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Vectorizing Compilers: A Test Suite and Results

by

David Callahan, Jack Dongarra, and David Levine

Abstract

This report describes a collection of 100 Fortran loops used to test the effectiveness of an
automatic vectorizing compiler. We present the results of compiling these loops using
commercially available, vectorizing Fortran compilers on a variety of supercomputers, mini-
supercomputers, and mainframes.

1. Introduction
This report describes a collection of 100 Fortran loops used to test the effectiveness of an

automatic vectorizing compiler. An automatic vectorizing compiler is one that takes code written
in a serial language (usually Fortran) and translates it into vector instructions. The vector instruc-
tions may be machine specific or in a source form such as the proposed Fortran-8x array exten-
sions or as subroutine calls to a vector library.

The loops in the test suite were written by people involved in the development of vectoriz-
ing compilers. Several of the loops we wrote ourselves. All of the loops test a compiler for a
specific feature. These loops reflect constructs whose vectorization ranges from easy to challeng-
ing to extremely difficult. We have collected the results from compiling these loops using com-
mercially available, vectorizing Fortran compilers on a variety of supercomputers, mini-
supercomputers, and mainframes.

This paper is organized into eight sections. Section 2 categorizes the collection of loops
used in the test. Section 3 describes the methodology used to perform the test. Section 4 explains
how the results were scored. Section 5 presents the results of our testing, and Section 6 analyzes
the results. Section 7 contains a discussion of the test suite. In Section 8 we make a few conclud-
ing remarks.

2. The Test Suite
The objective of the test suite is to test four broad areas of a vectorizing compiler: depen-

dence analysis, vectorization, idiom recognition, and language completeness. For each of these
areas, we have identified a number of subcategories. All of the loops in this test are classified into
one of these categories*. Appendix B contains a listing of the source code for the loops used in
this test.

We define all terms and transformation names but discuss dependence analysis and program
transformation only briefly. Recent discussions of these topics can be found in Allen and Ken-
nedy [1] and Padua and Wolfe [3] .

* Not all the subcategories listed are represented in this report. Missing are subcategories 1.4, 2.6, 2.10, 4.3,

4.9, and 4.12. Over time we plan to add tests for these categories to complete the current set.
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2.1. Dependence Analysis

Dependence analysis comprises two areas: global data flow analysis and dependence testing.
Global data flow analysis refers to the process of collecting information about array subscripts.
Dependence testing refers to the process of testing for memory overlaps between pairs of vari-
ables in the context of the global data flow information.

Dependence analysis is the heart of vectorization, but it can be done with very different lev-
els of sophistication ranging from simple pattern matching to complicated procedures that solve
systems of linear equations. Many of the loops in this section test the aggressiveness of the com-
piler in normalizing subscript expressions into linear form for the purpose of enhanced depen-
dence testing.
1. Linear Dependence Testing. Given a pair of array references whose subscripts are linear

functions of the loop control variables that enclose the references (e.g., the statement
A(I)=A(I-l)+A(I) is vectorizable inside a DO I=1,N,2 loop but not a DO 1=1,N,1 loop)
decide whether the two references ever access the same memory location. When the refer-
ences do interact, additional information can be derived to establish the safety of loop res-
tructuring transformations.

2. Induction Variable Recognition. Recognize auxiliary induction variables (e.g., variables
defined by statements such as 1=I+1 inside the loop). Once recognized, occurrences of the
induction variable can be replaced with expressions involving loop control variables and
loop invariant expressions.

3 Global Data Flow Analysis. Collect global (entire subroutine) data flow information, such
as constant propagation or linear relationships among variables, to improve the precision of
dependence testing.

4. Nonlinear Dependence Testing. Given a pair of array references whose subscripts are not
linear functions, test for the existence of data dependencies and other information.

5. Interprocedural Data Flow Analysis. Use the context of a subroutine in a particular pro-
gram to improve vectorization. Possibilities include in-line expansion, summary informa-
tion (e.g., which variables may or must be modified by an external routine), and interpro-
cedural constant propagation.

6. Control Flow. Test to see whether certain vectorization hazards exist and whether there are
implied dependencies of a statement on statements that control its execution.

7. Symbolics. Test to see whether subscripts are linear after certain symbolic information is
factored out or whether the results of dependence testing do not, in fact, depend on the value
of symbolic variables.

2.2. Vectorization
A simple vectorizer would recognize single-statement Fortran DO loops that are equivalent

to hardware vector instructions. When this strict syntactic requirement is not satisfied, more
sophisticated vectorizers can restructure programs so that it is. Here, program restructuring is
divided into two categories: transformations to enhance vectorization and idiom recognition. The
first is described here, and the other in the next section.
1. Statement Reordering. Reorder statements in a loop body to allow vectorization.

2. Loop Distribution. Split a loop into two or more loops to allow partial vectorization or
more effective vectorization.

3. Loop Interchange, Change the order of loops in a loop nest to allow or improve vectoriza-
tion. In particular, make a vectorizable outer loop the innermost in the loop nest.

4. Node Splitting. Break up a statement within a loop to allow (partial) vectorization.

5. Scalar and Array Expansion. Expand a scalar into an array or an array into a higher dimen-
sional array to allow vectorization and loop distribution.

- 2 -



November 11, 1988

6. Scalar Renaming. Rename instances of a scalar variable. Scalar renaming eliminates some
interactions that exist only because of reuse of a temporary variable and allows more
effective scalar expansion and loop distribution.

7. Control Flow. Convert forward branching in a loop into masked vector operations; recog-
nize loop invariant IF's (loop unswitching).

8. Crossing Thresholds (Index Set Splitting). Allow vectorization by blocking into two sets.
For example, vectorize the statement A(I) = A(N-I) by splitting iterations of the I loop into
iterations with I less than N/2 and iterations with I greater than N/2.

9. Loop Peeling. Unroll the first or last iteration of a loop to eliminate anomalies in control
flow or attributes of scalar variables.

10. Diagonals. Vectorize diagonal accesses (e.g., A(I,I)).

2.3. Idiom Recognition
Idiom recognition refers to the identification of particular pogram forms that have (presum-

ably faster) special imrnlementations.
1. Reductions. Computation of a scalar value or values from a vector, such as sum reductions,

min/max reductions, dot products, and product reductions.

2. Recurrences. Special first- and second-order recurrences that have logarithmically faster
solutions or hardware support.

3. Search Loops. Searching for the first or last instance of a condition, possibly saving index
value(s).

4. Packing. Scatter or Gather a sparse vector from or into a dense vector under the control of a
bit-mask or an indirection vector.

2.4. Language Completeness

This section tests how effectively the compilers understand the complete Fortran language.
Simple vectorizers might limit analysis to DO loops containing only floating point and integer
assignments. More sophisticated compilers will analyze all loops and vectorize wherever possi-
ble.
1. Loop Recognition. Recognition and vectorization of loops formed by backward GO TO's.
2. Storage Classes and Equivalencing. Understanding of the scope of local vs. common

storage; correct handling of equivalencing.

3. Parameters. Analysis of symbolic named constants and vectorization of statements that
refer to them.

4. Non-logical IF's. Vectorization of loops containing computed GO TO's, assigned GO TO's,
arithmetic GO TO's, alternative returns from CALL statements, and END= clauses on I/O
statements.

5. Intrinsic Functions. Vectorization of or around functions that have elemental (vector) ver-
sions such as SIN and COS or known side effects.

6. I/O Statements. Vectorization of statements in loops that contain I/O statements.
7. Call Statements. Vectorization of statements in loops that contain CALL statements or

external function invocations.

8. Non-local GO TO's. Branches out of loops, RETURN or STOP statements inside loops.
9. Vector Semantics. Load before store and preservation of order of stores.

10. Data Types. Vectorization of COMPLEX and INTEGER as well as REAL.
11. Indirect Addressing. Vectorization of subscripted subscript references (e.g, A(INDEX(I)))

as Gather/Scatter.

- 3-
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12. Statement Fur.tions. Vectorization of statements that refer to Fortran statement functions.

3. Testing Methodology
Vendors were mailed a magnetic tape containing all the loops we had collected. They were

asked to compile the loops without making any changes* using only the compiler options for
automatic vectorization. Thus, the use of compiler directives or interactive compilation features
to gain additional vectorizations was not tested. Further, many runtime details of vectorization
and what Arnold [2] and Wolfe [4] refer to as "vector optimization" are not tested.

After compiling the loops, the vendors sent back the compiler's output listing (source echo,
diagnostics, and messages). We then examined these listings to see which loops had been vector-
ized. No attempt was made to execute the loops to verify the correctness of the compiler-
generated code or to measure the efficiency of the code when run.

We mailed a total of approximately 240 loops to each vendor. These consisted of all the
different loops we had collected over the past several years. From this set we selected the 100
whose results are presented in this paper. This was done by eliminating loops that tested the same
or similar features, tested vector optimization, or contained errors of some sort. The selection of
which loops to include was made previous to, and independent of, receiving the results from the
vendors.

4. Loop Scoring
We define a statement as vectorizable if one or more of the expressions in the statement

involve array references or may be converted to that form. All loops in the test suite consist of
one or more such statements.

We define three possible results for a compiler attempting to vectorize a loop. A loop is
vectorized if the compiler generates vector instructions for all vectorizable statements in the loop.
A loop is partially vectorized if the compiler generates vector instructions for some, but not all,
vectorizable statements in the loop. No threshold is defined for what percentage of a loop needs
to be vectorized to be listed in this category, only that some expression in a statement in the loop
is vectorized. A loop is not vectorized if the compiler does not generate vector instructions for
any vectorizable statements within the loop.

For a few loops the IBM and Amdahl compilers generated scalar code even though the com-
piler indicated vector code was pos';ible. This was because for those loops, scalar code was more
efficient for their ma hines. These loops have been scored as vectorized and partially vectorized,
as appropriate, and are footnoted in Appendix A.

The Cray CF77, CFT77, and Unisys compiler's conditionally vectorized certain loops. This
means that for loops with ambiguous subscripts, a runtime test was compiled that selected a safe
vector length. These loops have been scored as either vectorized or not vectorized according to
whether or not vectorized code would actually be executed at runtime. They are marked with a
footnote in Appendix A.

For some loops the Cray CFT compiler generated a runtime IF-THEN-ELSE test which
executed either a scalar loop or a vectorized loop. These loops have been scored as either vector-
ized or not vectorized according to whether or not vectorized code would actually be executed at
runtime. They are marked with a footnote in Appendix A.

+ Separate compilation of the subroutines used for interprocedural analysis testing was permitted.
t A safe vector length is one which allows the compiler to execute vector instructions and still produce the
correct result. E.g., the statement A(I)=A(I-7) with loop increment one may be executed in vector mode with
any vector length less than or equal to 7.

- 4 -
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The Alliant, Ardent, Convex, Cray CF77, and Stellar compilers support the generation of
both parallel and vector code. For some loops the Alliant, Ardent, Convex, and Cray CF77
compilers generated parallel code but not vector code. This may be because the loop was difficult
to vectorize but simple to parallelize, or because parallel execution was the most efficient on these
machines. These loops have been scored as not vectorized, and are footnoted in Appendix A.

Some of the loops are really tests of the underlying hardware and may not accurately reflect
the ability of the compiler itself. For example, in the statement A(I)=B(INDEX(I)) a compiler
may detect the indirect addressing of array B but not generate vector instructions because the
computer does not have hardware support for array references of this form. In this and similar
cases, the loop is still scored as not vectorized.

5. Results
Tables 1-6 list the results of compiling this set of loops on different computers. Table 1

summarizes the results for all 100 loops. Table 2 is also a summary of all the loops; here,
however, the column P/V gives a count of loops that were either fully or partially vectorized.
Tables 3-6 contain results by category as defined in Section 2.

Table 1. Summary of Test Suite (100 loops)

Machine Compiler V P N

Alliant FX/8

Amdahl VP-E Series
Ardent Titan-1
CDC Cyber 205
CDC Cyber 990E/995E
Convex C Series
Cray Series
CRAY X-MP
Cray Series
CRAY-2
ETA-10
Gould NPl
Hitachi S-810/820
IBM 3090/VF
Intel iPSC/2-VX
NEC SX/2
SCS-40
Stellar GS 1000
Unisys ISP

FX/Fortran V4.0
Fortran 77/VP V10L30
Fortran V1.0
VAST-2 V2.21
VFTN V2.1
FC5.0
CF77 V3.0
CFT V1.15
CFT77 V3.0
CFT2 V3.la
FTN77V1.0
GCF 2.0
FORT77/HAP V20-2B
VS Fortran V2.4
VAST-2 V2.23
FORTRAN77/SX V.040
CFT xl3g
F77 prerelease
UFTN 4.1.2

Key to symbols for Tables 1-6

V -- vectorized
P -- partially vectorized
N -- not vectorized
V/P -- fully or partially vectorized

68
62
62
62
25
69
69
50
50
27
62
60
67
52
56
66
24
48
67

5
11
6
5

11
5
3
1
1
1
7
7
4
4
8
5
1

11
13

27
27
32
33
64
26
28
49
49
72
31
33
29
44
36
29
75
41
20

- 5-
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Table 2. Full and Partial Vectorization (100 loops)

Compiler V/P N

Alliant FX/8
Amdahl VP-E Series
Ardent Titan-I
CDC Cyber 205
CDC Cyber 990Ei995E
Convex C Series
Cray Series
CRAY X-MP
Cray Series
CRAY-2
ETA-10
Gould NP1I
Hitachi S-810/820
IBM 3090/VF
Intel iPSC/2-VX
NEC SX/2
SCS-40
Stellar GS 1000
Unisys ISP

FX/Fortran V4.0
Fortran 77/VP V10L30
Fortran V1.0
VAST-2 V2.21
VFTN V2.1
FC5.0
CF77 V3.0
CFT V1.15
CFT77 V3.0
CFT2 V3.la
FTN 77 V1.0
GCF 2.0
FORT77/HAP V20-2B
VS Fortran V2.4
VAST-2 V2.23
FORTRAN77/SX V.040
CFT x13g
F77 prerelease
UFTN 4.1.2

Table 3. Dependence Analysis (24 loops)

Machine Compiler

Alliant FX/8
Amdahl VP-E Series
Ardent Titan-1
CDC Cyber 205
CDC Cyber 990E/995E
Convex C Series
Cray Series
CRAY X-MP
Cray Series
CRAY-2
ETA-10
Gould NPI
Hitachi S-810/820
IBM 3090/VF
Intel iPSC/2-VX
NEC SX/2
SCS-40
Stellar GS 1000
Unisys ISP

FX/Fortran V4.0
Fortran 77/VP V1OL30
Fortran V1.0
VAST-2 V2.21
VFTN V2.1
FC5.0
CF77 V3.0
CFT V1.15
CFT77 V3.0
CFT2 V3.la
FTN77V1.0
GCF 2.0
FORT77/HAP V20-2B
VS Fortran V2.4
VAST-2 V2.23
FORTRAN77/SX V.040
CFT xl3g
F77 prerelease
UFTN 4.1.2

V P N

19 0 5
16 1 7
18 0 6
16 0 8

8 0 16
17 0 7
20 0 4
16 0 8
17 0 7

5 0 19
18 0 6
14 0 10
14 0 10
12 0 12
15 0 9
17 0 7
7 0 17

14 0 10
21 3 0

Machine

73
73
68
67
36
74
72
51
51
28
69
67
71
56
64
71
25
59
80

27
27
32
33
64
26
28
49
49
72
31
33
29
44
36
29
75
41
20

- 6
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Table 4. Vectorization (34 loops)

Compiler V P N

Alliant FX/8
Amdahl VP-E Series
Ardent Titan-1
CDC Cyber 205
CDC Cyber 990E/995E
Convex C Series
Cray Series
CRAY X-MP
Cray Series
CRAY-2
ETA-10
Gould NP1I
Hitachi S-810/820
IBM 3090/VF
Intel iPSC/2-VX
NEC SX/2
SCS-40
Stellar GS 1000
Unisys ISP

FX/Fortran V4.0
Fortran 77/VP V1OL30
Fortran V1.0
VAST-2 V2.21
VFTN V2.1
FC5.0
CF77 V3.0
CFT V1.15
CFT77 V3.0
CFT2 V3.la
FTN77V1.0
GCF 2.0
FORT77/HAP V20-2B
VS Fortran V2.4
VA ST-2 V2.23
FORTRAN77/SX V.040
CFT xl3g
F77 prerelease
UFTN 4.1.2

Table 5. Idiom Recognition (15 loops)

Machine Compiler

Alliant FX/8
Amdahl VP-E Series
Ardent Titan-1
CDC Cyber 205
CDC Cyber 990E/995E
Convex C Series
Cray Series
CRAY X-MP
Cray Series
CRAY-2
ETA-10
Gould NP1I
Hitachi S-810/820
IBM 3090/VF
Intel iPSC/2-VX
NEC SX/2
SCS-40
Stellar GS 1000
Unisys ISP

FX/Fortran V4.0
Fortran 77/VP V10L30
Fortran V1.0
VAST-2 V2.21
VFTN V2.1
FC5.0
CF77 V3.0
CFT V1.15
CFT77 V3.0
CFT2 V3.la
FTN 77 V1.0
GCF 2.0
FORT77/HAP V20-2B
VS Fortran V2.4
VAST-2 V2.23
FORTRAN77/SX V.040
CFT xl3g
F77 prerelease
UFTN 4.1.2

V P N

10 0 5
11 1 3
9 0 6
7 0 8
3 1 11

11 0 4
1 0 6

10 0 5
7 0 8
8 0 7
7 0 8
8 0 7

14 0 1
5 1 9
6 0 9

12 0 3
5 0 10
4 1 10

10 2 3

Machine

20
21
19
20

6
25
18
12

8
3

18
19
24
19
17
21
6

20
19

5 9
8 5
5 10
5 9
8 20
4 5
3 13
1 21
1 25
1 30
7 9
7 8
4 6
3 12
8 9
5 8
1 27
9 5
8 7

- 7 -
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Table 6. Language Completeness (27 loops)

Compiler V P N

Alliant FX/8
Amdahl VP-E Series
Ardent Titan-I
CDC Cyber 205
CDC Cyber 990E/995E
Convex C Series
Cray Series
CRAY X-MP
Cray Series
CRAY-2
ETA-10
Gould NP1I
Hitachi S-810/820
IBM 3090/VF
Intel iPSC/2-VX
NEC SX/2
SCS-40
Stellar GS 1000
Unisys ISP

FX/Fortran V4.0
Fortran 77/VP V1OL30
Fortran VI.0
VAST-2 V2.21
VFTN V2.1
FC5.0
CF77 V3.0
CFr V1.15
CFT77 V3.0
CFT2 V3.la
FTN77V1.0
GCF 2.0
FORT77/HAP V20-2B
VS Fortran V2.4
VAST-2 V2.23
FORTRAN77/SX V.040
CFT xl3g
F77 prerelease
UFTN 4.1.2

6. Analysis of Results
The average number of loops vectorized (Table 1) was 55%, and vectorized or partially vec-

torized (Table 2) was 61%. The best results were 69% and 80%, respectively. Of the 100 loops,
only 4 were not vectorized or partially vectorized by any of the compilers. All 4 loops can be
vectorized by a knowledgeable programmer. There is probably no significant difference between
vendors within a few percent of each other. Slight differences may be due to different hardware,
the availability of special software libraries, the architecture of a machine being better suited to
executing scalar or parallel code for certain constructs, or the makeup of the loops used in our
test.

Comparing Table 1 to Table 2, we see that the inclusion of partially vectorized loops in the
totals places the Amdahl and Unisys compilers among the top performers. Similarly the CDC
Cyber 990E1995E and Stellar compilers, which also did a significant amount of partial vectoriza-
tion, moved up in the list.

Tables 3-6 show that some compilers did particularly well in certain categories. In the
Dependence Analysis category, Unisys vectorized or partially vectorized all 24 loops. Convex
had the best result in the Vectorization category, vectorizing 25 and partially vectorizing 4 of the
34 loops. Hitachi did very well in the section on Idiom Recognition, vectorizing 14 of the 15
loops. Cray's CF77 compiler had the best result in the Language Completeness category, vector-
izing 22 of the 27 loops.

In analyzing the results we found that some vendors, with approximately equal results, did
much better in one category than another. Interprocedural analysis, recognizing loops formed by
IF and GOTO statements, and vectorizing loops containing COMMON or EQUIVALENCE
statements are examples of such categories. We conclude that the compiler vendors have focused

Machine

19
14
16
19

8
16
22
12
18
11
19
19
15
16
18
16
6

10
17

0
1
1
0
2
1
0
0
0
0
0
0
0
0
0
0
0
1
0

8
12
10

8
17
10
5

15
9

16
8
8

12
11
9

11
21
16
10
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their efforts on particular subsets of the features tested by the suite. Possible reasons might
include hardware differences or (self-imposed) limits on compilation time, compilation memory
use, or the size of the generated code.

The results reported in this paper were collected over a period of approximately a year.
Many of the results are from compilers in production use. Some compilers were in beta test (Alli-
ant FX/Fortran V4.0, Convex FC V5.0, Cray CFT77 V3.0, NEC FORTRAN77/SX V.040), some
were in various stages of development of the next release (Gould V2.0, IBM V2.4, Unisys
V4.1.2), and some were prerelease systems (Stellar F77, Cray CF77).

In the following subsections, we discuss the results in more detail using the categories
defined in Section 2.

6.1. Dependence Analysis
Most compilers vectorized a majority of the linear dependence tests, which analyze sub-

script expressions and loop control variables to detect access to the same memory location. In the
induction variable recognition tests the Unisys compiler did the best job; it vectorized or partially
vectorized all the loop. Ardent, Cray CF77, Hitachi and the VAST systems* also did a good job,
missing only the loops with an induction variable under an IF.

Alliant, Amdahl, Ardent, Convex, Cray CF77, ETA, and Unisys vectorized both interpro-
cedural analysis tests, and the CFT77 compiler vectorized one, all via a procedure integration
capability. The Cray CFT compiler also vectorized one of these loops using a runtime test.

Most compilers did very well in the symbolics section, where the information necessary to
recognize dependencies is contained in the loop bounds. Many were also able to do the global
analysis necessary to vectorize statements like A(I) = A(I+M) where the value of M was supplied
outside the loop block.

6.2. Vectorization
The Vectorization category contained the largest amount of partial vectorization. Most

compilers were able to vectorize the tests that required reordering statements within a loop. In
loop distribution testing we found most compilers able to do partial vectorization; Alliant,
Amdahl, CDC Cyber 205, Hitachi, NEC, and Unisys with their capabilities for vectorizing
recurrences completely vectorized at least one of the loops.

Loop interchange was a challenging section: all vendors missed at least 2 of the 4 loops.
There were a variety of results in the node-splitting tests. Some vendors, particularly those that
could vectorize recurrences, did quite well vectorizing or partially vectorizing most or all of the
loops. The scalar expansion tests also showed varied results. All vendors were able to vectorize
at least one of the loops. Ardent, Convex, and Hitachi vectorized all 5 loops.

Many vendors did very well in vectorizing loops containing IF tests. Unisys vectorized all
12 loops. Amdahl, Convex, IBM, and Stellar each vectorized 11. Cray CF77, Hitachi, NEC, and
the VAST systems vectorized 10.

The tests for crossing thresholds and loop peeling were among the most difficult. These
tests require breaking up the loop or peeling off some iterations. Hitachi and NEC were the most
successful, followed by Ardent and Convex.

6.3. Idiom Recognition
Idiom' recognition, more than the other categories, relies on special-purpose hardware or

software to enable the compiler to vectorize some of the loops. All systems vectorized sum and
dot produc reductions. Most also vectorized product reduction, loops to find the maximum or
minimum lement in an array, and an unrolled dot product loop. First-order recurrences were

* We use th term VAST systems to refer to the Alliant FX/8, CDC Cyber 205, ETA-10, Gould NPI, and
Intel iPSC-VX compilers, all of which were using Pacific Sierra's VAST product as a front-end.

- 9 -
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vectorized by Alliant, Amdahl, Cray CFT2, Hitachi, NEC, and Unisys. Only Alliant vectorized a
second-order recurrence. Only Hitachi vectorized a coupled recurrence.

Many systems had trouble vectorizing search loops and loops that packed or unpacked an
array. Both types of loops require an element-by-element search through an array, under the con-
trol of an IF test, to look for a certain condition. Amdahl and Hitachi vectorized all 4 loops.
Convex, Cray CFT, and NEC vectorized 3 of the loops.

6.4. Language Completeness

Cray CF77 and the VAST systems were the only compilers to vectorize loops formed by IF
and GOTO statements. Vectorization of loops containing COMMON and EQUIVALENCE
statements showed interesting results. All vendors vectorized either most (5-7) of the 7 loops, or
else just 1 or 2. CDC Cyber 205, Cray CF77, and Cray CFT77 vectorized all 7 loops.

There were mixed results in vectorizing loops containing various Fortran constructs. Some
of the difficult loops that were vectorized contained an arithmetic IF statement, a WRITE state-
ment, a CALL statement, and a STOP statement. Doing well in these tests were Amdahl, C"-
vex, Cray CF77, CDC Cyber 990E/995E, and Hitachi. Most systems vectorized a loop contain-
ing the SIN and COS intrinsic functions.

Almost all of the compilers vectorized Gather/Scatter loops. We believe those compilers
that did not vectorize these loops currently lack the hardware necessary to support this type of
addressing.

7. Discussion
How good is this test suite? The question can be answered in several ways, but we will

address three specific areas: coverage, stress, and accuracy.

7.1. Coverage
By "coverage" we refer to how well the test suite represents typical, common, or important

Fortran prograrmning practices. We would like to assert that high effectiveness on the test suite
will correspond to high effectiveness in general. Unfortunately, there is no accepted suite of For-
tran programs that can be called representative, and so we have no quantitative way of determin-
ing the coverage of our suite. We believe, however, that the method used to select the tests has
yielded reasonable coverage. This method consisted of two phases.

In the first phase, a large number of loops were collected from se-'eral vendors and
interested parties. This gave a diverse set of viewpoints, each with a different machine architec-
ture and hence somewhat different priorities. In a few cases the loops represented "real" code
from programs that had been benchmarked. The majority, however, were specifically written to
test a vectorizing compiler for a particular feature. Independently, the categorization scheme used
in Section 2 was developed based on experience and published literature on vectorization.

In the second phase, the test suite was culled from the collected loops by classifying each
loop into one or more categories and then selecting a few representative loops from each
category. Our interest was in coverage, and since "representative" is not well defined, we made
no attempt to weight some of the subcategories more than others by changing the number of
loops. Where we felt that testing a subcategory required a range of situations, we included several
loops; in other cases we felt that one or two loops sufficed. There is significant weighting
between major categories. For example, the test suite places greater emphasis on basic vectoriza-
tion (34 loops) than on idiom recognition (15 loops). This weighting was an artifact of the
selected categories and was reflected in the original collection of samples. We felt that this
weighting was reasonable and made no attempt to adjust it.

- 10 -



Table 7. Loops Sorted by Difficulty

Unisys ISP
Convex C Series
CRAY CF77 V3.0
Alliant FX/8
Hitachi S-810/8
NEC SX/2
Amdahl VP-E Ser
ETA- 10
Ardent Titan-1
CDC Cyber 205
Gould NP1
Intel iPSC/2-VX
IBM 3090/VF
Stellar GS 1000
CRAY CFT V1.15
CRAY CFT77 V3.0
CDC Cyber 990E/
CRAY CFT2 V3.1A
SCS-40
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Table 8. Correlation of Compiler Performance
Unisys ISP
Convex C Series
Alliant FX/8
Amdahl VP-E
CRAY CF77 V3.0
Hitachi S-810/8
NEC SX/2
ETA-10
Ardent Titan-1
CDC Cyber 205
Gould NP1
Intel iPSC/2-VX
Stellar GS 1000
IBM 3090/VF
CRAY CFT V1.:.5
CRAY CFT77 V3.0
CDC Cyber 990E
CRAY CFT2 V3.1A
SCS-40

1.00
0.50
0.43
0.37
0.36
0.34
0.62
0.42
0.35
0.39
0.39
0.35
0.40
0.51
0.41
0.31
0.11
0.31
0.29

1.00
0.51
0.72
0.34
0.58
0.63
0.59
0.67
0.51
0.55
0.55
0.66
0.53
0.42
0.24
0.35
0.32
0.34

1.00
0.34
0.67
0.36
0.50
0.91
0.60
0.82
0.82
0.81
0.45
0.46
0.31
0.35
0.22
0.33
0.25

1.00
0.22
0.60
0.46
0.37
0.45
0.29
0.34
0.34
0.55
0.37
0.40
0.12
0.36
0.33
0.30

1.00
0.24
0.44
0.69
0.53
0.65
0.60
0.60
0.30
0.43
0.50
0.64
0.14
0.34
0.31

1.00
0.56
0.38
0.46
0.40
0.35
0.39
0.54
0.32
0.39
0.12
0.25
0.30
0.27

1.00
0.48
0.51
0.49
0.49
0.48
0.50
0.54
0.48
0.30
0.25
0.40
0.37

1.00
0.65
0.91
0.82
0.85
0.50
0.54
0.38
0.34
0.28
0.32
0.29

1.00
0.57
0.52
0.56
0.52
0.47
0.36
0.49
0.47
0.38
0.25

1.00
0.82
0.85
0.50
0.53
0.33
0.33
0.30
0.30
0.31

1.00
0.85
0.54
0.53
0.29
0.38
0.30
0.30
0.26

1.00
0.60
0.59
0.31
0.39
0.30
0.24
0.29

1.00
0.53
0.36
0.24
0.33
0.25
0.34

1.00
0.46
0.42
0.33
0.33
0.33

1.00
0.52 1.00
0.24 0.24 1.00
0.57 0.39 0.23 1.00
0.57 0.29 0.34 0.67

Table 9. Correlation of Selected Compiler Performance
Unisys ISP
Convex C Series
Alliant FX/8
Amdahl VP-E
CRAY CF77 V3.0
Hitachi S-810/8
NEC SX/2
ETA-10
Ardent Titan-1
CDC Cyber 205
Gould NP1
Intel iPSC/2-VX
Stellar GS 1000
IBM 3090/VF
CRAY CFT V1.15
CRAY CFT77 V3.0
CDC Cyber 990E
CRAY CFT2 V3.1A
SCS-40

1.00
0.12
0.30

-0.14
0.05

-0.31
0.41
0.20

--0.35
0.11
0.16
0.07

-0.19
0.35
0.18

-0.02
-0.37
0.12
0.12

1.00
-0.02

0.44
-0.43
0.19
0.09
0.20
0.14
0.11
0.16
0.23
0.47
0.02

-0.18
-0.52

0.00
-0.30
0.12

1.00
-0.42
0.42

-0.14
0.04
0.86
0.25
0.75
0.66
0.70

-0.16
-0.10
-0.38

0.14
-0.21
0.15

-0.24

1.00
-0.49

0.52
-0.10
-0.31
-0.24
-0.39
-0.35

-0.25
0.39

-0.29
0.10

-0.52
0.10
0.10
0.10

1.00
-0.39
-0.08

0.43
0.13
0.29
0.21
0.23

-0.50

0.02
0.04
0.69

-0.29
-0.21
-0.21

'.00
0.11

-0.10
-0.14
0.10

-0.15
0.04
0.24

-0.47
-0.09
-0.53

0.09
0.14
0.14

1.00
-0.08
-0.25

0.08
0.00
0.02

-0.11

0.71
C.00

-0.26
-0.17

0.17
u.17

1.00
0.42
0.87
0.64
0.81

-0.05
0.02

-0.29
0.10

-0.12
-0.21
-0.21

1.00
0.31
0.07
0.25

-0.01
-0.25
-0.38

0.14
0.46
-0.24
-0.24

1.00
0.79
0.93
0.05
0.13

-0.37
0.05

-0.04
-0.18
-0.18

1.00
0.87
0.15
0.22

-0.41
0.15

-0.08
-0.19
-0.19

1.00
0.11
0.19

-0.33
0.11
0.00

-0.17
-0.17

1.00
-0.14
-0.26
-0.56
0.09

-0. 14
0.26

1.00
0.21
0.16

-0.13
-0.15
-0.15

1.00
0.26 1.00

-0.14 -0.09 1.00
-0.11 -0.14 -0.11 1.00
0.33 -0.14 -0.11 -0.04

-11- November 11, 1988



November 11, 1988

7.2. Stress
By "stress" we refer to how effectively the test suite tests the limits of the compilers. We

want the test to be difficult but not impossible. Again there is no absolute metric against which
we can measure the test suite, but we can use the performance of the compilers as a measure.
Table 7 lists the results for the various compilers. In this table, each row corresponds to a particu-
lar compiler. Rows are sorted in order of decreasing full and partial vectorization (see Table 2).
Each column corresponds to a particular loop, and the columns are sorted in order of increasing
difficulty.

The loop scores at the bottom of Table 7 are based on the number of compilers that vector-
ized or partially vectorized the loop. Many of the loops are inherently only partially vectorizable
and so we have not attempted to weight full versus partial vectorization. Only in a few cases
were loops vectorized by some vendors and only partially vectorized by others. We interpret a
low score as an indication of a difficult test. From the table we observe a good distribution of test
difficulties from "easy" (everyone vectorizes) to "difficult" (no one even partially vectorizes).

This method of judging difficulty will be skewed if many of the compilers are similar.
Using the performance of the compilers to measure the difficulty of the loops assumes that each
compiler is an independent measure. When there are significant relationships between compilers,
loops may seem artificially easy or difficult depending on whether the related compilers all vec-
torize or all fail to vectorize. As an example, in our suite, 6 of the 19 compilers vectorize implicit
loops constructed from backward GOTO's. Five of these are based on Pacific Sierra Research's's
VAST system. The effect on the scoring is that these loops seem easier than some others. On the
other hand, in a few cases the VAST systems did comparatively poorly on some loops. Here, the
effect on the scoring is that these loops appear more difficult than is perhaps true. Similar rela-
tionships exist among some of the other compilers reported on in this paper.

Table 8 contains a matrix of linear correlations between the performance of the systems.
Since a large number of loops were vectorized by most of the systems, all of the correlations
shown in Table 8 are positive. The correlations between Alliant, CDC Cyber 205, ETA, Gould,
and Intel (the VAST systems) are all between 0.81 and 0.91, significantly higher than all other
correlations. If we ignore the easy and the difficult tests, more variation appears. Table 9 is the
correlation matrix restricted to tests that were vectorized or partially vectorized by no more than
half the highest score nor less than one fourth of the maximum score. Scores were computed with
only one VAST system represented. This table still shows high positive correlations between the
VAST systems but also shows some high negative correlations, such as -0.49 between Cray CF77
V3.0 and Amdahl. We assume these negative correlations are the effects of different machine
architectures and different decisions by the vendors about what is important or worthwhile.

7.3. Accuracy
By "accuracy" we refer to how well the test can measure the quality of a vectorizing com-

piler. Since the difficulty of the tests was determined by the performance of the compilers, it
would be circular now to judge the absolute quality of the compilers by their performance on this
suite. What about relative performance? It is tempting to distill the results for each compiler into
a single number and use that to compare the systems. Such an approach, however, is clearly
incorrect, since these compilers cannot be compared in isolation from the machine environment
and target application area for which they were designed. The negative correlations in Table 9
support the view that multiple distinct, but correlated factors are involved.

Wz conclude that the suite represents reasonable coverage and adequate stress, but that we
cannot determine the accuracy of the suite.

8. Conclusion
Our initial goal has been twofold: (1) to compare the ability of different Fortran compilers

to automatically vectorize various loops, and (2) to try to understand their capabilities and limita-
tions. The real test of a vectorizing compiler can be determined only by actually comparing the
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execution time of the vectorized and non-vectorized code. We caution that the information
presented here tests only one aspect of a compiler and should in no way be used to judge the
overall performance of a vectorizing compiler or computer system. The results reflect only a lim-
ited spectrum of Fortran constructs. Also, subsequent compiler and hardware changes may affect
which loops can be vectorized.

We intend to update and expand the results presented here. In particular, we plan to develop
a check to verify the correctness of the compiler-generated code and a measure of its efficiency.
A copy of the source code used in the test is available from netlib at Argonne National Labora-
tory. To receive a copy of the code, send electronic mail to netlib@anl-mcs.arpa. In the mail
message, type:

send vector from benchmark
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Appendix A

RESULTS BY LOOP FOR ALL COMPILERS

Alliant FX/8
Amdahl VP-E Series
Ardent Titan-1
CDC Cyber 205
CDC Cyber 990E/995E
Convex C Series
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA-10
Gould NPlI
Hitachi S-810/820
IBM 3090/VF
Intel iPSC/2-VX
NEC SX/2
SCS-40
Stellar GS 1000
Unisys ISP
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Cray Series CFT77
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Alliant FX/8
Amdahl VP-E Series
Ardent Titan-1
CDC Cyber 205
CDC Cyber 990Ej995E
Convex C Series
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA- 10
Gould NP1
Hitachi S-810/820
IBM 3090/VF
Intel iPSC/2-VX
NEC SX/2
SCS-40
Stellar GS 1000
Unisys ISP

Alliant FX/8
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NEC SX/2
SCS-40
Stellar GS 1000
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s241 s242 s243 s244 s245 s251 s252 s253
Alliant FX/8 v n v p v v v v
Amdahl VP-E Series v p v v v v p d
Ardent Titan-I n p n n n v v v
CDC Cyber 205 v n v p v v v v
CDC Cyber 99OE/995E n p n n n n n n
Convex C Series v p v v p v v v
Cray Series CF77 v n v n p v n v
CRAY X-MP CFT v n v n n v n n
Cray Series CFT77 n n n n n v n n
CRAY-2 CFT2 n n n n n v n n
ETA-10 v n v p p v v v
Gould NPl v n v p p v v v
Hitachi S-810/820 v n v p v v v v
IBM 3090/VF v p n v n v n v
Intel iPSC/2-VX v n v p p v p v
NEC SX/2 v p v n v v p v
SCS-40 v n v n n v n 11
Stellar GS1000v p v v p v p v
UnisysISP p p p p v v p v

s254 s255 s271 s272 s273 s274 s275 s276
Alliant FX/8 p n v v v v n v
AmdahlIVP-E Seriesp d p y v v v n v
Ardent Titan-I v v v v v v n v
CDC Cyber 205 p n v v v v n v
CDC Cyber 990E/995E v v n n p p n p
Convex C Series y v v v v v nC v
Cray Series CF77 n n v v v v n-b.c v
CRAY X-MP CFT n n v n v v n v
Cray Series CFT77 n n v v v v n b n
CRAY-2 CFT2 n n n n n n n n
ETA-10 p n v v v v n v
Gould NPl p n v v v v n v
Hitachi S-810/820 v v v v v v n v
IBM 3090/VF n n v v v v n v
Intel iPSC/2-VX p n v v v v n v
NEC SX/2 n n v v v v n v
SCS-40 n n n n n n n n
Stellar GSl1000 p p v v v v n v
Unisys ISP n n v v v v v v
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s277 s278 s279 s2710 s2711 s2712 s281 s291
Alliant FX/8 n v v v n p
Amdahl VP-E Series v v v v v v n p d
Ardent Titan-i n p p v v v n v
CDC Cyber 205 n v v v v v n p
CDC Cyber 990E/995E n p p n n n n n
Convex C aries v v v v v v n v
Cray Series CF77 n v v v v v n v
CRAY X-MP CFT n v n n v v n a n
Cray Series CFT77 n v v n v n n n
CRAY-2 CFT2 n n n n n v n n
ETA-10 n v v v v v n p
Gould NPI v v v v v v n p
Hitachi S-810/820 n v v v v v p v
IBM 3090/VF v v v v v v n n
Intel iPSC/2-VX n v v v v v n p
NEC SX/2 n v v v v v p v
SCS-40 n n n n n v n n
Stellar GS1000v v v v v v n p
UnisysISP v v v v v v p n

s292 s293 s311 s312 s313 s314 s315 s316
Alliant FX/8 n n v v v v v v
Amdahl VP-E Series p n v p v v v
Ardent Titan-1 v n v v v v v v
CDC Cyber 205 n n v v v v v v
CDC Cyber 990E/995E n n v p v n v n
Convex C Series v n v v v v v v
Cray Series CF77 n n v v v v n v
CRAY X-MP CFT n n v v v v n v
Cray Series CFT77 n n v v v n n n
CRAY-2 CFT2 n n v v v v n v
ETA-10 n n v v v v v v
Gould NPI n n v v v v v v
Hitachi S-810/820 v n v v v v v v
IBM 3090/VF n n v p v n n n
Intel iPSC/2-VX n n v v v n v n
NEC SX/2 n v v v v v v v
SCS-40 n n v v v n n n
Stellar GS1000 p n v p v n n n
Unisys ISP n n v v v v v v



November 11, 1988

s317 s318 s321 s322 s323 s331 s332 s341
Alliant FX/8 n v v v n v n n
Amdahl VP-E Series n v v n n v v v
Ardent Titan-1 v v n n n v n n
CDC Cyber 205 n v n n n n n n
CDC Cyber 990E/995E n n n n n n n n
ConvexCSeries v v n n n v n v
Cray Series CF77 v v n n n v v n
CRAY X-MP CFT v v n n n n v v
Cray Series CFT77 v v n n n v v n
CRAY-2 CFT2 v v v n n n n n
ETA-10 n v n n n n n n
Gould NP1 n v n n n v n n
Hitachi S-810/820 v v v n v v v v
IBM 3090/VF n v n n n n n v
Intel iPSC/2-VX n v n n n v n n
NEC SX/2 v v v n n v n v
SCS-40 v v n n n n n n
Stellar GSl1000 n v n n n v n n
UnisysISP v v v n n v n p

s342 s411 s412 s413 s414 x421 s422 s423
Alliant FX/8 n v v v n v v v
Amdahl VP-E Series v n n n n v v n
Ardent Titan-1 n n n n n v v v
CDC Cyber 205 n v v v n v v v
CDC Cyber 990E/995E n n n n n v v n
Convex C Series v n n n n v v v
Cray Series CF77 n v v v n b v v v
CRAY X-MP CFT v n n n n v v n
Cray Series CFT77 n n n n n b v v b v
CRAY-2 CFT2 n n n n n v v n
ETA-10 n v v v n v v v
Gould NP1 n v v v n v v v
Hitachi S-810/820 v n n n n v v n
IBM 3090/VF v n n n n v v v
Intel iPSC/2-VX n v v v n v v v
NEC SX/2 v n n n n v v v
SCS-40 n n n n n v v n
Stellar GS1000 n n n n n n n n
UnisysISP p n n n n v v v

- 19 -
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s424 s425 s426 s427 s441 s442 s451 s452
Alliant FX/8 v v v n v n v v
AmdahlVP-E Series n n n n v n v v
Ardent Titan-i yv v v n nfl f V v
CDC Cyber 205 v v v v v n v v
CDC Cyber 990E/995E n n n n n n v v
Convex C Series v v n n v n C v v
Cray Series CF77 v v v v v n v v
CRAYX-MPCFT n n n n n n v v
Cray Series CFT77 v v v v n n v v
CRAY-2 CFT2 n n n n n n v v
ETA-10 v v v n v n v v
Gould NPI v v v n v n v v
Hitachi S-810/820 na n n n v n v v
IBM 3090/VF v v v n v n v v
Intel iPSC/2-VX v v v n v n v v
NEC SX/2 v v n n v n v v
SCS-40 n n n n n n v v
Stellar GSl1000 n v n n n n v v
UnisysISP v v n v v n v v

s461 s471 s481 s482 s4101 s4111 s4112 s4113
AlliantFX/8 n n nC n v v v v
Amdahl VP-E Series p d y v n v v v v
Ardent Titan-1 v n p n v v v v
CDC Cyber 205 n n n n v v v v
CDC Cyber 990E/995E v v p n v n n n
Convex C Series p v n n v v v v
Cray Series CF77 n n v v v v v v
CRAY X-MP CFT n n n v v v v v
Cray Series CFT77 n n v v v v v v
CRAY-2 CFT2 n n n n v v v v
ETA-10 n n n n v v v v
Gould NPI n n n n v v v v
Hitachi S-810/820 v n v n v v v v
IBM 3090/VF n n n n v v v v
Intel iPSC/2-VX n n n n n v v v
NEC SX/2 v n n n v v v v
SCS-40 n n n n v n n n
StellarGS 1000 n n n n v v v v
Unisys ISP n n n n v v v v
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Alliant FX/8
Amdahl VP-E Series
Ardent Titan-1
CDC Cyber 205
CDC Cyber 990E/995E
Convex C Series
Cray Series CF77
CRAY X-MP CFT
Cray Series CFT77
CRAY-2 CFT2
ETA-10
Gould NP1I
Hitachi S-810/820
IBM 3090/VF
Intel iPSC/2-VX
NEC SX/2
SCS-40
Stellar GS 1000
Unisys ISP

s4114 s4115
v v

v v

v v

v n

p n
v v

v v

v v

v v

v v

v v

v v

v v

v v

v v

v v

V

V

V

n
v

v

a These loops were conditionally vectorized. A runtime IF-THEN-ELSE test was compiled
which executed either a scalar loop or a vectorized loop.

b These loops were conditionally vectorized. For loops with ambiguous subscripts a run-
time test was compiled which selected a safe vector length.

C These loops were parallelized but not vectorized. The compiler generated code to execute
these loops in parallel, but no code was generated to vectorize these loops.

d These loops were executed in scalar mode. The compiler indicated partial vectorization
was possible, but that the overhead was too large.

These loops were executed in scalar mode. The compiler indicated vectorization was pos-
sible, but that scalar execution was faster than vector execution.

s4116
n
n
n
n
n
n
n
n
n
n
n
n
v

n
n
n
n

p
v

s4117
v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

n
v
'I
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Appendix B

SOURCE CODE FOR LOOPS USED

end

c cl.1

TEST SUITE POR VECflRIZII43 OILERS

Version:

Date:

Authors:

2.0

3/14/98

Original loops from a variety of

sources. Collection/synthesis by:

David Callahan -

Jack Dongarra

David Levine

Rice University

Argonne National Lab

Argonne National Lab

c

c Conlle: Use the comp.er options that show the *

c automatic vectorisation capabilities *

c of the crmpiler. Do not ase compiler e

c directives or interactive compilation *

c features for additional vectorisations. a

c Do not modify the source code. The "

c saubroutines in section 1.5 may be "

c compiled independently. *

c *

c............................................ a

DEPENDENC ANALYSISc

c

c%1 . 1

subroutine slll(a.n)

c

c linear dependence testing

c dependence testing - vertoriaable

c

dimnsion a(1000)

do 400 i u 2,100,2

a(i) = a(i-1)
400 continue

write (unit=6,fmt100) a(n)

100 format (e12.6)

return

and

c9 1.1

saubrout ine s112(a.n)

c

c linear dependence testing

c loop reversal

c

dimension a(1000)

do 700 i - 999,1,-1

a(i+l) - a(i)

700 continue

write (unitu6,fmt=100) a(n)
100 format (e12.6)

return

C

c

c

subroutine s113(an)

linear dependence testing

a(i)-a(1) but un actual dependence cycle

integer n

real a(*)
do 610 I = 2,n

a(i) - a(1)

610 continue

return

and

c%1.1

subroutine s114(aa.bb.n)

c

C

c

c

linear dependence testing

transpose vectorisation

integer n

real aa(n,e).bb(n,e)

do 300 j = ln

do 300 i a lj-1

aa(i,j) = aa(jl) + bb(ij)

* 300 continue

* return

a end

csl.l

subroutine 115(aan)

c

c linear dependence testing

c lower triangular system

integer n

real aa(n,*)

do 320 j a ln

do 320 k a 1,j-1
do 320 i = k+l,n

320 as(i,j) a aa(i,j) + aa(uk) * aa(k.j)
return

end

cll.l

subroutine s116(a.b.n)

c

c linear dependence testing

c

integer n
real a(*),b(*)

do 450 i = 1,n,5

a(i) a a(i+l) + a(i)*b(i)

a(i+l) = a(i+2) + a(i+1)*b(i+l)

a(i+2) - a(i+3) + a(i+2)*b(i+2)

a(i+3) - a(i+4) + a(i+3)*b(i+3)

c

c

c

c

c

c

c

c

c

c

c

- - 23 -
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a(i+4) - a(i+) + a(i+4)*b(i+4)

450 continue

return

and
CS1.1

subroutine s117(a.logn,n) c

cc

c linear dependence testing

c fit subscripting

c

integer n,logn

real a(')

j 1

do 970 i - 1,logn

do 971 k - ln,j

do 971 1 u l,j

t - a(k+1-1) + a(k+l+j-1)

a a(k+1-1) - a(k+l+j-1)

a(k+l-1) u t

a(k+l+j-1) - a

971 continue

j - j * 2

970 continus

return

mad

M4l.2

subroutine s121
c

c induction variable recognition

c loop with possible ambiguity because of scalar store

parameter ( a . 1000 )

real a(1000)

integer i, j

do 70, i - 1, n-1

j i+1

a(i) - a(j)

70 continue

write(anit6,fjmtell) (a(i),ialn)

11 format(s12.6)

return

and

M41.2

subroutine s122(xayyn)

induction variable recognition

mixed variable and constant lb. ab, and stride

k is not initialised before irst see.

nan3 are not defined.

dimension ux(100), yy(100), ax(100)

xx(1) 6.

j - 6
do 60 i-nl,100,n3

xx(i)uyy(i)nas(100-k+1)

hk u k + j

60 continue

write (unit-6,fmt.1l) j, xx(n)

11 format (6,e12.6)

c

c

4G

4

return

end

cI .2

subroutine s123(ab,c,n)

induction variable under an if

integer n

real a(*),b(*),c(*)

j = 0
do 50 i ln

j - j + 1

a(j) * b(i)

if(c(i).gt.0) then

j = j + I

a(j) - c(i)
endif

50 continue

return

and

c%1.2

sabroatine s124(a,b,c,n)

induction variable recognition

induction variable under both sides of if (same value)

c

c

c

integer n

reel a( )b(),c()
j - 0
do 60 I a ln

if(b(i).gt.0) then

j-j + 1

a(j) - b(i)

else

j - j + I

a(j) - c(i)
endif

60 continue

return

end

A41.2

subroutine s125(abb.ccn)

c induction variable recognition

c induction variable in two loops; collapsing possible

integer a
real a(*),bb(n,*),cc(n,*)

k 0

do 20 I u l,n

do 20 j u 1,n

k k + 1

a(k) bb(i.j) + cc(i,j)

20 continue

return

end

c%1.2

subroutine s126(abbn)

c

-24-
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induction variable recognition

induction variable in two loops

recurrence in inner loop

integer n

real a(*),bb(n,*)

k - 1
do 40 i - 1,n

do 41 j = 2,n

bb(ij) - bb(i.j-1) + a(k)

k - k + 1
41 continue

k - k + 1

40 continue

return

and

c%1. 2

subroutine s127(a.b,c,n)

c

c induction variable recognition

c induction variable with multiple increments

c

integer n

real a(*).b(*),c(Oi

j-0

do 10 i - 1,n

j - j + 1
a(j) u b(i)

j - j + 1
a(j) - c(i)

10 continue

return

and
Li .3

subroutine si3l(a,b,n)

c global data low analysis

c forward substitution

c

integer n

real a(*).b(*)

m - 1
if(a(1).gt.0)then

a(1) u b(1)

endif
do 340 i - 2,n-1

a(i) - a(i+m) + b(i)

340 continue

return

end

c%1 . 3

subroutine s132

c global data low analysis

c loop with multiple dimension ambiguous subscripts

c

parameter ( n - 100 )

real a(100.100)

integer i, j, k, m

m - 1

j - m

k =mal
do 170, i=2,n

a(i,j) - a(i-l,k)*3.5

170 continue

write(unit=6, fmt=11) ((a(i,j), i=l.n),j=1,n)

11 format(e12.6)

return

end

c%1.5

c

c

c

c

subroutine sl5i(abn)

interprocedural data fow analysis

universal conpilation - passing parameter

information into a subroutine

integer n

real a(*),b(*)

call slils(ab,n-l .1)

return

end

subrout ine s1Sls(ab.nm)

integer n,m

real a(*),b(*)

do 730 i - 1,n

a(i) u a(i+m) + b(i)

730 continue

return

end

c%1 . 3

subroutine s152(abn)

c

c interprocedural data low analysis

e universal compilation - collecting info from subroutine

c

integer n

real s('),b(*)

do 750 i - In

b(i) - b(i) + 2

call s152s(ab,i)

750 continue

return

and

subroutine s152s(abi)

integer i

real a(
5
),b(*)

a(i) = a(i) + b(i)

return

end

c%1 .6

subroutine s161(a,ba,n)

c

c

c

Go

control low

tests for recognition of loop independent dependences

between statements in mutually exclusive regions.

array bounds error when i - 100.

dimension a(100),b(100),x(100)

c

c

c

-25-
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do 30 1 = 1,100

if (b(i).lt.0) go to 10

a(i) - x(i)

go to 30

10 x(i+1) = a(i)

30 continue

write(unit=6, int=11) a(n),b(n),x(n)

11 format(3e12.6)

return

end

c1.7

subroutine s171(abn)

c symbolic

c symbolic dependence tests

c

integer n

real a("),b(*)
do 1030 i " 1,n

a(i1n) = a(ien) + b(i)

1030 continue

return

end

c%1.7

subroutine s172(a,b,n)

c

C

4

4
C.

symbol ics

symbolics - not vectorizable

could be vectorized if you assume n3 .NE. 0,

a reasonable assumption.

nln2,n3 are not defned.

dimension a(1000),b(1000)

do 500 i - nln2,n3

a(i) = a(i) + b(i)

500 continue

write (unit=6, fmt=100) a(n)

100 fennat (e12.6)

return

end

A41.7

subroutine s173(a,bn)

c symbolic

c expression in loop bounds and subscripts

c

integer n

real a(e),b(*)
do 370 i = 1,n/2

a(i+n/2) - a(i) + b(i)

370 continue

return

end

c%1.7

subroutine s174

c

c symbolics

c loop with subscript that may seem ambiguous

c

parameter ( n - 1000 )

ceal a(1000)

integer i

do 50, i- 1, n/2

a(i) = a( i + n/2 )

SO continue

write(unit-6,fmt=11) (a(i),i=1,n)

11 format(e12.6)

return

end

c%1.7

subroutine s175(ab,n,inc)

c symbolics

c symbolic dependence tests

c

integer n,inc

real a(*),b(*)

do 1020 i = 1,n,inc

a(i) - a(i+inc) + b(i)

1020 continue

return

and

c VECR I ZAT Il *

c *

c%2.1

subroutine s211(abc.n)

C

c statement reordering

c statement reordering allows vectorization

c

integer n

real a(*),b(*),c(*)

do 270 i = 2,n-I

a(i) = b(i-1) + c(i)

b(i) . b(i+l) - 2.

270 continue

return

end

c%2.1

subroutine s212

c statement reordering

c dependency needing temporary

c

parameter ( n = 1000 )

real a(1000), b(1000), x(6000)

integer i

do 20, i=l,n-1

a(i) = x(i)

b(i) - bri)+a(i+1)

20 continue

write(unit=6, fmt=11) (a(i),i=1,n)

write(unit=6, fmt=11) (b(i),i=1,n)

11 format(e12.6)

- 20-
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return

end

c%2.2

subroutine s221

c loop distribution

c loop that is partially recursive

parameter ( n = 1000 )

real a(1000), b(1000), x(6000), y(
6
00
0

)

integer i
do 80, i = 2 , n

a(i) = a(i) + ( x(i) * y(i) )

b(i) = b(i-1) + a(i) + y(i)

80 continue

write(unit=6,fmt=11) (a(i),i=ln)

write(unit=6, fmt=11) (b(i),i=l,n)

11 format(e12.6)

return

end

c%2.2

subroutine s222(a,b,c,n)

c

c loop distribution

c partial loop vectorization, recurrence in middle

c

integer n

real a(*).b(O).c(*)

do 240 i = 2,n

a(i) a a(i) + b(i)

NOi : b(i-1)*b(i-1)*a(i)

a(i) = a(i) - b(i)

240 continue

return

and
A%2.3

subroutine s231

c

c loop interchange

c loop with mltiple dimension recursion

c

parameter ( n = 100 )

real a(100,100), b(100,100)

integer i, j

do 160, i=ln

do 160, j=2,n

a(i,j) = a(ij-1)+b(i,j)

160 continue

write(unit=6, fmt=11) ((a(i,j),i=l,n),j=.n)

11 format(e12.6)

return

end

c%2.3

subroutine s232(aa,bb,n)

c

c loop interchange

c interchanging of triangular loops

c

integer n

real aa(n,*),bb(n,*)

do 290 j = 2,n
do 290 i = 2,j

aa(i j) = sa(i-1 j) aa(i-l,j)+bb(i,j)

290 continue

return

end

c%2.3

subroutine s233(asbbccn)

c

c loop interchange

c interchanging with one of two inner loops

integer n

real aa(n,*),bb(n,*),cc(n,*)

do 840 i = 2,n

do 841 j = 2,n

aa(i,j) = aa(ij-1) + cc(i.j)/aa(ij-1)

841 continue

do 142 j = 2,

bb(i,j) = bb(i-.ij) + cc(i,j)/bb(i-1,j)
842 continue

840 continue

return

end
c%2.3

subroutine s234(aa,bb,ce,n)

c

c loop interchange

c if loop to do loop, interchanging with if loop necessary

c

integer n

real aa(n,*),bb(n,*),cc(n,*)

i = 1

232 if(i.gt.n) goto 231

j = 3

233 if(j.gt.n) Soto 230

as(ij) = aa(i.j-1)*bb(i,j-1)
bb(i,j) = aa(i,j-1)+bb(i,j-2)
cc(i,j) = cc(ij-1)*cc(ij-2)

j = j + 1
goto 233

230 i = i + 1

Ioto 232

231 continue

return

and

A62.4

subroutine 924'(a,b,c,n)

c

c node splitti' ,

c preloading necessary to allow vectorization

integer n

real a(s),b(*),c(*)

do 280 i = 2,n-1

s(i) = b(i) + c(i)

b(i) = a(i) + a(i+l)

280 continue

-27-
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return

end

Ae2.4

subroutine 5242(ab,c,)

c

t.

node splitting

array bounds error when i-i, i=100

dimnnsion a(100),b(100),c(100),d(100)

dimension abcl(100),abc2(100),bcdl(100)

do 510 i = 1,100

abcl(i-1) = abc2(i-1) + 1

bcdl(i-l) = abcl(i-1) ** 2

a(i) = bcdl(i-1) + d(i)

abc2(i) = b(i+1) + b(i-1)

b(i) - c(i) + 1

c(i+1) = b(i) + 1

510 continue

write(unit=6,fmt=12) c(n)

write(unit=6,fmt=12) b(n)

12 format (e12.6)

return

and

A62.4

subroutine s243(a,bcn)

c

c node splitting

c false dependence cycle breaking

c

integer n

real a(*),b(*),c(*)

do 630 i s 2,n-1

a(i) . b(i) + c(i)

b(i) = a(i) - 2.

a(i) = b(i) + a(i+1)

630 continue

return

end

c%2.4

subroutine s244(abcn)

c

c node splitting

c false dependence cycle breaking

integer n

real a(*),b(*),c(*)

do 640 i = 2,n-1

a(i) = b(i) + c(i)

b(i) = c(i) - 2.

a(i+1) = b(i) + a(i+l)

640 continue

return

end

c%2.4

subroutine s245(a,b,c,n)

c

c node splitting

c array bounds error when i=1

dimension a(100),b(100),c(100),d(100)

t2 = 0

do 800 i - 1,100

a(i) - a(i-1) + ti + t2 + b(i) + c(i) + d(i)

800 continue

write(unit=6, fmt=12) a(n)

12 format (c12.6)

return

end

c%2.5

subroutine s2S1(bcn)

c

c scalar and array expansion

c scalar expansion

c

diunsion b(1000),c(1000),d(1000)

do 900 i = 1,100,1

abc - b(i) * c0;

d(i) = abc * abc
900 continue

write (unit=6,fmt=100) d(n)

100 format (e12.6)

return

and

c%2.5

subroutine s252

c

c scalar and array expansion

c loop with ambiguous scalar temporary

c

parmeter ( n - 6000 )

real a(6000), x(6000), y(6000), a, t

integer i

t = 0.

do 40, i=l,n

s x(i) * y(i)

a(i) = a + t

t = s

40 continue

write(unit=6, fmtl1) (a(i),i=i,n)

11 format(e12.6)

return

end

c%2.5

subroutine s253(a,b,c,n)

c

c scalar and array expansion

c scalar expansion, assigned under if

c

integer n

real a(*).b(*).c(*)

do 760 I = 1,n

if(a(i).gt.b(i))then

t = a(i) - b(i)

c(i) = c(i) + t

a(i) " t

end if

760 continue

return

-28-
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end

c%2.5

subroutine s254(ab,n)

C

c scalar and array expansion

c carry around variable

c

integer n

real a(*),b(*)

x - a(n)

do 390 i - i.n

b(i) - (a(i) + x) / 2.

x - a(i)

390 continue

return

end

c%2.5

subroutine s255(ab,n)

c

c scalar and array expansion

c carry around variables, 2 levels

c

integer n

real a(*),b(e)

x - a(n)

y - a(n-1)

do 400 I - l,n

b(i) - (a(i) + a + y) / 3.

y - x

a " a(i)

400 continue

return

end

c%2.7

subroutine s271

c

c control low

c loop with singularity handling

c

parameter ( n - 1000 )

real a(1000), y(6000), a(6000)

integer i

do 140, i-ln

if (y(i).gt.0.) a(i) . y(i)/a(i)

140 continue

write(unit-6, fmt-il) (a(i),i-l,n)

11 format(el2.6)

return

end
c%2.7

subroutine s272

c

c control low

c loop with independent conditional

c

paranmter ( n - 1000 )

real a(1000), x(6000), y(6
0 0 0

), :(6000)

real s, r, t

integer i

t - 1.

do 100, i = 1, n

if (a(i) .ge. t) then

s - x(i) * y(i) + 3.1

r = x(i) + y(i) * 2.9

a(i) = sqrt(s**2*r)
endif

100 continue

write(unit-6, mt-1i) (a(i),i-in)

11 fornt(e12.6)

return

en-
4

AE2.7

subroutine :273

c

c control low

c simple loop with dependent conditional

c

parinter ( n - 4000 )

real a(4000), b(4000), c(4000)

real x(6000), y(6000), z(6000)

integer i

do 120, i - 1 , u

a(i) - a(i) + y(i) + s(i)

If (a(i) .lt. 0.) b(i) - b(i) + x(i) + y(i)

c(i) - c(i) + a(i) + x(i)

120 continue

write(unit-6, fmt-il) (a(i),il,n)

write(unit-6, fmt-il) (b(i),i1ln)

write(unit-6, fmt-il) (c(i),i-ln)

11 format(e12.6)

return

end

A62.7

subroutine s274

c

c

c

control Bow

complex loop with dependent conditional

parmneter ( n - 1000 )

real a(1000), b(1000)

real x(6000), y(
60 0 0

), a(6000)

integer i

do 130, i - 1 , n

a(i) - x(i) + s(i)

if (a(i) .eq. 0.) then

b(i) - a(i) * b(i)

else

a(i) - y(i) * x(i)

b(i) - 1.

endif

130 continue

write(unit-6,f mt-li) (a(i),i-ln)

write(unitu6, fmt-ll) (b(i),i-I,n)

11 format(e12.6)

return

end

c%2.7

subroutine s275(sa,bbn)

-29-



November 11, 1988

c control fow

c if around inner loop, interchanged needed

c

integer n

real aa(n,*),bb(n,.)

do 480 i - 2,n

if(bb(i,1).gt.0)then

do 481 j - 2,n

481 bb(ij) - bb(ij)/bb(i,j-1)

endif

480 continue

return

and

c%2.7

subroutine s276(a,b,c,n)

do 120 i - 1,n

if(a(i).gt.0)goto 121

b(i) - -b(i)

goto 122

121 continue

c(i) - -c(i)

122 continue

a(i) = b(i) + c(i)

120 continue

return

end

c%2.7

subroutine s279(a,b,c,n)

c

c

c

c

c control fow

c ifs which trim the index set

c

integer n

real a(*),b(*),c(*)

do 660 i - 1,n

a(i) - b(i) + c(i)

if(i.gt.5) b(i) * abs(b(i))

if(i.lt.99) a(i) - -a(i)

660 continue

return

end

c2.7

subroutine s277(ab,x,n)

control fow

test for dependences arising from

gard variable computation.

y is used before being defined

array bounds error when i - 100.

dimension a(100),b(100),x(100),y(100)

do 130 i - 1,100

if (a(i).ge.0) go to 120

if (b(i).ge.0) go to 110

a(i) - x(i)

110 continue

b(i+1) - y(i)

120 continue

130 continue

write(unit-6,fmt-l) a(n),b(n),x(n)

11 fornat(3el2.6)

return

end

c%2.7

subroutine s278(ab,c,n)

c

c control fow

c if/goto to block if-then-else

integer n

real a(*),b(*),c(*)

control fow

vector if/gotos

integer n

real a(*),b(*),c(*)

do 810 i - l,n

if(a(i).gt.0)goto 311

b(i) - -b(i)

if(abs(b(i)).le.a(i))goto 812

c(i) - abs(c(i))

goto 812

811 continue

c(i) - -c(i)

812 continue

a(i) - b(i) + c(i)

810 continue

return

and

M62.7

subroutine s2710(abcxn)

c

c control flow

c scalar and vector ifs

integer n

real a(*),b(e),c(*),x

do 790 i l ln

if(a(i).gt.b(i))then

a(i) - a(i) - b(i)

if(n.gt.10)then

c(i) - abs(c(i))

else

c(i) - 0.

end if

else

b(i) - a(i)

if(x.gt.0)then

c(i) - a(i)

.lse

c(i) - -c(i)

end if

end if

790 continue

return

end
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c%2.7

subroutine s2711(ab,c,n)

c control flow

c semantic if removal

c

integer n

real a(*),b(*),c(*)

do 650 i = ln

if(a(i).ne.0) b(i) - b(i) + a(i) * c(i)

650 continue

return

end

c%4.5

subrout ine s2712(ab,n)

c control low

c if to elemental min
c

integer n

real a(*),b(*)

do 70 i = 1,n

if(a(i).gt.b(i)) a(i) h b(i)

70 continue

return

end

C%2.8

subroutine s281(a,b,n)

c crossing thresholds ( index set splitting )

c index set splitting

integer n

real a(*),b(*)

do 990 i = 1,n

x = a(n-i+1) + b(i)

a(i) x + 3.

b(i) ax

990 continue

return

end

c%2.9

subroutine s291(a,b,n)

c

c loop peeling

c wrap around variable, 1 level

c

integer n

real a(*),b(*)

imi n

do 410 i 1 l,n

b(i) a (a(i) + a(iml)) / 2.

tim i

410 continue

return

end

c%2.9

subroutine s292(a,b,n)

c loop peeling

c wrap around variable, 2 levels

c

integer n

real a('),b(*)

imi = n

irn2 = n-1

do 420 i = l,n

b(i) = (a(i) + a(iml) + a(im2)) / 3.

im2 = iml

imi i

420 continue

return

end
c%2.9

subroutine s293(a,n)

c

c loop peeling

c a(i)na(1) with actual dependence cycle

o@ above comnt misleading, loop is vectorizable

c

integer n

real a(*)

do 620 i = i,n

a(i) = a(1)

620 continue

return

end

c

c *

c IDIa RECOGNITION

c *

c%3.1

subroutine s311(a,b,x,n)

c

c reductions

c sum reduction

integer n

real a(*),b(*),x

do 850 i = 1,n

x = x + a(i)

b(i) - a(i) + 2.

850 continue

return

end

c%3.1

subroutine s312(ab,xn)

c

c reductions

c product reduction

c

integer n

real a(*),b(*),x

do 860 i = I,n

x = x * a(i)

b(i) s s(i) + 2.
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860 continue

return

and

c%3.1

subroutine s313(a,b,n)

c

c reductions

c dot product

c

dimension a(1000),b(1000)

s . 0.

do 930 i w ln

e a a + a(1) * b(i)

930 continue

write (unit-6,fmt=100) s

100 format (e12.6)

return

end

A43.1

subroutine s314(x,b,n)

c

c reductions

c if to max reduction

integer n

real x,b(*)

do 80 i s l,n

if(b(i).gt.x) x . b(i)

80 continue

return

and

c%3.1

subroutine s315(x,j,b,n)

c

c reductions

c if to max with index reduction, 1 dimension

integer n,j

real x.b(*)

do 90 I - ln

if(b(i).gt.x)then

x - b(i)

j i

endift

90 continue

return

end
c%3.1

subroutine s316(an)

c reductions

c minval
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write (unit=6,fmt=100) a(n)

100 format (e12.6)

return

and

c%3.1

subroutine s317(n)

c

c

c

c

c

o@

reductions

tests scalar expansion. Pran a benchmark to test the

scalar speed of a machine. The best results are fully

vectorixed. the caniler expands .995 into a vector of

.995 and does a product reduction on the vector of .995.

note: this loop has closed form solution: q = .9950*n

q - 1.

do 50, i - 1,n

q - .995'q

50 continue

write(unit=6, fmt=l1) q

11 format(e12.6)

return

and
c%3.1

subroutine s318(a,b,x,n)

c reductions

c

integer n

real a(*).b(*),x

do 430 i - 1,n,5

x = x + a(i)*b(i) + a(i+l)*b(i+1) + a(i+2)*b(i+2)

$ + a(i+3)*b(i+3) + a(i+4)*b(i+4)

430 continue

return

end

c%3.2

subroutine s321(a,b.n)

c recurrences

c first order linear recurrence

c

integer n

real s(*),b(*)

do 870 i - 2,n

eli) * cli) + eli-I )b(i)

870 continue

return

end

c%3.2

subroutine s322(aeb,cn)

c

c recurrences

c second order linear recurrence

dimension 8(1000)

s - a(1)

do 960 I " 2,n

if (ali) It. s) s a a(i)

960 continue

write (unite6,fmt=100) s

integer n

real s(*),b(*),c(*)

do 880 i - 3,n

a(i) e a(i) + a(i-1)*b(i) + a(i-2)*c(i)

880 continue
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return

end

c%3. 2

c

c

G4

subroutine s32!(a,b,c,d,n)

recur.:nc.s

coupled recurrence

array pounds error when i - 1.

integer n

real a(*).b(*),c(*).d(*)

do 1040 i - l,n

a(i) " b(i-1) + c(i)
b(i) - a(i) + d(i)

1040 continue

return

end

c%3.3

subroutine s331(ajn)

c

c search loops

e if to last-1

c

integer jn

real a(*)

do 130 i s i,n

if(a(i).eq.0) j i

130 continue

return

end

c%3.3

subroutine s332(a,bjn)

c

c search loops

c search loop saving index

c

integer nj

real a(*),b(*)

do 510 I i ,n

if(a(i).gt.b(i))then

j - i
goto 511

end if

510 continue

j - 0

return

511 continue

return

end

c%3.4

subroutine s341(a,b,jn)

c

c packing

c

integer n,j

real a(*),b(*)

j - 0

do 900 i = l.n

if(a(i).gt.0)then

j -j + 1

b(j) = a(i)
end if

900 continue

return

and

c%3.4

subroutine s342(abjn)

c

c packing

c unpacking

c
integer nj

real a(*),b( )

j - 0
do 910 i = 1,n

if(a(i).gt.0)then

j - j + 1

a(i) - b(j)

endif

910 continue

return

end

c a

c LANWCJME W.IPLETENESS *

c%4.1

subroutine s411(ab,cn)

c loop recognition

c if loop to do loop, zero trip

c

integer n

real a(*),b(*),c(*)

i - 0

140 continue

i - i + 1
if(i.gt.n)goto 141

a(i) - b(i) + c(i)

goto 140

141 continue

return

end

c%4.1

subroutine s412(abcninc)

loop recognition

if loop with variable increment

integer ninc

real a(),b("),c(*)

i = 0

950 continue

i - i + inc

if(i.gt.n)goto 951

a(i) .b( i) + c(i)
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Soto 950

951 continue

return

end

cq4.1

subroutine s413(a,b,c,n)

C

c

4

November 11, 1988

storage classes and equivalencing

equivalence- vectorizable

array bounds error when i,j

are simultaneously > 96.

code on both sides of increment

integer n

real a(*),b(*),c(*)

i " 0

130 continue

if(i.gt.n)goto 131

b(i) - abs(b(i))

i i + 1

a(i) = c(i)

goto 180

181 continue

return

end

c%4.1

subroutine s414(aa,bb,cc,n)

c loop recognition

c if loop to do loop, interchanging with do necessary

c

integer n

real aa(n,*),bb(n,*),cc(n,*)

i . 1

222 if(i.gt.n) goto 221

do 220 j - 3,n

sa(i,j) =aa(i,j-1)*bb(i,j-1)
bb(i,j) . a(ij-1)+bb(ij-2)

220 cc(i,j) cc(i.j-1)*cc(ij.2)

1 . 1 + 1
goto 222

221 count in.e

return

and

c%4.2

subroutine s421(n)

c

c storage classes and equivalencing

c equivalence- no overlap

@ array bounds error when i a 100.

c

dimension sa(100), yy(100)

equivalence (as(1),yy(1))

do 205 I a 1,100

ax(i) a yy(i+l)

205 continue

write(unit.6,fmt 100) as(n)

100 format(e12.6)

return

end

c4 .2

subroutine s422(n)

dimension a(100,100).y(100,100)

equivalence (a(1,1),y(1,1))

do 410 i - 1,100

do 420 j - 1,100

x(j+4,i+4) . y(j,1)

420 continue

410 continue

write(unit=6,fmt.100) x(n,n)

100 format(e12.6)

return

end

cl4. 2

c

c

4C

subroutine s423(n)

storage classes and equivalencing

common and equivalenced variables - no overlap

misleading conmnt, there is an anti-dependence

dimension cc(100)

common /conl/iil

cmmon /cem2/aa(200)

equivalence (aa(50),cc(1))

do 116 ill - 1,100

aa(iill) - cc(iil)

116 continue

write(ucit=6,fmt=100) aa(n)

100 format(e12.6)

return

end

c%4.2

subroutine .424(n)

c

C

4e

storage classes and equivalencing

common and equivalenced variables - no overlap

threshold is 100 >a loop upper bound => no dependence

dimension cc(100)

common /cornl/iil

common /ctm2/aa(200)

equivalence (aa(50),cc(1))

do 113 iIl a 1,100

cc(iil+50) a aa(iil-1)

113 continue

write(unitw6, fmt-100) cc(n)

100 format(el2.6)

return

end

c%4.2

subroutine s425(n)

c

c storage classes and equivalencing

c common and equivalence statement

4o anti-dependence with threshold of 4

c loop recognition

c if loop to do loop,
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dimension b(1000)

c common /cmanl/ccl(100),cc2(100)

common /comen/cc1(100),cc2(100),cc3(100),cc4(100,100)

dimension eqvl(100),eqv2(90)

equivalence (eqvl(1),cc2(1))

equivalence (eqv2(1),ccl(5))

do 920 i = 1,85

eqv2(i) = ccl(i+8) + b(i)

920 continue

write(6,100) eqv2(n)

100 format(e12.6)

return

end

c%4.2

subroutine s
4 2 6

(ny)

c

c

4o

G@

storage classes and equivalencing

common and equivalence statement

anti dependence with distance vector <2.6>

vectorisable with respect to both loops

dimension y(100,100)

coon /cmmnl/ccl(100),cc2(100),cc3(100),cc4(100,100)

dimension eqvl(100),eqv2(90),eqv3(100),eqv4(100,
0
9)

equivalence (eqvl(1),cc2(1))

equivalent (eqv2(1),ccl(5))

equivalence (eqv3(5),cc3(5))

equivalence (eqv4(1.2),cc4(1,1))

do 940 j = 2,80

do 950 i - 1,90

eqv4(i,j) = cc4(i+2,j+5) + y(ij)

950 continue

940 continue

write(6,100) eqv4(n.n)

100 for=at(e12.6)

return

end

c%4.2

subroutine s427(n)

c

c

4O

4C

storage classes and equivalencing

cosmeon and equivalenced variables - overlap

a partially negative test,

vectorisable in chunks of <=50

dimension c(100)

coamon /ccanl/i

common /cam2/a(200)

equivalence (a(50),c(1))

do 115 i 1,100

c(i+1) - a(i)

115 continue

write(units6,.fmt100) c(n)

100 format(e12.6)

return

end

c%4.4

subroutine s441(a,cn)

c

C@

non-logical if's

arithmetic if

xx is used before being defined.

dimension a(1000),b(1000),c(1000),d(1000),xx(100)

do 710 i = 1,100

if (d(i)) 720,730,740

720 c(i) = a(i)

goto 750

730 c(i) = b(i)

goto 750

740 c(i) = xx(i)

750 continue

710 continue

write(6,100) c(n)

100 format(e12.6)

return

end

c4.4

subroutine s442(a,c,n)

c

c

4

non-logical if's

computed goto

as is used before being defined.

ii is used before being defined.

dimnsion a(1000),b(1000),c(1000),d(1000),aa(200),ii(1000)

do 810 i = 1,100

goto (815,820,830,840) ii(i)

815 c(i) aa(i)

goto 850

820 c(i) = a(i)

goto 8350

830 c(i) = b(i)

goto 850

840 c(i) = d(i)

$50 continue

810 continue

write(6,100) c(n)

100 format(e12.6)

return

end

c%4.5

subroutine s451(ab,c,n)

c intrinsic functions

c intrinsics

c

integer n

real a(*),b(*),c(*)

do 930 ) = l,n

a(i) s uin(b(i)) + cos(c(i))

930 continue

return

end

C%4.5

subroutine s452(a,b,c,m)
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subroutine s482(a,b,c,n)c intrinsic functions

c seq function

dimension a(1000),b(1000),c(1000)

do 1250 i a 1,m

a(i) = b(i) + c(i) + i

1250 continue

return

end

c%4.6

subroutine s461(a,c,n)

c

c i/o statements

c write statement

c

dimension a(1000),b(1000),c(1000),d(1000)

do 600 i = 1,100

b(i) = d(i)

c(i) = a(i) + b(i)

write(6,100) c(i)

600 continue

write(6,100) b(n)

100 format(el2.6)

return

end

c%4.7

subroutine s471(s,n)

c call statements

dimension x(100,100),s(100,100),w(100,100),y(100,100)

equivalence (x(1,1),y(l.1))

do 510 I u 1,100

do 520 j a 1,100

x(ji) - .(j,1)

call sub2

a(j,i) - w(j.i)

520 continue

510 continue

write(unit6,fnmt-100) a(nn)

100 forsmt(el2.6)

return

and

c%4 .3

subroutine e481(a,bc,n)

c non-local goto's

c stop statement

c

dimnsion a(1000),b(1000),c(1000)

do 110 i - 1,100

if (a(i) .It. 0.) stop 'stop 1'

b(i) u c(i)

110 continue

write (unitu6,fmt100) b(n)

100 format(el2.6)

return

and

c%4.8

c non-local goto's

c other loop exit with code before exit

c

integer n

real a(*),b(*),c(*)

do 520 i - ,n

c(i) - a(l)

if(a( i ).gt.b(i))goto 521

520 continue

return

521 continue

return

end

c%4.10

subroutine s4101(a,bc,n)

c

c data types

c complex arithmetic

c

integer n

complex a(e),b().c(s)

do 920 i - 1,n

c(i) = a(i) + b(i)

920 continue

return

and

c%4.l1

subroutine s4111(ab,ipn)

c

c indirect addressing

c indirect addressing on lbs

c

integer n,ip(*)

real a(*),b(*)

do 560 i a In

a(ip(i)) - b(i)

560 continue

return

end

c%4.11

subroutine s4112(a,b,ip,n)

c

c indirect addressing

c indirect addressing on rho

c

integer nip(*)

real a(*),b(*)

do 550 i - l,n

a(i) b(ip(i))

550 continue

return

end

c%4.ll

subroutine s4113(a,b,ipn)

c

c indirect addressing

c indirect addressing on rhs and Iha
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c c enddo

integer nip(*) c do i= 1,n

real a(*),b(*) c d(temp( i)) -1

do 370 i a 1,n c enddo

a(ip(i)) - b(ip(i)) c

570 continue dimension d(*)

return j -1

and do 40, i" 1,n

c%4.11 j - j"2

subroutine s4114(xx,yy,n) d(j) - 1

c 40 continue

c indirect addressing return

c mixed variable and constant lb, ub, and stride and

4o nl,n2 are not defined. c%4.11

4 1 is used before being defined subroutine s4117(ab,c,nm)

dimension xx(100), yy(100), aa(100), 1(100)

xx(1) . S.

j - 5
do 50 i-nln2

k-l(i)

xx(i)-yy(i)uz(n2-k+1)

kt - k + j

SO continue

write (unit-6,fmt11) j, xx(n)

11 format (16,e12.6)

return

and

c%4.11

subroutine s4115(xxyyn)

c
c indirect addressing

c all variable - lb. ub, and stride

4 will always vectorize since I is induction variable

4e and XX appears only on left hand side.

4f nln2,n3 are not defined.

4® 1 is used before being defined

c

dimension xx(100), yy(100), aa(100), 1(100)

xx(1) a 7.

do 70 i-nln2,n3

k-l(i)

ax(i)-yy(2*i+1)*az(k+l/n3+nl)

70 continue

write (unit-6,fmt-l1) xx(n)

11 format (i6,e12.6)

return

end
c%4.11

subroutine s4116(nd)

c indirect addressing

c seq function

c

dimension a(1000),b(1000),c(1000)

do 1200 i - 1,m

a(i) - b(i) + c(i/2)

1200 continue

return

and

indirect addressing

This exanle test partial vectorization for the creation of

vector of indices. The best results are partial vectorization

with the net effect being the loops being compiled as:

ten(1)-1

do in 2,n

ten (i) temp(i-1)*2 (actually temp(i-1)+tenp(i-1))
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c

c

c

C

c

c

c

c


