64 36
NEC SX/2 FORTRAN77/SX V.040 71 29
SCS40 CFT x13g 25 75
Steliar GS 1000 F77 prerelease 59 41
Unisys ISP UFTN 4.1.2 g0 20

Table 3. Dependence Analysis (24 loops)

Machine Compiler vV P N
Alliant FX/8 FX/Fortran V4.0 19 0 5§
Amdahl VP-E Series Fortran 77/VP V10L30 16 1 7
Ardent Titan-1 Fortran V1.0 18 0 6
CDC Cyber 205 VAST-2 V2.21 16 0 8
CDC Cyber 990E/99SE VFTN V2.1 8 0 16
Convex C Series FC5.0 17 0 7
Cray Series CF77 V3.0 20 0O 4
CRAY X-MP CFT V1.15 16 0 8
Cray Series CFT77 V3.0 17 0 7
CRAY-2 CFT2 V3.1a 5 0 19
ETA-10 FTN77 V1.0 18 0 6
Gould NP1 GCF 2.0 14 0 10
Hitachi S-810/820 FORT77/HAP V20-2B 14 0 10
IBM 3090/VF VS Fortran V2.4 12 0 12
Intel iPSC/2-VX VAST-2 V2,23 1s 0 9
NEC SX/2 FORTRAN77/SX V.040 17 0 7
S840 CFT x13g 7 0 17
Stellar GS 1000 F77 prerelease 14 0 10
Unisys ISP UFTN4.1.2 21 3 0

-7 -

Table 4. Vectorization (34 loops)

November 11, 1988

Machine Compiler vV P N
Alliant FX/8 FX/Fortran V4.0 20 5 9
Amdahl VP-E Series Fortran 77/VP VI0L30 21 8 5
Ardent Titan-1 Fortran V1.0 19 5 10
CDC Cyber 205 VAST-2 V221 20 5 9
CDC Cyber 990E/995E VFTN V2.1 6 8 20
Convex C Series FC5.0 25 4 5
Cray Series CF77 V3.0 18 3 13
CRAY X-MP CFT V1.15 12 1 21
Cray Series CFT77 V3.0 8 1 25
CRAY-2 CFT2 Vi.la 3 1 30
ETA-10 FIN77 V10 18 7 9
Gould NP1 GCF 2.0 19 7 8
Hitachi S-810/820 FORT77/HAP V20-2B 29 4 6
IBM 3090/VF VS Fortran V2.4 19 3 12
Intel iPSC/2-VX VAST-2 V2.23 17 8 9
NEC SX2 FORTRAN77/SX V.040 21 5 8
SCS-40 CFT x13g 6 1 27
Stellar GS 1000 F77 prerelease 20 9 5
Unisys ISP UFTN4.1.2 19 8 7

Table 5. Idiom Recognition (15 loops)

Machine Compiler V P N
Alliant FX/8 FX/Fortran V4.0 10 0 S
Amdahl VP-E Series Fortran 77/VP V10L30 11 1 3
Ardent Titan-1 Fortran V1.0 9 0 6
CDC Cyber 205 VAST-2 V2,21 7 0 8
CDC Cyber 9950E/995E VFTN V2.1 3 1 1
Convex C Series FC5.0 11 0 4
Cray Series CF77 V3.0 "0 6
CRAY X-MP CFT V1.15 10 0 5
Cray Series CFT77 V3.0 7 0 8
CRAY-2 CFT2 V3.1a 8 0 7
ETA-10 FTN77 V10 7 0 8
Gould NP1 GCF 2.0 8 0 7
Hitachi S-810/820 FORT77/HAP V20-2B 14 0 1
IBM 3090/VF VS Fortran V2.4 s 1 9
Intei iPSC/2-VX VAST-2V2.23 6 0 9
NEC SX/2 FORTRAN77/SX V.040 12 0 3
SCS-40 CFT x13g 5 0 10
Stellar GS 1000 F77 prerelease 4 1 10
Unisys ISP UFTN4.1.2 10 2 3

-B- November 11, 1988

Table 6. Language Completeness (27 loops)

Machine Compiler vV P N
Alliant FX/8 FX/Fortran V4.0 19 0 8
Amdahl VP-E Series Fortran 77/VP V10L30 14 1 12
Ardent Titan-1 Fortran V1.0 16 1 10
CDC Cyber 205 VAST-2 vV2.21 19 0 8
CDC Cyber 990E/995E VFTN V2.1 8 2 17
Convex C Series FC5.0 16 1 10
Cray Series CF77 V3.0 22 0 5
CRAY X-MP CFT V1.15 12 0 15
Cray Series CFT77 V3.0 18 0 9
CRAY-2 CFT2 V3.1a 11 0 16
ETA-10 FIN77 V10 19 0 8
Gould NP1 GCF2.0 19 0 8
Hitachi S-810/820 FORT77/HAP V20-2B 15 0 12
IBM 3090/VF VS Fortran V2.4 16 0 11
Intel iPSC/2-VX VAST-2 vV2.23 18 O 9
NEC SX/2 FORTRAN77/SX V.040 16 0 11
SCS-40 CFT x13g 6 0 21
Stellar GS 1000 F77 prerelease 16 1 16
Unisys ISP UFTN 4.1.2 17 0 10

6. Analysis of Results

The average number of loops vectorized (Table 1) was 55%, and vectorized or pantially vec-
torized (Table 2) was 61%. The best results were 69% and 80%, respectively. Of the 100 loops,
only 4 were not vectorized or partially vectorized by any of the compilers. All 4 loops can be
vectorized by a knowledgeable programmer. There is probably no significant difference between
vendors within a few percent of each other. Slight differences may be due to different hardware,
the availability of special software libraries, the architecture of a machine being better suited to
executing scalar or parallci code for certain constructs, or the makeup of the loops used in our
test.

Comparing Table 1 to Table 2, we see that the inclusion of partially vectorized loops in the
totals places the Amdahl and Unisys compilers among the top performers. Similarly the CDC
Cyber 990E/995E and Stellar compilers, which also did a significant amount of partial vectoriza-
tion, moved up in the list.

Tables 3-6 show that some compilers did particularly well in certain categories. In the
Dependence Analysis category, Unisys vectorized or partially vectorized all 24 loops. Convex
had the best result in the Vectorization category, vectorizing 25 and partially vectorizing 4 of the
34 loops. Hitachi did very well in the section on Idiom Recognition, vectorizing 14 of the 15
loops. Cray’s CF77 compiler had the best result in the Language Completeness category, vector-
izing 22 of the 27 loops.

In analyzing the results we found that some vendors, with approximately equal results, did
much better in one category than another. Interprocedural analysis, recognizing loops formed by
IF and GOTO statements, and vectorizing loops containing COMMON or EQUIVALENCE
statements are examples of such categories. We conclude that the compiler vendors have focused

-9. November 11, 1988

their efforts on particular subsets of the features tested by the suite. Possible reasons might
include hardware differences or (self-imposed) limits on compilation time, compilation memory
use, or the size of the generated code.

The results reported in this paper were collecied over a period of approximately a year.
Many of the results are from compilers in production use. Some compilers were in beta test (Alli-
ant FX/Fortran V4.0, Convex FC V5.0, Cray CFT77 V3.0, NEC FORTRAN77/8X V.040), some
were in various stages of development of the next release (Gould V2.0, IBM V2.4, Unisys
V4.1.2), and some were prerelease systems (Stellar F77, Cray CF77).

In the following subsections, we discuss the results in more detail using the categories
defined in Section 2.

6.1. Dependence Analysis

Most compilers vectorized a majcrity of the linear dependence tests, which analyze sub-
script expressions and loop control variables to detect access to the same memory location. In the
induction variable recognition tests the Unisys compiler did the best job; it vectorized or partially
vectorized all the loops. Ardent, Cray CF77, Hitachi and the VAST systems* also did a good job,
missing only the loops with an induction variable under an IF.

Alliant, Amdahl, Ardent, Convex, Cray CF77, ETA, and Unisys vectorized both interpro-
cedural analysis tests, and the CFT77 compiler vectorized one, all via a procedure iniegration
capability. The Cray CFT compiler also vectorized one of these loops using a runiime test.

Most compilers did very well in the symbolics section, where the information necessary to
recognize dependencies is cortained in the loop bounds. Many were also able 1o do the global
analysis necessary to vectorize statements like A(I) = A(I+M) where the value of M was supplied
outside the loop block.

6.2. Vectorization

The Vectorization category contained the largest amount of partial vectorization. Most
compilers were able to vectorize the tests that required reordering statements within a loop. In
loop distribution testing we found most compilers able to do partial vectorization; Alliant,
Amdahl, CDC Cyber 205, Hitachi, NEC, and Unisys with their capabilities for vectorizing
recurrences completely vectorized at least one of the loops.

Loop interchange was a challenging section: all vendors missed at least 2 of the 4 loops.
There were a variety of results in the node-spli‘ting tests. Some vendors, particularly those hat
could vectorize recurrences, did quite well vectorizing or partially vectorizing most or all of the
loops. The scalar expansion tests also showed varied results. All vendors were able 16 vectorize
at least one of the loops. Ardent, Convex, and Hitachi vectorized all 5 loops.

Many vendors did very well in vectorizing loops containing IF tests. Unisys vectorized all
12 loops. Amdahl, Convex, IBM, and Stellar each vectorized 11. Cray CF77, Hitachi, NEC, and
the VAST systems vectorized 10.

The tests for crossing thresholds and loop peeling were among the most difficult. These
tests require breaking up the loop or peeling off some iterations. Hitachi and NEC were the most
successful, followed by Ardent and Convex.

6.3. Idiom Recognition

Idiom' recognition, more than the other categories, relies on special-purpose hardware or
software to jenable the compiler to vectorize some of the loops. All systems vectorized sum and
dot producy reductions. Most also vectorized product reduction, loops to find the maximum or
minimum ¢lement in an array, and an unrolled dot product loop. First-order recurrences were

* We use the term VAST systems 1o refer to the Alliani FX/8, CDC Cyber 205, ETA-10, Gould NP1, and
Intel iPSC-VX compilers, all of which were using Pacific Sierra’s VAST product as a front-end.

-10- November 11, 1988

vectorized by Alliant, Amdahl, Cray CFT2, Hitachi, NEC, and Unisys. Only Alliant vectorized a
second-order recurrence. Only Hitachi vectorized a coupled recurrence.

Many systems had trouble vectorizing search loops and loops that packed or unpacked an
array. Both types of loops require an elemeni-by-element search through an array, under the con-
trol of an IF test, to look for a certain condition. Amdahl and Hitachi vectorized all 4 loops.
Convex, Cray CFT, and NEC vectorized 3 of the loops.

6.4. Language Completeness

Cray CF77 and the VAST systems were the only compilers to vectorize loops formed by IF
and GOTO statements. Vectorization of loops containing COMMON and EQUIVALENCE
statements showed interesting results. All vendors vectorized either most (5-7) of the 7 loops, or
else just 1 or 2. CDC Cyber 205, Cray CF77, and Cray CFT77 vectorized all 7 loops.

There were mixed results in vectorizing loops containing various Fortran constructs. Some
of the difficult loops that were vectorized contained an arithmetic IF statement, a WRITS state-
ment, a CALL statement, and a STOP statement. Doing well in these tests were Amdahl, L. n-
vex, Cray CF77, CDC Cyber 990E/995E, and Hitachi. Most systems vectorized a loop contain-
ing the SIN and COS intrinsic functions.

Almost all of the compilers vectorized Gather/Scatter loops. We believe those compilers
that did not vectorize these loops currently lack the hardware necessary to support this type of
addressing.

7. Discussion

How good is this test suite? The question can be answered in several ways, but we will
address three specific areas: coverage, stress, and accuracy.

7.1. Coverage

By “‘coverage’’ we refer to how well the test suite represents typical, common, or important
Fortran programming practices. We would like to assert that high effectiveness on the test suite
will correspond to high effectiveness in general. Unfortunately, there is no accepted suite of For-
tran programs that can be called representative, and so we have no quantitative way of determin-
ing the coverage of our suite. We believe, however, that the method used to select the tests has
yielded reasonable coverage. This method consisted of two phases.

In the first phase, a large number of loops were collected from se—eral vendors and
interested parties. This gave a diverse set of viewpoints, each with a different machine architec-
ture and hence somewhat different priorities. In a few cases the loops represented ‘‘real’’ code
from programs that had been benchmarked. The majority, however, were specifically written to
test a vectorizing compiler for a particular feature. Independently, the categorization scheme used
in Section 2 was developed based on experience and published literature on vectorization.

In the second phase, the test suite was culled from the collected loops by classifying each
loop into one or more categories and then selecting a few representative lpops from each
category. Our interest was in coverage, and since ‘‘representative’’ is not well defined, we made
no attempt to weight some of the subcategories more than others by changing the number of
loops. Where we felt that testing a subcategory required a range of situations, we included several
loops; in other cases we felt that one or two loops sufficed. There is significant weighting
between major categories. For example, the test suite places greater emphasis on basic vectoriza-
tion (34 loops) than on idiom recognition (15 loops). This weighting was an artifact of the
selected categories and was reflected in the original collection of samples. We felt that this
weighting was reasonable and made no attempt to adjust it.

Unisys 15P
Convex C Series
CRAY CF77 v3.0
Alliant FX/8
Hitachi §-810/8
NEC SX/2

Amdahl VP-E Ser
ETA-10

Ardent Titan-1
CDC Cyber 205
Gould NP1

Intel iPSC/2-VX

IBM 3090/VF
Stellar GS 1000
CRAY CFT V1,15

CRAY CFT77 V3.0

€DC Cyber 990E/

CRAY CFT2 V3.1lA

5CS5-40

Unisys ISP
Convex C Series
Alliant FX/8
Amdahl VP-E
CRAY CF77 v3.0
Hitachi S-810/8
NEC SX/2

ETA-10

Ardent Titan-1
CDC Cyber 205
Gould NP1

Intel iPSC/2-VX
Stellar GS 1000
IBM 3090/VF
CRAY CFT V1..5
CRAY CFT77 V3.0
CDC Cyber 990E
CRAY CFT2 V3.1A
SCS-40

Unisys ISP
Convex C Series
Alliant FX/8
Amdahl VP-E
CRAY CF77 V3.0
Hitachi 5-810/8
NEC SX/2

ETA-10

Ardent Titan-1
CpC Cyber 205
Gould NP1

Intel iPSC/2-VX
Stellar GS 1000
IBM 3090/VF
CRAY CFT V1.15
CRAY CFT77 V3.0
CDC Cyber 990E
CRAY CFT2 V3.1A
5Cs5-40

i

Table 7. Loops Sorted by Difficulty

11111121121212111313112211113112112111111111121111311112111111111111

99999999888B868888877777777776666666665555554444433322222222221109988877776666666665543333221111110000

.00
.50
.43
.37
36
.34
.62
.42
35
.39
39
35
.40
.51
41
+ 31
.11
.31
.29

CO0O0DO00000D00OOCO0O00OOH

.00
.12
.30
.14
.05
31
.41
.20
+35
w11
.16
.07
.19
.35
.18
.02
.37
0.12
0.12

1.00
0.51
0.72
0.34
0.58
0.63
0.59
0.67
0.51
0.55
0.55
0.66
0.53
0.42
0.24
0.35
0.32
0.34

COoO0CO0OCOO0OO0O0CO0OO0O000 00+

Table 8. Correlation of Compiler Performance

.00
.34
.67
.36
.50
AEEL
.60
.82
.82
.81
.45
.46
.31
.35
.22
+33
.25

1.00
0.22
0.60
0.46
0.37
0.45
0.29
0.34
0.34
0.55
0.37
0.40
0.12
0.36
0.33
0.30

1.00
0.24
0.44
0.69
0.53
0.65
0.60
0.60
0.30
0.43
0.50
0.64
0.14
0.34
0.31

1.00
0.56
0.38
0.46
0.40
0.35
0.39
0.54
0.32
0.39
0.12
0.25
0.30
0.27

.00
.48
.51
.49
.49
.48
.50
.54
.48
.30
0.25

CO0O000C0O0O0O

0.37

1.
0.

00
65

0.91

(=R -N-N- RN NN

.82
.85
.50
.54
.38
.34
.28
32
.29

1.00
0.57
0.52
0.56
0.52
0.47
0.36
0.49
0.47
0.38
0,25

00
82
85
50
.53
.33
.33
.30
.30
.31

COoOC0CO0OO0O0OO0OO0O O

0.85
0.54
0.53

0.38
0.30
0.30
0.26

1.00
0.60
0.59
0.31
0.39
0.30

0.29

1.00
0.53
0.36
0.24
0.33
0.25
0.34

November 11, 1988

Table 9. Correlation of Selected Compiler Performance

1.00
-0.02
0.44
-0.43
0.19
0.09
0.20
2.14
0.11
0.16
0.23
0.47
0.02
-0.18
-0.52
0.00
-0.30
0.12

COoO0DOOOOOR

.00
.42
.42
.14
.04
.B6
.25
.15
.66
.70
=0
=0.
=0.
.14
=0,
.18
=0.

16
10
38
21

24

1.00
-0.49
0.52
-0.10
-0,31
-0.24
-0.39
-0.35
=0.25
0.39
-0.29
0.10
-0.52
0.10
0.10
0.10

.00
.39
.08
.43
.13
.29
.21
.23
.50
.02
.04
.69
.29
.21
.21

1 1 1
o000 COO0O00Or

$ 1
oo

1.00
0.11
-0.10
-0.14
0.10
-0.15
0.04
0.24
-0.47
-0.09
-0.53
0,09
0.14
0.14

1.00
.08
.25
0.08
0.00
0.02
1

0.11
0.00
.26
.17
0.17
0.17

1 1
OO0 O0O0COO00O+

00
42

.87
.64

81
ns

.02
.29
.10
-0.
-0.
-0.

12
21
21

1,00
0.31
0.07
0.25
=-0.01
-0.25
-0,38
0.14
0.46
-0.24
-0.24

1.00
0.79
0.93
0.05
0.13
0.37
0.05
.04
.18
-0.18

1.00
0.87
0.15%
0.22
-0.41
0.15
=-0.08
-0.19
-0.19

1,00
0.11
0.19
-0.33
0.11
0.00
-0.17
=0.17

1.00
-0.14
-0.26
-0.56

0.08
-0.14

0.26

NUVWVWWY VWYL L V.. VWYY, L,

V.V W WV, . .. V.V, . Voiiieinennn .

NV NV, V. VWV VWL Vi inenanes

MV VLV VWY, csiveansanas Voalvaa

VWV GV, VWYL, Y s V..

LWLy, VL LWL LWV Vieeeon

VWW.V. V. VWY VWY, VW, V. Ve

....... VWV, ticiiaiasrsaasssnns

Vv MV G e eleiien aiein e et

........ VNG eV oaiin et e
IR R 4 A
........... VWV, iesesonsrannsasnss
MV, VGV VWL Y, i sscessasasasiains
WV Ve VW.iies Veisone Viveraeseaes
4 aiveiens WV, VW, L. vas sV asWiiianivnean
ceea VUV L VWV, L VWV, L VWV VWV, . Viiiaeanenans
....... VieoVWicoaoWves aVMes sndVWaae o aWV sV s s anninnieiainn
MV G n el rieinais VivianassnanaVWiaosisniaisasiasensnes .
Noeciaisininn o e nnieness vV..v. s e tiasis e e a e n e s see e Es e

1.00
0.67

1.00

1.00

0.46 1.00

0.42 0.52 1.00

0.33 0.24 0.24 1.00
0.33 0.57 0.39 0.23
0.33 0.57 0.29 0.34
1.00

0.21 1.00

0.16 0.26 1.00

-0.13 -0.14 -0.09 1.00
-0.15 -0.11 -0.14 -0.11
=0.15 0.33 -0.14 =-0.11 -0.04

-12- November 11, 1988

7.2. Stress

By *‘stress’’ we refer to how effectively the test suite tests the limits of the compilers. We
want the test to be difficult but not impossible. Again there is no absolute metric against which
we can measure the test suite, but we can use the performance of the compilers as a measure.
Table 7 lists the results for the various compilers. In this table, each row corresponds to a particu-
lar compiler. Rows are sorted in order of decreasing full and partial vectorization (see Table 2).
Each column corresponds to a particular loop, and the columns are sorted in order of increasing
difficulty.

The loop scores at the bottom of Table 7 are based on the number of compilers that vector-
ized or partially vectorized the loop. Many of the loops are inherently only partially vectorizable
and so we have not attempted to weight full versus partial vectorization. Only in a few cases
were loops vectorized by some vendors and only partially vectorized by others. We interpret a
low score as an indication of a difficult test. From the table we observe a good distribution of test
difficulties from *‘easy’’ (everyone vectorizes) to *'difficult’’ (no one even partially vectorizes).

This method of judging difficulty will be skewed if many of the compilers are similar.
Using the performance of the compilers to measure the difficulty of the loops assumes that each
compiler is an independent measure. When there are significant relationships between compilers,
loops may seem artificially easy or difficult depending on whether the related compilers all vec-
torize or all fail to vectorize. As an example, in our suite, 6 of the 19 compilers vectorize implicit
loops constructed from backward GOTO’s. Five of these are based on Pacific Sierra Research's’s
VAST system. The effect on the scoring is that these loops seem easier than some others. On the
other hand, in a few cases the VAST systems did comparatively poorly on some loops. Here, the
effect on the scoring is that these loops appear more difficult than is perhaps true. Similar rela-
tionships exist among some of the other compilers reported on in this paper.

Table 8 contains a matrix of linear correlations between the performance of the systems.
Since a large number of loops were vectorized by most of the systems, all of the correlations
shown in Table 8 are positive. The correlations between Alliant, CDC Cyber 205, ETA, Gould,
and Intel (the VAST systems) are all between 0.81 and 0.91, significantly higher than all other
correlations. If we ignore the easy and the difficult tests, more variation appears. Table 9 is the
correlation matrix restricted to tests that were vectorized or partially vectorized by no more than
half the highest score nor less than one fourth of the maximum score. Scores were computed with
only one VAST system represented. This table still shows high positive correlations between the
VAST systems but alsc shows some high negative correlations, such as -0.49 between Cray CF77
V3.0 and Amdahl. We assume these negative correlations are the effects of different machine
architectures and different decisions by the vendors about what is important or worthwhile.

7.3. Accuracy

By *‘accuracy’’ we refer to how well the test can measure the quality of a vectorizing com-
piler. Since the difficulty of the tests was determined by the performance of the compilers, it
would be circular now to judge the absolute quality of the compilers by their performance on this
suite. What about relative performance? It is tempting to distill the results for each compiler into
a single number and use that to compare the systems. Such an approach, however, is clearly
incorrect, since these compilers cannot be compared in isolation from the machine environment
and target application area for which they were designed. The negative correlations in Table 9
support the view that multiple distinct, but correlated factors are involved.

W2 conclude that the suite represents reasonable coverage and adequate stress, but that we
cannot determine the accuracy of the suite.

8. Conclusion

Our initial goal has been twofold: (1) to compare the ability of different Fortran compilers
to automatically vectorize various loops, and (2) to try to understand their capabilities and limita-
tions. The real test of a vectorizing compiler can be determined only by actually comparing the

-13- November 11, 1988

execution time of the vectorized and non-vectorized code. We caution that the information
presented here tests only one aspect of a compiler and should in no way be used to judge the
overall performance of a vectorizing compiler or computer system. The results reflect only a lim-
ited spectrum of Fortran constructs. Also, subsequent compiler and hardware changes may affect
which loops can be vectorized.

We intend o update and expand the results presented here. In particular, we plan to develop
a check to verify the correctness of the compiler-generated code and a measure of its efficiency.
A copy of the source code used in the test is available from netlib at Argonne National Labora-
tory. To receive a copy of the code, send clectronic mail to netlib@anl-mes.arpa. In the mail
message, iype:

send vector from benchmark

Acknowledgments

We thank all the people who have helped us put together this collection of loops and results.
Particular thanks are given to people at IBM in Kingston, N.Y., Steve Wallach of Convex Com-
puter Corporation, and Michael Wolfe of Kuck & Associates who provided an initial set of loops
used as the basis of this test.

References
1. J. R. Allen and K. Kennedy, *‘Automatic Translation of FORTRAN Programs to Vector
Form,”” TOPLAS, vol. 9, no. 4, pp. 491-542, October 1987.

2. C. Amold, ‘*Vector Optimization on the Cyber 205,”" Proc. of the International Conf. for
Parallel Processing, pp. 530-536, August 1983.

3. D.Padua and M. Wolfe, ** Advanced Compiler Optimizations for Supercomputers,”’ CACM,
vol. 29, no. 12, pp. 1184-1201, Decemnber 1986.

4. M. Wolfe, ‘‘Vector Optimization vs. Vectorization,'’ Proc. of the 1987 Conf. on Supercom-
puting, Athens, Greece, June 1987.

Alliant FX/8
Amdahl VP-E Series
Ardent Titan-1

CDC Cyber 205
CDC Cyber 990E/995E
Convex C Series
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA-10

Gould NP1

Hitachi S-810/820
IBM 3090/VF

Intel iPSC2-VX
NEC SX/2

SCS40

Stellar GS 1000
Unisys ISP

Alliant FX/8
Amdahl VP-E Series
Ardent Titan-1

CDC Cyber 205
CDC Cyber 9950E/S95E
Convex C Series
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA-10

Gould NP1

Hitachi S-810/820
IBM 3090/VF

Intel iPSC/2-VX
NEC §X/2

SCS40

Stellar GS 1000
Unisys ISP

RESULTS BY LOOP FOR ALL COMPILERS

s111
v

€ € < Q€D €SS

5122
v

LR N R SRR IR R R - - B

n/ef/-lS-

Appendix A

s112
v

LR BB AL S IR

s123
n

=T - I~ - B B - B B I B B - B B -

s113
v

< <D 4 g L CDCDC Q€ Qo

5124
n

'ﬂ:::ﬂ:’lﬂﬂ:ﬁ:::::::‘l:‘l

s114
v
\i
v
‘l

440 DA DCcCccd

5125
v

LR - S K K - B R K - B

s115

€ €D < LD CE LT ECC & L aC Lo

> B

5126

LT B~ I B~ - = - I - B - I~ B

[

November 11, 1988

slle6
n

AR R I - — I -~ B - I~ I~ B~ - - B

§127

<

<«c 30343 CDCe]a A

s117

- I A B I R~ - B - NN N B N B B
o

5131
v

< @ JddDdd D C < dDdd <

s12t
v

LA - R =R A - I -

5132
v

< < 0« Q€ <€ < < €D 4 <€ d gL a3

Alliant FX/8
Amdahl VP-E Series
Ardent Titan-1

CDC Cyber 205
CDC Cyber 990E/S95E
Convex C Series
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA-10

Gould NP1

Hitachi S-810/820
IBM 3090/VF

Intel iPSC/2-VX
NEC SX/2

SCS-40

Stellar GS 1000
Unisys ISP

Alliant FX/8
Amdahl VP-E Series
Ardent Titan-1

CDC Cyber 205
CDC Cyber 990E/995E
Convex C Series
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA-10

Gould NP1

Hitachi S-810/820
IBM 3090/VF

Intel iPSC/2-VX
NEC SX/2

SCS-40

Stellar GS 1000
Unisys ISP

s151

- - - - N - - I IR R - B

-

s211
v

<< <€ S CCD DD d L L

-16 -

s152
v

LI I S

<D0 DPDDODD<DDDDa<

5212

<

€ € CCCDD g

sl161
n

LI I I — I B — B~ - B — I~ B I~ - - B~ B R -

5221
v

<« o <cVU STV ST ITTOD <Y 4

s17
V'

Lo I i B - I - S T R]

1

5222

VW oUUUUOYUT SO ooUwowUo

-9

5172
\"

LR - - B B A A R

5231
v

LR R SR I - B A - -

November 11, 1988

5173

“co3o <O e Caend e <

L~ -]

o

5232

O SO S ROz R

[

5]

oo
o

or

5174

1~

<<€ gD € <L <L

§233

o

VLTV VT <TOOUVODTOVUTV << <O
o

5175
nc

[- T

« 3 D<o <C<C< <O g

5234
&

=== R~ = - R = J = = =~ e - - - - I - |

Alliant FX/8
Amdahl VP-E Series
Ardent Titan-1

CDC Cyber 205
CDC Cyber 990E/S95E
Convex C Series
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA-10

Gould NP1

Hitachi S-810/820
IBM 3090/VF

Intel iPSC/2-VX
NEC SX/2

SCS-40

Stellar GS 1000
Unisys ISP

Alliant FX/8
Amdahl VP-E Series
Ardent Titan-1

CDC Cyber 205
CDC Cyber 990E/995E
Convex C Series
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA-10

Gould NP1

Hitachi S-810/820
IBM 3090/VF

Intel iPSC/2-VX
NEC SX/2

SCS40

Stellar GS 1000
Unisys ISP

524
v

Lo BE SRS TR A - - B - - B -

§2

VSOV CVTVISIDD << <V

1

A
iy

|-

-17 -

§242
n

U b sSwU R0V T SOW

5255

=]

=R~ I~ I~ N~ I — B - - I B - - B — B~ |

§243
v

o< LD AL LD D e aD 4T«

5271
v

< <4 0 <€ d P oD Cad

5244

U< owW<C<YUUU B0 D< 30D <

s272

<

< <D< d € <D 4D CdD 4 <<

5245
v

Ll = T = B e = B TR i = o B = B By = i B R i I S

5273
v

c e L Cc gDt Qg L

November 11, 1988

s251
v

L B B S A A - -

5274
\j

< <25 <€ <€ < <D CE LT <€

5252

v

d

TV VU CCLDI D0« T

§275

<o oRoSoDanoRs 3l sSaobd

€

n

o

o o
-
[

§233

(= A AR - - - B =R .

< <

$276

-

L - IR - = R A =

- 18- N-2vember 11, 1988

$277 s278 s279 s2710 s2711 82712 s
Alliant FX/8 n v v A} A v
Amdahl VP-E Series v
Ardent Titan-1
CDC Cyber 205
CDC Cyber 990E/995E
Convex C L -ries
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA-10
Gould NP1
Hitachi S-810/820
IBM 30%/VF
Intel iPSC/2-VX
NEC S§X/2
SCS-40
Stellar GS 1000
Unisys ISP

LR = - I — B — I A B i - I — B = = =)
€< € D<€ <€ CCC <O S C AT AT <
<« JCc €T]SO <O <
Cc 4 D€ LTI DD CaepDad<
LIRS A - R - B
LR I - - T - A B R - - B I
ST S <O 23 <AUTMSI 30 << DY <20

5292 $293 s311 s312 s313 s314 8315 s316
Alliant FX/8 n n v v v v
Amdahl VP-E Series
Ardent Titan-1
CDC Cyber 205
CDC Cyber 990E/995E
Convex C Series
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA-10
Gould NP1
Hitachi S-810/820
IBM 3090/VF
Intel iPSC2-VX
NEC SX/2
SC8-40
Stellar GS 1000
Unisys ISP

Y
<

=Ry~ p=- = A -0 B - - B -
SS9 0«03 DRB333IDBDRDDD
LK S I - R - R A -
R = B - BT R R = T e~ B
< € € d d <€ € C€ €L d gL LA
<30 <D dad D dad <D<
<o LD < <D CCeCC
<O D3 <0< DD €<

Alliant FX/8
Amdah! VP-E Series
Ardent Titan-1

CDC Cyber 205
CDC Cyber 990EN9SE
Convex C Series
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA-10

Gould NP1

Hitachi S-810/820
IBM 3090/VF

Intel iPSC/2-VX
NEC SX/2

SCS40

Stellar GS 1000
Unisys ISP

Alliant FX/8
Amdahl VP-E Series
Ardent Titan-1

CDC Cyber 205
CDC Cyber 990E/995E
Convex C Series
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA-10

Gould NP1

Hitachi $-810/820
IBM 3090/VF

Intel iPSC/2-VX
NEC §X/2

SCS-40

Stellar GS 1000
Unisys ISP

s317
n

<« DD D<€ <<« 3<T

s342
n

==

-

oS <0< <D0«

-19-

s318
v

L A A A - A=

sd11

-

S o0D0D<DDe< DD wDD

§321
v

L= I = I B IEE I — I — B - - B = Q= = = = RS

s412
v

SDoODbDoD<DDDe<«DDD < DDAl S

§322

-

=~ - - - - - - - - -

5413

-

b= = = I = B = B = I = B - = N = =

§323

n
n
n
n
n
n
n
n
n
i
n
n
Y
n
n
n
n
n
n

s414

—R IO B - - - =N - - - S A=

N

o

o

November 11, 1988

s331

&

v

< <0 <3< DD CDC <38 <<

v421

s332

n

PRI« O3 3«

[

s422

Ea- B A I AR AR A A

o

s341
n

W oS o< <€« <4330 3080«

$423

-«

L= N - - B = - - A -]

-20- November 11, 1988

s424 5425 5426 5427 s44] s442 5451 5452

Alliant FX/8 v v \ n¢ A n v v
Amdahl VP-E Series n n n n v n i v
Ardent Titan-1 v v v n n¢ n¢ v v
CDC Cyber 205 y v Y v v n v v
CDC Cyber 990E/S9SE n n n n n n v v
Convex C Series Y v n n v n¢ v v
Cray Series CF77 \J v v \J v n v v
CRAY X-MP CFT n n n n n n v v
Cray Series CFT77 v v v v n n v v
CRAY-2 CFT2 n n n n n n v v
ETA-10 v v v n v n v v
Gould NP1 v v v n v n v v
Hitachi S-810/820 n n n n v n v v
IBM 3090/VF v v v n v n v v
Intel iPSC/2-VX v v v n v n v v
NEC SX/2 v v n n v n v v
SCSs-40 n n n n n n v Y
Stellar GS 1000 n v n n n n v v
Unisys ISP v v n v v n v v
s461 s471 s481 482 s4101 s4111 s4112 s4113
Alliant FX/8 n n n¢ n* v Y v \
Amdahl VP-E Series p? v v n v v v v
Ardent Titan-1 v n P n v v v v
CDC Cyber 205 n n n n v v v Y
CDC Cyber 990E/995E v v p n v n n n
Convex C Series p v n n v v v v
Cray Series CF77 n n v v v v v v
CRAY X-MP CFT n n n v v v v v
Cray Series CFT77 n n v v v v v v
CRAY-2 CFT2 n n n n v v v v
ETA-10 n n n n v v v v
Gould NP1 n n n n v v v v
Hitachi S-810/820 A n v n \ v v v
IBM 3090/VF n n n n v v v v
Intel iPSC/2-VX n n n n n v y v
NEC SX/2 v n n n v v y v
SCS40 n n n n v n n n
Stellar GS 1000 n n n n v v v v
Unisys ISP n n n n v v \Y v

-21- November 11, 1988

s4114 s4115 s4l116 sd4117
Alliant FX/8 v v n v
Amdahl VP-E Series
Ardent Titan-1
CDC Cyber 205
CDC Cyber 990EN95E
Convex C Series
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA-10
Gould NP1
Hitachi S-810/820
IBM 3090/VF
Intel iPSC/2-VX
NEC SX2
SCS40
Stellar GS 1000
Unisys ISP

€ € € < < Cdd g d ST g
<@ D0 C <€ € < € dddaddadad <

<<€ p<d Q< da Qa2 DDw <
L e = B—= T — N L R~ I = = = - = I =- i~ i S =]

-
-

¢ These loops were conditionally vectorized. A runtime IF-THEN-ELSE test was compiled
which executed either a scalar loop or a vectorized loop.

b These loops were conditionally vectorized. For loops with ambiguous subscripts a run-
time test was compiled which selected a safe vector length.

¢ These loops were parallelized but not vectorized. The compiler generated code to execute
these loops in parallel, but no code was generated to vectorize these loops.

4 These loops were executed in scalar mode. The compiler indicated partial vectorization
was possible, but that the overhead was too large.

¢ These loops were executed in scalar mode. The compiler indicated vectorization was pos-
sible, but that scalar execution was faster than vector execution,

-31/-23-

Appendix B

November 11, 1988

SOURCE CODE FOR LOOPS USED

CRPPRS NSRRI PRI R IR RN RN RPN RRRR IR RIRERRRERERRES

<

TEST SUITE POR VECTORIZING OOMPILERS

Version:
Date:
Authors:

Compile:

2.0

3/14/88
Original loops from a variety of
sources. Coilection/synthesis by:
David Callahan - Rice University
Jack Dongarra .
David Levine -

Argonne National Lab

Argonne Natiomal Lab

Use the comp.!er options that show the
automatic vectorization capabilities
of the crmpiler. Do not use compiier
dirsctives or interactive compilation
features for additional vectorizations.
Do not modify the source code. The
subroutines in section 1.5 may be

compiled independently.

CPP SRR R IR R RN PRI RPN R IR

CPERNR IR TIS IR RE NI INRINRIR P RRsR RNttt tsssie

c

€

DEPENDENCE ANALYSIS

CPPPNRNR RN RN Nt R iRttt iRl iRt RREine iR Rd et edRisRRRine

chl. 1l

subrontine s111(a,n)

linear dependence testing

depsndencs testing - vectorizabls

dimension a(1000)
do 400 i = 2,100,2
a(i) = a(i-1)

400

continue

write (unitmé, fmi=100) a(n)

100
return

end

format (el2.6)

subroutine s112(a,n)

linear dependence testing

loop reversal

dimension a(1000)
do 700 i = 999,1,-1

ali+l) = a(i)

continue

write (unit=é, fmt=100) a(n)

100

return

format (el2.6)

300

320

end

.subroutine sl13(a,n)

linear dependence testing

a(i)=a(l) but no actusl dependence cycle

integer n

real a(®)

do 610 i = 2.n
a(i) = a(l)

cont inue

return

and

subroutine sll4(aa, bb,m)

linear dependence tssting

transpose vectorization

integer n
real aa(m,®),bb(n,*)
do 300 j = 1,n
do 300 i = 1,j-1
aali,j) = an(j,i) + bb(i,j)
continue
return

subroutine s115(sa,n)

linear dependence testing

lower triangular system

integer n
real an(m,®)
do 320 j w 1,n
do 320 k = 1,j-1
do 320 i = k+l,m
an(i,j) = an(i,j) + an(i,k) * an(k,j)
return

end

subroutine sl116(a,b,n)

linear dependence testing

integer n

real a(®*),.b(*)

do 450 i = 1,n,$
a(i) = a(i+l) + a(i)*b(i)
a(i+l) = a(i+2) + a(isl)®b(i+l)
a(i+2) = a(i+3) + a(i+2)*b(i+2)
ali+3) = a(i+d) + a(i+d)®b(i+3)

ali+d) = a(i+5) + a(i+d)®b(i+4)

450 continue

c%l.1
c
c
¢
c
M
970
o%l.2
[
(]
€
€
70
1
c%l.2
c
(]
<
&
L
[
60
11

return

subroutine 5117(a,logn,n)

linear dependencs testing

1 subscripting

integer n,logn
resl a(®)
ji=1
do 970 i = 1,lo0gn
do 971 k = 1,n,j
do 971 | = 1,j
t = a(kel-1) + a(ktlej-1)
u = alkel-1) - a(k+lej-1)
a(k+l-1) = 1t
a(kel+j-1) m u
continue
imiv2
cont inue
return

and

subroutine s121

induction variable recognition

loop with possible ambiguity because of scalar stors

paramster (mn = 1000)
real a(1000)
integer i, j
do 70, i = 1, n-1
j o= i+l
all) = a(j)
continue
write{uniteS, fmtwll) (a(i),iwl, n)
format(el2.6)
return

end
subroutine s122(xx,yy,n)

induction variable recognition
mized variable and constant Ib, wb, and stride
k is not initinlized before first use.

Bl,n3 are mot dedned.

dimension xx(100), yy(100), =x(100)
zx(l) = 6,
j=6
do 60 i=nl,100,m3
xx(i)myy(i)®a3(100-k+1)
kmk o+ j
continue
write (unit=6, fmt=ll) j, xx(n)
format (i6,e12.6)

<24 -

return

subroutine s123(a,b,c,n)

] induction variable under an if

integer n
real a(®),b(*).c(*)
j=0
do S0 i = 1,n
jmoet
a(j) = b(i)
if(c(i).gt.0) then
=gt
a(j) = e(i)
endif
50 continue
return

subroutine 3124(a,b,c,n)

c induction variable recognition
[induction veriable under both sides of if (same value)
<

integer n

reonl a(®),.b(*),c(")

j=0

do 60 i = 1,n
if(b(i).g1.0) them

jmjen

a(j) = b(i)

slse

j=en

alj) = e(i)
endif

60 continue

return
end
chl.2
subroutine #s125(a,bb,cc,n)
c
€ induction variable recognition
€ induction variable in two loops; collapsing poasible
c
integer n
real a(*),bb(n,®),cc(n,*)
k=0

do 20 i = 1,m
do 20 j = 1,n
k=k+1
a(k) = bb(i,j) + ccli,j)
20 continue
return

subroutine s126(a,bb,n)

November 11,

1988

41

40

10

c%l.3

340

induction variable recognition
induction variable in two loops

recurrence in inner loop

integer n
real a(*),bb(n,*)
k=1
do 40 i = 1,n
do 41 j = 2.n
bb(i,j) = bb(i,j-1) + a(k)
k=k+1
cont inue
k=k+1
continue
return

subroutine 3127(a,b,c,n)

induction variable recognition

induction variable with mmltiple increments

integer n

roal a(*),b(*),c(*)

i=0

do 10 i = 1,2
j=j+
a(j) = b(i)
jmi+l
a(j) = e(i)

cont inue

return

end

subrowtine sl31(a,b,n)

global data flow snalysis

forward substitution

integer n
resl a(®),b(*)
mal
if(a(l).g1.0)then
a(l) = b(1)
endif
do 340 i = 2,n-1
a(i) = a(i+m) + b(i)
continue
return

subroutine 5132

global data flow analysis

loop with mmltiple dimension ambiguous subscripts

parsmeter (m = 100)
real a(100,100)

integer i, j, k, m

2 8

730

o

November 11, 1988

j =m

k = m+l

do 170,
a(i,j) = a(i-1,k)*3.5

i=2.n

conliuue

write(unit=6, fmi=11) ((a(i,j),i=1,n),j=1,n)
format(el2.6)

return

end

subroutine 3151 (a,b,n)

interprocedural data flow analysis
universez] compilation - passing parameter

information into a subroutine

integer n
real a(*),.b(*®)
call sl151s(a,b,n-1,1)
return
end
subroutine s151s(a,b,n,m)
integer n,m
real a(*),b(*)
do 730 | = 1,n
a(i) = a(i+m) + b(i)
cont inue
return

subrontine s152(a,b,n)

interprocedural data flow analysis

universal compilation -

integsr n
real a(*),b(*)
do 750 i = 1,n
b(i) = b(i) + 2
call s152s8(a,b,i)
continus
return
end
subroutine »152s(a,b,i)
integer i
real a(*),b(*)
a(i) = a(i) + b(i) i
return

end

subroutine s161(a,b,z,n)

control flow

tests for recognition of loop independent dependences

between statements in mutually exclusive regions.

array bounds error when i = 100.

dimension a(100),b(100),x(100)

collecting info from subroutine

do 30 i = 1,100
if (b(i).11.0) go to 10

November

parameter (n = 1000)
real a(1000)

1 [EN

1988

a(i) = x(i) integer i
go to 30 do 50, i= 1, n/2
10 x(i+l) = a(i) afi) = a(i + n/2)
30 coatinue 50 continue
write(unitw=6, fmt=11) a(n),b(n),x(n) write{unit=6, fmt=11) (a(i),i=1,n)
11 format(3el2.6) 11 format(el2.6)
return return
end end
c%l.7 c%l.7
subroutine #171(a,b,n) subroutine s175(a,b,n,inc)
< €
< symbol ics c symbolics
c symbol ic dependence tests c symbolic dependence tests
c c
integer n integer mn,inc
real a(®),b(*) real a(*),b(*)
do 1030 i = 1,n do 1020 i = 1,n,inc
a(i®n) = a(i®*n) + b(i) a(i) = a(i+inc) + b(i)
1030 continue 1020 continue
retarn return
ond end
c%l.?7 c
subroutine 'ITZ(I.b.n) CPPIBRIRINIRRIIRINIRIPRIRP ISP PINORRIR IR RRAdssgssssinnsne
c c o
c symbolics € VECTOR I ZAT 10N .
c symbolics - mot vectorizable c -
] could be vectorized if you assume n3 .NE. 0, PO L T R T R R R L]
L] a reasonable asswmption. c%2.1
L] nl,n2,n3 are not defined. subroutine s211(a,b,c,n)
c c
dimension a(1000),b(1000) c statement reordering
do 500 i = anl,n2,n3 [3 statement reordering allows vectorization
a(i) = a(i) + b(i) c
500 continue integer n
write (unit=6, fmi=100) a(n) real a(*),b(*),c(*)
100 fermat (el2.6) do 270 i = 2,n-1
return a(i) = b(i-1) + c(i)
end b(i) = b(i+l) - 2.
c%l.7 270 continue
subroutine s173(a,b,n) return
c end
c symbolics cR2.1
c expression in loop bounds and subscripts subroutine 5212
c c
integer n e statement reordering
real a(*),b(*) c dependency needing temporary
do 370 i = 1,n/2 c
ali*+ny?) = a(i) + b(i) parameter (n = 1000)
370 continue real a(1000), b(1000), x(6000)
return integer i
end do 20, i=1,mn-1
%1.7 a(i) = x(i)
subroutine 5174 b(i) = bfi)+a(i+l)
[20 continue
[symbolics write(unit=6, fm=11) (a(i),i=1,n)
[loop with subscript that may secm ambiguous write{unit=6, fmt=11) (b(i),i=1,n)

¢ 11 format(el2.6)

-27- November 11, 1988

return real an(n,*),bb(n,*)
end do 290 j = 2,n
c%2.2 do 290 i = 2,j
subroutine 5221 an(i,j) = an(i-1,j)%an(i-1,j)+bb(i,j)
c 290 continue
c loop distribution return
c loop that is partially recursive end
3 c%2.3
parsmeter (n = 1000) subroutine 3233 (as,bb,cc,n)
real a(1000), b(1000), x(6000), y(6000) c
integer i (3 loop interchange
do B0, i =2 , n c interchanging with one of two inner loops
ali) = a(i) + (=x(i) * y(i)) c
B(i) = b(i-1) + a(i) + y(i) integer n
80 continue real aa(n,®),bb(n,*),cc(n,*)
writo(unit=6, fmi=11) (a(i),i=l, m) do 840 i = 2.n
write(unit=6, fmt=11) (b(i),i=1,Kn) do 841 j = 2.n
11 format(el2.6) an(i,j) = aa(i,j-1) + cc(i,j)/an(i,j-1)
return 841 cont inue
end do 842 j = 2,0
2.2 bb(i,j) = bb(i-1,j) + cc(i,j)/bb(i-1,j)
subroutine 8222(a,b,c,n) 842 continue
c 840 continue
c loop distribution return
c partial loop vectorization, recurrence in middle end
c c%2.3
integer n subroutine s234(aa,bb,cc,n)
real a(®),b(*),c(*) c
do 240 i = 2.n c loop interchange
a(i) = a(i) + b(i) c if loop to do loop, interchanging with if loop nccessary
b(i) = b(i-1)*b(i-1)"a(i) 3
a(i) = a(i) - b(i) integer n
240 continue real an(n,®),bb(n,*),cc(n,*®)
return i =1
end 232 if(i.gt.n) goto 231
c%2.3 j =3
subroutine 8231 233 if(j.gt.n) goto 230
c an(i,j) = an(i,j-1)*bb(i,j-1)
c loop imterchange bb(i,j) = an(i,j-1)+bb(i,j-2)
c loop with multiple dimension recursion cel(i,j) = ce(i,j-1)%cei,j-2)
c j=j+1
parameter (m = 100) goto 233
real a(100,100), b(100,100) 230 i = i + 1
integer i, j goto 232
do 160, i=1,n 231 continue
do 160, j=2,n return
a(i,j) = (i, j-1)+b(i,j) end
160 continue ch2.4
write(unit=6, fmtmll) ((ali,j),i=l,n),jml,n) subroutine s24'(a,b,c,n)
11 format(el2.6) 3
return c node splittivg
end c preloading nucessary to allow vectorization
c%2.3 c
subroutine s232(ma,bb,n) integer n
c real a(®),b(*),c(*)
c loop interchange do 280 i = 2,n-1
c interchanging of triangular loops a(i) = b(i) + e(i)
c B(i) = a(i) + a(i+l)

integer n 280 continue

o

12

640

c%2.4

return

ond

subroutine s242(a,b,c,n)

node splitting

array bounds error when i=1, i=100

dimension a(100),b(100),c(100),d(100)
dimension abcl(100),abc2(100),bcd1(100)
do 510 i = 1,100
abel(i-1) = abe2(i-1) + 1
bedl(i-1) = abel(i-1) ** 2
a(i) = bedl(i-1) + d(i)
abc2(i) = b(i+l) + b(i-1)
b(i) = c(i) + 1
c(i+l) = b(i) + 1
continue
write(unitmf, fmt=12) c(mn)
writo(unit=6, fmi=12) b(m)
format (el2.6)
return

end

subroutine s243(a,b,c,n)

node splitting

false dependence cycle breaking

integer n

real a(®),b("®),e(*)

do 630 i = 2,n-1
ali) = b(i) + e(i)
b(i) = a(i) - 2.
a(i) = b(i) + a(i+l)

cont inue

return

end

subroutine s244(a,b,c,n)

node splitting

false dependence cycle breaking

integer n

real a(®),b(*),c(*)

do 640 | = 2 ,n-1
a(i) = b(i) + c(i)
b(i) = (i) - 2.
ali+l) = b(i) + a(i+l)

conlinue

return

end

subroutine s245(a,b,c,n)

node splitting

array bounds error when i=sl

-28 -

800

12

2.5

900

100

c%2.5

40

November 11, 1988

dimension a(100),b(100),c(100),d(100)
t2 =0
do 800 i = 1,100
ai) = a(i-1) + t1 + t2 + b(i) + e(i) + d(i)
cont inue
write(unit=6, fmt=12) a(n)
format (el12.6)
return

end
subroutine #251{(b,c,n)

scalar and array oxpansion

scalar expansion

dimension b(1000),c(1000),d(1000)
do %00 i = 1,100,1

abc = b(i) * c(1)

d(i) = abec * abe
continue
write (unit=6, fmi=100) d(n)
format (el12.6)
return

end
subroutine 5252

scalar and array expansion

loop with ambiguous scalar temporary

parameter { n = 6000)
real a(6000), x(6000), y(6000), s, t
integer i
t = 0.
do 40, i=1l,n
o= x(i) * y(i)
a(i) =3 + ¢t
t =3
continue
write(unit=6, fmt=11) (a(i),i=l, n)
format(ol2,6)
return

end
subroutine 5233(a,b,c,n)

scalar and array expansion

scalar expansion, assigned under if

integer n
real a(*),b(*),c(*)
do 760 | = 1,n
if(a(i).gt.b(i))then
t = a(i) - b(i)
c(i) = e(i) + 1t
ali) = t
endif
cont inue

return

390

%2.5

400

140

1

end

subroutine 5254(a,b,n)

scalar and array expansion
carry around variable
integer n
real a(®),b("*)
x = a(n)
do 390 i = 1,n
b(i) = (a(i) + x) / 2.
x = a(i)
cont inue
return

end

subrontine #255(a,b,n)

scalar and array expansion

carry around variables, 2 levels

integer n

renl a(®),b(*)

x = a(m)

y = a(n-1)

do 400 { = 1,n
b(i) = (a(i) + x + y) / 3.
y=x
x = ali)

continue

return

end

subroutine 3271

loop with singularity handling

parameter (m = 1000)
real a(1000), y(6000), z(6000)
integer i
do 140, i=l,n

if (y(i).gt.0.) a(i) = y(i)/=z(i)
cont inue
write(unitmé, fmt=l1) (a(i),i=1,n)
format(el2.6)
return

subroutine 8272

control fow

loop with independent conditional

parameter (n = 1000)
resl a(1000), x(6000), y(6000), z(6000)
real 8, r, 1

integer i

-20.

100

120

130

1

—_

November 11,

t=1.
do 100, i =1, n
if (z(i) .ge. t) then

s = x(i) * y(i) + 3.1
r=x(i) + y(i) * 2.9
a(i) = sqri(s**2%r)
endif

continue

write(unitm6, fmt=ll) (a(i),i=l,n)

format(el2.6)

return

end

subroutine 273

control flow

simple loop with dependent conditional

paramster (m = 4000)
real a(4000), b(4000), c(4000)
real x(6000), y(6000), z(6000)
integer i
do 120, i =1 , n

ai) = a(i) + y(i) + (i)

1988

if (a(i) .1t. 0.) b(i) = b(i) + x(i) + y(i)

e(i) = e(i) + a(i) + =x(i)
continue
write(unitef, fmiwll) (a(i),i=l, n)
write(unit=6, fmt=11) (b(i),i=l,mn)
write(unit=6, fmt=11) (c(i).i-l{n)
format(el2.6)
return

end
subroutine 3274

control flow

complex loop with dependent cond!tional

paramoetor (m = 1000)
real a(1000), b(1000)
real x(6000), y(6000), 2(6000)
integer i
do 130,
a(i) = x(i) + =n(i)
if (a(i) .eq. 0,) then
b(i) = a(i) * b(i)
else
a(i) = y(i) * =(i)
b(i) = 1.
endif
continue
write(unitm6, fmi=wll) (a(i),i=1l,n)
write(unit=6, fmi=ll) (b(i),i=l,n)
format(el2,.6)

i=1 ,n

return

end

subroutine #275(an,bb,n)

481

480

cR2.7

660

o

ﬂ&&ﬂﬂﬂ

110

120
130

c%2.7

control flow

if around inner loop, interchanged needed

integer mn
real aa(n,*),bb(n,*)
do 480 i = 2,n
if(bb(i,1).gt.0)then
do 481 j = 2,n
bb(i,j) = bb(i,j)/bb(i, j-1)
endif
continue
return

end

subroutine #276(a,b,c,n)

control flow

ifs which trim the index set

integer n

real a(*®),b(*),c(*)

do 660 i = 1,n
a(i) = b(i) + (i)
if(i.gt.5) b(i) = abs(b(i))
if(i.10.99) a(i) = -a(i)

cont inue

return

subroutine $277(a,b,x,n)

control flow

test for dependences arising from
guard variable computation.

y is used before being defined

array bounds error when i = 100,

dimension a(100),b(100),x(100),y(100)

do 130 i = 1,100
if (a(i).ge.0) go to 120
if (b(i).ge.0) go to 110
ali) = x(i)
continue
b(isl) = y(i)
continue

continue

write(unit=6, fmit=]l1) a(n),b(n),x(n)

format(3el2.6)
return

end

subroutine s278(s,b,c,n)

control flow

if/goto to block if-then-else

integer n

real a(®),b(*),c(*)

-30-

121

120

c%2.7

811
812

110

790

November 11,

do 120 i = 1,n
if(a(i).gt.0)goro 121
b(i) = -b(i)
goto 122
continue
e(i) = -c(l)
cont inue
ali) = b(i) + e(i)

cont inue

return

subroutine 3279(a,b,c,n)

control flow

vector if/gotos

integer n
real a(®),b(*),c(®)
do 810 i = 1,n
if(a(i).gr1.0)goto 811
b(i) = -b(i)
if(abs(b(i)).le.a(i))goto 812
c(i) = abs(c(i))
goto 812
continue
c(i) = -e(i)
continue
a(i) = b(i) + e(i)
continue
return

end

subroutine 82710(a,b,c,x,n)

control fow

scalar and vector ifs

integer n
real a(*),b(*),c(®),x
do 790 i = 1,n
if(a(i).gr.b(i))then
afi) = a(i) - b(i)
if(n.gt.10)then
c(i) = aba(e(i))
else
e(i) = 0,
endif
elie
b(i) = a(i)
if(x.gt.0)then
(i) = a(i)
else
e(i) = -e(i)
endif
endif
continue
return

end

1988

650

70

subroutine #2711(a,b,c,n)

control flow

semantic if removal

intcger n
real a(®),b(*),c(*)
do 650 i = 1,n
if(a(i).ne.0) b(i) = b(i) + a(i) * e(i)
continue
return

end
subroutine 82712(a,b,n)

control flow

if to elemental min

integer n

real a(®*),b(*)

do 70 i = 1,n 4
if(a(i).gr.b(i)) aCi) = b(i)

continue

return

end

subroutine 5281(a,b,n)

Bl

o

o

620

November 11, 1988

loop pecling

wrap around variable, 2 levels

integer n

real a(*),b(*)
iml = n

im2 = n-1

do 420 i = 1,n

b(i) = (a(i) + a(iml) + a(im2)) /[3.
im2 = iml
iml = i

continue

return

end

subroutine #293(a,n)

loop peeling
a(i)ma(l) with actual dependence cycle

sbove comment misleading, loop is vectorizable

integer n

real a(*)

do 620 i = 1,n
ali) = a(l)

continue

return

end

cro)lin| thresholds (index set lp“llil‘l]) CEP O RPN NI R R R NR IR RPN RPN RRERRRRsR RIS

410

index set splitting c .

c IDIGM RECOGNIT ION .
integer n c 4
real a(®),b(*) COP NI snisessssssisssINReeessRIIRIREIRIRIEEREIIISIRSS

do 990 i = 1,nm
x = a(n-i+l) + B(i)
ali) = x + 3.
b(i) = x

continue

return

end

subroutine s291(a,b,n)

loop peeling

wrap around variable, 1 level

integer n

real a(®*),b(*)

iml = n

do 410 | = 1,n
b(i) = (a(i) + a(iml)) / 2.
iml = |

continue

return

end

subroutine #292(a,b,n)

c%®l.1

850

subroutine s311(a,b,x,n)

reductions

sum reduction

integer n
real a(®),b(*),x
do 850 i = 1,n
x = x + a(i)
b(i) = a(i) + 2.
continue
return

end

subroutine #312(a,b,x,n)

reductions

product reduction

integer n
real a(®),b(*),x
do 860 i = 1,n

x = x * afi)

b(i) = a(i) + 2,

8G0 continue
return

end

subroutine #313(a,b,n)

reductions

dot product

dimension a(1000),b(1000)

s =0,

do 930 i = 1,n

» =8 + a(i) * b(i)

930 continue

write (unit=6, fmt=100) s
100 format (el12.6)

return

end

subroutine s314(x,b,n)

reductions

if to max reduction

integer n
renl x,b(*)
do 80 i = 1,n
if(b(i).gt.x) x = b(i)
80 continue
return

snd

subroutine #315(x,j,b,n)

reductions

if to max with index reduction,

integer n,j
real x,b(*)
do 90 i = 1,n
if(b(i).gt.x)then
x = b(i)
jo= i
endif
90 continue
return

end

3.1

subroutine s316(a,n)

reductions

minval

dimension a(1000)
s = a(l)
do 960 | = 2,n

il (afi) J1t, ») » = a(i)

960 continue

write (unit=é, fmit=100) »

-32- November 11, 1988

write (unit=6, fmt=100) a(n)
100 format (el2.6)

return

end
%3.1

subroutine s317(n)
c
c reductions
c tests scalar expansion. From a benchmark to test the
c scalar speed of a machine. The best results are fully
c vectorized, the compiler expands .995 into a vector of
c .995 and does a product reduction on the vector of .995.
o note: this loop has closed form solution: q = .995%*n
c

q=1.

do 50, i = 1,n

q = .995%q

50 continue

write(unit=6, fmi=11) q

11 format(el2.6)

return

end
c®3.1

subroutine s318(a,b x,n)
c
c reductions
c

integer n
real a(*),b(*),x
do 430 i = 1,n,5
x = x + a(i)*b(i) + a(i+1)*b(i+1) + a(i+2)*b(i+2)
3 + a(i+3)*b(i+3) + a(i+d4)*b(i+d)

430 continue

return
end
c%3.2
subroutine 5321(a,b,n)
c
c recurrences
c first order linear recurrence

integer n
real a(®),b(*)
do 870 i = 2.n
a(i) = a(i) + a(i-1)*b(i)
870 continue

return
end
c%3.2
subroutine 5322(a,b,c,n)
c
€ recurrences
c second order linear recurrence

integer n
real a(*),b(*),c(*)
do 880 i = 3,n
ali) = aCi) + a(i-1)"b(i) + a(i-2)%c(i)

880 continue

- 38~ November 11, 1988
+
retarn j =3 +1
end b(j) = a(i)
c®3.2 endif
subroutine 8322(a,b,c,d,n) 900 continue
c return
[recurisncos ond
c coupled recurrence chl. 4
o array bounds orror when i = 1, subroutine s342(a,b,j,n)
€ c
integer n c packing
real a(®*),b(*),c(*),d(*) c unpacking
do 1040 i = 1,n c
ali) = b(i-1) + c(i) integer n,j
b(i) = a(i) + d(i) real a(*),b(*)
1040 continue j=0
return do 910 i = 1,n
end if(a(i).gt.0)then
c%3.3 j=j+1
subroutine s331(a,j,n) a(i) = b(j)
c endif
c search loops 910 continue
€ if to last-1 return
c ond
integer j,n c
r“l .(I) c.‘ll..l..l.....lll..l..l......".!‘..‘.“.'"‘..“‘l-ll‘-l
do 130 i = 1,mn [*
if(a(i).eq.0) j = i c LANGUAGE OOMPLETENESS ’
130 continue c *
return CROIRIIRINIRI RO IRRNI PRI RSN R IR IR RIEsINPIRRRRERIRNIRIRRIIRRIRIRITSY
end o4, 1
c%3.3 subroutine s4ll(a,b,c,n)
subroutine $332(a,b,j,n) ¢
c c loop recognition
e search loops e if loop to do loop, 3ero trip
c scarch loop saving index c
c integer n
integer n,j real a(*),b(*),c(*)
real a(*®),b(*) i =0
do 510 i = 1,n 140 continue
if(aCi).gt.b(i))then i =i+
j=i if(i.gt.n)goto 141
goto 511 afi) = b(i) + e(i)
endif goto 140
510 continue 141 continue
j =0 return
return end
511 continue i . 1
return subroutine s412(a,b,c,n,inc)
ond c
cR3 .4 c loop recognition
subroutine s341(a,b,j,n) c if loop with variable increment
¢ c
c packing integer n,inc
c real a(®),b(*),c(*)
integer n,j i =0
real a(*),b(*) 950 continue

j=0
do 900 | = 1,n
if(afi).gt.0)then

i = i + inc
if(i.gt.n)goto 951
ali) = b(i) + e(i)

o

L]

951

180

222

220

208

100

-34 -

goto 950
cont inue
return

end

subroutine s413(a,b,c,n)

loop recognition

if loop to do loop, code on both sides of increment

integer n

real a(*),b(*),e(*)
i =0

cont inue
if(i.gt.n)goto 181
b(i) = abs(b(i))
i=i4+1

ali) = e(i)

goto 180

continue

return

end

subroutine s414(aa,bb,cc,n)

loop recognition
if loop to do loop, interchanging with do necessary
integer n
real aa(n,*),bb(x,*),cc(n,*)
i =1
if(i.gt.n) goto 221
do 220 j = 3,n
aa(i,j) = an(i,j-1)*bb(i,j-1)
bb(i,j) = an(i,j-1)+bb(i,j-2)
celi,j) = ce(i,j-1)%cc(i,j-2)
i=0+1
goto 222
continve
return

snd

subroutine s421(n)

storage classes and oquivalencing
equivalence- no overlap

array bounds error when i = 100,

dimension xx(100), yy(100)
squivalence (xx(1),yy(1))
do 205 i = 1,100

xx(i) = yy(i+l)
continue
write(unit=6, fmt=100) =xx(n)
format(el2.6)
return

end

subroutine »422(n)

o ib ‘b o o n

420
410

100

o

a

116

100

n‘oo

118

100

o

November 11, 1988

storage classes and equivalencing
equivalence- vectorizable
array bounds error when i,j

are simultaneously > 96.

dimension x(100,100),y(100,100)
equivalence (x(1,1),y(1,1))
do 410 | = 1,100
do 420 j = 1,100
x(jrd,ie4) = y(j, i)
continue
continue
write(unit=6, fmi=100) x(n,n)
format{(el2.6)
return

end
subroutine s423(n)

storage classes and equivalencing
common and equivalenced variables - no overlap
misleading comment, there is an anti-dependence
dimension cc(100)
common /coml/iil
common /com2/aa(200)
equivalence (an(50),cc(1))
do 116 iil = 1,100
aa(iil+l) = ce(iil)
continue
write(urit=6, fmt=100) aa(n)
format(el2.6)
return

end
subroutine s424(n)

storage classer and equivalencing

common and equivalenced variables - no overlap

threshold is 100 >= loop upper bound => no dependence

dimension cc(100)

common fcaml/iil

common [coml/aa(200)

squivalence (aa(350),cc(l))

do 118 iil = 1,100
cc(iil+50) = aa(iil-1)

cont inue

write(unit=6, fmt~100) cc(n)

format(el2.6)

return

end
subroutine 3425(n)
storage classes and equivalencing

common and equivalence siatement

anti-dependence with threshold of 4

920

100

ﬂ&&ﬂ

950
940

100

ﬂ‘&ﬂﬂﬂ

115

100

dimension b(1000)
common /comml /ecl(100),ce2(100)

«35 «

c
c

c

common /comml /ccl(100),cc2(100),cc3(100),ccd4(100,100) o@

dimension eqvl(100),eqv2(90)
equivalence (eqvl(l),ec2(1))
equivalence (eqv2(l),ccl(5))
do 920 i = 1,85

eqv2(i) = ccl(i+8) + b(i)
continue
write(6,100) eqv2(n)
format(el2.6)
return

end

subroutine 3426(n,y)

storage classes and equivalencing

common and equivalence statement

anti dependence with distance vector <2,6>

vectorizable with respect to both loops

dimension y(100,100)

common /camml /ccl(100),cc2(100),cc3(100),cc4(100,100)
dimension eqv1(100),eqv2(90),eqv3(100),eqv4(100,%9)

equivalence (eqvl(1),cc2(1))
equivalence (eqv2(1),ccl(5))
equivalence (eqv3(5),cc3(5))
cquivalence (eqv4(1,2),ccé4(1,1))
do 940 j = 2,80

do 950 i = 1,90

eqvd(i,j) = ccd(i+2,j+5) + y(i,j)

continue
continue
write(6,100) eqvé(n,n)
format(el2.6)
return

end

subroutine 3427(n)

storage classes and equivalencing
common and cquivalenced variables - overlap
a partially negative test,

vectorizable in chunks of <=30

dimension ¢(100)
common [coml /i
common /com2/s(200)
equivalence (a(50),c(1))
do 115 | = 1,100

c(i+l) = a(i)
conlinue
write(unit=6, (mt=100) c(n)
format(el2.6)
return

subroutine s441(a,c,n)

c

720

730

740

750

710

100

820

830

840

810

100

930

November 11, 1988

non-logical if's
arithmetic if

xx is used before being defined.

dimension a(1000),b(1000),c(1000),d(1000),xx(100)
do 710 i = 1,100
if (d(i)) 720,730,740
e(i) = a(i)
goto 750
c(i) = b(i)
goto 750
c(i) = =»x(i)
cont inue
cont inue
write(6,100) c(n)
format(el2.6)
return

end
subroutine s442(a,c,n)

non-logical if's
computed goto
aa is used before being defined.

ii is used before being defined.

dimension a(1000),5(1000),c(1000),d4(1000),aa(200),ii(1000)
do 810 i = 1,100
goto (815,820,830,840) ii(i)
c(i) = an(i)
goto BSO
c(i) = a(i)
goto 850
c(i) = b(i)
goto 850
cli) = d(i)
continue
continue
write(6,100) c(mn)
format(el2.6)
return

end
subroutine s451(a,b,c,n)

intrinsic functions

intrinsics

integer n
real a(*),b(*),c(*)
do 930 j = 1,n
a(i) = sin(b(i)) + cos(c(i))
continue
return

end

subroutine »452(a,b,c,m)

1250

600

100

520
510

100

110

100

intrinsic functions

seq fumection

dimension a(1000),b(1000),c(1000)
do 1250 i = 1 ,m
ali) = b(i) + c(i) + i
cont inue
return

end

subroutine sd461(a,c,n)

i/o statements

dimension a(1000),b(1000),c(1000),d(1000)
do 600 i = 1,100
b(i) = d(i)
c(i) = a(i) + b(i)
write(6,100) c(i)
continue
write(6,100) b(n)
format(el2.6)
return

end

subroutine s471(z,n)

call statemsnts

dimension x(100,100),2(100,100),w(100,100),y(100,100)

equivalence (x(1,1),y(1,1))
do 510 i = 1,100
do 520 j = 1,100
x(j,i) = =5(j,i)
call sub2
a(j. i) «w(j, i)
continue
continue
write(unit=6, fmt=100) a(n,n)
format(el2.6)
return

end

subroutine s48l1(a,b,c,n)

non-local goto's

stop statement

dimension a(1000),b(1000),c(1000)
do 110 | = 1,100
if (aCi) .1t. 0.) stop 'stop 1°'
b(i) = e(i)
continue
write (unitmé, fmt=100) b(n)
format(el2.6)
return

end

-36 -

subroutine s482(a,b,c,n)

c

c non-local goto's

c other loop exit with code before exit
c

integor n
real a(*),b(*),.c(*)
do 520 i = 1,n
c(i) = a(i)
if(a(i).gt.b(i))goto 521
520 continue
return
521 continue
return

ond

subroutine s4101(a,b,c,n)

c

c dats types

c complex arithmetic
c

integer n

complex a(®),b(*),c(*)

do 920 i = 1,n
c(i) = a(i) + b(i)

920 continue
return
end
c%d. 11
subroutine s4lll(a,b,ip,n)

€

c indirect sddressing

c indirect addressing on lhs
c

integer m,ip(®)
real a(®),b(®)
do 560 i = 1,n
a(ip(i)) = b(i)
560 continue

return
ond
.11
subroutine s4112(a,b,ip,n)
c
c indirect addressing
c indirect addressing on rhs

integer n,ip(®)
real a(*),b(*)
do 550 i = 1,n
a(i) = blip(i))
550 continue
return
end
.11
subroutine s4113(a,b,ip,n)

c indirect addressing

c indirect addressing on rhs and lhs

November 11,

- 37

integer n,ip(*®) g
real a(®),b(*) ¢
do 570 | = 1,n ¢
a(ip(i)) = blip(i)) £
570 continue
return
end
.11
subroutine s4ll4(xx,yy,n)
40

n

L)

indiract addressing
mixed variable and constant 1b, ub, and stride
nl,n2 are not defined.

| is used before being defined

" 8"

dimension xx(100), yy(100), zz(100), 1(100) [3
xx(l) = §, c
j=385 c
do 50 i=nl,n2

k=1(1)

xx(i)myy(i)®za(n2-k+l)

k=k+j

50 continue

1200

write (unitmé, fmt=11) j, xx(mn)
format (i6,812.6)

return

1

-

end
chd .11
subroutine s4115(xx,yy.n)

indirect addressing
all variable - 1b, ub, and stride

will always vectorize since | is induction variable
and XX appears only on left hand side.

nl,n2,n3 are not defined.

1 is used before being defined

"H848°

dimension xx(100), yy(100), zz(100),
xx(1) = 7.
do 70 i=nl,n2,n3
k=1(i)
xn(i)myy(2®i+1)®z2(k+l/n3+nl)

70 continue

1(100)

write (unitwé, fmt=11) xx(n)

11 format (i6,e12.6)

-

return
end
%4 .11
subroutine s4116(n,d)

c indirect addressing

€ This example test partial veclorization for the creation of

.11

November

enddo

do i= 1,m
d(temp(i)) =1
enddo

dimension d(*)

j =1

do 40,
j = j*2
d(j) =1

continue

i= 1,n

return

subroutine s4117(a,b,c,n,m)

indirect addressing

seq function

11,

dimension a(1000),b(1000),c(1000)

do 1200 i = 1 ,m

a(i) = b(i) + c(i/2)
continane
return

end

c vector of indices, The best rosults are partial vectorization

c with the net effect being the loops being compiled as:

c temp(l)ml
< do i= 2.n

c temp(i) = temp(i-1)°2 (actually temp(i-1)+temp(i-1))

1988

