
Precise and Scalable Detection of
Double-Fetch Bugs in OS Kernels

Meng Xu∗, Chenxiong Qian∗, Kangjie Lu†, Michael Backes‡, Taesoo Kim∗,

∗Georgia Institute of Technology
†University of Minnesota

‡CISPA Helmholtz Center i.G.

Abstract—During system call execution, it is common for
operating system kernels to read userspace memory multiple
times (multi-reads). A critical bug may exist if the fetched
userspace memory is subject to change across these reads, i.e.,
a race condition, which is known as a double-fetch bug. Prior
works have attempted to detect these bugs both statically and
dynamically. However, due to their improper assumptions and
imprecise definitions regarding double-fetch bugs, their multi-
read detection is inherently limited and suffers from significant
false positives and false negatives. For example, their approach
is unable to support device emulation, inter-procedural analysis,
loop handling, etc. More importantly, they completely leave the
task of finding real double-fetch bugs from the haystack of multi-
reads to manual verification, which is expensive if possible at all.

In this paper, we first present a formal and precise definition of
double-fetch bugs and then implement a static analysis system—
DEADLINE—to automatically detect double-fetch bugs in OS
kernels. DEADLINE uses static program analysis techniques
to systematically find multi-reads throughout the kernel and
employs specialized symbolic checking to vet each multi-read for
double-fetch bugs. We apply DEADLINE to Linux and FreeBSD
kernels and find 23 new bugs in Linux and one new bug in
FreeBSD. We further propose four generic strategies to patch and
prevent double-fetch bugs based on our study and the discussion
with kernel maintainers.

I. INTRODUCTION

Bugs in operating system kernels can be particularly prob-

lematic. In practice, they often lead to vulnerabilities that can

be exploited to compromise the entire system and cause all

kinds of severe attacks, such as privilege escalation [1], [2],

information leaks [3], and denial of service [4]. This fact has

drawn serious attention from the security community, and the

kernel has been increasingly hardened against various types of

memory errors, e.g., kASLR [5], kCFI [6], [7], and UniSan [8].

Unfortunately, these mitigations have limited success in taming

attacks that exploit logic bugs.

One class of logic bugs that has recently drawn attention is

double-fetch bugs, which the Bochspwn project [9] introduced
for the Windows kernel. Wang et al. also studied double-fetch
bugs for the Linux kernel [10]. A double-fetch bug is a special
type of race condition bug in which (typically during syscall

execution) the kernel reads a particular userspace memory

region more than once with the assumption that the content

in the accessed region does not change across reads. However,

this assumption is not valid. A concurrently running user thread

can “scramble” the same memory region in between kernel

reads, leading to data inconsistencies in the execution path,

which can lead to exploitable vulnerabilities such as sanity

check bypassing, buffer overflow, and confused deputy. In

reality, researchers have exploited double-fetch bugs to escalate
privileges on Windows OS [11], [12].

What makes double-fetch bug detection an important problem
is that, in kernel, it is common to intentionally read data

multiple times from the userspace for performance reasons. We

call this situation a multi-read. To illustrate, consider fetching
a variable-length message with a potentially maximum size

of 4 KB from the userspace. One approach is to always pre-

allocate a 4 KB buffer and copy 4 KB from the userspace in

one shot. However, in most cases, this wastes memory and

CPU cycles if the effective message payload is 64 bytes or

less. Hence, the kernel handles this scenario by first fetching a

4-byte size variable and later allocating the buffer and fetching

the size-byte message. A quick scan over the Linux kernel

reveals that there are over 1,000 multi-reads. Then, a follow-up
question would be: How many of them are real double-fetch
bugs? Until now, the only way to answer this question was to
manually vet the complicated source code of all multi-reads.
However, this is certainly a scale beyond manual vetting. It

therefore becomes a pressing problem that we have to both 1)

formally define and distinguish double-fetch bugs and multi-
reads and 2) automatically verify each multi-read to check
whether it is a bug.

Unfortunately, neither aspect has been addressed perfectly in

prior works. Bochspwn [9] defines multi-reads as at least two
memory reads from the same userspace address within a short

time frame, while Wang et al. [10] defines multi-reads based
on a few empirical static code patterns. Due to the imprecise

definitions, both works result in many false positives (i.e.,

incorrectly identified bugs) and false negatives (i.e., missing

bugs). More importantly, neither of them can systematically

distinguish double-fetch bugs from multi-reads in definition
and they completely leave it to manual verification.

In this paper, we propose DEADLINE, an automatic tool to

statically detect multi-reads and double-fetch bugs with both
high precision and coverage. In particular, DEADLINE covers

all drivers, file systems, and other peripheral modules that can

be compiled under the x86 architecture for both Linux and

the FreeBSD kernels. DEADLINE re-discovered all x86-related

double-fetch bugs reported in [10] and further found 23 new

661

2018 IEEE Symposium on Security and Privacy

© 2018, Meng Xu. Under license to IEEE.
DOI 10.1109/SP.2018.00017

bugs in the Linux kernel as well as a new bug in the FreeBSD

kernel, which significantly outperforms prior work.

To guide DEADLINE to detect double-fetch bugs, we first
formally model and mathematically distinguish double-fetch
bugs from multi-reads. In essence, a multi-read becomes

a double-fetch bug when 1) two fetches are guaranteed to
read from an overlapped userspace memory region, 2) a

relation between the two fetches is established based on the

values in the overlap, which 3) can be destroyed by a race

condition that changes the value in the overlap. With these

definitions, DEADLINE detects double-fetch bugs in two steps.
In the first step, DEADLINE tries to find as many multi-reads
as possible and also builds execution paths for each multi-
read by compiling the kernel source to LLVM intermediate

representation (IR) followed by a static code analysis. In the

second step, DEADLINE follows the execution paths to vet

whether a multi-read turns into a double-fetch bug. To do
this, DEADLINE first transforms the LLVM IR into a symbolic

representation (SR) in which each variable is represented by a

symbolic expression. After this procedure, DEADLINE detects

a double-fetch bug by solving symbolic constraints on the
SR in accordance with the double-fetch bug definitions. A
satisfiable result indicates that a double-fetch bug exists, while
an unsatisfiable result means a bug does not exist.

Although the process sounds intuitive, applying it to kernel

code imposes several practical challenges. For example, to

detect multi-reads, DEADLINE needs to systematically explore
paths to collect multi-reads, and further trim irrelevant instruc-

tions and linearize these execution paths. For double-fetch
bug vetting, DEADLINE needs to symbolize memory reads
and writes, and emulate common library functions. DEADLINE

embodies various techniques to address these challenges. In

particular, instead of using empirical lexical matching [10], it

relies on program analysis to collect multi-reads and further
applies backward slicing and loop unrolling to prune the

execution path. For symbolic checking, we propose our own

memory model in extension to the model used by traditional

symbolic executors [13], [14], [15] to encode access sequence

and memory object information. We also write manual symbolic

rules to emulate library functions, which alleviate DEADLINE

from having to handle the intricacies in these functions.

Besides detection, we complete the analysis cycle of double-
fetch bugs by discussing how to exploit double-fetch bugs as
well as four generic ways to fix double-fetch bugs based on
our experience in patching these bugs as well as the discussion

with kernel maintainers.

Contribution. In summary, this paper makes the following

contributions:

• We propose a formal and precise definition of double-fetch
bugs that eliminates the need to manually verify whether
a multi-read is a double-fetch bug.

• We present the design and implementation of DEADLINE,
an end-to-end system to automatically vet kernel code with

a tailored symbolic execution model specifically designed

for double-fetch bug detection.

• With DEADLINE, we find and report 23 new bugs in the
Linux kernel and a new bug in the FreeBSD kernel.

• We further propose four generic strategies to patch and
prevent double-fetch bugs based on our study and the
discussion with kernel maintainers.

The rest of the paper provides background on multi-reads
and double-fetch bugs (§II), formally defines double-fetch bugs
(§III), presents an overview of DEADLINE (§IV) and the design

of each component (§V, §VI), reveals implementation details

(§VII), reports the double-fetch bugs found (§VIII), explores
double-fetch bug exploitation (§IX) proposes several methods to
mitigate double-fetch bugs (§X), discusses future works (§XI),
compares with related works (§XII), and concludes (§XIII).

II. BACKGROUND

A. Address space separation

In modern operating systems, virtual memory is divided

into userspace and kernel-space regions. Most notably, the

userspace region is separated for each process running in the

system, creating an illusion of exclusive address space for each

program. Userspace memory can be accessed from all threads

running in that address space as well as from kernel. On the

other hand, the kernel memory is system-wide and is accessible

from the kernel only.

Furthermore, although userspace memory is accessible to the

kernel, in practice, the kernel almost never directly dereferences

an address supplied by user processes, as any corrupted address,

be it by mistake or by intention, will crash the whole system.

Instead, if the kernel requires userspace data for execution (as

in the case of many driver IOCTL routines), it first duplicates

the data into kernel memory and then works on its internal copy.

Special schemes, termed transfer functions, are provided for
this purpose, such as copy_from_user, get_user in Linux, and

copyin, fuword in FreeBSD. These schemes not only perform

data transfer, but also actively validate userspace accesses

and handle illegal addresses or page faults. In fact, extensive

manual instrumentations (e.g., the __user mark) are placed to

ensure that userspace memory can be accessed only through

transfer functions. Therefore, in this paper, we assume that

any multi-read must be done through one or more transfer
functions.

B. Multi-read as a common practice

Given the limited number of arguments a user process can

directly pass to the kernel for a syscall (e.g., maximum six

arguments on x86_64), pointers pointing to block structures in

userspace memory are often passed to handle large or complex

requests. In this case, the kernel often needs to refer back to

userspace memory during the syscall. Theoretically, any multi-
read can be re-designed to a single-read, as illustrated in §I, by
pre-defining the shape of the buffer (e.g., the maximum size)

and always copying the whole buffer in one shot. However, in

practice, this pattern is rarely used due to the waste of memory

and CPU cycles, especially when the effective payload is often

much smaller than the maximum allowed. Instead, what is

typically done in kernel is to first fetch a request header, often

662

1 void mptctl_simplified(unsigned long arg) {
2 mpt_ioctl_header khdr, __user *uhdr = (void __user *) arg;
3 MPT_ADAPTER *iocp = NULL;
4

5 // first fetch
6 if (copy_from_user(&khdr, uhdr, sizeof(khdr)))
7 return -EFAULT;
8

9 // dependency lookup
10 if (mpt_verify_adapter(khdr.iocnum, &iocp) < 0 || iocp == NULL)
11 return -EFAULT;
12

13 // dependency usage
14 mutex_lock(&iocp->ioctl_cmds.mutex);
15 struct mpt_fw_xfer kfwdl, __user *ufwdl = (void __user *) arg;
16

17 // second fetch
18 if (copy_from_user(&kfwdl, ufwdl, sizeof(struct mpt_fw_xfer)))
19 return -EFAULT;
20

21 // BUG: kfwdl.iocnum might not equal to khdr.iocnum
22 mptctl_do_fw_download(kfwdl.iocnum,);
23 mutex_unlock(&iocp->ioctl_cmds.mutex);
24 }

Fig. 1: A dependency lookup double-fetch bug, adapted from
__mptctl_ioctl in file drivers/message/fusion/mptctl.c

1 void tls_setsockopt_simplified(char __user *arg) {
2 struct tls_crypto_info header, *full = /* allocated before */;
3

4 // first fetch
5 if (copy_from_user(&header, arg, sizeof(struct tls_crypto_info)))
6 return -EFAULT;
7

8 // protocol check
9 if (header.version != TLS_1_2_VERSION)
10 return -ENOTSUPP;
11

12 // second fetch
13 if (copy_from_user(full, arg,
14 sizeof(struct tls12_crypto_info_aes_gcm_128)))
15 return -EFAULT;
16

17 // BUG: full->version might not be TLS_1_2_VERSION
18 do_sth_with(full);
19 }

Fig. 2: A protocol checking double-fetch bug, adapted from
do_tls_setsockopt_txZ in file net/tls/tls_main.c

1 void con_font_set_simplified(struct console_font_op *op) {
2 struct console_font font;
3

4 if (!op->height) { /* Need to guess font height [compat] */
5 u8 tmp, __user *charmap = op->data;
6 int h, i;
7 for (h = 32; h > 0; h--)
8 for (i = 0; i < op->charcount; i++) {
9 // first batch of fetches
10 if (get_user(tmp, &charmap[32*i+h-1]))
11 return -EFAULT;
12 if (tmp)
13 goto nonzero;
14 }
15 return -EINVAL;
16 nonzero:
17 op->height = h;
18 }
19

20 font.height = op->height;
21 // second fetch
22 font.data = memdup_user(op->data, size);
23 if (IS_ERR(font.data))
24 return -EINVAL;
25

26 // BUG: the derived font.height might not match with font.data
27 do_sth_with(&font);
28 }

Fig. 3: An information guessing double-fetch bug, adapted from
con_font_set in file drivers/tty/vt/vt.c

a few bytes only, and then construct the whole request based

on the information in the header. Wang et al. [10] identified
three scenarios of this pattern, namely, size checking, where the
actual length of the request depends on a size variable; type
selection, where the actual length of the request depends on
the opcode of the action performed; and shallow copy, where
the request header contains a pointer to the second buffer in

userspace.
Our analysis confirms these common scenarios but also

discovers more interesting reasons and patterns for multi-reads.
Dependency lookup. As shown in Figure 1, in the case where
there could be multiple handlers for a request, a lookup, based

on the request header, is first performed to find the intended

handler, and later the whole request is copied in.

Protocol/signature checking. As shown in Figure 2, the

request header is first checked against a pre-defined protocol

number. The kernel rejects the request early if the protocol is

not honored.

Information guessing. As shown in Figure 3, when certain
information is missing, the kernel might first guess this piece of

information via a sequence of selective reads from the userspace

and later fetch in the whole data. A common rationale behind

these cases is to abort the processing early if the request is

erroneous and save the cost of buffer allocation and a full

request copying.

Summary: It is worth noting that the goal of this analysis and
categorization is not to enumerate all possible patterns that

might cause double-fetch bugs; instead, it motivates us to find
a generic, formal, yet comprehensive definition of multi-reads
and double-fetch bugs that can unify all these patterns as well
as potentially undiscovered ones.

C. Reflections on prior works
Prior works [9], [10] have been successful in finding double-

fetch bugs. However, the imprecision in their empirically
crafted detection rules makes them suffer from a high number

of both false alerts and missing bugs. As shown in §II-B,

Wang et al. [10] use code patterns to lexically match against
the kernel source code. Although this approach is scalable,

there is no guarantee that manually defined patterns cover

all possible multi-reads. For example, Figure 1, 2, 3 are
double-fetch bugs, but they might not fall into the pre-defined
patterns. Furthermore, simply assuming that there are no double-
fetch bugs across loops or function calls (i.e., lack of inter-
procedural analysis) might be dangerous. For example, Figure 3

is one case of a double-fetch bug that involves loops. More
cases, including inter-procedural double-fetch bugs, can be
found in Table II. In addition, the underlying pattern-matching

engine, Coccinelle [16], does not thoroughly support macro

expansion, which is heavily used in kernels and could introduce

double-fetch bugs when certain configurations are enabled. For
example, when CONFIG_COMPAT is enabled, functions designed

for compatibility reasons will be in effect, and several of them

can be buggy, as shown in Table II. Ignoring these functions

might lead to missing bugs.

663

Bochspwn [9] instead is a dynamic approach. It defines a

multi-read as at least two memory reads to the same userspace
virtual address 1) in which both originate from kernel code

execution and 2) that happen within a pre-defined time frame.

Although this definition conforms to the memory access pattern

when a multi-read occurs, the dynamic nature of this approach
makes it very hard to scale to a full-fledged kernel, and the

code coverage is inherently low. This has two implications: 1)

Bochspwn is limited to finding bugs within hardware devices

that can be emulated, which only account for a fraction of

drivers covered in the Linux kernel; and 2) even among the

emulated drivers, the actual amount of code that can be tested

highly depends on the test suites, which, in most cases, only

cover the hot paths.

More critically, neither of these works attempts to distinguish

double-fetch bugs from multi-reads and they completely leave
it to manual verification. A quick scan over the Linux kernel,

however, reveals that over 1,000 multi-reads are present in the
kernel. Under the definitions in [9], [10], each of them could be

a double-fetch bug and requires manual verification. Although
simple heuristics can be applied to filter out trivial cases, the

number of remaining cases might still be overwhelming for

manual effort. Therefore, it is important to distinguish between
multi-reads and double-fetch bugs at definition.

III. DOUBLE-FETCH BUGS: A FORMAL DEFINITION

As discussed in §II-B, relying on empirical code patterns

for double-fetch bug detection is imprecise and could result in
a lot of manual effort to verify that a multi-read is indeed a
double-fetch bug. Instead, DEADLINE labels an execution path
as a double-fetch bug when the following four conditions are
met:

1) There are at least two reads from userspace memory,

i.e., it must be a multi-read. As discussed in §II-A, a
userspace fetch can be identified by transfer functions like

copy_from_user.

2) The two fetches must cover an overlapped memory region

in the userspace. If this condition is met, we call the

multi-read an overlapped-fetch.
3) A relation must exist based on the overlapped regions
between the two fetches. We consider both control and

data dependence as relations.

4) DEADLINE cannot prove that the relation established still

holds after the second fetch. In other words, a user process

can do a race condition to change the content in the

overlapped region to destroy the relation.

Conditions 1) and 2) are straightforward to understand. For

condition 3), if the execution path can be deviated based

on the values from the first fetch, it implies an assumption

about these values, and this assumption should be honored

by the second fetch. A typical example is shown in Figure 2,

whereby after the first fetch, the control flow is deviated if

header.version != TLS_1_2_VERSION, i.e., the second fetch

can never happen. The fact that line 13 can be reached already

implies that header.version == TLS_1_2_VERSION, which is

not re-checked after the second fetch and this makes it a

double-fetch bug.
For data dependence, consider the bug shown in Figure 1,

where the value khdr.iocnum is used to look up the correct

adapter, iocp, to handle the request. The fact that line 18 (the

second fetch) can be reached implies that an adapter is already

found and a mutex is already held. However, in line 22, the

adapter is looked-up again (with kfwdl.iocnum), but this time,

an adapter different from iocp can be found if the iocnum is

changed, leading to a request performed without the intended

adapter whose mutex is held.

It is also possible that both control and data dependence

exist. This typically happens when a variable representing total

message size is fetched in, sanity-checked, and later used to

do the second fetch, as shown in Figure 4a. The variable size

must be within a reasonable range, and attr->size should

hold the effective size of the attr buffer. However, after the

second fetch, both relations might not hold anymore.

For condition 4), if the relation established in condition

3) is control dependence only, we need to prove that the

same set of constraints still holds for the values copied

in after the second fetch. In the example of Figure 2, we

should check that full->version == TLS_1_2_VERSION still

holds. On the other hand, if a data dependence is estab-

lished, re-checking the conditions is not sufficient and a full

equality proof is needed. In the case of Figure 4a, check-

ing that PERF_ATTR_SIZE_VER0 <= attr->size <= PAGE_SIZE

does not reflect the relation that attr->size holds the

effective size of attr. The correct way is to prove that

attr->size == size in all cases.

Put the above description in formal terms:

Fetch. We use a pair (A,S) to denote a fetch, where A
represents the starting address of the fetch and S represents
the size of the memory (in bytes) copied into kernel.

Overlapped-fetch. Two fetches, (A0, S0) and (A1, S1), are
considered to have an overlapped region if and only if:

A0 <= A1 < A0 + S0 or A1 <= A0 < A1 + S1

Correspondingly, we use a pair (A01, S01) to denote the
overlapped memory region for the two fetches and a triple

(A01, S01, i = [0, 1]) to denote the memory copied in during
the first or second fetch.

Control dependence. A variable V is considered to be control

dependent if V ∈ (A01, S01, 0) and V is subject to a set of

constraints in order for the second fetch to happen. The set of

constraints V must satisfy is denoted as [Vc]. To prove that a
double-fetch bug cannot exist in this case, we have to prove
that V ′ constructed from (A01, S01, 1) must also satisfy [Vc].

Data dependence. A variable V is considered to be data

dependent if V ∈ (A01, S01, 0) and V is consumed, such as

being assigned to other variables, involved in calculations, or

passed to function calls. To prove that a double-fetch bug
cannot exist in this case, we have to prove that V ′ constructed
from (A01, S01, 1) must satisfy V ′ == V .

664

IV. DEADLINE OVERVIEW

The formal modeling of double-fetch bugs inspired us
to use symbolic checking for double-fetch bug detection.

Compared with actually executing the code with concrete

inputs (like Bochspwn [9]), symbolic execution gives us the

power of generality, i.e., solving for a case that can meet

certain conditions or proving that these conditions can never
be satisfied. This gives DEADLINE the precision of detection

and also alleviates the manual effort. Furthermore, symbolic

execution, being a static analysis technique, is not limited by

the availability of hardware or machine configurations and can

theoretically be applied against all the drivers, file systems, and

peripheral modules in the kernel source tree. It also enables

DEADLINE to start path exploration and checking from virtually

any point, in a manner similar to UC-KLEE [17], instead of

from fixed entry points like syscall entry or kernel boot.

However, before rushing into symbolic checking, DEADLINE

needs to collect as many multi-reads as possible since every
double-fetch bug must be a multi-read. Furthermore, for each
multi-read, DEADLINE constructs the execution paths for

the symbolic execution to follow along. DEADLINE achieves

this by first compiling kernel source code into the LLVM

intermediate representation (IR) and statically analyzing the IR

to identify multi-reads and prune associated execution paths.
We choose to work with LLVM IR instead of the C source

code for several reasons: 1) LLVM IR preserves most of the

information needed by DEADLINE, such as type information,

function names and arguments, etc. The only information loss

is the __user mark, which can be easily added back to the

IR by adding the mark to LLVM metadata. The __user mark

is used to differentiate userspace and kernel memory objects,

which will be illustrated in detail in §VI-C. 2) LLVM IR is in

the single static assignment (SSA) form, which closely mimics

the logic for symbolic execution, i.e., assigning a symbolic

value to each definition of a variable. Working with LLVM IR

also enables the reuse of many LLVM analysis passes such as

call-graph construction, function inlining, etc.

Overall procedure. In short, DEADLINE’s detection procedure
consists of two steps:

1) Scan the kernel and collect as many multi-reads as possible
along with their execution paths.

2) Check along each execution path to see if a multi-read
turns into a double-fetch bug.

The high-level procedure for DEADLINE is illustrated in Al-

gorithm 1. The process starts by scanning the kernel and

collecting all fetches (line 2). This is an easy step, as each

userspace fetch is clearly marked by a call to a transfer function

(see details in §II-A). Then, for each fetch found, DEADLINE

scans backward and forward along the control flow graph for

other fetches (line 4), and if other fetches are found, marks

them as fetch pairs, each constitutes a multi-read. Afterward,
DEADLINE builds all possible execution paths that run through

both fetches for each fetch pair (line 6). We elaborate these

two steps in §V. Finally, for each execution path constructed,

DEADLINE invokes its symbolic execution engine and checks

Algorithm 1: High-level procedure for double-fetch bug detection

In :Kernel - The kernel to be checked
Out :Bugs - The set of double-fetch bugs found

1 Bugs ← ∅
2 Setf ← Collect_Fetches(Kernel);
3 for F ∈ Setf do
4 Setmr ← Collect_Multi_Reads(F)
5 for < F0, F1, Fn >∈ Setmr do
6 Paths ← Construct_Execution_Paths(F0, F1, Fn)
7 for P ∈ Paths do
8 if Symbolic_Checking(P , F0, F1) == UNSAFE then
9 Bugs.add(< F0, F1 >)

10 end
11 end
12 end
13 end

whether the multi-read is a double-fetch bug based on the
formal definitions. This step is depicted in detail in §VI.

V. FINDING MULTI-READS

Finding multi-reads is the first step for double-fetch bug
detection. Prior works either used empirical rules [10] or relied

on dynamic memory access patterns [9] to find multi-reads,
both of which could be problematic (e.g., assuming multi-
reads are intra-procedural). To inherently improve the finding
of multi-reads, DEADLINE instead employs static and symbolic
program analyses to systematically find multi-reads against the
whole kernel codebase.

A. Fetch pairs collection

In this step, the goal for DEADLINE is to statically enu-

merate all multi-reads that could possibly occur. In particular,
DEADLINE tries to identify all the fetch pairs that can be

reached at least statically, i.e., there exists a reachable path in

the control flow graph (CFG) between the two fetches (i.e., a

fetch pair).

One approach is to 1) identify all fetches in the kernel,

i.e., calls to transfer functions; 2) construct a complete, inter-

procedural CFG for the whole kernel; and 3) perform pair-

wise reachability tests for each pair of fetches. Although 1) is

easy, given the scale and complexity of kernel software, both

2) and 3) are hard if not impossible in practice. Therefore,

DEADLINE chooses to find fetch pairs in a bottom-up manner,

as described in Algorithm 2. In short, starting at each fetch,

within the function it resides in, DEADLINE scans through

both the reaching and reachable instructions for this fetch and

among those instructions, either marks that we have found a

fetch pair (line 6, 15) or inline the function containing a fetch

and re-executes the search (line 9, 18).

Note that, in addition to the two fetches, the enclosing

function Fn is also attached to the pair, and we use this

triple to denote a multi-read in DEADLINE. Conceptually, this
Fn is the deepest function in the global call graph (if it

can ever be constructed) that encloses both fetches, and later

the execution paths will be constructed within this Fn. This
alleviates DEADLINE in constructing execution paths from

fixed entry and exit points such as syscall enter and syscall

665

Algorithm 2: Collect_Multi_Reads(F)
In :F - A fetch, i.e., a call to a transfer function
Out :R - A set of triples < F0, F1, Fn > representing multi-reads

1 Fn ← Function that contains F ;
2 R ← ∅;
3 Setup ← Get_Upstream_Instructions(Fn, F);
4 for I ∈ Setup do
5 if I is a fetch then
6 R.add(< I, F, Fn >)
7 end
8 if I is a call to a function that contains a fetch then
9 Inline I , redo the algorithm

10 end
11 end
12 Setdn ← Get_Downstream_Instructions(Fn, F);
13 for I ∈ Setdn do
14 if I is a fetch then
15 R.add(< F, I, Fn >)
16 end
17 if I is a call to a function that contains a fetch then
18 Inline I , redo the algorithm
19 end
20 end

return, which are usually very lengthy with many irrelevant

instructions to the forming of a double-fetch bug.
Indirect calls. One special case in this process is an indirect

call, which is often used in kernel to simulate polymorphism

behaviors. DEADLINE does not attempt to resolve the actual

targets of an indirect call (in fact, in many cases, they can only

be resolved at runtime). Instead, DEADLINE conservatively

identifies all potential targets of an indirect call. Specifically,

DEADLINE first collects the address-taken functions and then

employs the type-analysis-based approach [18], [19] to find the

targets of indirect calls. That is, as long as the type of arguments

of an address-taken function matches with the callsite of an

indirect call, we assume it is a valid target of the indirect call.

B. Execution path construction

In this step, DEADLINE is given a triple < F0, F1, Fn >
which represents a multi-read, and the goal for DEADLINE is
twofold: 1) to find all execution paths within the enclosing

function (Fn) that connect both fetches (F0 and F1) and 2) to

slice out the irrelevant instructions that have no impact on the

fetches or are not affected by the fetches, for each execution

path.

Both parts can be solved with standard program analysis

techniques. The first part can be done by a simple CFG traversal

within the function Fn, while the second part can be achieved
by slicing the function CFG with the following criteria:

• An instruction is considered to have an impact on a fetch
if the address or size of the fetch is either derived from

it or constrained by it.

• An instruction is considered to be affected by a fetch if it
is derived from the fetched-in value or it constrains the

fetched-in value.

With these criteria, we preserve all the control and data

dependence relations that we need to prove and thus to decide

whether a multi-read is a double-fetch bug, as defined in §III.

Linearize an execution path. One last step in the path

construction is to linearize the paths into a sequence of

IR instructions. For a path without loops, linearization is

simply a concatenation of the basic blocks; however, for a

path with loops, unrolling is required. DEADLINE decides

to unroll a loop only once1. This imposes a limitation

to DEADLINE: DEADLINE is unable to find double-fetch
bugs caused by one fetch overlapping with itself when the
loop is executed multiple times. In fact, in kernel, such

double-fetch bugs can almost never happen, as fetches in
loops are usually designed in an incremental manner, e.g.,

copy_from_user(kbuf, ubuf, len); ubuf += len;. In this

case, the two fetches are always from non-overlapping memory

regions and will never satisfy the condition for a double-fetch
bug. On the other hand, unrolling the loop once does help
DEADLINE find double-fetch bugs caused by two fetches across
loops, as shown in Figure 3.

VI. FROM MULTI-READS TO DOUBLE-FETCH BUGS

Prior works [9], [10] rely on manual verification to check

whether a multi-read turns into a double-fetch bug, which can
be time consuming and error-prone. Instead, DEADLINE applies

symbolic checking to automatically vet whether a multi-read
is a double-fetch bug based on the formal definitions in §III.

A. A running example

To help illustrate the concepts in this section, we provide a

running example in Figure 4. It is a double-fetch bug found
by DEADLINE in the perf_copy_attr function and has been

patched in Linux kernel 4.13. In summary, the first fetch

(line 8) copies in a 4-byte value size, which is later sanity

checked (line 12, 13) and also used for the second fetch (line

17). However, after the second fetch, the overlapped region

attr->size is not subject to any constraints until the end of

the function. In this case, a user process could put a proper

value, say uattr->size = 128, before the first fetch so that it

will pass both sanity checks and later uses a race condition

to change it, say uattr->size = 0xFFFFFFFF, which will be

copied to attr->size and cause trouble if it is later used

without caution (line 24). The memory access pattern is also

visualized in Figure 4b, which clearly shows that the two

fetches have an overlap of four bytes and the constraints on

this overlapped region across different fetches are different.

Given that both control dependence (i.e., the sanity checks)

and data dependence (i.e., size is used in the second fetch)

are established between the two fetches, the correct way to

check for a double-fetch bug is to try an equality proof (i.e.,
proving that size == attr->size), as explained in §III. Since

this cannot be proved, DEADLINE flags this multi-read as a
double-fetch bug.
The symbolic execution procedure is shown in Figure 4c.

Note that, for illustration purpose, we use $X to denote the

symbolic value of the variable and @X to denote the object in

memory that is pointed to by $X . If $X is not a pointer, @X is

1If there are multiple paths inside the loop body, DEADLINE unrolls the
loop multiple times, each covers one path.

666

nil. A memory object can be accessed by a triple < i, j, L >,
which means a memory access from byte i to byte j. The label
L can be either K or U , indicating whether this is a kernel or
userspace access, and for userspace accesses, the labels can be

U0, U1, etc. to denote that this is the first or second access to
that memory object region.

Due to space constraints, a much more complicated example

that illustrates two additional features of DEADLINE, loop

handling and pointer resolving, is shown in Appendix §A,

Figure 7.

B. Transforming IR to SR

Transforming the LLVM IR to SR is the same as symbolically

executing the LLVM instructions along the path. In particular,

each variable has an SR while the instructions and function

calls define how to derive these SRs and the constraints

imposed. All the SRs are derived from a set of root SRs, which

could be function arguments, global variables (both denoted

as PARM), or two special types of objects, KMEM and UMEM, that

represent memory blobs in kernel and userspace, respectively.

Function arguments and global variables are considered roots

because their values are not defined by any instructions along

the execution path. Similarly, the initial contents in KMEM

and UMEM are unknown, and therefore we also treat them as

root SRs, although along the execution their contents can

be defined through operations such as memcpy, memset, and

copy_from_user.

Symbolic execution of the majority of LLVM instructions is

straightforward. For example, to symbolically execute an add

instruction %3 = add i32 %2 16, DEADLINE simply creates

a new SR, $3, and sets it to $3 = $2 + 16. However, three

types of instructions need special treatment: branch instructions,

library functions/inline assemblies, and memory operations.

Branch instructions. As stated before, DEADLINE does not
perform new path discovery during symbolic execution; instead,

it only follows along a specific path (i.e., a sequence of

IR instructions) prepared before the symbolic execution, as

illustrated in detail in §V-B. Therefore, whenever DEADLINE

encounters a branch instruction, it looks ahead on the path,

checks which branch is taken, and uses this information to infer

the constraints that must be satisfied by taking that branch,

i.e., whether the branch condition is true or false. After doing

that, DEADLINE adds this constraint to its assertion set so that

later when solving (or proving), it ensures that this constraint

is met (or cannot be met). In the running example in Figure 4,

line 10, 11 in 4c illustrate this procedure. This is in contrast to

traditional symbolic executors [13], [14], [15] which fork states

and try to cover both branches upon encountering a branch

instruction.

Library functions and inline assemblies. Although the

kernel does not have the notion of standard libraries like

libc, common functionalities such as memory allocation are

abstracted out, and most of them reside in the lib directory

in the kernel source tree. These library functions can be

generally categorized into five types: 1) memory allocations

(e.g., kmalloc), 2) memory operations (e.g., memcpy), 3) string

operations (e.g., strnlen), 4) synchronization operations (e.g.,

mutex_lock), and 5) debug and error reporting functions

(e.g., printk). We choose to not let DEADLINE symbolically

execute into these functions; instead, we manually write

symbolic rules for each of these functions to capture the

interactions between their function arguments and return values

symbolically. Fortunately, for the purpose of double-fetch bug
detection, there are only 45 and 12 library functions we need

to handle for the Linux and the FreeBSD kernel, respectively,

which incurs a reasonable amount of manual effort.

In terms of inline assemblies, although they are commonly

found in kernel code, not many of them are related to double-
fetch bug detection and hence will be filtered out early without
showing in the execution path. For those that commonly appear

in the execution paths (e.g., bswap), we write manual rules to

approximate their effects on the symbolic values and ignore

the rest, i.e., assuming them to have no effects.

C. Memory model

Traditional symbolic executors model memory as a linear

array of bits or bytes and rely on the select-store axioms
and its extensions [20], [21] to represent memory read and

write. The select expression, select(a, i), returns the value

stored at position i of the array a and hence models a memory

read, while a store(a, i) returns a new array identical to a,

but on position i it contains the value v and hence models

a memory write. This model has been proven successful by

symbolic executors like KLEE [14] and SAGE [15]. However,

it cannot be directly applied in DEADLINE for double-fetch
bug detection.
One missing piece in this memory model is that two reads

from the same address are assumed to always return the same

value if there is no store operation to that address between

the reads. While this is true for single-threaded programs (or

multi-threaded programs with interleavings flattened), it does

not hold for userspace accesses from kernel code, as a user

process might change the value between the two reads, but

those operations will not be backed by a store in the trace. In

fact, if DEADLINE adopts this assumption, DEADLINE would

never find a double-fetch bug.
To address this issue, DEADLINE extends the model by

encoding a monotonically increasing epoch number in the reads

from userspace memory to represent that the values copied

in at different fetches can be different. However, for kernel

memory reads, DEADLINE does not add the epoch number

and does assume that every load and store to the address is

enclosed in the execution path. Otherwise, it becomes a kernel

race condition, which is out of the scope for DEADLINE and is

assumed to be nonexistent. To infer whether a pointer points to

userspace or kernel memory, DEADLINE relies on the __user

mark and considers that any pointer marked as __user is a

userspace pointer (e.g., variable uattr in line 2, Figure 4a),

and a pointer without the __user mark points to kernel memory

(e.g., variable attr, in line 3, Figure 4a).

Another extension DEADLINE has to make to the memory

model is that instead of assuming the whole memory to be an

667

1 static int perf_copy_attr_simplified
2 (struct perf_event_attr __user *uattr,
3 struct perf_event_attr *attr) {
4

5 u32 size;
6

7 // first fetch
8 if (get_user(size, &uattr->size))
9 return -EFAULT;
10

11 // sanity checks
12 if (size > PAGE_SIZE ||
13 size < PERF_ATTR_SIZE_VER0)
14 return -EINVAL;
15

16 // second fetch
17 if (copy_from_user(attr, uattr, size))
18 return -EFAULT;
19

20
21 }
22 // Example: if attr->size is used later
23 // BUG: attr->size can be very large
24 memcpy(buf, attr, attr->size);

(a) C source code

�����
��

������ ��	
���
�

������

������ ��	
�

������
����������	

�������

������������

����������������������

	
��
����
�

	
��
����
�

���� �����������

!����
� "

#�$��
� "

(b) Memory access patterns

1 // init root SR
2 $0 = $PARM(0), @0 = $UMEM(0) // uattr
3 $1 = $PARM(1), @1 = $KMEM(0) // attr
4 ---
5 // first fetch
6 fetch(F1) is {A = $0 + 4, S = 4}
7 $2 = @0(4, 7, U0),@2 = nil // size
8 ---
9 // sanity checks
10 assert $2 <= PAGE_SIZE
11 assert $2 >= PERF_ATTR_SIZE_VER0
12 ---
13 // second fetch
14 fetch(F2) is {A = $0, S = $2}
15 @1(0, $2 - 1, K) = @0(0, $2, U1)
16 ---
17 // check fetch overlap
18 assert F2.A <= F1.A < F2.A + F2.S
19 OR F1.A <= F2.A < F1.A + F1.S
20 // --> satisfiable with @0(4, 7, U)
21

22 // check double-fetch bug
23 prove @0(4, 7, U0) == @0(4, 7, U1)
24 // --> fail, no constraints on @0(4, 7, U1)

(c) Symbolic representation and checking

Fig. 4: A double-fetch bug in perf_copy_attr, with illustration on how it fits the formal definition of double-fetch bugs (4b) and DEADLINE’s
symbolic engine can find it (4c).

1 static int not_buggy1
2 (int __user *uptr1,
3 int __user *uptr2) {
4 // uptr1 <-- UMEM(0)
5 // cannot prove
6 // uptr2 == uptr1, so
7 // uptr2 <-- UMEM(1)
8

9 int x1, x2;
10 get_user(x1, uptr1);
11 if(x1 == 0)
12 return -EINVAL;
13

14 get_user(x2, uptr2);
15 return x2;
16 }

1 static void *not_buggy2
2 (struct request __user *up,
3 struct request *kp) {
4 // up <-- UMEM(0)
5

6 void __user *ubuf, void *kbuf;
7 copy_from_user(kp, up, sizeof(*kp));
8 if(!kp->buf)
9 return -EINVAL;
10

11 ubuf = kp->buf;
12 // cannot prove ubuf == up, so
13 // ubuf <-- UMEM(1)
14 kbuf = memdup_user(kp->buf, kp->len);
15 return kbuf;
16 }

Fig. 5: DEADLINE’s memory model cannot prove that the two fetches
come from the same userspace object. Therefore, these two cases will
not be considered as double-fetch bugs.

array of bytes (or bits), DEADLINE uses an array of bytes to

represent each single memory object and maps each pointer

to one memory object. DEADLINE uses a few empirical rules

to create this mapping: 1) Different function arguments or

global variables are assumed to be pointing to different memory

objects (if they are pointers or integers that can be casted to

pointers); 2) Newly allocated pointers (via kmalloc, etc) are

assumed to be pointing to new memory objects; 3) When an

assignment occurs, the object is also transferred (e.g., assigning

a function argument to a local variable), meaning that the local

variable is pointing to the same object as the argument. In fact,

this is implicitly handled by the SSA form of the LLVM IR;

4) For any other pointer, if we cannot prove that its value falls

in the range of any existing object, assume it points to a new

object. For example, a pointer like (&req->buf) is considered

as pointing to a subrange of the req object, while req->buf is

considered as pointing to a new object.

Furthermore, when checking for double-fetch bugs,
DEADLINE considers only the cases where the address pointers

are pointing to the same userspace object. For example, in

both cases shown in Figure 5, DEADLINE cannot prove that

the two fetches come from the same userspace memory object.

Therefore, DEADLINE does not mark them as double-fetch
bugs. This design decision is made based on some implicit
programming practices. For example, there is no need to pass

in two pointers that point to the same memory region (i.e., the

case of uptr1 == uptr2 on the left side of Figure 5); or it is

very uncommon to copy from cyclic buffers (i.e., the case of

up->buf == up on the right side of Figure 5). However, in the

case where DEADLINE can prove that two pointers have the

same value, the memory object reference is also transferred,

as shown in the case of Figure 7c, line 20.

D. Checking against the definitions

Upon finishing the translation from IR to SR, DEADLINE

invokes the SMT solver to check whether all conditions listed

in §III can be met.

DEADLINE first checks whether the two fetches, F0 =<
A0, S0 >, F1 =< A1, S1 >, share an overlapped memory
region. To do this, on top of the path constraints (which are

already added to the solver during symbolization), DEADLINE

further adds the constraint (A1 ≤ A0 < A1 + S1 || A0 ≤
A1 < A0+S0) to the solver (line 18 in the running example Fig-
ure 4c). DEADLINE then asks the solver to check whether there

exist any overlapped regions with all the assertions. An overlap

is represented by a triple < N, i, j > and should be interpreted

as that byte i to j in userspace object N being copied into the

kernel twice in this multi-read. In the running example, there
is one overlap, < 0, 4, 7 >, as shown in line 20.

If there are no overlapped regions, this multi-read is consid-
ered safe. Otherwise, for each overlap identified, DEADLINE

further checks whether there is control dependence or data

dependence established based on this region:

668

• In the case of control dependence only, collect the

constraints for @N(i, j, U0) (denoted as C0) and

@N(i, j, U1) (denoted as C1) and prove that C1 is the

same as C0 or is even more restrictive than C0.

• In the case of data dependence, prove that

@N(i, j, U0) == @N(i, j, U1), as shown in line

23 of the running example.

• In the very rare cases where there is no relation found,
there is a redundant fetch.

Depending on the result, DEADLINE marks the multi-read
as safe if the above proofs succeed and a bug otherwise.

VII. IMPLEMENTATION

DEADLINE is implemented as an LLVM pass (6,395 LoC)

based on LLVM version 4.0 and uses Z3 [22] version 4.5 as

its theorem prover. The rest of this section covers the most

important engineering problems we solved when developing

DEADLINE, including maximizing code coverage and compil-

ing and linking kernel source into LLVM IR. Due to space

constraints, interested readers might refer to Appendix §B for

the program slicing and loop unrolling algorithms used in

execution path construction.

A. Maximize code coverage

To detect double-fetch bugs for the whole kernel, we need
to compile not only the kernel base but also as many modules

as possible, including drivers, file systems, and peripheral

modules that are rarely compiled in the generic configuration.

In addition, within a source file, the actual code compiled is

usually guided by many #ifdef statements. For example, the

functions designed to bridge 32-bit applications with 64-bit

kernels will be compiled only when CONFIG_COMPAT is enabled.

We would like to cover these functions too.

To do this, we modify the configuration process for both the

Linux and the FreeBSD kernels. For Linux, we rely on the built-

in allyesconfig setting, which effectively enables all CONFIG_*

macro (more than 10,000 items). Similarly, for FreeBSD, we

rely on the make LINT command to output all available options

and enable them all to get the build configuration file.

B. Compiling source code to LLVM IR

Since the Linux kernel is not yet compatible with the LLVM

toolchain, we compile it with the following steps: 1) we first

build the kernel with GCC and collect the build log; 2) we

then parse the log to extract compilation flags (e.g., -I, -D) for

each source file and feed the flags to Clang to compile the file

again to LLVM IR; 3) we again use the linking information

in the build log and use llvm-link to merge the generated

bitcode files into a single module. Files that are incompatible

with LLVM will fail in step 2, which are only eight (out of

15,912 files in Linux 4.13.2).

For the FreeBSD kernel, although it can be successfully

compiled with Clang, we cannot directly add the -emit-llvm
flag to generate LLVM IR because the compilation process

checks whether the generated object files are ELF files and will

abort if not. Therefore, similar to the Linux kernel compilation,

Component # Multi-Reads # Double-fetch Bugs

Linux FreeBSD Linux FreeBSD

Core modules 25 4 2 0
Drivers 760 86 16 0
Filesystem 246 9 2 1
Networking 73 2 3 0

Total 1,104 101 23 1

TABLE I: Distribution of multi-reads and double-fetch bugs found
by DEADLINE in the Linux and FreeBSD kernels

we compile the FreeBSD kernel in the normal way, parse the

build log, re-compile the files to IR, and merge them into a

single module.

VIII. FINDINGS

In this section, we show DEADLINE’s performance in both

detecting multi-reads and double-fetch bugs in kernel software.
Table I summarizes the number of multi-reads detected in the
Linux and FreeBSD kernels and how many of them are actually

double-fetch bugs.

A. Detecting multi-reads

This experiment is conducted on version 4.13.3 for the Linux

kernel and 11.1 (July, 2017 release) for the FreeBSD kernel.

As shown in Table I, DEADLINE reports 1,104 multi-reads in
the Linux kernel and 101 multi-reads in the FreeBSD kernel, as
FreeBSD has a much smaller codebase. Furthermore, besides

device drivers which have been studied in prior works [9], [10],

many other kernel components, including the core modules

(e.g., ipc, sched, etc), might issue multiple fetches from

userspace, and some of them can be buggy.

More importantly, the scale of 1,104 multi-reads is not
suitable for manual verification, not to mention keeping up with

the frequent kernel updates. Therefore, this finding supports

the claims that formal definitions are needed to define when

a multi-read turns into a double-fetch bug and that automatic
vetting is needed to alleviate this manual effort. This motivates

the development of DEADLINE.

B. Detecting and reporting double-fetch bugs

Confirming previously reported bugs. We first show that

DEADLINE is at least as good as prior works in detecting

double-fetch bugs. In particular, DEADLINE runs against Linux
kernel 4.5, the same version Wang et al. [10] used in their work.
Out of five bugs reported in [10], DEADLINE found four of

them, including vop_ioctl, audit_log_single_ execve_arg,

ec_device_ioctl_xcmd, and ioctl_send_fib. DEADLINE is

unable to detect sclp_ctl_ioctl_sccb, as DEADLINE com-

piles the kernel for the x86 architecture while sclp_ctl.c is

only compilable for the IBM S/390 architecture. We leave the

detection on other architectures for future work.

Finding new bugs. A more important task for DEADLINE

is to find new bugs. This experiment is conducted on version

669

4.12.7 to 4.13.3 for the Linux kernel and 11.1 (July, 2017

release) for the FreeBSD kernel 2.

Out of all multi-reads found in the kernels, DEADLINE
detected 23 double-fetch bugs in Linux and one bug in FreeBSD.
We manually checked all the bugs and reported them to the

kernel maintainers. The full list of detected double-fetch bugs
are shown in Table II. At the time of writing:

• Nine bugs have been fixed with the patches we provided.
• Four bugs are acknowledged. We are currently working
with the kernel maintainers to finalize the patches.

• Nine bugs are pending for review but no confirmation has
been received.

• Two bugs are considered as “won’t fix,” as the maintainers
do not think they are exploitable right now.

In summary, the number of reported bugs is significantly

higher than in prior works (six in Linux and zero in FreeBSD).

More importantly, while DEADLINE found significantly more

multi-reads, it further automatically looks for real double-fetch
bugs in the haystack of multi-reads, which is otherwise beyond
the scale of manual verification. Furthermore, we anticipate

that 14 out of the 24 bugs DEADLINE found could never be

found by prior works because of the complications in the bugs,

such as falling out of the empirical bug patterns, requiring

inter-procedural analysis, loop involvement, and that a function

is guarded by #ifdef macros.

Bugs marked as “won’t fix”. We pay special attention to

the two bugs rejected for fixing by the developers, as they

represent potential false alarms by DEADLINE as well as show

the limitations of DEADLINE.

In the case of uhid_event_from_user, the developers ac-

tually acknowledged that the race condition can occur in

userspace; however, they do not believe that this can cause

serious harm, as quoted by one of the maintainers: “With
current code, worst case scenario is someone shortcutting
the compat-conversion by setting UHID_CREATE after uhid_-
event_from_user() copied it. However, this does no harm. If
user-space wants to shortcut the conversion, let them do so...”
In the case of ll_copy_user_md, DEADLINE falsely reports

it due to an assumption on an enclosing function. By con-

structing execution paths within the enclosing function only,

DEADLINE implicitly assumes that if there is an overlapped-
fetch, careful developers should finish checking that the

doubly-fetched values are either the same or subject to

the same constraints. In this case, the checking should be

ll_lov_user_md_size(*kbuf) == lum_size right after the sec-

ond fetch. Otherwise, once the function returns, the developers

lose the opportunity re-assert this relation. However, this

implicit assumption does not hold in this case, as the derived

value of the first fetch, lum_size, is passed out of the function

as a return value, and the result of the second fetch, kbuf,

is passed out by pointer. In other words, even outside this

enclosing function, the relation between these two fetches can

still be re-checked.

2We perform bug finding iteratively as we develop and improve DEADLINE,
which explains why several versions of Linux kernel are used.

1 char *smb_strdupin
2 (char *s, size_t maxlen) {
3

4 char *p, bt; int error;
5 size_t len = 0;
6 // test and check user strlen
7 for (p = s; ;p++) {
8 if (copyin(p, &bt, 1))
9 return NULL;
10 len++;
11 if (maxlen && len > maxlen)
12 return NULL;
13 if (bt == 0)
14 break;
15 }
16 p = malloc(len, M_SMBSTR);
17 // copy the whole string
18 error = copyin(s, p, len);
19 if (error) {
20 free(p, M_SMBSTR);
21 return NULL;
22 }
23 // BUG: p is not NULL-termed
24 return p;
25 }

(a) Buggy function

1 // syscall entry point
2 entry: ioctl() {
3 ...
4 // dispatch to device ioctl
5 nsmb_dev_ioctl() {
6 ...
7 // dispatch by command
8 smb_usr_t2request() {
9 ...
10 // [!] double-fetch bug
11 buf = smb_strdupin();
12

13 ...
14

15 smb_t2_request() {
16 ...
17 smb_t2_request_int() {
18 ...
19 // [!] exploitation
20 nmlen = strlen(buf);
21 }
22 }
23 }
24 }
25 }

(b) Call stack for an exploit

Fig. 6: An exploitable double-fetch bug in the FreeBSD kernel. 6a
shows the function flagged as buggy by DEADLINE and 6b shows
the end-to-end call stack in the kernel if a user thread tries to exploit
this bug by issuing an ioctl syscall.

Bug distribution. Aligned with prior research [9], [10], a

majority of double-fetch bugs are found in the driver code,
indicating that drivers are still the most error-prone part in the

kernel. This also aligns with the distribution of multi-reads
where a majority of the multi-reads are located in drivers.
However, file systems, networking components, or even the

core kernel might also be subject to double-fetch bugs.
Detection time. On a machine with Intel Xeon E5-1620 CPU
(four cores) and 64GB RAM running 64-bit Ubuntu 16.04.3

LTS, DEADLINE finishes detection in four hours for the Linux

kernel and one hour for the FreeBSD kernel. Around 20% of

the execution time is spent on finding multi-reads with static
analysis and 80% of the time is spent on symbolic checking

on these multi-reads.

IX. EXPLOITATION

Exploiting double-fetch bugs can be profitable but also
challenging. Prior works [9], [10] have identified several ways

to exploit a double-fetch bug in kernel.
Leaking information. This exploitation typically occurs in

a process that does data transfer both to and from userspace,

i.e., a request-response situation, as shown in the case of CVE-

2016-6130. The bug in CVE-2016-6130 is very similar to the

bug in perf_copy_attr (Figure 4), where the first fetch sanity

checked the size value while the second fetch assumes size

does not change and omitted the sanity check. Later, when the

response is copied back to userspace based on the unchecked

size value, a large chunk of kernel memory will be copied,

hence causing a kernel information leak.

Bypassing restrictions. This exploitation typically occurs

when the kernel wants to early reject a request from userspace.

670

File Function Status Complication Patching Strategy

1 block/scsi_ioctl.c sg_scsi_ioctl Acknowledged Macro expansion Incremental copy
2 drivers/acpi/custom_method.c cm_write Submitted - Value override
3 drivers/hid/uhid.c uhid_event_from_user Won’t Fix Macro expansion Abort on change
4 drivers/isdn/i4l/isdn_ppp.c isdn_ppp_write Patched - Single-fetch
5 drivers/message/fusion/mptctl.c __mptctl_ioctl Submitted Inter-proc / Pattern -
6 drivers/nvdimm/bus.c __nd_ioctl (1) Patched Indirect call Single-fetch
7 drivers/nvdimm/bus.c __nd_ioctl (2) Acknowledged Indirect call -
8 drivers/scsi/aacraid/commctrl.c aac_send_raw_srb Submitted - Value override
9 drivers/scsi/dpt_i2o.c adpt_i2o_passthru Submitted - -
10 drivers/scsi/megaraid/megaraid.c mega_m_to_n Submitted Unknown pattern Single-fetch
11 drivers/scsi/megaraid/megaraid_mm.c mraid_mm_ioctl Submitted Inter-procedural -
12 drivers/scsi/mpt3sas/mpt3sas_ctl.c _ctl_getiocinfo Patched Inter-procedural Single-fetch
13 drivers/staging/lustre/lustre/llite/llite_lib.c ll_copy_user_md Won’t Fix - Override
14 drivers/tty/vt/vt.c con_font_set Patched Loop / Pattern Single-fetch
15 drivers/vhost/vhost.c vhost_vring_ioctl Submitted Inter-procedural -
16 fs/coda/psdev.c coda_psdev_write Acknowledged Unknown pattern Value override
17 fs/nfsd/nfs4recover.c cld_pipe_downcall Acknowledged - Value override
18 kernel/events/core.c perf_copy_attr Patched - Value override
19 kernel/sched/core.c sched_copy_attr Submitted - Value override
20 net/compat.c cmsghdr_from_user_compat_to_kern Patched Loop involvement Abort on change
21 net/tls/tls_main.c do_tls_setsockopt_tx Patched Unknown pattern Single-fetch
22 net/wireless/wext-core.c ioctl_standard_iw_point Submitted - -
23 sound/pci/asihpi/hpioctl.c asihpi_hpi_ioctl Patched - Value override

24 netsmb/smb_subr.c smb_strdupin Patched Unknown pattern Single-fetch

TABLE II: A listing of double-fetch bugs found and reported. In the complication column, we anticipate the reasons why the bug cannot be
found by prior works. For 18 bugs that we submit patches for, we also list the strategy we use to fix the bugs, which is discussed in detail
in §X. For the remaining six bugs, the patching is likely to require a lot of code refactoring and we are working with the kernel maintainers
to finalize a solution.

For example, in the tls_setsockopt case (Figure 2), a mali-

cious user process can bypass the TLS version checking (line 9)

by exploiting this double-fetch behavior although the intention

of the kernel developers is to reject such requests.

Denial-of-service (DoS). This exploitation typically occurs

when a memory operation, e.g., buffer allocation, memory

compare, string operations, etc, is affected by the double-fetch

procedure. For example, in the case of smb_strdupin (Figure 6),

it is incorrect to assume that the string copied in after the second

fetch is NULL-terminated and later applying the strlen on

the string is likely to cause an overread into invalid kernel

memory regions.

DEADLINE does not attempt to automatically reason about

the exploitability of double-fetch bugs for two reasons: 1)
Unlike memory errors that raise a definitive signal upon

exploitation, e.g., an invalid memory access causing a crash,

double-fetch bug exploitations do not usually raise such a signal
and might have to rely on manually defined rules to measure

whether the exploit succeeds. 2) Even if we could define all the

exploitation rules, constructing them could still be a challenge,

as the exploitation point is usually far from to the bug point. In

the example shown in Figure 6, the exploitation point strlen is

two function calls away from the buggy function. In this case,

in order to construct an end-to-end exploit, DEADLINE needs

to symbolically execute the whole ioctl syscall, which would

take significantly longer if ever possible. More importantly,

even if a double-fetch bug is not exploitable right now, it does
not mean that it will remain secure in the future. Careless code

updates can easily turn a non-exploitable double-fetch bug into
an exploitable one, as shown in the case of CVE-2016-5728.

X. MITIGATION

Based on our experience in patch creation and our communi-

cations with kernel maintainers, there are in general four ways

to patch a double-fetch bug.
Override with values from the first fetch. In this case, we
simply ignore the value copied in during the second fetch and

override it with the value from the first fetch. An example is

shown in Figure 8, which is actually the patch to Figure 4. By

doing so, we ensure that both the control dependence and data

dependence established between these fetches are preserved.

Abort if changes are detected. In this case, we add a sanity
check after the second fetch to ensure that the intended relation

between the two fetches is honored by the user process, as

shown in the example of Figure 9, which is actually the patch

to Figure 7.

Incremental fetch. In this case, we intentionally skip the

bytes copied in during the first fetch. In other words, we start

the second fetch from an offset equal to the length of the first

fetch. An example is shown in Figure 10. By doing this, these

two fetches are now from non-overlapped userspace memory

regions and will never constitute a double-fetch bug.
Refactor into a single-fetch. If there is only control depen-
dence between the two fetches, we could reduce this double-

fetch behavior into a single-fetch, as shown in the example

in Figure 11. This approach generally improves the performance

as we eliminate one fetch but might result in more lines of

code, as now we need to multiplex the if checks every time a

fetch occurs.

671

In principle, all these strategies have the same effect—

preventing a double-fetch bug from being exploited. However,

which strategy is taken for a specific double-fetch bug is usually
based on case-by-case considerations such as performance

concerns, number of lines changed, accordance with existing

sanity checks, and the maintainers’ personal preferences.

Besides, several bugs cannot be patched within 50 lines of

change due to the complications in current codebases. We are

working with the maintainers to finalize the patch.

Preventing exploits with transactional memory. As the

root cause of a double-fetch bug is the lack of atomicity

and consistency in userspace memory accesses across fetches,

transactional memory (e.g., Intel TSX) can be a generic solution.

Conceptually, one could mark transaction start before the first

fetch and mark transaction end after the second fetch. If a

race condition occurs, the transaction will abort and the kernel

will be notified. DECAF [23] is a proof-of-concept based on

these insights. However, it over-simplifies the kernel code by

failing to consider the cases of 1) false aborts due to large

memory access footprint (which is very likely for multi-reads),
2) multiple exit points in the syscall execution (e.g., returning

before second fetch), and 3) mixing of TSX-enabled and non-

TSX code (e.g., a function can be called within or without

a transactional context). Furthermore, DECAF still requires

the developers to manually inspect and instrument kernel

code. Therefore, to make the TSX-based solution practical,

these technical challenges should be addressed and automated
integration of TSX APIs and kernel code is necessary.

XI. DISCUSSION AND LIMITATIONS

A. Applying DEADLINE beyond kernels

It is worth-noting that double-fetch bugs are not specific
to kernels. In theory, it might exist in software systems in

which 1) the memory region is separated into sub-regions with

various levels of privilege and 2) multi-threading is supported.

Therefore, software systems beyond kernels such as Xen, SGX,

and even userspace programs like the Chrome browser are also

subject to double-fetch bugs.
To apply DEADLINE to these software systems, we need to

clearly identify the boundary of privileges and the interfaces

for transferring data from a low-privilege memory region to

a high-privilege memory region. That is, DEADLINE requires

pre-defined “fetching” interfaces. Fortunately, we observed that

privileged software systems typically have limited interfaces

for fetching data from low-privilege to high-privilege memory

regions. This is arguably to better maintain the boundary of

separated regions. As such, we believe that it is feasible to

collect “fetching” interfaces with reasonable engineering effort.

B. Limitations of DEADLINE

We discuss the limitations of DEADLINE from three aspects:

1) which part of kernel source code DEADLINE cannot cover,

2) what kind of execution paths DEADLINE cannot construct

for multi-reads, and 3) when the symbolic checking for double-
fetch bugs fails.

Source code coverage. Although DEADLINE covers a major-
ity of kernel codebase, there are two cases DEADLINE currently

cannot handle:

1) Files not compilable under LLVM cannot be analyzed by

DEADLINE. For Linux 4.13.2, they include three filesystem

files and four driver files, which are likely to contain both

multi-reads and double-fetch bugs. We believe this will not
be addressed soon with the synergy between the kernel and

LLVM community.

2) Although DEADLINE enables all the config options during

compilation, DEADLINE certainly misses the code pieces that

are compiled when a CONFIG_* should be disabled. However,

a complete solution would require tweaking Y and N for over

10000 config items, which is unrealistic.

Path construction. DEADLINE aims to find all execution

paths associated with a multi-read. However, due to the
complexity in kernel code, DEADLINE’s path construction has

three limitations:

1) DEADLINE enforces a limit (currently 4096) to the number

of execution paths constructed within an enclosing function.

Although in most of the cases there are less than 100 paths,

we did observe 17 functions that exceed this limit. Therefore,

DEADLINE could have missed double-fetch bugs should they
exists in those unconstructed paths.

2) DEADLINE also enforces a limit (currently 1) to the loop

unrolling, with the assumption that fetches in loops are usually

designed in an incremental manner. However, this assumption

might be wrong and the fetch inside the loop itself makes

a double-fetch bug when the loop is unrolled multiple times.
Furthermore, there could be cases when cross-loop double-fetch
bugs occur when a loop is unrolled to a specific time. Although
we believe both cases are rare, we cannot prove that they do

not exist in kernel.

3) If there is a branch inside a loop, DEADLINE picks only

one subpath to unroll the loop. However, there might be cases

when a double-fetch bug occurs when the subpaths are taken
in a specific order when unrolling the loop multiple times, e.g.,

the true branch is taken in the first unrolling and the false

branch is taken in the second unrolling.

Symbolic checking. DEADLINE symbolic checker is limited

by how well we model complicated code pieces like assemblies

and library function calls as well as the assumptions in the

memory model.

1) DEADLINE ignores a majority of inline assemblies, i.e.,

assuming they have no impact on the symbolic checking. This

could lead to missing constraints or incomplete SR assignment,

especially when the assemblies issue memory operations. In

addition, for the library functions that we manually write

rules for, there might be imprecision. For example, we assume

that strnlen might return any value between 0 and the len

argument, but actually it is also constrained by the string buffer,

which we do not model in the rule.

2) DEADLINE’s empirical mapping from pointers to mem-

ory object might not reflect the actual situation. As shown

in Figure 5, if the function calling not_buggy1 already ensures

672

that utrp1 == uptr2, or the struct request is designed in

such a way that up->buf == up, then it would be wrong for

DEADLINE to treat them as non-buggy.

3) DEADLINE’s assumption about the enclosing function

might be incomplete. As shown in the “won’t fix” case

ll_copy_user_md, it is possible that the information to assert

the relations established between the two fetches are passed

out of the enclosing function and re-checked elsewhere.

XII. RELATED WORK

Besides being closely related to the recent work on double-
fetch bug detection [9], [10], DEADLINE is also related to the
research on race condition detection and symbolic execution.

Race condition detection. A double-fetch bug is a special
type of race condition. Researchers have studied the generic

race condition problem extensively and proposed numerous

detection techniques, such as model checking [24], [25], type-

based systems [26], [27], and data-flow analyses [25], [28],

[29]. These static methods are able to check all execution

paths with attractive efficiency but generally suffer from a high

false positive rate. In contrast, dynamic detection offers precise

detection but at the cost of performance and scalability. Much

work along the dynamic direction has focused on improving

the performance [30], [31], [32], [33].

Unfortunately, none of these techniques can be directly

applied to double-fetch bug detection. A prerequisite for these
methods is to have a complete view of the concurrently running

threads (either at source code level or instruction level), which

is not true for the double-fetch bug, as we have no information
on how the user threads might behave. Even when we manage

to incorporate the behaviors of user threads into the picture, a

race condition detected by these methods can only indicate the

existence of an overlapped-fetch and we still need to check
whether the overlapped-fetch turns into a double-fetch bug.
Symbolic execution for bug finding. With the recent

advances in SMT solvers [34], symbolic execution has proven

to be an effective technique in finding bugs in complex software

applications [13], [14], [15], [35], [36]. Recent research has

further made trade-offs between scalability and path coverage

of symbolic execution. A few symbolic execution techniques

are now able to analyze even OS kernels such as S2E [37]

and FuzzBALL [38], [39]. In particular, S2E employs selective

symbolic execution and relaxed execution consistency models

to significantly improve the performance. A number of tools

(e.g., SymDrive [40], Stack Spraying [41], and CAB-Fuzz [42])

built on top of S2E have been designed to analyze kernel code

for various purposes.

DEADLINE also leverages the power of SMT solvers for

double-fetch bug detection and uses a similar way to collect
constraints and assign SR to variables as traditional symbolic

executors. However, DEADLINE can be differentiated from

them in two ways:

Path exploration strategy: DEADLINE performs path ex-
ploration offline and symbolically executes only within a

particular path instead of exploring paths online by forking

states whenever a conditional branch is encountered. This is

because, unlike traditional symbolic executors whose primary

goal is path discovery, DEADLINE is not bounded to execute

the instructions that are irrelevant to the cause of a double-
fetch bug, and DEADLINE takes full advantage of that by first
filtering out these irrelevant instructions and then constructing

paths that must go through at least two fetches and only checks

along these paths.

Memory model: DEADLINE extends the memory model used
in traditional symbolic executors in two aspects. 1) DEADLINE

adds an epoch number to a memory read when it crosses the

kernel-user boundary to denote that different userspace fetches

from the same address can be different, which is effectively

the root cause of a double-fetch bug. 2) Instead of assuming
a pointer can point to anywhere in the memory, DEADLINE

keeps a mapping of pointers to memory objects and uses this

to filter out multi-reads that are in fact unrelated fetches.

XIII. CONCLUSION

Detecting double-fetch bugs without a precise and formal
definition has led to a lot of false alerts where manual verifi-

cation has to be involved to find real double-fetch bugs from
the haystack of multi-reads. At the same time, oversimplified
assumptions about how a double-fetch bug might appear have
also caused true bugs to be missed.

To systematically approach double-fetch bug detection, we
first formally model double-fetch bugs, which unambiguously
distinguishes double-fetch bugs from multi-reads in mathe-
matical notions Based on the formal model, we implement

DEADLINE, a static analysis system that automatically scans

though the kernel for both multi-read and double-fetch bug
detection. In particular, multi-read detection is done through
scalable and efficient static program analysis techniques, while

the specialized symbolic checking engine vets each multi-read
by precisely checking whether it satisfies all the conditions in

the formal definition to become a double-fetch bug.
As a result, we found and reported 23 new bugs in the Linux

kernel and one new bug in the FreeBSD kernel, of which nine

have been patched and four acknowledged. This shows the

power of symbolic checking for finding complex logic bugs. In

addition, we summarized four generic strategies for patching

and preventing double-fetch bugs based on our experience in
patch creation and communication with the kernel maintainers.

XIV. ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful feedback.

This research was supported, in part, by the NSF under

award DGE-1500084, CNS-1563848, CNS-1704701, and CRI-

1629851, ONR under grants N00014-15-1-2162 and N00014-

17-1-2895, DARPA TC (No. DARPA FA8650-15-C-7556),

ETRI IITP/KEIT[B0101-17-0644], the German Ministry of

Education and Research (BMBF), and gifts from Facebook,

Mozilla and Intel.

REFERENCES

[1] N. Wilfahrt, “Dirty COW (CVE-2016-5195) is a privilege escalation
vulnerability in the Linux Kernel,” 2016, https://dirtycow.ninja/.

673

[2] S. Khandelwal, “11-Year Old Linux Kernel Local Privilege Escalation
Flaw Discovered,” 2017, http://thehackernews.com/2017/02/linux-kernel-
local-root.html.

[3] MITRE, “CVE-2017-2584,” 2017, https://cve.mitre.org/cgi-bin/cvename.
cgi?name=2017-2584.

[4] A. Konovalov, “Exploiting the Linux Kernel via Packet Sockets,”
2017, https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-
kernel-via-packet.html.

[5] J. Edge, “Kernel Address Space Layout Randomization,” 2013, https:
//lwn.net/Articles/569635/.

[6] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete Control-
Flow Integrity for Commodity Operating System Kernels,” in Proceedings
of the 35th IEEE Symposium on Security and Privacy (Oakland), San
Jose, CA, May 2014.

[7] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-Grained Control-Flow
Integrity for Kernel Software,” in Proceedings of the 1st IEEE Euro-
pean Symposium on Security and Privacy (Euro S&P), SaarbrÃijcken,
Germany, Mar. 2016.

[8] K. Lu, C. Song, T. Kim, and W. Lee, “UniSan: Proactive Kernel Memory
Initialization to Eliminate Data Leakages,” in Proceedings of the 23rd
ACM Conference on Computer and Communications Security (CCS),
Vienna, Austria, Oct. 2016.

[9] G. C. Mateusz Jurczyk, “Bochspwn: Identifying 0-days via System-wide
Memory Access Pattern Analysis,” in Black Hat USA Briefings (Black
Hat USA), Las Vegas, NV, Aug. 2013.

[10] P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro, “How Double-
Fetch Situations Turn into Double-Fetch Vulnerabilities: A Study of
Double Fetches in the Linux Kernel,” in Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, BC, Canada, Aug. 2017.

[11] M. Jurczyk and G. Coldwind, “Identifying and Exploiting Win-
dows Kernel Race Conditions via Memory Access Patterns,”
2013, https://static.googleusercontent.com/media/research.google.com/
en//pubs/archive/42189.pdf.

[12] I. Institute, “Exploiting Windows Drivers: Double-fetch Race Condi-
tion Vulnerability,” 2016, http://resources.infosecinstitute.com/exploiting-
windows-drivers-double-fetch-race-condition-vulnerability.

[13] C. Cadar, V. G. abd Peter M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically Generating Inputs of Death,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security
(CCS), Alexandria, VA, Oct.–Nov. 2006.

[14] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs,”
in Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), San Diego, CA, Dec. 2008.

[15] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated Whitebox Fuzz
Testing,” in Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2008.

[16] Y. Padioleau, J. L. Lawall, and G. Muller, “Understanding Collateral
Evolution in Linux Device Drivers,” in Proceedings of the 1st European
Conference on Computer Systems (EuroSys), Leuven, Belgium, Apr.
2006.

[17] D. A. Ramos and D. Engler, “Under-Constrained Symbolic Execution:
Correctness Checking for Real Code,” in Proceedings of the 24th USENIX
Security Symposium (Security), Washington, DC, Aug. 2015.

[18] B. Niu and G. Tan, “Modular Control-Flow Integrity,” in Proceedings of
the 2014 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Edinburgh, UK, Jun. 2014.

[19] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, ÃŽlfar Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-Edge Control-Flow Integrity
in GCC & LLVM,” in Proceedings of the 23rd USENIX Security
Symposium (Security), San Diego, CA, Aug. 2014.

[20] J. McCarthy and J. Painter, “Correctness of a compiler for arithmetic
expressions,” Mathematical Aspects of Computer Science, vol. 1, 1967.

[21] L. de Moura and N. Bjorner, “Generalized, Efficient Array Decision
Procedures,” Microsoft Research, Tech. Rep., Sep. 2009.

[22] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
Proceedings of the 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’08), Berlin,
Heidelberg, Mar. 2008.

[23] M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schuster, A. Fogh, and
S. Mangard, “Automated Detection, Exploitation, and Elimination of
Double-Fetch Bugs using Modern CPU Features,” ArXiv e-prints, Nov.
2017.

[24] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu,
“Finding and Reproducing Heisenbugs in Concurrent Programs,” in

Proceedings of the 8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), San Diego, CA, Dec. 2008.

[25] E. Yahav, “Verifying Safety Properties of Concurrent Java Programs
Using 3-valued Logic,” in Proceedings of the 28th ACM Symposium
on Principles of Programming Languages (POPL), London, United
Kingdom, Jan. 2001.

[26] M. Abadi, C. Flanagan, and S. N. Freund, “Types for Safe Locking: Static
Race Detection for Java,” ACM Trans. Program. Lang. Syst., vol. 28,
no. 2, pp. 207–255, Mar. 2006.

[27] D. Grossman, “Type-safe Multithreading in Cyclone,” in Proceedings of
the 2003 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation, ser. TLDI ’03, 2003.

[28] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: Static Race Detection on
Millions of Lines of Code,” in Proceedings of the 15th European Software
Engineering Conference (ESEC) / 13th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE), Dubrovnik, Croatia, Sep.
2007.

[29] D. Engler and K. Ashcraft, “RacerX: Effective, Static Detection of Race
Conditions and Deadlocks,” in Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP), Bolton Landing, NY, Oct.
2003.

[30] C. Flanagan and S. N. Freund, “RedCard: Redundant Check Elimination
for Dynamic Race Detectors,” in Proceedings of the 27th European
Conference on Object-Oriented Programming, ser. ECOOP’13, 2013.

[31] M. D. Bond, M. Kulkarni, M. Cao, M. Zhang, M. Fathi Salmi, S. Biswas,
A. Sengupta, and J. Huang, “OCTET: Capturing and Controlling Cross-
thread Dependences Efficiently,” in Proceedings of the 24th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Indianapolis, IN, Oct. 2013.

[32] Y. Yu, T. Rodeheffer, and W. Chen, “RaceTrack: Efficient Detection of
Data Race Conditions via Adaptive Tracking,” in Proceedings of the 20th
ACM Symposium on Operating Systems Principles (SOSP), Brighton,
UK, Oct. 2005.

[33] D. Rhodes, C. Flanagan, and S. N. Freund, “BigFoot: Static Check
Placement for Dynamic Race Detection,” in Proceedings of the 2017
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Barcelona, Spain, Jun. 2017.

[34] L. De Moura and N. Bjørner, “Satisfiability Modulo Theories: Introduc-
tion and Applications,” Communications of the ACM, vol. 54, no. 9, pp.
69–77, Sep. 2011.

[35] J. Burnim and K. Sen, “Heuristics for Scalable Dynamic Test Generation,”
University of California at Berkeley, Tech. Rep., Sep. 2008.

[36] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter, “Using
Symbolic Evaluation to Understand Behavior in Configurable Software
Systems,” in Proceedings of the 32nd International Conference on
Software Engineering (ICSE), Cape Town, South Africa, May 2010.

[37] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for
In-Vivo Multi-Path Analysis of Software Systems,” in Proceedings of
the 16th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Newport
Beach, CA, Mar. 2011.

[38] D. Babić, L. Martignoni, S. McCamant, and D. Song, “Statically-directed
dynamic automated test generation,” in Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), Toronto, Canada,
Jul. 2011.

[39] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis,
“Path-exploration lifting: Hi-fi tests for lo-fi emulators,” in Proceedings
of the 17th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), London,
UK, Mar. 2012.

[40] M. J. Renzelmann, A. Kadav, and M. M. Swift, “SymDrive: Testing
Drivers Without Devices,” in Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Hollywood,
CA, Oct. 2012.

[41] K. Lu, M.-T. Walter, D. Pfaff, S. NÃijrnberger, W. Lee, and M. Backes,
“Unleashing Use-Before-Initialization Vulnerabilities in the Linux Kernel
Using Targeted Stack Spraying,” in Proceedings of the 2017 Annual
Network and Distributed System Security Symposium (NDSS), San Diego,
CA, Feb.–Mar. 2017.

[42] S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, and T. Kim, “CAB-Fuzz:
Practical Concolic Testing Techniques for COTS Operating Systems,” in
Proceedings of the 2017 USENIX Annual Technical Conference (ATC),
Santa Clara, CA, Jul. 2017.

674

APPENDIX

A. A complicated symbolic checking example
Figure 7 presents a much more complicated example to illustrate DEADLINE’s symbolic execution process. In particular, this examples shows two features

of DEADLINE:

• Loop unrolling: each of the two while loops are unrolled once which is further reflected in the symbolic execution trace: line 9-16, 22-35 (7c).
• Pointer resolving: in DEADLINE’s memory model, if DEADLINE can prove that two pointer values are the same, they should be pointing to the same
object, which is reflected in line 20 (7c).

This example also shows that although developers tend to exercise precaution to prevent double-fetch bugs, for example, by placing the sanity checks at line
36 (7a), such checks might not be sufficient as shown in line 28 (7c).

1 int cmsghdr_from_user_compat_to_kern
2 (struct msghdr *kmsg, char *kbuf) {
3

4 struct compat_cmsghdr __user *ucmsg;
5 compat_size_t ucmlen;
6 struct cmsghdr *kcmsg;
7 __kernel_size_t kcmlen, tmp;
8

9 // 1st loop: calculate message length
10 kcmlen = 0;
11 ucmsg = kmsg->msg_control;
12 while (ucmsg != NULL) {
13 // first batch of fetches
14 if (get_user(ucmlen, &ucmsg->cmsg_len))
15 return -EFAULT;
16

17 tmp = ucmlen + sizeof(struct cmsghdr)
18 - sizeof(struct compat_cmsghdr);
19

20 kcmlen += tmp;
21 ucmsg = (char *)ucmsg + ucmlen;
22 }
23

24 // 2nd loop: copy the whole message
25 kcmsg = kbuf;
26 ucmsg = kmsg->msg_control;
27 while (ucmsg != NULL) {
28 // secind batch of fetches
29 if (get_user(ucmlen, &ucmsg->cmsg_len))
30 return -EFAULT;
31

32 tmp = ucmlen + sizeof(struct cmsghdr)
33 - sizeof(struct compat_cmsghdr);
34

35 // sanity check, but insufficient
36 if (kbuf + kcmlen - (char *)kcmsg < tmp)
37 return -EINVAL;
38

39 // irrelevant fetch
40 if (copy_from_user(
41 (char *)kcmsg + sizeof(*kcmsg),
42 (char *)ucmsg + sizeof(*ucmsg),
43 (ucmlen - sizeof(*ucmsg))))
44 return -EFAULT;
45

46 kcmsg = (char *)kcmsg + tmp;
47 ucmsg = (char *)ucmsg + ucmlen;
48 }
49

50 // BUG: the actual message length != kcmlen
51 kmsg->msg_controllen = kcmlen;
52 return 0;
53 }

(a) C source code

���������

	
�������

��
��
��
���
���

��
���
���	

��
���
����
��

���������

�������	���

��

(b) Memory access patterns

1 // init root SR
2 $0 = $PARM(0), @0 = $KMEM(0) // kmsg
3 $1 = $PARM(1), @1 = $KMEM(1) // kbuf
4 ---
5 // prepare for the 1st batch of fetches
6 $2 = 0, @2 = nil // kcmlen_0
7 $3 = @0(48, 55, K), @3 = $UMEM(0) // ucmsg_0
8 ---
9 // unroll 1st loop
10 assert $2 != NULL
11 fetch(F1) is {A = $3 + 0, S = 4}
12 $4 = @3(0, 3, U0), @4 = nil // ucmlen_0
13 $5 = $4 - 12 + 16, @5 = nil // tmp_0
14 $6 = $2 + $5, @6 = nil // kcmlen_1
15 $7 = $3 + $4, @7 = $UMEM(1) // ucmsg_1
16 assert $7 == NULL (i.e., @7 = nil) // exit loop
17 ---
18 // prepare for the 2nd batch of fetches
19 $8 = $1 @8 = $KMEM(1) // kcmsg_0
20 $9 = @0(48, 55, K) == $3, @9 = @3 // ucmsg_2
21 ---
22 // unroll 2nd loop
23 assert $9 != NULL
24 fetch(F2) is {A = $9 + 0, S = 4}
25 $10 = @3(0, 3, U1), @10 = nil // ucmlen_1
26 $11 = $10 - 12 + 16, @11 = nil // tmp_1
27

28 assert $1 + $6 - $8 >= $11 --> @3(0, 3, U0) >= @3(0, 3, U1)
29

30 fetch(F3) is {A = $9 + 12, S = $10 - 12}
31 @8(12, $10 - 13, K) = @3(12, $10 - 13, U0)
32

33 $12 = $8 + $11, @12 = $KMEM(2) // kcmsg_1
34 $13 = $9 + $10, @13 = $UMEM(3) // ucmsg_3
35 assert $13 == NULL (i.e., @13 = nil) // exit loop
36 ---
37

38 // check fetch overlap
39 assert F2.A <= F1.A < F2.A + F2.S
40 AND F1.A <= F2.A < F1.A + F1.S
41 // --> satisfiable with @3(0, 3, U)
42

43 assert F3.A <= F1.A < F3.A + F3.S
44 AND F1.A <= F3.A < F1.A + F1.S
45 // --> unsatisfiable
46

47 assert F3.A <= F2.A < F3.A + F3.S
48 AND F2.A <= F3.A < F2.A + F2.S
49 // --> unsatisfiable
50

51 // check double-fetch bug
52 prove @3(0, 3, U0) == @3(0, 3, U1)
53 // --> fail, as @3(0, 3, U0) >= @3(0, 3, U1)

(c) Symbolic representation and checking

Fig. 7: A double-fetch bug in cmsghdr_from_user_compat_to_kern, with illustration on how it fits the formal definition of double-fetch bugs
(7b) and DEADLINE’s symbolic engine can find it (7c).

675

B. Static analysis on IR
Slicing and stitching. In order to obtain execution paths to feed to the
symbolic engine, we do backward slicing to get sensitive instructions that may
affect or constraint the address and size argument of transfer functions and do
forward slicing to get sensitive instructions that may be affected by the fetch-in
values of transfer functions, respectively. We stitch the sensitive instructions to
construct paths that are possibly executed at runtime. Algorithm 3 shows our
slicing and stitching algorithm: the input is a function F that contains a pair
of callsites, C1 and C2, which invoke transfer functions; the output is a set of
paths (i.e., P) that contain only sensitive instructions. Pseudo-code (i.e., line 4
– 16) shows the backward slicing algorithm: starting from the parameters of the
callsites, which are initialized as the seed vector Vv , we recursively identify
all sensitive instructions (i.e., Si) that may affect the values in Vv according
to data and control dependencies, and recursively update Vv according to the
use-def chains. We also use a set Sv to record visited values to avoid revisiting
the same values. Similarly with the backward slicing, pseudo-code (i.e., line 17
– 30) shows the forward slicing algorithm, in which the instructions affected
by the arguments are obtained by checking a value v’s users, which can be a
LoadInst loading data from v, or a BranchInst using v in its condition, etc.
With all sensitive instructions (i.e., Si) generated from forward and backward
slicing, we refine F ’s CFG by cutting off the instructions not in Si (i.e., line
31), which provides a refined CFG used for constructing paths (i.e., line 32).
We follow original control flows to construct paths that are possibly executed
at runtime.

Algorithm 3: do_slicing_and_stitching(F , < C1, C2 >)

In :F - A function contains a double-fetch pair <C1, C2>
In :< C1, C2 > - A double-fetch pair callsites in F
Out :P - A set of paths

1 Si ← ∅;
2 Sv ← ∅;
3 G ← F ’s CFG;

/* do backward slicing to identify instructions that can
affect the double-fetch pair */

4 Vv ← C1.params ∪ C2.params;
5 while !Vv .empty() do
6 v ← Vv .pop();
7 Sv .insert(v);
8 if v.isInst() then
9 Si.insert(v);

10 for Use u : v.operands() do
11 if !Sv .find(u) then
12 Vv .append(u);
13 end
14 end
15 end
16 end
/* do forward slicing to identify instructions that are
affected by the double-fetch pair */

17 Vv ← C1.params ∪ C2.params;
18 Sv .clear();
19 while !Vv .empty() do
20 v ← Vv .pop();
21 Sv .insert(v);
22 if v.isInst() then
23 Si.insert(v);
24 end
25 for User u : v.users() do
26 if !Sv .find(u) then
27 Vv .append(u);
28 end
29 end
30 end
31 refineCFG(G, Si) ;
32 P ← getPaths(G) ;

Loop unrolling. It is impossible to statically obtain all paths when a program
contains unbounded loops. Even for the loops with fixed bounds, exploring all
paths is inefficient. Therefore, we unroll each loop n times (n is configurable)
to cover as many runtime paths as possible. Algorithm 4 shows how we unroll
loops in a CFG. In procedure merge: for each loop in a CFG, if the loop
does not contain embedded loops, we merge all instructions inside the loop
as a single node, which simplifies the CFG to a directed acyclic graph (DAG),
in which we can directly get all paths. Procedure unroll takes in a path from
the DAG, and recursively unroll the loop nodes for n times until there are
no loop nodes on the path. Although this unrolling algorithm is simple, it is
proved to be efficient and effective.

Algorithm 4: merge_and_unroll
1 Function merge(cfg):
2 while cfg.hasLoop() do
3 for Loop loop : cfg.loops() do
4 if loop.isAtomic() then
5 loop.merge();
6 end
7 end
8 end
9 Function unroll(path, n):

10 changed ← true;
11 while changed do
12 changed ← false;
13 for Node node : path do
14 if node.isLoopNode() then
15 for int i = 0; i < n; i = i+ 1 do
16 node.unroll();
17 end
18 changed ← true;
19 end
20 end
21 end

676

C. Samples of double-fetch bug patches with different patching strategies

1 kernel/events/core.c | 2 ++
2 1 file changed, 2 insertions(+)
3

4 diff --git a/kernel/events/core.c b/kernel/events/core.c
5 index ee20d4c..c0d7946 100644
6 --- a/kernel/events/core.c
7 +++ b/kernel/events/core.c
8 @@ -9611,6 +9611,8 @@ static int perf_copy_attr(struct perf_event_attr __user *uattr,
9 if (ret)
10 return -EFAULT;
11

12 + attr->size = size;
13 +
14 if (attr->__reserved_1)
15 return -EINVAL;

Fig. 8: The patch to perf_copy_attr follows the override strategy

1 net/compat.c | 7 +++++++
2 1 file changed, 7 insertions(+)
3

4 diff --git a/net/compat.c b/net/compat.c
5 index 6ded6c8..2238171 100644
6 --- a/net/compat.c
7 +++ b/net/compat.c
8 @@ -185,6 +185,13 @@ int cmsghdr_from_user_compat_to_kern(struct msghdr *kmsg, struct sock *sk,
9 ucmsg = cmsg_compat_nxthdr(kmsg, ucmsg, ucmlen);
10 }
11

12 + /*
13 + * check the length of messages copied in is the same as the
14 + * what we get from the first loop
15 + */
16 + if ((char *)kcmsg - (char *)kcmsg_base != kcmlen)
17 + goto Einval;
18 +
19 /* Ok, looks like we made it. Hook it up and return success. */
20 kmsg->msg_control = kcmsg_base;
21 kmsg->msg_controllen = kcmlen;

Fig. 9: The patch to cmsghdr_from_user_compat_to_kern follows the abort on change strategy

1 block/scsi_ioctl.c | 8 +++++++-
2 1 file changed, 7 insertions(+), 1 deletion(-)
3

4 diff --git a/block/scsi_ioctl.c b/block/scsi_ioctl.c
5 index 7440de4..8fe1e05 100644
6 --- a/block/scsi_ioctl.c
7 +++ b/block/scsi_ioctl.c
8 @@ -463,7 +463,13 @@ int sg_scsi_ioctl(struct request_queue *q, struct gendisk *disk, fmode_t mode,
9 */
10 err = -EFAULT;
11 req->cmd_len = cmdlen;
12 - if (copy_from_user(req->cmd, sic->data, cmdlen))
13 +
14 + /*
15 + * avoid copying the opcode twice
16 + */
17 + memcpy(req->cmd, &opcode, sizeof(opcode));
18 + if (copy_from_user(req->cmd + sizeof(opcode),
19 + sic->data + sizeof(opcode), cmdlen - sizeof(opcode)))
20 goto error;
21

22 if (in_len && copy_from_user(buffer, sic->data + cmdlen, in_len))

Fig. 10: The patch to sg_scsi_ioctl follows the incremental copy strategy

677

1 drivers/isdn/i4l/isdn_ppp.c | 37 +++++++++++++++++++++++++------------
2 1 file changed, 25 insertions(+), 12 deletions(-)
3

4 diff --git a/drivers/isdn/i4l/isdn_ppp.c b/drivers/isdn/i4l/isdn_ppp.c
5 index 6c44609..cd2b3c6 100644
6 --- a/drivers/isdn/i4l/isdn_ppp.c
7 +++ b/drivers/isdn/i4l/isdn_ppp.c
8 @@ -825,7 +825,6 @@ isdn_ppp_write(int min, struct file *file, const char __user *buf, int count)
9 isdn_net_local *lp;
10 struct ippp_struct *is;
11 int proto;
12 - unsigned char protobuf[4];
13

14 is = file->private_data;
15

16 @@ -839,24 +838,28 @@ isdn_ppp_write(int min, struct file *file, const char __user *buf, int count)
17 if (!lp)
18 printk(KERN_DEBUG "isdn_ppp_write: lp == NULL\n");
19 else {
20 - /*
21 - * Don’t reset huptimer for
22 - * LCP packets. (Echo requests).
23 - */
24 - if (copy_from_user(protobuf, buf, 4))
25 - return -EFAULT;
26 - proto = PPP_PROTOCOL(protobuf);
27 - if (proto != PPP_LCP)
28 - lp->huptimer = 0;
29 + if (lp->isdn_device < 0 || lp->isdn_channel < 0) {
30 + unsigned char protobuf[4];
31 + /*
32 + * Don’t reset huptimer for
33 + * LCP packets. (Echo requests).
34 + */
35 + if (copy_from_user(protobuf, buf, 4))
36 + return -EFAULT;
37 +
38 + proto = PPP_PROTOCOL(protobuf);
39 + if (proto != PPP_LCP)
40 + lp->huptimer = 0;
41

42 - if (lp->isdn_device < 0 || lp->isdn_channel < 0)
43 return 0;
44 + }
45

46 if ((dev->drv[lp->isdn_device]->flags & DRV_FLAG_RUNNING) &&
47 lp->dialstate == 0 &&
48 (lp->flags & ISDN_NET_CONNECTED)) {
49 unsigned short hl;
50 struct sk_buff *skb;
51 + unsigned char *cpy_buf;
52 /*
53 * we need to reserve enough space in front of
54 * sk_buff. old call to dev_alloc_skb only reserved
55 @@ -869,11 +872,21 @@ isdn_ppp_write(int min, struct file *file, const char __user *buf, int count)
56 return count;
57 }
58 skb_reserve(skb, hl);
59 - if (copy_from_user(skb_put(skb, count), buf, count))
60 + cpy_buf = skb_put(skb, count);
61 + if (copy_from_user(cpy_buf, buf, count))
62 {
63 kfree_skb(skb);
64 return -EFAULT;
65 }
66 +
67 + /*
68 + * Don’t reset huptimer for
69 + * LCP packets. (Echo requests).
70 + */
71 + proto = PPP_PROTOCOL(cpy_buf);
72 + if (proto != PPP_LCP)
73 + lp->huptimer = 0;
74 +
75 if (is->debug & 0x40) {
76 printk(KERN_DEBUG "ppp xmit: len %d\n", (int) skb->len);
77 isdn_ppp_frame_log("xmit", skb->data, skb->len, 32, is->unit, lp->ppp_slot);

Fig. 11: The patch to isdn_ppp_write follows the refactoring to single-fetch strategy

678

