
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-787878

Alexander Hinneburg, Wolfgang Lehner

Database Support for 3D-Protein Data Set Analysis

Erstveröffentlichung in / First published in:

15th International Conference on Scientific and Statistical Database Management.

Cambridge, MA, 09.-11.07.2003. IEEE, S. 161-171. ISBN 0-7695-1964-4

DOI: https://doi.org/10.1109/SSDM.2003.1214977

Final edited form was published in "15th International Conference on Scientific and Statistical Database Management, Cambridge, MA, 2003".
S. 161-171. ISBN 0-7695-1964-4

https://doi.org/10.1109/SSDM.2003.1214977

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-787878
https://doi.org/10.1109/SSDM.2003.1214977

Database Support for 3D-Protein Data Set Analysis

Alexander Hinneburg
Institute of Computer Science
University of Halle, Germany

hinneburg@informatik.uni-halle.de

Wolfgang Lehner
Database Technology Group

Dresden University of Technology, Germany
lehner@inf.tu-dresden.de

Abstract

The progress in genome research demands for an ade-
quate infrastructure to analyse the data sets. Database sys-
tems reflect a key technology to organize data and speed up
the analysis process.

This paper discusses the role of a relational database
system based on the problem of finding frequent substruc-
tures in multi-dimensional protein databases. The specific
problem consists of producing a set of association rules re-
garding frequent substructures with different lengths and
gaps between the amino acid residues of a protein. From
a database point of view, the process of finding association
rules building the base for a more in-depth analysis of the
data material is split into two parts. The first part performs
a discretization of the conformational angle space of a sin-
gle amino acid residue by computing the nearest neighbour
of a given set of representatives. The second part consists
in adapting a well-known association rule algorithm to de-
termine the frequent substructures. Both steps within this
comprehensive analysis task requires substantial support of
the underlying database in order to reduce the program-
ming overhead at the application level.

1 Introduction

The progress in genome research generates a tremen-
dous need for an adequate infrastructure to store and effi-
ciently analyse the underlying data sets. Although most of
the current data sets are stored in flat files, database tech-
nology may help to organize and speed up the overall anal-
ysis process by exploiting existing database functionality.
This paper focusses on the role of a relational database sys-
tem referring to a project finding frequent substructures in
protein data sets. The motivation of the project stems from
the observation that the number of known protein sequences
grows very fast. However, the known three-dimensional
structures of proteins are lower in the order of magnitudes
than the number of known protein sequences because the

underlying X-ray protein analysis is time consuming and,
ultimately, very expensive.

Therefore, there is a strong desire to derive the 3D-
structure directly from the protein sequence. The stan-
dard technique, protein homology modeling, is limited to
proteins, for which proteins with known 3D-structures and
similar sequences exist. Unfortunately, for most proteins
with known sequences and unknown 3D-structures, homol-
ogy modeling is not possible, so that the alternative way to
learn about the behaviour and/or functionality of the pro-
teins from the structure is based on the analysis of substruc-
tures. The analysis process of our sample project applica-
tion consists of the two separate steps of discretization of
the multi-dimensional dihedral angle space and the genera-
tion of frequent item sets. Both steps need to be supported
by the underlying database system in order to achieve an
efficient analysis process and increase the acceptance of
database systems in the biotechnology research community.

Contribution of the Paper The paper is logically divided
into two parts. One thread of the paper addresses the mod-
eling perspective of the specific application and outlines the
mapping of the protein structures based on a data model
consisting of a sequence of vectors of dihedral angles to
a relational scenario. The second thread discusses the op-
erational issue and focusses on the database optimization
perspective. The bottom line of the paper emphasizes two
major issues: on the one hand, we strongly believe that the
current relational database technology does not yet reflect
a perfect data storage and data analysis platform. On the
other hand, we propose extensions to a relational database
engine which might be exploited by a huge variety of data
mining (or knowledge discovery in general) applications.

Structure of the Paper The following section outlines
current techniques to analyse 3D protein data from the ap-
plication point of view. Additionally, our proposed repre-
sentation of 3D protein structure information within the di-
hedral angle space model is presented. Section 3 focusses
on the first step of the data analysis process to find similar

Final edited form was published in "15th International Conference on Scientific and Statistical Database Management, Cambridge, MA, 2003".
S. 161-171. ISBN 0-7695-1964-4

https://doi.org/10.1109/SSDM.2003.1214977

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

substructures: picking the nearest representative for each
single amino acid residue. Solutions using currently exist-
ing features of the relational database technique show that
there is a demand for a more specific database support. The
comparison of multiple methods illustrates that only min-
imal extensions may result in a huge benefit. In the same
vein, we show that the generation of frequent item sets (as
the second step in performing the analysis process) is not
efficiently implementable relying only on existing technol-
ogy.

2 Methods and Models for Protein Analysis

This section outlines current methods for 3D protein data
analysis as well as the dihedral angle space model to present
protein information within our application project.

2.1 Current Methods of 3D Protein Data Analysis

In recent years, a good number of high-resolution X-
ray structures of proteins stored in the Protein Data Bank
(PDB, http://www.pdb.org) have become available. Statisti-
cal methods have been applied to the PDB to extract knowl-
edge about the conformational behaviour1 of the smallest
protein substructures, the amino acid residues. Amino acid
side chain conformations have been studied, for example,
by [4, 8]. These studies led to side chain rotamer libraries,
which consist of a list of discrete conformations with a
weight corresponding to their frequency in the PDB. Since
the PDB contains a multitude of high-resolution struc-
tures, it was also possible to determine rotamer preferences
depending on the backbone conformation. A backbone-
dependent side chain rotamer library for example was de-
veloped by [5].

Based on this idea, a number of weak correlations
of rotamer distributions and secondary structures have
been found by [11]. The effectiveness of the backbone-
dependent rotamer libraries has been shown by [3] for ho-
mology modeling and by [9] for NMR and X-ray structure
refinement.

Although the idea of using rotamer libraries has already
been applied successfully in the past, only a small frac-
tion of their potential has been revealed. The main limi-
tation of the available rotamer libraries is the fact that they
describe only correlations within the conformation of the
smallest possible substructure of a protein, i.e. for a residue.
However, for the better understanding of 3D structures, it is
highly desirable to examine larger substructures consisting
of multiple residues, so that the relationship of a residue to
its neighbours in the sequence can be understood. In [7], the
basic idea of finding those kinds of frequent substructures

1Conformation of a protein or a substructure means its 3D-structure

Figure 1. Sample representation of the amino
acid Lysine with torsion and side chain angles
([2]).

within a protein data set is explained thoroughly. Based on
this idea, the requirements regarding the support of database
technology are discussed in the remainder of the paper.

2.2 The Dihedral Angle Model

Within the backbone-dependent rotamer library devel-
oped by [10] for each residue type, a probability distribution
of the side chain angle χ1 is calculated for each node on an
equidistant grid in the 2D (φ, ψ)-space. The distributions
of χ2, χ3 and χ4 only depend on the previous side chain di-
hedral angle. Figure 1 shows the sample amino acid lysine
with four torsion axes within its side chain, and the associ-
ated dihedral angles (χ1 to χ4) of the side chain. From an
analysis point of view, the main problem is detecting global
relationships consists in the derivation of a probability dis-
tribution based on more than one single angle.

In our application framework, we transform the descrip-
tion of the conformation of amino acid residues into data
points of a multi-dimensional dihedral angle space. If P
denotes a set of protein sequences and A is the set of all 20
natural amino acids, a single sequence p ∈ P may be for-
mally described as a sequence of linked amino acid residues
a, i.e.:

p ∈ P, p = a1a2 . . . , al, ai ∈ A, i = 1, . . . , l.

The main benefit performing all analysis steps within the
representation of the dihedral angle model is that (a) the
3D-structures of the conformations are fully reflected and
(b) the representation is invariant against rotation and trans-
lation. Formally, a single protein p ∈ P is represented in
the dihedral angle model as a sequence of vectors of dihe-
dral angles.

p ∈ P, D(p) = s1, s2, . . . sl,

si ∈ [−180, 180)di , i = 1, . . . , l

In this representation,D reflects the mapping of the original
3D coordinates to dihedral angle values and di is the num-
ber of dihedral angles for the associated amino acid residue

Final edited form was published in "15th International Conference on Scientific and Statistical Database Management, Cambridge, MA, 2003".
S. 161-171. ISBN 0-7695-1964-4

https://doi.org/10.1109/SSDM.2003.1214977

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ai consisting of the 3D position denoted by φ, ψ, ω and the
optional side chain angles χ1 to χ4. Since the backbone
part of a residue is equal for all residue types, the backbone
angles (s1, s2, s3) have to be present. Depending on the spe-
cific residue type, the remaining angle values represent the
optional side chain angles χ1 to χ4.

si =

{
(φ, ψ, ω) ; di = 3
(φ, ψ, ω, χ1, . . . , χdi−3) ; 3 < di ≤ 7

.

For example, the amino acid glycine is represented only by
its backbone information without any additional side chain
angles, i.e. di = 3. Argenine on the other hand exhibits
four side chain angles, so that di results to 7.

The corresponding relational mapping of the protein in-
formation consists of a single relational table. Each tuple
represents a single amino acid residue consisting of the 3-
letter identifier, three mandatory (i.e. NOT NULL) and
di − 3 floating number attributes. An additional attribute
denotes the dimensionality of the amino acid residue, i.e.
reflecting the number of NOT NULL dihedral angle values.

Based on this relational representation, the first step in
analysing the 3D protein structures in the introduced dihe-
dral angle model consists in the discretization of the confor-
mational angle space according to the observed data distri-
bution. After assigning a representative angle vector to each
individual residue, the second step encompasses the order-
preserving generation of frequent item sets. The algorith-
mic procedures and the relational implementation will be
discussed.

3 Data Discretization

The main goal of our application process is the detection
of similar and frequent substructures. While the genera-
tion of frequent item sets and the necessary extension of the
underlying database system are discussed in the following,
this section focuses on the problem of finding similar amino
acid residues. From an application point of view, we apply a
cluster algorithm within the multi-dimensional dihedral an-
gle space. The clustering process results in each amino acid
residue being assigned to a given prototype. To achieve the
highest degree of similarity, the ”nearest” prototype is re-
quired to be the representative of a single residue.

For our scenario, the prototypes are pre-determined ei-
ther by random sampling, i.e. randomly picking a number
of data points and using it as prototype, or by applying more
advanced algorithms like k-means. Further details can be
found at [7].

3.1 Nearest Neighbour Rule

From the application point of view, the conformational
space of each of the 20 natural amino acid residues is

Figure 2. Wrap-Around Effect in the Dihedral
Angle Model

mapped onto a set of prototypes within the discretization
step. From an implementational point of view, the data
points in the multi-dimensional dihedral space are mapped
onto predefined prototypes using the nearest neighbour rule.
In the context of the dihedral angle model, the distance be-
tween two points in the multi-dimensional space is com-
puted with the shortest path measures using the Euclidean
distance. Due to the continuous semantics of an angle
space, an adaptation to the regular distance computation is
necessary because of the wrap-around effect at the point
(−180,+180). Figure 2 illustrates the effect of the wrap-
around at the borders of a multi-dimensional angle space
using a two-dimensional plane. More formally, the distance
between two data points in an d-dimensional angle space is
computed by the following formula:

x, y ∈ [−180, 180)d, dist(x, y) =√√√√ d∑
i=1

{
|xi − yi|2, |xi − yi| ≤ 180
(360 − |xi − yi|)2, else

In SQL, the equation computing the Euclidian distance
between two points in a multidimensional dihedral angle
space may be easily achieved by using case statements to
cover the wrap-around effect and to deal with the variable
number of angles, i.e. with the flexible dimensionality of
the amino acid residues. For the sake of simplicity, the
scalar function edist(x,y) is introduced for a small sample
scenario.

For a five-dimensional angle space (φ, ψ, ω, χ1, χ2), the
edist() function would be defined as follows:

CREATE FUNCTION edist(
x1 FLOAT, x2 FLOAT, x3 FLOAT, x4 FLOAT,
x5 FLOAT, y1 FLOAT, y2 FLOAT, y3 FLOAT,
y4 FLOAT, y5 FLOAT)

RETURNS FLOAT
AS

CASE WHEN ABS(x1-y1)>360
THEN (ABS(x1-y1)-360)*(ABS(x1-y1)-360)

Final edited form was published in "15th International Conference on Scientific and Statistical Database Management, Cambridge, MA, 2003".
S. 161-171. ISBN 0-7695-1964-4

https://doi.org/10.1109/SSDM.2003.1214977

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

(a) Resolution 10 (b) Resolution 20

Figure 3. Discretizations of the conforma-
tional space of glycine with different resolu-
tions.

ELSE (ABS(x1-y1))*(ABS(x1-y1))
END +
CASE WHEN ABS(x2-y2)>360

THEN (ABS(x2-y2)-360)*(ABS(x2-y2)-360)
ELSE (ABS(x2-y2))*(ABS(x2-y2))

END +
CASE WHEN ABS(x3-y3)>360

THEN (ABS(x3-y3)-360)*(ABS(x3-y3)-360)
ELSE (ABS(x3-y3))*(ABS(x3-y3))

END +
CASE WHEN x4 IS NOT NULL

THEN CASE WHEN ABS(x4-y4)>360
THEN (ABS(x4-y4)-360)*(ABS(x4-y4)-360)
ELSE (ABS(x4-y4))*(ABS(x4-y4))
END

ELSE 0
END +
CASE WHEN x5 IS NOT NULL

... -- analogously to x4
END

AS dist

The effect of the discretization is shown for the confor-
mational space of glycine in figure 3. Figure 3(a) shows the
discretization with resolution 10 and part (b) with a resolu-
tion of 20 prototypes. All data points (plotted in grey) in the
same cell are assigned to the black plotted prototype. Note
that because of the wrap-around effect, the cells at a border
are connected with the opposite part.

3.2 Computing the Nearest Neighbor

The most obvious way to compute the nearest neighbour
for each conformation of the current amino acid residue is
to iterate over the content of the database. An inner loop
over all potential prototypes is then required to identify the
nearest prototype, i.e. the cluster to which the current amino
acid residue belongs to. Although this algorithm might be

easily implemented at the application level, each point of
the multi-dimensional angle space must be retrieved from
the database, compared with the potential prototypes, and
the result must be written back into the database, i.e. every
tuple must be updated to record the associated prototype.

Another option would be exploiting the capabilities of
the underlying database system and implementing the near-
est neighbour search using SQL. Since no data transfer be-
tween the database system and the application at the client
is necessary, this approach looks promising IF the database
system is able to provide the necessary operational environ-
ment.

Based on the two tables PConformation, holding the
raw data converted and imported directly from the PDB,
and PPrototypes, reflecting the set of predefined prototypes,
we discuss three different methods computing the nearest
neighbour directly inside the database system.

3.3 The Pivot-Method

The Pivot-Method is based on the idea that the set of pro-
totypes is transformed, so that the resulting table holds only
one single tuple with n-times the original set of columns,
where n is the number of prototypes.

Supposed we have three different prototypes within a
five-dimensional angle space (φ, ψ, ω, χ1, χ2). A view
defining the transformed table would be specified as fol-
lows:

CREATE VIEW PrototypesPivot AS
SELECT p1.id AS id1, p1.phi AS phi1,

p1.psi AS psi1, p1.omega AS omega1,
p1.chi1 AS chi11, p1.chi2 AS chi12,
p2.id AS id2, p2.phi AS phi2,
p2.psi AS psi2, p2.omega AS omega2,
p2.chi1 AS chi21, p2.chi2 AS chi22,
p3.id AS id3, p3.phi AS phi3,
p3.psi AS psi3,p3.omega AS omega3,
p3.chi1 AS chi31, p3.chi2 AS chi32

FROM PPrototypes p1, PPrototypes p2,
PPrototypes p3

WHERE p1.pid = 1 AND p2.pid = 2 AND
p3.pid = 3

Although pivoting the prototype table looks terribly in-
efficient, the self-join of the prototypes addresses exactly a
single tuple, so that an existing index on the prototype ID
reduces the overhead of the join to the concatenation of the
prototype tuples.

The selection of the nearest neighbour is then expressed
as the Cartesian product of the protein conformation table
with the single tuple of the view PrototypesPivot followed
by the case statement picking the prototype ID with the
minimum Euclidean distance. For the running example, the
statement would be as follows:

Final edited form was published in "15th International Conference on Scientific and Statistical Database Management, Cambridge, MA, 2003".
S. 161-171. ISBN 0-7695-1964-4

https://doi.org/10.1109/SSDM.2003.1214977

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

SELECT p.id, p.phi, p.psi, p.omega,
p.chi1, p.chi2,
-- id of amino acid residue
x.id, x.mindist
-- id of prototype with min distance

FROM (SELECT phi, psi, omega, chi1, chi2,
least(edist(phi, psi, omega, chi1, chi2,

phi1, psi1, omega1, chi11, chi12),
edist(phi, psi, omega, chi1, chi2,

phi2, psi2, omega2, chi21, chi22),
edist(phi, psi, omega, chi1, chi2,

phi3, psi3, omega3, chi31, chi32))
as mindist

FROM PConformations, PrototypesPrivot) x,
Prototypes p

WHERE p.phi = x.phi AND p.psi = x.psi AND
p.omega = x.omega AND p.chi1 = x.chi1 AND
p.chi2 = x.chi2

It is worth mentioning here that the least() scalar func-
tion like the min() aggregation function produces the min-
imal value of the given set of parameters but does not pre-
serve the position of the minimal value, so that a rejoin
with the original Prototypes table is necessary to retrieve the
ID of the nearest prototype for each tuple, i.e. amino acid
residue, produced by the inner view. Moreover, the least()
operator is not part of the SQL standard but provided by a
huge number of database systems, like Oracle, or must be
implemented as UDF. Since the function is CPU-bound, the
execution cost may be neglected.

3.4 The SelfJoin-Method

The self-join method is basically equivalent to the pivot
method; it picks the minimal distance from prototypes
stored vertically, i.e. as tuples within a table, and not hori-
zontally after performing the pivot operation.

Analogously to the pivot method, a view is defined as a
shortcut in the core SQL statement to determine the near-
est neighbour. The view PrototypeAssign computes the Eu-
clidean distance for each single amino acid residue and ev-
ery possible prototype candidate. It is worth mentioning
here that no restriction in the where clause is feasible to re-
duce the size of the temporary result.

CREATE VIEW PrototypeAssign AS
SELECT pc.id as pc_id, pc.phi, pc.psi,

pc.omega, pc.chi1, pc.chi2,
-- id of amino acid residue
pt.id as pt_id,
edist(pc.phi, pc.psi, pc.omega,

pc.chi1, pc.chi2, pt.phi, pt.psi,
pt.omega, pt.chi1, pt.chi2) AS dist

-- id of prototype with distance
FROM ProteinConformation pc, Prototypes pt

Picking the combination with the minimum distance may
be accomplished by referring to the predefined view in two

separate phases. Within an inner query for each amino acid
residue, the minimal distance is generated using a groupby
by operator and the min() aggregation function. Unfortu-
nately, the information which prototype (i.e. the prototype
id) is lost in this step and must be ”added” by a re-join in the
outer query. The re-join again requires the view definition.
The correct prototype ID (and the angle values) are retrieved
by picking the minimal distance prototype for each amino
acid residue.

SELECT pa.pc_id, pa.phi, pa.psi, pa.omega,
pa.chi1, pa.chi2,
-- id of amino acid residue
pa.pt_id, pa.dist
-- id of prototype with min. distance

FROM (SELECT pc_id, min(dist) AS dist
FROM PrototypeAssign GROUP BY pc_id) pc,
-- each amino acid with min. distance
prototypeassignment pa

WHERE pc.pc_id = pa.pc_id
AND pc.dist = pa.dist;

3.5 The MINPOS() Method

The self-join method would be very nice and intuitive
if the problem of losing the position of the minimal values
could be eliminated. If an adequate operator were available,
the re-join could be avoided and the query could be exe-
cuted much more efficiently. As a consequence, we propose
an extension to the set of aggregate functions by introduc-
ing the minpos() and maxpos() function. Both functions
are associated to the min() / max() function and return
the value of a column P if the value of an aggregate col-
umn X holds the minimal/maximal value within an aggre-
gate group. If multiple tuples exhibit the minimal/maximal
value, the minpos() / maxpos() function returns randomly
one of the valid solutions. For example, consider the follow-
ing table with three columns A, X , and P and six tuples.

A X P
----- ----- -----

A1 5 1
A1 3 2
A1 7 3
A2 2 1
A2 8 2
A2 2 3

The application of minpos() and maxpos() can be il-
lustrated using the following query:

SELECT A, MIN(X), MINPOS(X,P),
MAX(X), MAXPOS(X,P)

FROM R <<table above>>
GROUP BY A

Obviously, the query returns two rows (one for each
group). The minpos()-function returns the values of col-
umn P of the tuple holding the smallestX value within each
group, i.e.:

Final edited form was published in "15th International Conference on Scientific and Statistical Database Management, Cambridge, MA, 2003".
S. 161-171. ISBN 0-7695-1964-4

https://doi.org/10.1109/SSDM.2003.1214977

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

A MIN(X) MINPOS(X,P) MAX(X) MAXPOS(X,P)
----- ------ ----------- ------ -----------

A1 3 2 7 3
A2 2 3 8 2

Using the extension, the discretization step could be ex-
ecuted more efficiently by the following query based on the
view PrototypeAssign:

SELECT pc.id, pc.phi, pc.psi, pc.omega,
pc.chi1, pc.chi2,
-- id of amino acid residue
pa.pt_id, pa.dist
-- id of prototype with min. distance

FROM (SELECT pc_id, MIN(dist) AS dist,
MINPOS(dist, pt_id) AS pt_id

FROM prototypeassignment
GROUP BY pc_id) pa,
-- each amino acid id with min.
-- distance and prototype id
ProteinConformation pc

WHERE pa.pc_id = pc.id;

It is worth mentioning here that the join with the
ProteinConformations table can be avoided if the result

does not require the individual angles of all amino acid
residues.

4 Generating Order-Preserving Frequent
Item Sets

Based on the original data set with the associated nearest
neighbour, we can focus on the derivation of association
rules to discover frequent substructures within the protein
data set. In a first step, transaction sets are generated, so that
the order of the amino acid residues is preserved. A second
step encompasses the generation of the frequent item sets
applying well-known algorithms like APriori. Again, the
database perspective will be discussed. In this context, a
new operator supporting the generation process of the item
sets will be introduced.

4.1 Generating the Transaction Data Set

After the discretization of the conformational spaces by
assigning the nearest prototype to each amino acid residue,
the vector sequences, describing the conformations of the
protein structures p ∈ P , are transformed into sequences
over a discrete alphabet. The basic idea of the approach is
to replace each residue conformation by the prototype iden-
tifier, which stands for a set of similar 3D conformations
of the same residue type. Formally, the following mapping
function C from the residue conformations into the set of

prototype identifiers CI is given:

p ∈ P, D(p) = s1, . . . , slp , ∀j ∈ {1, . . . , lp} :
C(sj) = cj , cj ∈ CI

For a more convenient notation, we write for p ∈ P :

C(D(p)) := C(s1), . . . , C(slp) = c1, . . . , clp .

The transformation of the sequences is exemplified below
using a short subsequence of the protein with the PDB code
1slf B.

GLU -61 -44 179 54 81 53 -> GLU66
ALA -54 -51 177 -> ALA1
GLY -54 -35 178 -> GLY71
ILE -77 -37 -175 -65 176 -> ILE96
THR -62 129 177 -62 -> THR168
GLY 153 -166 178 -> GLY72
THR -105 137 -177 -59 -> THR164
TRP -135 154 175 -61 76 -> TRP173
TYR -137 151 179 -65 -85 -> TYR184
ASN -107 -178 -174 74 8 -> ASN24

The naive application of algorithms finding frequent sub-
sequences [13, 14] is not feasible due to the following two
reasons: first of all, the subsequences with gaps of differ-
ent sizes between the elements (residues) are matched as
equal. This makes no sense in the context of protein 3D
structures, since the relative distances between the residues
are in general important for the whole 3D structure. Sec-
ond, the classical application of well-known algorithms like
APriori to generate frequent item sets and derive association
rules based on confidence and support [1, 12] do not obey
the order of the residues.

To make the APriori algorithm sensitive to the order of
the residues, we additionally consider the positions of the
single amino acid residues and generate a new set of trans-
actions as the input for the APriori algorithm. To gener-
ate the transactions, a window of the maximum length of
a frequent substructure is moved over the sequences. In
each step, the position inside the window is added to the
letters, consisting of residue type and prototype identifier.
This transformation is exemplified in figure 4 for a window
of four residues using the same sequence as in the previous
example.

The resulting transaction data set is analyzed by the
APriori algorithm generating interesting relationships based
on the notion of frequent item sets. In this context, frequent
denotes that an item set appears more than suppmin times
in the transaction set. Each found frequent item set cor-
responds to a 3D substructure of multiple residues, which
appears at least suppmin times in the given 3D protein se-
quences. From the frequent item sets, general association
rules are derived, which uncover unknown implications.
Association rules can be seen as a kind of logic rule, which

Final edited form was published in "15th International Conference on Scientific and Statistical Database Management, Cambridge, MA, 2003".
S. 161-171. ISBN 0-7695-1964-4

https://doi.org/10.1109/SSDM.2003.1214977

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

GLU66 ALA1 GLY71 ILE96 THR168 GLY72 THR164 TRP173 TYR184 ASN24
T1 1GLU66 2ALA1 3GLY71 4ILE96
T2 1ALA1 2GLY71 3ILE96 4THR168
T3 1GLY71 2ILE96 3THR168 4GLY72
T4 1ILE96 2THR168 3GLY72 4THR164
T5 1THR168 2GLY72 3THR164 4TRP173
T6 1GLY72 2THR164 3TRP173 4TYR184
T7 1THR164 2TRP173 3TYR184 4ASN24
...

Figure 4. Example for the generation of transactions from a sequence.

is true with a certain probability. To restrict the set of pos-
sible association rules, a minimum confidence confmin is
required.

Since the relative positions of the residues are directly
encoded in each item, only subsequences with the exactly
same order of residues are matched. This approach also al-
lows gaps in the sequences. However, in contrast to general
frequent sequences, the lengths of the gaps in the match-
ing subsequences all have the same size, which is important
in this application context. Details regarding the process
and experimental results without the use of an underlying
database system can be found in [7]

4.2 Generating Frequent Item Sets inside the
Database

The necessary prerequisite to efficiently produce fre-
quent item sets inside the database consists in the exis-
tence of adequate operators which - on the one hand - al-
low the user to easily specify application specific tasks and
- on the other hand - enable the system to apply internal
optimization strategies. In this section, we show that the
pure grouping functionality (extended by the cube() opera-
tor family, [6]) is not sufficient to support the application of
data mining algorithms

The relational mapping of our sample protein conforma-
tion scenario is rather straightforward. The generated trans-
actions are stored within a single table with four columns
denoting the position of the amino acid residues inside
the sliding window defining the substructure and a running
number as the transaction ID:

TID A1 A2 A3 A4

T1 1GLU66 2ALA1 3GLY71 4ILE96
T2 1ALA1 2GLY71 3ILE96 4THR168
T3 1GLY71 2ILE96 3THR168 4GLY72
T4 1ILE96 2THR168 3GLY72 4THR164
T5 1THR168 2GLY72 3THR164 4TRP173
T6 1GLY72 2THR164 3TRP173 4TYR184
T7 1THR164 2TRP173 3TYR184 4ASN24
...

Computing item sets and weighting them with the nec-
essary support and confidence is the main crucial operation
in computing association rules. For the n-th generation, an
item set reflects all n-combinations for a given set of group-
ing attributes. With the number of attributes reasonably low
(.i.e. short subsequences), we may use the grouping sets()
clause to specify the necessary combinations within a single
query. For example, with four attributes A1, A2, A3, and
A4, we may issue the following grouping condition:

GROUP BY GROUPING SETS ((A1,A2),(A1,A3),
(A1,A4),(A2,A3),
(A2,A4),(A3,A4))

For larger subsequences, i.e. columns contributing to the
computation of item sets, the specification of all permuta-
tion combinations can be a tedious task. Another alternative
is to issue a cube() operator over the given set of parame-
ters and eliminate the unwanted grouping combinations in a
having clause referring to the grouping() columns. For the
ongoing example with four attributes, we yield the follow-
ing expression:

GROUP BY CUBE(A1,A2,A3,A4)
HAVING NOT(
-- exclude 0-cardinality combinations
(GROUPING(A1) = 1 AND GROUPING(a2) = 1 AND
GROUPING(a3) = 1 AND GROUPING(a4) = 1)

-- exclude 1-cardinality combinations
OR (GROUPING (A1) = 1 AND GROUPING(A2) = 1

AND GROUPING(A3) = 1)
OR (GROUPING (A1) = 1 AND GROUPING(A2) = 1

AND GROUPING(A4) = 1)
OR (GROUPING (A1) = 1 AND GROUPING(A3) = 1

AND GROUPING(A4) = 1)
OR (GROUPING (A2) = 1 AND GROUPING(A3) = 1

AND GROUPING(A4) = 1))
-- exclude 3- and 4-cardinality combinations
...

Although this would return the required 2-itemset com-
binations, the specification becomes tedious with an in-
creasing number of columns. Moreover, the computation of
all possible combinations is certainly not the most efficient
way of computing the required item sets.

Final edited form was published in "15th International Conference on Scientific and Statistical Database Management, Cambridge, MA, 2003".
S. 161-171. ISBN 0-7695-1964-4

https://doi.org/10.1109/SSDM.2003.1214977

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

With this motivation as a background, we propose the
GROUPING COMBINATIONS() operator, generating all k
item sets for a given set of n grouping columns. The syntax
integrates seamlessly into the SQL grouping extensions of
cube(), rollup(), and grouping sets():

GROUP BY GROUPING
COMBINATIONS((A1,A2, ... ,An), k)

This expression may be seen as a shortcut for the group-
ing sets expression with k over n item sets each with a car-
dinality of k, i.e.:

GROUP BY GROUPING SETS((A1,A2,...,Ak),
(A1,A2,...,Ak-1,Ak+1),
...)

The basic idea of the grouping combinations operator is
generating all possible grouping combinations with a given
cardinality of k. Special cases must be considered regarding
the value of k and the number of attributes.

• For k = n, the grouping combinations operator returns
a single set with all grouping columns given as a first
parameter, e.g.:

GROUP BY GROUPING
COMBINATIONS((A1,A2, ..., An), n)

is equal to

GROUP BY GROUPING SETS((A1,A2, ..., An))

is equal to a regular

GROUP BY A1,A2, ..., An

• For k = 1, the operator corresponds semantically to
a grouping sets with n single sets, each consisting of
exactly a single grouping column. More formally:

GROUP BY GROUPING
COMBINATIONS((A1,A2, ...,An), 1)

is equal to

GROUP BY GROUPING
SETS((A1), (A2), ..., (An))

• For k = 0, the proposed grouping combinations oper-
ator produces a single grouping combination encom-
passing all tuples of the underlying table, e.g.

GROUP BY GROUPING
COMBINATIONS((A1,A2, ...,An), 0)

is equal to a query without any explicit group by
clause, but an aggregation function in the select clause.

The grouping combinations operator extends the set of
group by operators proposed within the OLAP context. The
generation of frequent item sets for a given generation, i.e.
cardinality of the grouping combinations, however is not
supported by these operators.

5 Cost Estimations

This section analyses the different methods to compute
the cluster and to find the frequent item sets from a perfor-
mance point of view. In a first step, our underlying cost
model is outlined, followed by costing the different alter-
natives to assign the nearest prototype to each amino acid
residue.

5.1 General Cost Model

To estimate the cost, we rely on the linear cost model
taking the size of the data stream between relational plan
operators to compare the costs of different query plans. The
size of the data stream is the result of the number of at-
tributes multiplied with the cardinality of the table.

To evalutate the selection predicates, we consider a full
table scan with the exception of a single tuple access ex-
ploiting the existence of an index structure. For the join
operator, we may choose between a nested loop and a hash
join. The first alternative implies a multiplication of the
data stream cardinalities and is omitted in favour of a hash
join. For justifying this assumption, we rely on the fact that
a machine has enough capacity to keep the prototype table
in main memory. A hash join would read the smaller table
during the build phase and the larger table during the probe
phase, so that we end up in adding the cardinalities of the
data streams to compute the cost of a join operator. Due to
our 1:N-relationship of prototypes and conformations, the
cardinality of the resulting data stream after a join equals
the cardinality of the larger table.

At last, we consider the size of the input stream as the
cost of a group by operator, because every tuple has to be
taken into account and assigned to the corresponding group.
With this assumption, we again consider a hash-based im-
plementation so that we may neglect the sorting cost in case
of a sort-based group by implementation. The return op-
erator finally simulates the cost delivering the result to the
client program (or in detail: storing the result set temporarly
within the SQLDA of a database system). In our example,
the PConformations table has 1+ d attributes (with d as the
number of maximum angles) and a cardinality of pc. Simi-
larly, the Prototypes table has the same number of attributes
with a cardinality of pt. Based on this assumption, the cost
computing the following query would be computed as fol-
lows:

SELECT pc.phi, pc.psi, pc.omega, pc.chi1,
pc.chi2 pt.omega, pt.chi1, pt.chi2

FROM PConformations pc, prototypes pt
WHERE pc.phi = pt.phi

AND pc.psi = pt.psi

The scan and the join of both tables would yield an over-
head of pc ∗ 6 + pt ∗ 6 (with d = 5). The return operator

Final edited form was published in "15th International Conference on Scientific and Statistical Database Management, Cambridge, MA, 2003".
S. 161-171. ISBN 0-7695-1964-4

https://doi.org/10.1109/SSDM.2003.1214977

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

(a) Computing view (b) query graph
PrototypePivot of pivot method

Figure 5. pivot method query graphs

reflecting the produced columns of the select clause con-
tributes with a value of pc ∗ 8 to the overall cost resulting in
14 ∗ pc+ 6 ∗ pt.

5.2 Comparing different Methods

The cost of computing the nearest neighbour using the
pivot method may be split into the computation of the cost
for the view definition to perform the pivot of the prototype
information and the core select statement using the pivot
view. As already mentioned, the pt− 1-ary join of the pro-
totype table is easily optimized by the existence of an index
of the prototype ID. In this case, each join partner has the
size of 1∗(1+d) yielding pt∗(1+d) as the overall cost com-
puting the view (without any return operator). The query it-
self joins the view with the PConformations table. Reading
the result of the view corresponds to one single tuple with
pt ∗ (1 + d) columns. The access of the PConformations
table has the size of pc ∗ (1 + d). The outer query adds to
the overall costs with reading the result of the inner query
(pc ∗ (1 + d) ∗ (pt+ 1)) and accessing the Prototypes table
(pt ∗ (1 + d)). The return operator finally consumes a data
stream of cardinality pc with d+ 3 attributes.

The cost of discretization using the self-join method can
be computed in three steps. The first step considers the
computation of the view PrototypeAssignmentwhich re-
quires the access to the two tables ProteinConformation
(pc ∗ (1 + d)) and Prototypes (pt ∗ (1 + d)). The result-
ing data stream, which has to be read for further process-
ing yields (due to the semantics of the Cartesian product) to
(pc ∗ pt) ∗ (1 + d+ 2). The second step addresses the inner
query consuming exactly the size of the view and produc-
ing a data stream of pc ∗ 2 for only two columns. The outer
query reads the result of the inner query and the result of the
view ((pc ∗ pt) ∗ (3 + d)). At last, the return operator has
costs the size of the join operator yielding pc ∗ (d+ 3).

In a similar way, the cost for the minpos() method
can be computed. Instead of the join with the
PrototypeAssigment view in the outer query, the
ProteinConformation table with a cost of pc ∗ (d + 1)

(a) Computing view (b) query graph
PrototypeAssignment of self join method

Figure 6. self-join method query graphs

Figure 7. cost reduction scenario

is referenced. Additionally, the view must be executed only
once, further reducing the execution costs.

Table 1 summarizes the partial and total cost for all dif-
ferent methods computing the prototype for each amino
acid residue. Since this tabular and formular-based repre-
sentation does not give any hint about the best strategy, fig-
ure 7 gives a scenario with four different dimensions (i.e.
d = 1, 4, 7, 10) and 5000 amino acid residues. The sce-
nario shows the resulting performance gain of the pivot
method compared to minpos() and selfjoin method with
25, 100, 1000, and 2500 prototypes. Within the proposed
cost model, the pivot method yields a slightly lower total
cost than the minpos() method because the pt− 1-ary self-
join is considered extremely cheap. However, due to the
dependency of the total cost from the number of prototypes,
the pivot method can not be considered a feasible solution
for real applications with a reasonable high number of pro-
totypes. Compared to the self-join method, the minpos()
method yields a substantial cost reduction.

6 Summary and Conclusion

This paper introduces the problem of finding frequent
substructures in protein data sets. The analysis process is
split into two parts. The first step consists in finding the

Final edited form was published in "15th International Conference on Scientific and Statistical Database Management, Cambridge, MA, 2003".
S. 161-171. ISBN 0-7695-1964-4

https://doi.org/10.1109/SSDM.2003.1214977

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

pivot method

view execution: pt ∗ (1 + d) # of database operations:
inner query: pt ∗ (1 + d) + pc ∗ (1 + d) (pt + 1) joins
outer query: pc ∗ (1 + d) ∗ (pt + 1) + pt ∗ (1 + d) + pc ∗ (d + 3)
total cost: pt ∗ (3 + 5d) + pc ∗ (5 + 3d) + pc ∗ pt ∗ (1 + d)

self-join method

view execution: 2 ∗ (pc ∗ (1 + d) + pt ∗ (1 + d)) # of database operations:
inner query: (pc ∗ pt) ∗ (3 + d) 1 join
outer query: pc ∗ 2 + (pc ∗ pt) ∗ (3 + d) + pc ∗ (3 + d) 2 cross product
total cost: pt ∗ (2 + 2d) + pc ∗ (7 + 3d) + pc ∗ pt ∗ (6 + 2d) 1 group by

minpos() method

view execution: pc ∗ (1 + d) + pt ∗ (1 + d) # of database operations:
inner query: (pc ∗ pt) ∗ (3 + d) 1 join
outer query: pc ∗ 2 + pc ∗ (1 + d) + pc ∗ (3 + d) 1 cross product
total cost: pt ∗ (1 + d) + pc ∗ (7 + 3d) + (pc ∗ pt) ∗ (3 + d) 1 group by

Table 1. Cost comparison of the different methods

nearest prototype in the multi-dimensional dihedral angle
space. To accomplish this task, the data sets are brought into
a relational schema and a method is proposed to compute
the minimal distance considering the wrap-around effect in
the angle space. Three different methods to find an asso-
ciated prototype inside the database systems are compared.
A minimal SQL extension (minpos()/maxpos()) function re-
sults in much more efficient query execution plans. The
second step of generating frequent item sets to detect fre-
quent substructures within the amino acid sequences, re-
quires substantial SQL extension. A new operator (as a new
member of the OLAP grouping function operators) is in-
troduced. This operator is a generic tool and may be ex-
ploited by a huge set of data mining applications. To sum-
marize, a database system, used to efficiently analyse huge
data volumes, requires additional support from the technol-
ogy perspective. The required extension range from min-
imal UDFs like our proposed minpos()/maxpos() functions
to more complex operators like our proposed grouping com-
binations operator. If (and only if) the database commu-
nity provides this kind of functionality, the acceptance of
database systems in the biotechnology community will in-
crease in the near future.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining associ-
ation rules between sets of items in large databases. In Pro-
ceedings of the International Conference on Management of
Data, pages 207–216. ACM Press, 1993.

[2] S. Bohl, M. Dinkelacker, J. Griese, and S. Schrader. Highly
adaptable amino acid side chain rotamer library in pdb coor-
dinates. In Workshop in Computational Biology at the Plant
Biochemistry Department of the Albert-Ludwigs-Universitt
Freiburg, Germany, 2002.

[3] M. Bower, F. Cohen, and R. Dunbrack. Homology modeling
with a backbone-dependent rotamer library. J. Mol. Biol.,
267:1268–1282, 1997.

[4] R. Chandrasekaran and G. Ramachandran. Studies on the
conformation of amino acids. xi. analysis of the observed
side group conformations in proteins. Int. J. Pept. Prot. Res.,
2:223–233, 1970.

[5] R. Dunbrack and F. Cohen. Bayesian statistical analysis of
protein side-chain rotamer preferences. Protein Sci., 6:1661–
1681, 1997.

[6] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing group-
by, cross-tab, and sub-total. In Proceedings of the Twelfth
International Conference on Data Engineering, pages 152–
159. IEEE Computer Society, 1996.

[7] A. Hinneburg, M. Fischer, and F. Bahner. Finding frequent
substructures in 3d-protein databases. In Workshop on Bioin-
formatics at the 19th International Conference on Data En-
gineering. IEEE Computer Society, 2003.

[8] M. James and A. Sielecki. Structure and refinement of
penicillo-pepsin at 1.8 a resolution. J. Mol. Biol., 125:299–
361, 1983.

[9] J. Kuszewski, A. Gronenborn, and G. Clore. Improving
the quality of nmr and crystallographic protein structures
by means of conformational database potential derived from
structure databases. Protein Sci., 5:1067–1080, 1996.

[10] S. C. Lovell, J. M. Word, J. S. Richardson, and D. C.
Richardson. The penultimate rotamer library. Proteins:
Struct Funct Genet, 40:389–408, 2000.

[11] M. MCGregor, S. Islam, and M. Sternberg. Analysis of the
relationship between side-chain conformation and secondary
structure in globular proteins. J. Mol. Biol., 198:295–310,
1987.

[12] R. Srikant and R. Agrawal. Mining generalized association
rules. In VLDB’95, Proceedings of 21th International Con-
ference on Very Large Data Bases, Switzerland, pages 407–
419. Morgan Kaufmann, 1995.

[13] M. J. Zaki. Efficient enumeration of frequent sequences. In
Proceedings of the 1998 ACM CIKM International Confer-
ence on Information and Knowledge Management, Bethesda,
Maryland, USA, November 3-7, 1998, pages 68–75. ACM,
1998.

[14] M. Zhang, B. Kao, C. L. Yip, and D. W.-L. Cheung. Ffs -
an i/o-efficient algorithm for mining frequent sequences. In
Knowledge Discovery and Data Mining - PAKDD 2001, 5th
Pacific-Asia Conference, Hong Kong, China, April 16-18,
2001, Proceedings, volume 2035 of Lecture Notes in Com-
puter Science, pages 294–305. Springer, 2001.

Final edited form was published in "15th International Conference on Scientific and Statistical Database Management, Cambridge, MA, 2003".
S. 161-171. ISBN 0-7695-1964-4

https://doi.org/10.1109/SSDM.2003.1214977

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	Database_support_for_3D-protein_data_set_analysis_Vorsatzblatt
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Alexander Hinneburg, Wolfgang Lehner
	Database Support for 3D-Protein Data Set Analysis

	Database_support_for_3D-protein_data_set_analysis_PPerstellt.pdf

