
Distributed Caching in 5G Networks:
An Alternating Direction Method of Multipliers

Approach
Azary Abboud�,†, Ejder Baştuğ�, Kenza Hamidouche�, and Mérouane Debbah�,?

�Large Networks and Systems Group (LANEAS), Supélec, 91192, Gif-sur-Yvette, France
†Automatic and Control Department, Supélec, 91192, Gif-sur-Yvette, France

?Mathematical and Algorithmic Sciences Lab, Huawei France R&D, Paris, France
{azary.abboud, ejder.bastug, kenza.hamidouche, merouane.debbah}@supelec.fr

Abstract—We consider the problem of distributed caching
in next generation mobile cellular networks (a.k.a., 5G) where
densely-deployed small base stations (SBSs) are able to store and
deliver users’ content accordingly. In particular, we formulate
the optimal cache allocation policy as a convex optimization
problem where a subset of SBSs have their own i) local cost
function which captures backhaul consumption aspects in terms
of bandwidth and ii) a set of local network parameters and
storage constraints. Given the fact that no coordination involves
between SBSs, we then solve this problem distributively using the
Alternating Direction Method of Multipliers (ADMM) approach.
The proposed ADMM-based algorithm relies on the application
of random Gauss-Seidel iterations on the Douglas-Rachford
splitting operator, which results in a low-complexity and easy-
to-implement solution for SBSs. We examine the convergence of
our proposed algorithm via numerical simulations with different
parameters of interest such as storage capacity distribution of
SBSs, content catalogue size, demand intensity and demand
shape. Our numerical results show that the proposed algorithm
performs well in terms of convergence and requires less iterations
as the number of contents in the catalogue increases.

Index Terms—5G, distributed caching, optimal cache alloca-
tion, ADMM, distributed convex optimization, wireless networks

I. INTRODUCTION

Ever growing demand of mobile users [1] is reshaping
discussions both in industry and academia, pushing the cur-
rent mobile infrastructure to evolve towards next generation
(a.k.a. 5G) mobile cellular networks [2]. One of the candidate
solutions to satisfy this demand and offload the backhaul is
to proactively store users’ contents at the edge of the mobile
network, either in base stations or user terminals [3].

Indeed, although the idea of putting users’ contents in
cache-enabled nodes of the cellular networks is somewhat
recent, many works have addressed the caching problem
from different aspects resulting in an extensive literature. For
instance, predicting users’ behaviour and proactively storing
their contents at small base stations (SBSs) is studied in [4],
whereas the benefit of proactive caching in a mobility setup is

This research has been supported by the ERC Starting Grant 305123
MORE (Advanced Mathematical Tools for Complex Network Engineering),
the projects 4GinVitro and BESTCOM.

exploited in [5]. A coded caching scheme using information
theoretic arguments is given in [6], whereas a similar scheme
but with multi-level architecture is studied in [7]. Performance
evaluation of coded caching gains setups can be found in
[8]–[10]. From a game theoretic standpoint, a many-to-many
matching game formulation which takes into consideration the
content dissemination in social networks is shown in [11].
Under a given estimation of backhaul usage via collaborative
filtering (CF), a one-to-many matching game between SBSs
and user terminals (UTs) is formulated in [12]. Additionally,
a learning based online caching scheme is presented in [13].
The caching gains in stochastically distributed cache-enabled
SBSs are studied in [14], [15]. These studies point out the
importance of caching in 5G wireless networks, and provide
their investigations both from performance and algorithmic
perspectives. However, the practical efforts for these dense
networks are still in its infancy mainly due to lack of easy-to-
implement distributed solutions. We refer readers to [16] for
a recent survey.

Given the motivations above, our main contribution in this
work is to formulate the cache allocation policy as a convex
optimization problem and provide a distributed algorithm
implemented at each cache-enabled SBS. More specifically,
we define a global convex cost function as the sum of local
convex functions of users’ demand and network topology (i.e.,
physical connection between SBSs and UTs) and the linear
constrains are given on storage size due to the resource-limited
SBSs. To solve this problem, we adopt a similar approach
to [17] which uses the ADMM in the context of optimal
flow in smart grids. We then provide a distributed caching
algorithm which relies on the application of random Gauss-
Seidel iterations on the Douglas-Rachford splitting operator
[18]. This allows each SBS to solve its given sub-problem via
this low-complexity iterative algorithm by taking into account
users’ demand, network topology and storage constraint.

Briefly, the motivation of using such a distributed approach
is to 1) avoid the communication overhead between SBSs and
the central scheduler (CS) that is in charge of the decision
mechanism, and 2) distribute the computational burden of the
CS among SBSs. Indeed, the origin of distributed optimization

techniques dates back to the seminal work of Tsitsiklis and
Bertsekas [19]. Among extensive studies on these techniques
which are not covered in this work due to the lack of space,
ADMM is shown to promise faster convergence at some
negligible cost of synchronization and coordination compared
to its alternatives [18].

The rest of the paper is organized as follows. Section II
details the network model under consideration. The optimal
cache allocation policy is formulated globally in Section III.
This formulation is then adapted to the local case in Section
IV for solving the problem distributively at the SBSs and
the ADMM is introduced for that purpose. Numerical results
which validate the convergence of the ADMM-based algorithm
are presented in Section V and the impact of various system
parameters on the convergence are discussed. We finally
draw our conclusions in Section VI and give possible future
directions accordingly.

The notation used in the rest of the paper is given as
follows. Lower and upper case italic symbols (e.g., a, A)
represent scalar values. Lower case boldface symbols (e.g.,
b) denote row vectors whereas upper case boldface symbols
(e.g., A) are matrices. The indicator function 1{·} returns 1
when the statement in the argument holds, and 0 otherwise.
The transpose of a is denoted by aT .

II. NETWORK MODEL

Let us consider a network consisting of a set of M SBSs
and N users denoted byM = {1, ...,M} and N = {1, ..., N}
respectively. In this setup, the SBSs are connected to a CS
via limited backhaul links with the purpose of providing
broadband Internet connection to their users. The wireless
downlink rates from the SBSs to users are given by the
matrix R of dimension M ×N , where each entry Rm,n
denotes the achievable rate from SBS m to user n. For
simplicity, we assume that communication in the downlink
is done in a time-division duplexing (TDD) manner with
multiple frequency blocks (i.e., orthogonal frequency-division
multiple access (OFDMA)), thus intra-cell and inter-cell in-
terference are avoided. Then, the wireless connectivity matrix
C ∈ {0, 1}M×N , representing the connections between the
SBSs and users is structured as

C =

c1

...

cM

 =

c1,1 . . . c1,N

...
. . .

...

cM,1 . . . cM,N

 , (1)

where cm,n = 1{Rm,n ≥ R′}. The purpose of the target
bitrate R′ constraint for connectivity is to guarantee a certain
quality-of-service (QoS) in the downlink. Each user n with a
wireless link rate Rm,n below this threshold is assumed to be
not connected to the SBS m.

In our model, we assume that the SBSs have storage units
with capacities s = [s1, ..., sM] ∈ {Z+}1×M . These storage
capacities in the decreasing ordered case follow a Zipf-like

distribution Ps(s, α) defined as [20]

Ps(s, α) =
Ω

sα
(2)

with

Ω =
(M∑
i=1

1

iα

)−1

,

where the parameter α characterizes the steepness of the
distribution. In fact, the evidence of such a law is shown for the
content distribution in web proxies [20], whereas in our case
we also treat for modelling the storage capacity distribution.
By having storage capabilities at the SBSs, contents can be
cached in order to serve users’ predicted requests locally, and
thus reduce backhaul usage and access delays. The sketch of
the considered network model is given in Fig. 1.

In the following, we suppose that the users’ content demand
arrival, over T time slots, is modeled by a Poisson process with
rate/intensity parameter λ. Additionally, we suppose that users’
demands are made from a catalogue of F distinct contents.
The length of each file is denoted by Q < sm,m = 1, ...,M .
We assume that the content popularity distribution of users’
drawn from the catalogue is characterized by another Zipf
law with parameter β. Given the arrival process and content
popularity distribution, the users’ content demand counts are
represented by the user demand matrix Du ∈ {N}N×F . Then,
the whole content demands observed at the SBSs level is given
by

D = CDu ∈ {0, 1}M×F . (3)

For ease of exposition, we assume that the matrix D is per-
fectly known. Note that, in practice, the demand of users (and
its observation at SBSs) are correlated and can be predicted
up to a certain level, i.e., using statistical inference tools from
machine learning [3].

Suppose that the cache indicator matrix of SBSs, denoted
as X ∈ {0, 1}M×F , is given as follows

X =

x1

...

xM

 =

x1,1 . . . x1,F

...
. . .

...

xM,1 . . . xM,F

 , (4)

where the entry xm,f is 1 if SBS m caches content f , and
0 otherwise. As alluded earlier, the aim is to decide which
contents have to be cached in the SBSs while minimizing the
cost function representing the cost of serving users using the
backhaul link. In other words, the cache indicator matrix has
to be optimized for a given cost and storage constraints of
SBSs. However, to achieve this goal, the cost in the sense
of backhaul usage has to be defined properly by taking into
account users’ content demand statistics and network topology.
In what follows, we define this cost function and formulate the
problem accordingly.

SBS m

CS

sm

limited backhaul link

user n

wireless downlink

storage

Rm,n

broadband link

Figure 1: An illustration of the scenario which consists of M cache-enabled SBSs and N users.

III. OPTIMAL CACHE ALLOCATION POLICY

In this section, we start by defining the cost function which
represents the price of serving all users in addition to the price
of taking wrong decisions at the SBSs and caching content
that would not be requested by users. Depending on which
content is cached and which one is expected to be requested,
four different cases can be incorporated into the cost function
as follows:

1) Part of the content in the catalogue is cached and is going
to be demanded: The part of the content in this case is
fetched in advance via the backhaul once. Therefore, the
induced cost is given by

ηm

[
xmgTm

]
, (5)

where ηm is an arbitrary scalar coefficient that represents
the price of one unit backhaul usage and xm is the cache
indicator (allocation) vector for SBS m. Moreover, gm ∈
{0, 1}1×F is the demand indicator vector for the same
SBS, where the entries are computed as follows

gm,f =

 1 if dm,f > 0

0 otherwise.
(6)

2) Part of the content in the catalogue is cached but is
not going to be demanded: The backhaul is used
unnecessarily, hence, cost is computed as follows:

ηm

[
xmḡTm

]
, (7)

where ḡm is the complementary of gm with the entries
given such as

ḡm,f =

 0 if gm,f = 1

1 otherwise.
(8)

3) Part of the content is not cached but is going to be de-
manded: The content has to be fetched via the backhaul
on each request, yielding the following cost

ηm

[
x̄mdTm

]
, (9)

where x̄ is the complementary of xm, defined in a similar
way as gm.

4) Part of the content in the catalog is not cached and is not
going to be demanded: No operation cost is involved in
this case.

Thus, combining all the cases above, the optimization
problem for finding the optimal cache allocation vector xm
under given storage constraint sm is formulated as

minimize
xm,m=1...M

f(x) =
∑
m

ηm
[
xmgT

m + xmḡT
m + x̄mdT

m

]
subject to ||xm||1 ≤ sm,m = 1 . . .M.

(10)

In this optimization problem, note that x̄m and ḡm can be
written as x̄m = 1F − xm and ḡm = 1F − gm respectively,
where 1F is the vector with all elements equal to one.
Therefore, the global cost function is reduced to

f(x) =
∑
m

fm(xm)

=
∑
m

ηm(xm1T

F − xmdT

m) + ηm1Fd
T

m,

where fm(xm) is the cost function of the SBS m. In fact, the
function f(x) is separable in m and can be straightforwardly
proved as in [21]. Additionally, observe that the entries of
x take binary values 0 − 1, thus might fall the optimization
problem into a mixed-integer program which is non-tractable
in practice. However, we avoid this situation implicitly by
having sufficiently small and equally-sized contents (or one
can alternatively introduce coding as in [8]).

Conventionally, the problem (10) can be solved at the CS
in a centralized way by

i) collecting users’ demands from the SBSs as well as the
storage capacities of SBSs;

ii) solving the problem accordingly;
iii) transferring the adequate cache indicator vector to each

SBS.
This centralized optimization scheme however induces latency
in the computation and communication burden. Alternatively,
the solution of (10) can be obtained efficiently by using
distributed convex optimization solvers. In the next section, we
detail the steps of the ADMM-based approach, which in turn
will allow us to handle the problem at each SBS distributively.

IV. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

In a nutshell, ADMM [18] is a decomposition-coordination
procedure that was initially introduced by Gabay, Mercier
et al. in the mid-1970. In our context, the ADMM is used
to solve the optimal cache allocation problem distributively
after dividing it into several sub-problems, each solved by
a processor embedded in a corresponding SBS. In order to
achieve this goal, the problem has to be reformulated into the
following form [17]

minimize h(y) + g(z)

subject to By = z,
(11)

where h and g are two convex functions that we further
identify in the next subsection, y ∈ RL is the primal variable
we seek to find, and z ∈ RLM are the slack variables that
represent along with λ ∈ RLM the state of ADMM. λ is the
set of Lagrangian multipliers associated with the constraints
By = z. We form the augmented Lagrangian function as

Lρ(y, z;λ)
∆
= h(y) + g(z) + 〈λ,By − z〉

+
ρ

2
‖By − z‖2 , (12)

where ρ > 0 is a penalty parameter and 〈u,v〉 = uTv is
the inner product of u and v. Then, the ADMM method
for solving (11) consists of i) an y−minimization step, ii)
a z−minimization step and iii) a dual variable λ update step,
given as

yk+1 = argmin
y
Lρ(y, zk;λk), (13a)

zk+1 = argmin
z
Lρ(yk+1, z;λk), (13b)

λk+1 = λk + ρ(Byk+1 − zk+1). (13c)

A. Distributed Caching with ADMM

As mentioned previously, a form similar to (11) is required
for solving the caching problem distributively. This is first
done by introducing slack variables slm,m = 1 . . . ,M
to transform the inequality constraints in (10) into equality
constraints. When we append these slack variables to the
primal variable vector x, we obtain a new vector y of size
L = M(F + 1). Each sub-block ym of y corresponds to
SBS m and consists of the vector xm as well as the slack
variable slm. At this point, the optimization problem can be
reformulated as

minimize h(y)

subject to Ay = b,
(14)

where

y =[x1; sl1; . . . ;xM ; slm]

=[x11, x12, . . . , x1F , sl1, . . . , xM1, . . . , xMF , slM]T ,

h(y) =
∑
m

hm(ym),

hm(ym) = fm(xm),

b = [s1; . . . ; sM]T ∈ RM ,

and the matrix A ∈ RM×L which regroups the constraints is
given by

A =

1 1 . . . 1 1 0 0 . . . 0 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 0 . . . 0 0 1 1 . . . 1 1

 .
Then, we finally obtain the similar form as in (11) by inserting
the vector of slack variables z ∈ RLM×1 and using the
indicator function

g(z) =

0 if
∑
j

zmj = bm, ∀m = 1, . . .M

+∞ otherwise.

The matrix B that regroups the reformulated constraints is
given by

B =

diag(A1)

...

diag(AM)

 ,
where

diag(A1) =

a11 0 . . . 0

0 a12 . . . 0

.
.

0 . . . 0 a1L

.

Let λ ∈ RLM be the vector of Lagrangian multipliers
associated with the set of constraints By = z. Following the
result of [17], one an show that the ADMM equations reduce
to

xk+1
mj =

[
xkmj −

1

a2
mj

[
1

ρ
(ηm(1− dmj) + amjπ

k
m)+

amjrm(xk)

d(m)

]]
+

, (15)

zk+1
mj = amjx

k+1
mj −

1

d(m)
rm(xk+1), (16)

πk+1
m = πkm +

ρ

d(m)
rm(xk+1), (17)

where [x]+ = max {0, x}, rm(xk) =
∑
j amjx

k
mj is the

residual of the mth constraint, and d(m) represents the num-
ber of non-zero elements in the mth constraint. πm is the
Lagrangian multiplier associated with

∑
j zmj = bm. In [17],

it was proved that λmj = πm,∀j = 1 . . . L which reduces
the complexity of the algorithm by decreasing the number
of Lagrangian multipliers from L multipliers to only one
multiplier by SBS.

In practice, these update steps are straightforward to im-
plement and do not introduce high computational complexity
at the SBSs. Note that the zmj step can be omitted as it is
not involved either in the update of xmj or πm. Therefore,
the ADMM method applied to the optimal cache allocation
policy reduces into two update steps. The first update step
(15) is on the primal variable xm it represents which con-
tents have to be cached in SBS m. The second step (17)
updates the Lagrangian multiplier πm of the same SBS. In
other words, given the storage constraint sm and demand
vector dm, each SBS m has to solve its own sub-problem
using equations (15) and (17). We would like to note that
no synchronisation or coordination are required between the
SBSs, as there are no parameters shared between them. The
procedure is summarized in Algorithm 1. The complexity of
the algorithm is mainly driven by the number of iterations
and number of contents in the catalogue, thus O(κF) where
κ the sufficient number of iterations to satisfy the convergence
to optimal values with some precision. Indeed, the values of
κ depends on various parameters such as storage capacity
distribution, catalog size, demand intensity and demand shape.
These parameters are numerically examined in the following.

Algorithm 1: Distributed Caching using ADMM

1) Initialize xmj and πm to the initial values x0
mj and π0

m.
2) At iteration k + 1:

a) Every SBS m = 1, ...,M decides whether to cache a
content or not by computing for every component xmj

xk+1
mj =

[
xkmj −

1

a2
mj

[
1

ρ
(ηm(1− dmj) + amjπ

k
m)

+
amjrm(xk)

d(m)

]]
+

b) Every SBS m = 1, ...,M updates the Lagrangian
multiplier of its constraint

πk+1
m = πkm +

ρ

d(m)
rm(xk+1)

3) For each SBS apart, if its constraint is still violated,
increase k and go to step 2. Otherwise, SBS m stores
the files as given by xmj , j = 1, . . . , F .

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
caching mechanism in terms of convergence and study the
impact of different parameters on the global cost. More specif-
ically, we study the variation of the global cost with respect
to the storage capacity distribution of SBSs, the demand
shape, the demand intensity and the number of contents in the
catalogue. The simulation setup is repeated several times and
the obtained results are averaged out. For ease of exposition,
we assume that each user is connected to only one SBS and
user connections to SBSs are done uniformly at random. The
list of simulation parameters is given in Table I.

Table I: Simulation Parameters.

Parameter Description Default Value

α Storage distribution parameter 0.1

F Catalog size 128 contents

λ Demand intensity 64 requests/sec

β Demand shape parameter 0.1

M Number of SBSs 8

N Number of users 128

T Max. time for demand generation 128 seconds

sm Storage of SBS m 0 ∼ F MBit

ηm Cost coefficient of SBS m 2

In all the figures related to global cost, we additionally
show the global cost of optimal offline solution for comparison
purposes. Indeed, the optimality is in the sense of storing
most popular content greedily under given demand information
and storage constraints. This offline approach has O(F logF)
worst-case complexity for each SBS, mainly due to the sorting
operation of the contents [4].

We would like to note that, as shown in all the figures,
whatever is the parameters studied in numerical setup, the
ADMM-based algorithm converges as the number of iterations
increases. For exposition purposes, we restrict ourselves to
plot the evolution of the mean global cost and constraints
violations for the first 200 iterations. Indeed, depending on
the parameters setting, the number of iterations for conver-
gence changes. Moreover, we observe that the mean storage
constraints are never violated at the SBSs. In other words, the
number of cached content at the SBSs does not exceed their
storage capacity. This is shown in the violation plots, where
the difference between the storage capacity and the cached
content converges to zero. In the following, we discuss the
impact of parameters of interest in details.

1) Impact of storage capacity distribution (α): First, to
show the impact of the storage size at the SBSs on the
global cost, we assume that the storage capacities of SBSs
are random and follow a Zipf distribution with parameter
α as mentioned before. Three different values of the shape
parameter α ∈ {0.1, 0.4, 0.8} are considered in order to study

0 50 100 150 200

20

25

30

35

40

·102

α = 0.1

α = 0.4

α = 0.8

Iterations

G
lo

ba
l

C
os

t

ADMM
Optimal

0 50 100 150 200

0

10

20

30

Iterations

V
io

la
tio

ns

α = 0.1

α = 0.4

α = 0.8

Figure 2: Impact of demand storage capacity distribution on
the global cost and number of constraint violations.

its effect on the cost. It should be noted here that the storage
capacities of the SBSs are more uniform and heterogeneous
in small values of α, whereas high values of α correspond
to more homogeneous storage units with high capacities. Fig.
2 shows the changes of the global cost with respect to the
number of iterations for different values of α. From the figure,
we can see that when the storage capacity and homogeneity
of the SBSs increase (i.e., when α increases), the global cost
decreases. In other words, the cost is reduced with increment
of α, as less contents are served from the core network through
the backhaul links.

2) Impact of catalog size (F): Fig. 3 shows the impact of
the number of distinct contents on the global cost. We consider
three values for the number of contents F ∈ {64, 128, 192}.
The variation of the global cost for these values shows that
the load on the backhaul links increases as the number of
considered contents increases. This is somewhat obvious since
a higher number of distinct contents induces a higher number
of distinct demands. Therefore, due to the limited storage
capacity of SBSs, most of the contents are served via backhaul

0 50 100 150 200

10

20

30

40

·102

F = 64
F = 128

F = 192

Iterations

G
lo

ba
l

C
os

t

ADMM
Optimal

0 50 100 150 200

0

10

20

30

Iterations

V
io

la
tio

ns

F = 64

F = 128

F = 192

Figure 3: Impact of content catalog size on the global cost and
number of constraint violations.

links. One interesting observation here is that, as the number
of contents increases, the ADMM-based algorithm converges
faster (i.e., κ decreases), yielding less iterations thus outper-
forming the optimal offline approach. This is indeed useful in
practice as the SBSs are deployed in densely populated urban-
areas inducing requests for a large number of contents.

3) Impact of demand intensity (λ): Similarly Fig. 4 plots
the global cost by varying the intensity of the demand in
the network. We consider three different values of demand
intensity λ ∈ {100, 200, 300}, where λ represents the average
number of requests per second. The figure shows that as the
number of requests becomes higher, the global cost increases
as well. In other words, high demand intensity in the network
introduces high traffic on the backhaul links due to the fact
that these requests for non-cached contents are satisfied via
backhaul links rather than the caches of SBSs.

4) Impact of demand shape (β): Finally, in order to study
the impact of demand shape, we consider that user requests
follow a Zipf distribution with parameter β ∈ {0.1, 0.2, 0.4}.
Fig. 5 shows that the global cost is higher for small values of

0 50 100 150 200

50

100

150

·102

λ = 100

λ = 200

λ = 300

Iterations

G
lo

ba
l

C
os

t

ADMM
Optimal

0 50 100 150 200

0

10

20

30

Iterations

V
io

la
tio

ns

λ = 100

λ = 200

λ = 300

Figure 4: Impact of demand intensity on the global cost and
number of constraint violations.

β and decreases by increasing the value of β. In fact, when the
shape parameter β is high, most of the requests are generated
for a small subset of contents, thus, most of users’ requests
can be served locally from the SBSs when those contents are
cached, without using backhaul links, which results in a low
global cost.

VI. CONCLUSIONS

We proposed a novel ADMM-based distributed caching
approach for cache-enabled SBSs. We examined the conver-
gence of our approach via numerical simulations under various
parameter settings and showed that the amount of required
iterations decreases as the catalogue size increases. With this in
mind, our approach can be used as an iterative and distributive
solution for solving cache allocation problem in SBSs.

An interesting future work would be to conduct a more
rigorous analysis on its convergence rather than using nu-
merical simulations. Yet another line of work would be con-
sidering a complex topology in which users are connected
to multiple base stations (i.e., SBSs and macro cell). In

0 50 100 150 200

20

25

30

35

40

·102

β = 0.10β = 0.20
β = 0.40

Iterations

G
lo

ba
l

C
os

t

ADMM
Optimal

0 50 100 150 200

0

10

20

30

Iterations

V
io

la
tio

ns

β = 0.10

β = 0.20

β = 0.40

Figure 5: Impact of demand shape on the global cost and
number of constraint violations.

this case, our ADMM-based approach can be studied under
limited-coordination between the SBSs due to the need of
parameter sharing for common users. Additionally, cache-
enabled device-to-device (D2D) communications can be taken
into consideration. This would require a different technical
treatment as D2D communications have asynchronous be-
haviour.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Global Mobile Data
Traffic Forecast Update, 2014-2019,” White Paper, [Online]
http://goo.gl/k84Qpo, 2015.

[2] J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. Soong,
and J. C. Zhang, “What will 5G be?” arXiv preprint: 1405.2957, 2014.

[3] E. Baştuğ, M. Bennis, and M. Debbah, “Living on the Edge: The role
of proactive caching in 5G wireless networks,” IEEE Communications
Magazine, vol. 52, no. 8, pp. 82–89, August 2014.

[4] E. Baştuğ, J.-L. Guénégo, and M. Debbah, “Proactive small cell net-
works,” in ICT 2013, Casablanca, Morocco, May 2013.

[5] V. A. Siris, X. Vasilakos, and G. C. Polyzos, “Efficient proactive caching
for supporting seamless mobility,” arXiv preprint: 1404.4754, 2014.

[6] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867, May
2014.

[7] J. Hachem, N. Karamchandani, and S. Diggavi, “Coded caching for het-
erogeneous wireless networks with multi-level access,” arXiv preprint:
1404.6560, 2014.

[8] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless video content delivery through
distributed caching helpers,” in IEEE INFOCOM. IEEE, 2012, pp.
1107–1115.

[9] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device caching
networks: Basic principles and system performance,” arXiv preprint:
1305.5216, 2013.

[10] J. Pääkkönen, C. Hollanti, and O. Tirkkonen, “Device-to-device data
storage for mobile cellular systems,” in IEEE Globecom Workshops (GC
Wrokshops), December 2013, pp. 671–676.

[11] K. Hamidouche, W. Saad, and M. Debbah, “Many-to-many matching
games for proactive social-caching in wireless small cell networks,” in
WNC3 workshop in conjuction with WiOpt, Hammamet, Tunisia, May
2014.

[12] F. Pantisano, M. Bennis, W. Saad, and M. Debbah, “Match to cache:
Optimizing user association and backhaul allocation in cache-aware
small cell networks,” [Online] http://goo.gl/OgMGLo, 2015.

[13] P. Blasco and D. Gunduz, “Learning-based optimization of cache content
in a small cell base station,” arXiv preprint: 1402.3247, 2014.

[14] E. Altman, K. Avrachenkov, and J. Goseling, “Coding for caches in the
plane,” arXiv preprint: 1309.0604, 2013.

[15] E. Baştuğ, M. Bennis, M. Kountouris, and M. Debbah, “Cache-enabled
small cell networks: Modeling and tradeoffs,” EURASIP Journal on
Wireless Communications and Networking, Accepted (2015).

[16] E. Baştuğ, M. Bennis, and M. Debbah, Proactive Caching in 5G Small
Cell Networks. Wiley, In Minor Revision (2015).

[17] A. Abboud, R. Couillet, M. Debbah, and H. Siguerdidjane, “Distributed
asynchronous optimization of a smart grid network through ADMM,”
IEEE Transactions on Signal Processing, 2015 Submitted.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[19] J. N. Tsitsiklis, D. P. Bertsekas, M. Athans et al., “Distributed asyn-
chronous deterministic and stochastic gradient optimization algorithms,”
IEEE Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812,
June 1986.

[20] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” in IEEE INFO-
COM’99, vol. 1. IEEE, 1999, pp. 126–134.

[21] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in
cellular networks,” arXiv preprint: 1409.7626, 2014.

