
High System-Code Security with Low Overhead

Jonas Wagner∗, Volodymyr Kuznetsov∗, George Candea∗, and Johannes Kinder†
∗School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne
†Department of Computer Science

Royal Holloway, University of London

Abstract—Security vulnerabilities plague modern systems be-
cause writing secure systems code is hard. Promising approaches
can retrofit security automatically via runtime checks that
implement the desired security policy; these checks guard critical
operations, like memory accesses. Alas, the induced slowdown
usually exceeds by a wide margin what system users are willing
to tolerate in production, so these tools are hardly ever used. As
a result, the insecurity of real-world systems persists.

We present an approach in which developers/operators can
specify what level of overhead they find acceptable for a given
workload (e.g., 5%); our proposed tool ASAP then automatically
instruments the program to maximize its security while staying
within the specified “overhead budget.” Two insights make this
approach effective: most overhead in existing tools is due to only
a few “hot” checks, whereas the checks most useful to security
are typically “cold” and cheap.

We evaluate ASAP on programs from the Phoronix and SPEC
benchmark suites. It can precisely select the best points in the
security-performance spectrum. Moreover, we analyzed existing
bugs and security vulnerabilities in RIPE, OpenSSL, and the
Python interpreter, and found that the protection level offered
by the ASAP approach is sufficient to protect against all of them.

I. INTRODUCTION

System builders routinely need to satisfy conflicting de-

mands of performance, productivity, and security. A lot of

systems code is written in unsafe languages, like C/C++,

because they have low runtime overhead, they enable low-level

access to hardware, and because they are sometimes the only

way to use legacy libraries or tool chains. The drawback is

that unsafe languages burden the programmer with managing

memory and avoiding the many behaviors left undefined by the

language specifications. This makes it especially hard to write

secure software; but the security of the entire software stack

depends on input parsers, language runtimes, cryptographic

routines, web browsers, OS kernels, and hypervisors written in

these languages. The quest for performance and low memory

consumption can often compromise safety, and even extensive

test suites and the use of tools like Valgrind still leave holes

in the code. It is thus not surprising that buffer overflows are

still the #1 vulnerability exploited by attackers [26] and that

new ones have been revealed to take control of browsers and

OSs in every edition of the Pwn2Own contest [28] since 2007.

Developers do have the option to employ techniques for

“retrofitting” security and safety into their software. Tools

like AddressSanitizer [32], StackGuard [9], SoftBound [25],

WIT [3], SafeCode [10], UndefinedBehaviorSanitizer [8],

Code-Pointer Integrity [20] etc. insert sanity checks into the

code to verify at run-time that desired safety properties hold.

These checks might verify that array indices are in bounds, that

arithmetic operations do not overflow, or that data structure

invariants hold. If a sanity check fails, it typically is unre-

coverable, and the program is aborted. Other than that, sanity

checks do not affect the program state.

Unfortunately, such approaches are hardly ever used in

production because of their overhead. The introduced san-

ity checks slow down the program and completely erase

the performance gains that come from low-level languages.

Programmers today are faced with a binary choice: fast and

insecure, or slow and safe.

This is a pity, because program instrumentation can often

be made elastic. Instrumentation tools introduce many small,
independent checks. By carefully selecting which checks to

use, developers could control the overhead and trade some

security to satisfy their performance constraints. Except that

developers lack a principled way to reason about the impact

of checks and choose the most effective ones.

We introduce ASAP, the first fully-automated approach for

instrumenting programs subject to performance constraints. It

allows developers to specify an overhead budget, and then

automatically profiles and selects checks such as to build a

program that is as secure as possible for the given budget. With
ASAP, developers can precisely choose the optimal point in

the security-performance trade-off.

It is often possible to obtain high security at low overhead,

for two reasons: First, the checks that are most important for

security are checks guarding obscure, untested, buggy code

where protection is most needed. Because this code is typically

cold, the checks are rarely executed and do not contribute

much to the overhead. Second, most of the induced overhead

comes from only few expensive checks located inside hot

loops. These checks are executed over and over again, burning

cycles while likely not adding much to the program’s security.

ASAP allocates the fixed overhead budget to checks in cold

parts of the program to maximize security. We found that this

approach works particularly well for CPU-intensive tasks such

as parsing input, encoding or decoding data, or performing

cryptography. In these cases, ASAP can select 87% of the

available sanity checks on average, while keeping the aggre-

gate overhead below 5%, which is an order of magnitude lower

than existing solutions. Because these tasks often process

untrusted data, we believe that the ASAP approach enables

real security benefits in today’s production environments.

2015 IEEE Symposium on Security and Privacy

© 2015, Jonas Wagner. Under license to IEEE.

DOI 10.1109/SP.2015.58

866

2015 IEEE Symposium on Security and Privacy

© 2015, Jonas Wagner. Under license to IEEE.

DOI 10.1109/SP.2015.58

866



ASAP quantifies the resulting security by computing the

sanity level. This is the fraction of potentially vulnerable

program instructions (e.g., memory accesses) that is protected

by a sanity check. Our experiments provide evidence that the

sanity level is a lower bound on the fraction of vulnerabilities

or bugs that will be detected by sanity checks. This lower

bound holds because bug density is higher in cold code than

in hot code, as substantiated by our study of bugs in the

Python interpreter and by security vulnerabilities from the

CVE database (§VI).
We built a prototype of the ASAP approach based on the

LLVM compiler framework [21]. It supports checks inserted

by AddressSanitizer, UndefinedBehaviorSanitizer, and Soft-

Bound. Like these tools, ASAP works at the LLVM inter-

mediate representation level. We have tested it on a number

of C/C++ programs such as the Python interpreter, OpenSSL,

Apache, NGINX, and the Phoronix and SPEC benchmarks.

ASAP uses a profiling workload to measure which checks are

most expensive. For best performance, users should choose

a profiling workload that is close enough to the production

workload to identify all expensive checks; we found that

using a program’s test suite often works well. The process of

compiling, profiling, and check selection is fully automated.
Not all programs and instrumentation tools work well with

ASAP. In some cases, a large fraction of the overhead is

not due to security checks themselves, but comes from other

sources like changes to the memory allocator, increased thread

startup time, or maintaining metadata required by checks.

We call this overhead residual overhead. We discuss its

causes in §III, and also give design principles to make future

instrumentation tools more elastic.
ASAP can be used today to increase the security of software

we run in production. It identifies cases where a surprising

amount of security can be gained for a very low price. We

will make the ASAP source code publicly available. We

hope this leads to a world without security vulnerabilities like

Heartbleed: with ASAP, the Heartbleed vulnerability would

have been avoided with only 5% reduction in web server

throughput.
This paper makes the following main contributions:

• We show that program instrumentation can be made elas-

tic, so that users can choose how much to pay for the se-

curity they need. Our tool ASAP is a practical, automated

way to navigate the security vs. performance trade-off,

reducing the entry barrier for applying instrumentation-

based security mechanisms to systems code.

• We study existing bugs and security vulnerabilities (in

Python and CVEs for open source software) and show

that about 95% lie in cold code, where protection is

cheap.

• We show that, in practice, a protection level comparable

to that of the strongest tools for retrofitting language

security can be achieved at a fraction of the overhead.

The rest of the paper provides background information

and discusses related work (§II), describes the design of

ASAP (§IV) and our ASAP prototype (§V), evaluates ASAP

on several benchmarks (§VI), discusses multiple extensions

(§VII), and concludes (§VIII).

II. BACKGROUND AND RELATED WORK

There are many aspects to the security of software systems

and many ways to improve it. We focus on sanity checks,
which verify safety properties at runtime. These properties

may relate to undefined behavior in low-level languages or

just generally to invalid states in the application logic. The

distinguishing factor of a sanity check is that once it fails, the

only safe option is to abort the program, because continuing

the execution would likely lead to dangerous undefined behav-

ior. We give a formal description of sanity checks in §IV-C.

Sanity checks are used in various forms; in the following,

we present prominent examples of sanity checks, several of

which address shortcomings of the security of low-level code

by guarding various types of critical operations.

Data Execution Prevention. A widely deployed sanity

check supported by hardware is Data Execution Prevention

(DEP) [22]. In a DEP-protected system, a process’s data pages

are marked non-executable in the system page table. The CPU

raises a hardware exception if an instruction from such a page

is about to be executed. This thwarts attacks that write attacker-

supplied code (so-called shellcode) to the process’s memory

and redirect execution to this code. DEP has to manage the

executable flag, which is essentially a form of annotation

or metadata, and it requires a (hardware) check before each

critical operation, i.e., before executing an instruction. For less

than 1% overhead, DEP protects against basic forms of remote

code execution attacks, but it can be circumvented relatively

easily using more elaborate attacks based on “return-oriented

programming” [35].

Assertions. Developer-provided assertions are the most

common type of sanity check in code. C. A. R.Hoare reported

in 2002 that over 250,000 assertions are present in Microsoft

Office [13]. Assertions incur runtime overhead, so they are

often disabled in production. To meet the conflicting demands

of safety and performance, some projects have found manual

ways to enable only “cheap” assertions. For example, the

LLVM project builds with assertions by default, but has an

XDEBUG preprocessor flag to enable additional, more expen-

sive assertions.

Many safety properties are better enforced mechanically by
tools, instead of manually by the programmer. Tools have

the advantage that they can guard all critical operations with
sanity checks; for instance, a tool can automatically insert a

check before every arithmetic operation to verify that there

is no overflow. This rules out entire categories of bugs and

vulnerabilities. Other than the fact that they are inserted

automatically and not visible in source code, the structure and

effect of such checks is similar to assertions.

Undefined Behavior Checks. UndefinedBehaviorSani-

tizer [8] (UBSan) instruments a program with checks that

ensure the absence of various operations that are undefined

in the C/C++ language standards, and thus generally unsafe

to use. UBSan catches NULL pointer dereferences, unaligned

867867



Safety Tool Overhead ASAP

Low DEP <1%

Stack Canaries <1%

High WIT 7%

CPI 8%

SAFECode 10%

ASan 73% �
UBSan 71% �

Full SoftBound/CETS 116% �

Fig. 1. Automatic solutions to enforce program safety, classified according
to the strength of their safety guarantees. A check mark in the last column
indicates that our current ASAP prototype includes support for the tool.

memory accesses, signed integer overflows, out of bound bit

shifts, etc. These problems are less frequently exploited by

attackers than memory errors. Yet they can lead to security

vulnerabilities, e.g., when an integer overflow occurs while

computing the size of an object, and thus the wrong amount of

memory is allocated. Wang et al. [36] found that compilers can

transform undefined behavior into security vulnerabilities by

“optimizing away” security-critical code. Checks inserted by

UBSan are stateless and do not require metadata. We measured

their overhead to be 71% on average on the SPEC CPU 2006

benchmarks.

Stack Canaries. Another widely used application security

mechanism are stack canaries [9] and the related Structured

Exception Handler Override Protection (SEHOP) [33]. Stack

canaries detect when function return addresses have been

overwritten. Compiler-inserted code in the function prologue

inserts a secret value just before the function return address on

the program stack. Before returning, the function verifies that

the secret value is still in place. Buffer overflows overwriting

the return address will very likely modify the secret value and

are thus detected before the attacker gains control.

Stack canaries manage metadata in the form of loading

the secret value onto the stack, and they require an extra

check before a critical operation, the function return. Stack

canaries incur below 1% overhead. They offer some protection

against simple buffer overflows, but they can be neutralized

by modifying attacks, e.g., by directly overriding the return

address [35].

Memory Safety Checks. Stronger forms of defense retrofit

memory safety to C and C++ code by protecting all memory

accesses with sanity checks. The available tools instrument a

target program such that they insert code before each memory

access to check whether the address is valid. The strictness

of this definition of “valid” influences the provided safety

guarantees and the performance overhead.

Some of the earliest examples of such tools are BCC [19],

rtcc [34], SafeC [6], and the Jones and Kelly bounds

checker [17]. CCured [27] is one of the first systems to reduce

overhead by avoiding dynamic checks. It attempts to statically

type check pointer accesses in a C program to prove that

they are safe, and only inserts dynamic sanity checks where it

cannot prove safety. It commonly requires adjustments in the

target program, but it provides a formal guarantee of memory

safety. Cyclone [16] and later Rust [30] continue along this

path. They can remove even more runtime checks in a sound

way by providing safe language features.

SoftBound CETS [24], [25] provides the same guarantee but

is designed for compatibility and to not require adjustments in

the target program. SoftBound associates bounds with every

pointer in the program, i.e., it keeps track of which memory

region the program may legally access through a particular

pointer. It inserts code to maintain metadata whenever a

pointer is created or copied. Additionally, SoftBound uses

metadata to guarantee that the object being accessed has not

been freed in the meantime. In exchange for its comprehensive

guarantees, SoftBound has the highest overhead of all tools

described here. The authors report 116% on average.

Strong guarantees come with high overhead, thus other

approaches achieve lower overhead by weakening the guar-

antees provided: Write Integrity Testing (WIT) [3] restricts

the possible target addresses of memory stores to a set of

valid objects that are statically determined at compile time.

The limitation to stores allows to reduce the overhead to 7%

on average; however, exploits of pure information leakage

vulnerabilities would remain undetected. In a similar spirit to

WIT, SAFECode [10] enforces statically computed aliasing re-

lationships, and also reports overheads below 10%. CRED [31]

restricts its sanity checks to string accesses only.

AddressSanitizer (ASan) [32] does not enforce full memory

safety, but prevents memory accesses from overflowing into

adjacent memory areas. ASan inserts forbidden areas (so-

called red zones) between objects in memory to detect buffer

overflows. Before each memory load or store, ASan consults

its shadow memory (a compact lookup table storing whether

an address is red or not) to ensure the program does not access

any red zones. Additionally, recently free’d areas are marked
red, so that use-after-free bugs can be detected. Maintaining

the red zones and the shadow memory, changing the memory

allocator, and performing access checks causes an average

slowdown of 73%.

Baggy Bounds Checking [4] achieves efficient checks by

padding all memory object sizes to powers of 2. Its sanity

checks do prevent an overflow from affecting other memory

objects, but a vulnerability or attack may go undetected if the

overflow stays within the padding.

Code-pointer Integrity [20] is a protection mechanism that

enforces partial memory safety. It protects just enough memory

areas to prevent attackers from overriding a return address or

pointer to function. This thwarts control-flow hijack attacks at

8.4% overhead. It does not prevent other values in memory to

be overridden; for example, the recent GHOST exploit for the

Exim mail server [2] would still succeed, because it overrides

an access-control list instead of a code pointer.

Finally, Control Flow Integrity [1] forgoes memory safety

altogether and only forces control flow transfers to remain

within a known set of safe target locations. It therefore only

prevents attacks that attempt to divert control flow, e.g., to

some shellcode or exploit gadgets.

868868



ASAP can be used with any tool that inserts sanity checks

into programs; its purpose is to elide the checks that provide

the lowest safety return on induced overhead, until the esti-

mated overhead fits within the given overhead budget. In our

evaluation in §VI, we show the effectiveness of our ASAP

prototype on ASan and UBSan.

The Cold Code Hypothesis. A number of tools are, like

ASAP, based on the assumption that bugs are more frequent

in cold code. This is confirmed by studies such as [38], which

found that 30% of the analyzed catastrophic failures were

caused by wrong error-handling code.

Developers can use methods such as bias-free sampling [18]

or adaptive statistical profiling [7] to focus debugging efforts

and program analysis on cold code. Similarly to ASAP, the

Multicompiler project [14] improves a program’s security by

focusing efforts on the cold parts of the program.

III. THE SANITY/PERFORMANCE TRADE-OFF

Several of the tools for retrofitting security discussed in §II

trade off security against performance. Policies like WIT or

CFI settle for enforcing a weaker security guarantee for the

entire program to reduce overhead.

ASAP takes a different approach and treats the checks

inserted by an underlying strict tool uniformly. Based on

profiling information, ASAP removes the most expensive

sanity checks, but leaves all others unchanged. Thus, the

remaining checks still have the chance of preventing exploits

that would have been possible against systems that globally

enforce a weaker policy. The downside is that ASAP cannot

provide a formal security guarantee. However, we argue that

using ASAP can make a program safer than using a tool

that achieves low overhead by globally providing a weaker

level of protection. In §VI-D1, we provide empirical evidence

by showing that a version of OpenSSL hardened by ASAP

detects the Heartbleed vulnerability at only 5% overhead.

Weaker policies such as WIT or CFI could not have prevented

the vulnerability.

Understanding the practical security achieved by a form of

instrumentation is difficult. When we apply an instrumentation

that provides a formal guarantee, such as full spatial memory

safety, we can say that we have ruled out a particular class of

attacks. However, the instrumented program is by no means

guaranteed to be perfectly secure. Other classes of attacks may

very well still be possible. We cannot clearly assign a number

to the security provided by any such instrumentation. In this

light, the level of security provided by ASAP should be seen

as orthogonal to the classes of formal guarantees enforced by

typical instrumentations. Instead of trading off performance

against classes of protection, it trades off performance against

individual sanity checks. Whether one or the other prevents

more damage to a system depends on the number and type

of vulnerabilities they prevent after being deployed. Therefore

we argue that ultimately the practical security afforded by an

instrumentation has to be evaluated empirically, which we do

in §VI-D.

Reasoning about the trade-off between sanity and perfor-

mance that ASAP provides requires that we quantify the

contributions of sanity checks to security and to performance

overhead. We would like a metric that informs us just how

much performance improves and how much safety decreases

when removing a particular check.

The impact of a single sanity check can vary significantly;

for instance, a single assertion in the Firefox browser caught

as many as 66 bugs [29]. Sometimes multiple assertions would

prevent the same vulnerability; for example, an exploit for the

recent CVE-2014-2851 vulnerability in the Linux kernel first

causes a reference counter to overflow, which later leads to

a use-after-free bug. Different assertions detect each of these

problems, and the exploit only succeeds if both assertions are

absent.

In principle, the contribution of a sanity check to safety

is its potential for detecting safety violations. Hence, the

only valuable sanity checks are those that guard potentially

vulnerable operations that could compromise security. Without

having further information on the likelihood of operations to

be vulnerable, we consider all sanity checks of critical (i.e.,

potentially vulnerable) operations like memory accesses to be

of equal value. We thus define the sanity level of a program as

the fraction of its critical operations that are guarded by sanity

checks. For a given tool that instruments all critical operations,

the sanity level is thus the fraction of (static) checks that are

still present.

Note that this metric makes no attempt to represent actual

failure probabilities. Rather, the sanity level makes a statement

about the static protection level of a program similarly to how

statement coverage makes a statement about the quality of a

test suite. ASAP considers only the estimated run-time cost

when choosing which checks to eliminate, so the accuracy of

the sanity metric does not affect the resulting programs. We

use the sanity level only as an easily measurable indication of

protection remaining in the program at a given overhead. A

more reliable assessment of the effectiveness of the protection

can only be made empirically using real vulnerabilities, as

discussed above.

The choice of providing no security guarantees liberates

ASAP from constraints that make existing solutions too slow

to be widely adopted in practice. It enables users to weigh

security benefits against performance.

We quantify the performance impact of a given sanity

check by estimating its run-time cost in terms of CPU cycles.

However, a sanity check can also impact performance in

other ways: (1) checks depend on metadata that needs to

be computed and propagated; (2) the metadata needed by

checks occupies registers and cache lines, leading to higher

register pressure and more cache misses; (3) instrumentation

tools incur some fixed overhead. For example, every time a

program spawns a new thread, AddressSanitizer needs to set

up metadata for the thread’s stack; (4) instrumentation tools

may modify memory allocators, function calling conventions,

the runtime library, or the program’s memory layout. Each of

these modifications can affect performance.

869869



We estimate run-time cost via CPU cycles only for two

reasons. First, the CPU cycles required to execute individual

checks allow to estimate their cost relative to the total instru-

mentation cost, which is all that is needed for ASAP. Second,

ASAP does not yet affect metrics like memory overhead, and

so it has not yet been necessary to measure them.

ASAP’s goal is to allow system developers fine-grained

control over the sanity/performance trade-off. Each of the

tools we analyzed provides manual ways to tune performance.

ASan, UBSan and SoftBound allow individual functions to be

excluded from instrumentation. Users can tweak the size of

red zones in ASan, disable a specific type of check in UBSan,

or instrument only write operations in SoftBound. Each of

these tweaks are coarse-grained in the sense that users cannot

target individual checks. They are also imprecise because users

cannot measure the impact of individual checks on perfor-

mance. We show in §VI that ASAP’s automated, profiling-

based approach only needs to eliminate a small fraction of

checks to significantly reduce overhead; e.g., removing the

top 5% most expensive checks reduces overhead by 76% on

average for the benchmarks in our evaluation.

Our analysis of 2014’s CVE entries (§VI-F) and of several

security bugs in Python provides empirical evidence that most

bugs lurk in cold regions of the program; the sanity checks

that prevent them from being exploited thus often cause only

little run-time overhead.

IV. DESIGN

ASAP takes as input a software system and a workload, as

well as one or several instrumentation tools. It then applies

these tools to obtain a full set of available sanity checks.

After estimating the cost of checks by profiling, ASAP then

selects and applies a maximal subset such that the combined

overhead is within budget. The remainder of this section

presents the ASAP workflow in detail (§IV-A), discusses

the choice of workload for profiling (§IV-B), introduces the

concept of sanity checks (§IV-C), and explains how ASAP’s

design choices affect its effectiveness (§IV-D).

A. The ASAP Workflow

A user of ASAP starts with a software system that is

to be protected using one or several instrumentation tools.

We designed ASAP to be part of the software’s compilation

process, just like the instrumentation tools described in §II.

Compilation using ASAP consists of three steps: instrumen-
tation, profiling, and check selection. The initial steps are

illustrated in Figure 2.

1) Instrumentation: The user starts by compiling the target
program with full instrumentation enabled. This step depends

on the specific instrumentation tool, but can be as simple as

adding an additional compilation flag (for ASan, SoftBound,

and UBSan). This leads to a binary (or several) that is pro-

tected, but too slow to run in production. ASAP automatically

recognizes the sanity checks in the program in order to

measure and process them further.

=60 cycles

=7 cycles

=

=

Fig. 2. Recognizing sanity checks and measuring their cost. The figure show
an example control-flow graph fragment of an instrumented program. ASAP
first recognizes all the sanity checks (shown in red) by their structure. During
profiling, ASAP counts how often each instruction in these checks is executed.
It then uses these counts to estimate the amount of time spent due to each
check.

2) Profiling: The second step consists of profiling the

application against a suitable workload and computing the

cost of each check. To obtain profiling data, ASAP further

instruments the program from step 1 with profiling counters.

Similar to GCOV [11], it adds one counter per edge between

basic blocks. Before each branch, ASAP inserts an increment

of the corresponding counter.

Once the profiling run finishes, ASAP computes from the

counter values the number of times any given instruction in

a sanity check has been executed. By multiplying this value

with a static estimate of the CPU cycles required to execute

that instruction, it computes the accumulated cost for that

instruction. The total cost in CPU cycles of a given sanity

check is then the sum of the costs of the instructions inserted

by that check. The sum of the costs of all sanity checks in the

program gives the total number of cycles spent in checks while

executing the profiling workload with the fully instrumented

program.

To accurately estimate the percentage of overhead due to

each check, ASAP first measures the maximum overhead

omax at full instrumentation. The maximum overhead results

from measuring the running time of the software with full

instrumentation (but no profiling counters) and subtracting its

running time when executed without any instrumentation at

all. Many instrumentation tools also have a fixed overhead

omin that is independent of the checks (e.g., for metadata

management). ASAP measures this minimum overhead by

running a version of the software that is instrumented but had

all actual checks removed.

ASAP uses the data from these three profiling runs to

determine the fraction of the total cycles spent in checks

that can be preserved without exceeding the overhead budget,

which we call the cost level c. The overhead o is a linear

function of c:

o = omin + c · (omax−omin)

Our experimental results confirm that this linear relationship

holds and thus the cycle-based estimation of check cost is

870870



�

�

��

�

�

�

�
��
�

�

�

�

�

�

�
�

�
�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�

�

�

�
��

�

�

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

� �
�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

��

�
�
�
��
�

�

�

�

�

�

���

�

�
�

�

�

�

�

�

�

�

�

�

��

��
�

�

��

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�
�

�

�

�

�

�

�

�

�
�
��

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�
�

� �

�

�

�

�

�

�
�

�

�

�
�
�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

��
�

��

�
�

�

�

�
�

�

�

�

�

�

�
�

��

�

� ��

�

�
�

�

�

�

�
�

�

�

�

�

�

�

� �

�
�

�
�

�

�

�

�

�

�

�

�

�

�
��
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�
�

�

�
�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

��

�

�
�

�

�

�

�

�

�
�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

��

�

�

�
�

��

�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�
�

�

�

�

�

�
�

�

��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
� �

�

�

�

�
�

�

�

�
�

�

�
�
�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�
�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

�
�

�

�

�

�
�� �

�

�

�
�

�
�

�

�

�

�
�

�

�
�

�

�

� �

�
�

�

�

�

�

�

�

�

� ���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�
�

�

�

�

�

��

�

�

�

�
�

�

�

�

�

�

��

�
��

�

�

�

�

�

��

�
�

�

�

�

�
�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

��

�
�

�

�

�
�

�

�
�

�

�

�

�

�

�

��

�

�

�

�

��

�
�

�

�

�

�
�

�

�

�

�

��

�

�
�

�
��

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�
�
�

�

�
�

�
�

�

�

�

�

�

���

�

�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

������

�

�

�

�

�

�

�

�
�

�

�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

��

��

�
�

�

�
�
�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�
�
�

�

�

�

�

��
�

�
��

�

�
�

�
�
�

�

�

�
�

��

�

�
�

�

�

�

�

�

�

�

��

�

��

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�
�

�

��

�

�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�
�

�

�

�

�
�
�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�
�

�

�
�
�
�

�

�
�

�
�

�

�

�

�

���

��

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

���� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

��

�

��

�

�

�

�

�

�

� �

�

�

�
�

�

�

�
�

�

�

� �
�
�

�

�

�
�

�

�

�

�
�

��
�

�

�
�

�

�

�

��

�

�
�

�

�
�

�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

��

�

��

�

�
�

�

�
�

�

�

�

��

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

��

��

�

�

�

��

�

�

�
�

�

��

�

�

�

���

�
�

�

�

��

�

�

�

��

�

�
�

�

��

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

� �

�

�

�

�

�

�

�

�
��
�

�
�

�

�
�

�

�
��

�

�

�

�

�

�

�

�

�

�

��

��

�

�
�

�

���

�
�

�

�

�

�

�

� ��

�

��

�
�

�

�

�

�

�

�

�

��

��

�

�

�

�

�
��

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�
�

�

�
�
�

�

�

���

�

�

�

�
�

�

�

�

�

��

�

�

�
�

�

�

�

��

�

�

��

�

�

�

��

�

�

�

�

�
�
�

�

��

�
�

�

����

�

�
�

�
�

�

�

� �

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

��

�

��

�

�
�
�

�

�

�

�

�

�

��
��
�

�

�
�

�

�
�

�

��

�

�

��

�

�

�

�

�

�

�

�

���

�

�

�
���

�

�

�

�
�

��

�

�

�

�

�
�

�

�

�

��

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

��

�

�

�
�

��

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

��
�

��

�

�
�

�

�

�
�
�

�

�

��

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

��

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�
�

�

��

�

�

�
�

�

�

�
�

�
�
��

�

�
�

��

�

�

�

�

�

�

�

��

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�
�

�

�

�

�

�

�
�

�

��

���

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

��

�

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

���

��

�

�

�

�

�

�
��
�

�

�

�

�

�

�

�

�

�

�

��

�
�

�

�

�

�

�

�
��

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

��

�

�

��
�

�

�

��

�

�

��

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�
�

�

��
�

�

�

�

�

�

�

�

��

�

�

�

�
�

�

�

�

�

�

�

�

�� �

��

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�

��

�

�

��

�

�

�

�

��

�

�

�
�

�

�

��

�

�

�

�

��

�
�
�

�

�

�

�

�

�

��

�

�

�

�

�

�
�
�
�

�

�
��
�

�

�

�

�

�

�
�

�

�

�

�

�

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

��

�

�
�

��

�

�

��

����

�

��

�

�

�

�

�

�

�

�

�

�

�
�

�

��

��

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�
�

�

�

��

�

��
�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�

��

�

�

�

�
�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�
�
�

��

�

��

�

�

�

�
�

�

�

� �

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

��

�

�

�

�
�

���

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�
�
�

��
��

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

�
�
�

�

��

�

�

���

��

�

�
��

�

�

�

�

��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

��

�

�

�

�

�

�

�

��

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�
�

��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

��

�

�

�
�
�

�
�

�
�

�

�

�

�
��

�

�

�

�

�

��

�

�

�

��

�
�

�

�

�

�

�

�

�

��

�
�

�

�

��

�

�

��

�

�

�

�

�

�

�
�

�
�

�

�
�

�

�

�

�

��

�

�

�

�

�
�

�

�
�

�
�
��

�
�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
��

�

�
�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�
��

�

�

�

��

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�
��

�

�

�

�

�
�

�

�

�

�
�

�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�

�
�

�

�
��

�

��

�

�

�

�

�
�

�
�

��

��

�

�

�
�

��

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�

�

�

�

��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

��

�

�

�
� �

�

�

�

��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

��

�
�
�

�
�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

��

�

�

�

�

�
�

�

�

�
��

��

�

�

�

�

�

�

�

�
��
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�

��

�

�

�

�

�

��

�
�

�

��

�

�

�

�

�
�

�

��

�

�

�

���

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�
��

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

��

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

�

�

�

�
�

�

�
�

�

�

�

�
�

�

�
��

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

�

�

�
�

�

�

��

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�

���

�

�

�

�

���

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

��

�

�
�
�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

��

�

�

�
�

�

�

�
�

�

��

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

0 1G 2G 3G 4G
Approximate cost [CPU cycles]

F
ra

ct
io

n 
of

 c
he

ck
s

Fig. 3. Dotplot of the cost of the 3864 sanity checks in the bzip2 benchmark.
A dot’s position on the x axis corresponds to the corresponding check’s cost
in 109 cycles. The single most expensive check is as expensive as the 3414
cheapest checks together.

precise enough to give ASAP accurate control of the incurred

overhead. For a given target overhead o, the target cost level
c can be computed by transforming the above equation:

c =
o−omin

omax−omin

3) Check Selection: Knowing the cost of each check and

the target cost level, ASAP now uses a simple greedy algo-

rithm to compute a maximal set of checks to preserve, while

staying within the overhead budget. It orders checks by cost

and preserves them starting with the cheapest check, as long as

the fraction of the total check cost allowed by the cost level

c is not exceeded. Because the distribution of check cost is

highly skewed, it is possible to preserve a fraction of checks

that is much larger than the fraction c of the total cost. Figure 3
shows a typical distribution of check cost in a program, where

a few hot checks dominate the cost of the instrumentation.

ASAP eliminates all checks that have not been preserved

by removing them from the instrumented program generated

in step 1. It then re-optimizes the program using standard

compiler optimizations. This ensures that all data computed

solely for use by those sanity checks is also removed from

the program. The result is an optimized, production-ready

executable.

When production workloads have significantly changed

from what was used during profiling, steps 2 and 3 can

be repeated with an updated workload to re-estimate the

performance trade-off and produce a newly adapted binary.

B. Workload Selection

Profiling identifies a set of hot regions in a program. For

optimal results, the checks in these regions should be the

ones that are most expensive in production, and the ones that

contribute least to security. These two requirements are often

well aligned in practice, and can be used as guidelines to select

an ideal profiling workload.

ASAP is based on the assumption that a few sanity checks

are much more expensive than others. For ASAP to meet

tight overhead budgets, the profiling workload must expose

the expensive checks. This means that it should execute all

performance-critical program components. The specific way

in which they are executed does not matter, because ASAP

only depends on expensive checks being sufficiently visible,

not on precisely measuring their runtime. Naturally, a profiling

workload representative of real workloads will yield the best

results in production.

Our confidence in the security provided by the remaining

checks is based on the assumption that checks in cold code

are more likely to catch bugs than checks in hot code. For

this to hold, it is important that the program parts stressed

by the profiling workload are also well tested. This is often

implicit, but can be made explicit by using the program’s

test suite as the profiling workload. The test suite does not

need to have high coverage, as ASAP will preserve checks in

uncovered parts. However, it should provide assurance that the

covered parts are indeed correct, e.g., by using a large number

of assertions to audit the program state.

Developers can use these ideas to actively guide ASAP. For

example, by increasing test coverage for performance-critical

program parts, confidence in the correctness of these parts

increases and the need for safety checks decreases. ASAP

will exploit this and assign checks to other areas where they

are needed more, thereby improving performance.

C. Sanity Checks

To understand how ASAP works and what it assumes, we

define a sanity check to be a piece of code that tests a safety

condition and has two properties: (1) a passing check is free of
side-effects, and (2) a failing check aborts the program. This
characterization of sanity checks has important implications:

First, ASAP can automatically recognize sanity checks in

compiled code. Second, removing a sanity check is guaranteed

to preserve the behavior of the program, unless the check

would have failed. Note that metadata updates are not part

of sanity checks by this definition (and can thus remain as

residual overhead).

The sanity checks seen by ASAP do not necessarily corre-

spond exactly to operations in the program source, since it runs

after compiler optimizations have been already applied. ASAP

benefits from its tight integration with the compiler. Depending

on their type, the compiler may be able to eliminate certain

sanity checks on its own when they are impossible to fail.

Other transformations such as function inlining can duplicate

static sanity checks in the compiled program. This refines the

granularity of ASAP: if there are multiple copies of the same

function, ASAP can distinguish the individual call sites and

may choose to optimize only some of them.

D. Design Choices

ASAP is tool-agnostic and can work with all mechanisms
that insert sanity checks into the program. We tested our

prototype using AddressSanitizer, SoftBound and Undefined-

BehaviorSanitizer, and verified that the checks inserted by

WIT and SafeCode (see §II) also follow the same structure.

We designed ASAP to be a compiler-based solution. The
advantage of source code access over a pure binary solution

is that ASAP can thoroughly re-optimize programs once

expensive checks have been removed. This allows additional

871871



dead code elimination, reduces register pressure, and can

make hot functions small enough to be inlined. In principle,

however, ASAP’s approach would also work with a powerful

binary rewriting and reoptimization system in the spirit of

SecondWrite [5].

ASAP relies on profiling. We chose this approach because
it is a reliable way to obtain the cost of a check, and makes no

assumptions about the nature of the program or the structure

of sanity checks. However, it requires an adequate workload

and increases build times. For many projects, a workload is

available in form of a test suite; this special case has interesting

implications for security and is discussed below.

We ensured ASAP is practical. It can be applied to any

system for which the underlying instrumentation tool works,

and it does not add any restrictions of its own. Safety checks

may soon make use of upcoming hardware support such as

the Intel MPX extension [15]. To support this scenario, ASAP

only needs to recognize instructions that may abort a program,

and know their run-time cost.

ASAP is easy to understand. It uses a simple greedy

algorithm to remove checks that are too costly. Developers

can reason about the diminishing returns of additional safety

checks, based on the intuition that 80% of the safety can

be obtained with just 20% of the overhead (as §VI shows,

the actual numbers are even better). We did consider more

complex solutions before settling for this simplicity, though.

For instance, ASAP could reason about dependencies between

checks to obtain higher security. It could only remove checks

that are provably not needed. Some possible extensions are

discussed in §VII, but we believe the simplicity of the current

solution to be a key strength.

V. IMPLEMENTATION

This section presents the architecture of ASAP, and its core

algorithms for detecting sanity checks, estimating their cost,

and removing expensive ones from programs.

ASAP is based on the LLVM compiler framework and

manipulates programs in the form of LLVM bitcode, a typed

assembly-like language specifically designed for program

transformations. It supports source-based instrumentation tools

and those that have themselves been built on LLVM, which

covers the majority of modern static instrumentation tools for

C/C++/Objective C.

Users use ASAP through a wrapper script, which they

invoke instead of the default compiler. In addition to producing

a compiled object file, this wrapper also stores a copy of the

LLVM bitcode for each compilation unit. This copy is used

during subsequent stages to produce variants of the object

with profiling code, or variants instrumented for a particular

overhead budget.

ASAP works on programs one compilation unit at a time.

It keeps no global state (except check data described later) and

does not require optimizations at link-time. This is important

for supporting large software systems that rely on separate

and parallel compilation. The only phase in the workflow that

requires a global view is the check selection phase, where

; <label>:0
%1 = load i32* %fmap_i_ptr, align 4
%2 = zext i32 %1 to i64
%3 = getelementptr inbounds i32* %eclass, i64 %2
%4 = ptrtoint i32* %3 to i64
%5 = lshr i64 %4, 3
%6 = add i64 %5, 17592186044416
%7 = inttoptr i64 %6 to i8
%8 = load i8* %7, align 1
%9 = icmp eq i8 %8, 0
br i1 %9, label %18, label %10

; <label>:10
%11 = ptrtoint i32* %3 to i64
%12 = and i64 %11, 7
%13 = add i64 %12, 3
%14 = trunc i64 %13 to i8
%15 = icmp slt i8 %14, %8
br i1 , label %18, label %16

; <label>:16
%17 = ptrtoint i32* %3 to i64
call void @__asan_report_load4(i64 %17) #3
call void asm sideeffect "", ""() #3
unreachable

; <label>:18
%19 = load i32* %3, align 4

%15

Fig. 4. A sanity check inserted by AddressSanitizer, in the LLVM intermediate
language. The corresponding C code is cc1 = eclass[fmap[i]] and
is found in blocksort.c in the bzip2 SPEC benchmark. Instructions
belonging to the check are shaded. The red circle marks the branch condition
which, when set to true, will cause the check to be eliminated.

ASAP computes a list of all sanity checks in the software

system and their cost. This phase uses an efficient greedy

selection algorithm described in §IV-A and has little impact

on compilation time.

ASAP automatically recognizes sanity checks. Recall from

§IV-C that a sanity check verifies a safety property, aborts the

program if the property does not hold, and is otherwise side-

effect-free. ASAP searches for sanity checks by first looking

at places where the program aborts. These are recognizable

either by the special LLVM unreachable instruction, or

using a list of known sanity check handler functions. The

sanity checks themselves are the branches that jump to these

aborting program locations. Figure 4 shows an example.

The listing is shown in the LLVM intermediate language,

which uses static single assignment form (SSA); each line

corresponds to one operation whose result is stored in a virtual

register, numbered sequentially from %1 to %19. This sanity
check protects a load from the address stored in register %3.
It computes the metadata address (%7), loads shadow memory

(%8) and performs both a fast-path check (the access is allowed
if the metadata is zero) and a slow-path check (the access

is also allowed if the last accessed byte is smaller than the

metadata). If both checks fail, the program is aborted using a

call to __asan_report_load4.
ASAP computes the set Ic of instructions belong-

ing to the check starting with the aborting function

(__asan_report_load4 in our example). It then recur-

sively adds all operands of instructions in Ic to the set, unless

they are also used elsewhere in the program. It also adds to Ic
all branch instructions whose target basic block is in Ic. This

is repeated until Ic reaches a fixpoint. In Figure 4, a shaded

background indicates which instructions belong to Ic.

The instructions in Ic are used for computing check costs

872872



as described in §IV-A. A number of different profiling mech-

anisms can be used to measure instruction cost. Our choice

fell on GCOV-style profiling counters, where the profiler uses

one counter per basic block in the program and adds a

counter increment before every branch instruction. Profiling

thus determines the number of times each instruction was

executed; we obtain an estimate of the actual cost by applying

the static cost model for instructions that is built into LLVM’s

code generator. The advantage of this approach is that it is

robust and yields cost estimates at instruction granularity that

are unaffected by the profiling instrumentation itself.

ASAP removes checks that are too costly from the program

by altering their branch condition. In our example in Figure 4,

it replaces the branch condition %15, circled in red, by the

constant true, so that the check can never fail. The rest

of the work is done by LLVM’s dead code elimination pass.

It recognizes that all shaded instructions are now unused or

unreachable and removes them.

All steps ASAP performs are generic and do not depend on

any particular instrumentation. In fact, the ASAP prototype

works for AddressSanitizer, SoftBound, UndefinedBehavior-

Sanitizer, and programmer-written assertions. It contains ex-

actly four lines of tool-specific code, namely the expressions

to recognize handler functions such as __asan_report_*.
This makes it straightforward to add support for other software

protection mechanisms. Also, we did not need to alter the

instrumentation tools themselves in any way.

We mention one extra feature of ASAP that helped us

significantly during development: ASAP can emit a list of

checks it removes in a format recognized by popular IDEs.

This makes it easy to highlight all source code locations where

ASAP optimized a check. Developers can use this to gain

confidence that no security-critical check is affected.

ASAP is freely available for download at http://dslab.epfl.

ch/proj/asap.

VI. EVALUATION

In our evaluation, we want to know both how fast and how

secure instrumented programs optimized by ASAP are. Any

software protection mechanism needs to quantify its overhead

and security. More specifically in the case of ASAP, we ask:

1) Effectiveness: Can ASAP achieve high security for a

given, low overhead budget? We show that ASAP, using

existing instrumentation tools, can meet very low overhead

requirements, while retaining most security offered by those

tools.

2) Performance: How much can ASAP reduce the over-

head of instrumentation on any given program? Does it

correctly recognize and remove the expensive checks? What

effect does the profiling workload have on performance? What

are the sources of the residual overhead?

3) Security: Does ASAP in practice preserve the protection
gained by instrumenting software? How many sanity checks

can it safely remove without compromising security? We also

analyze the distribution of both sanity checks and security

vulnerabilities in software systems, and draw conclusions on

the resulting security of instrumented programs.

A. Metrics

We quantify performance by measuring the runtime of both

the instrumented program and an uninstrumented baseline and

computing the overhead. Overhead is the additional runtime
added by instrumentation, in percent of the baseline runtime.

The cost level (see §IV-A) is determined from the minimum,

maximum, and target overheads for a program, and the sanity
level (see §III) is the fraction of static checks remaining in the
program. To quantify the security of an instrumented program,

we measure the detection rate, i.e., the fraction of all bugs and
vulnerabilities that have been detected through instrumenta-

tion. The detection rate is relative to a known reference set

of bugs and vulnerabilities (e.g., those detected by a fully

instrumented program), because all bugs or vulnerabilities

present in a particular software cannot be known in general.

B. Benchmarks and Methodology

We evaluated ASAP’s performance and security on pro-

grams from the Phoronix and SPEC CPU2006 benchmarks,

the OpenSSL cryptographic library, and the Python 2.7 and

3.4 interpreters. For instrumenting the target programs, we

used AddressSanitizer (ASan) and UndefinedBehaviorSani-

tizer (UBSan) (described in §II), which are both widely

applicable.

Unless otherwise noted, all performance numbers reported

use cost levels that are safe, i.e., the optimized program is

protected against all known vulnerabilities. Our default cost

level is 0.01, for reasons described in the security evaluation

in §VI-D.

We use a collection of real and synthetic bugs and vul-

nerabilities to quantify ASAP’s effect on security. We also

analyze to what degree ASAP affects the detection rate for

the RIPE benchmark (a program containing 850 different

combinations of buffer overflow exploits), known bugs in the

Python interpreter, and the entries in the CVE vulnerability

database for the year 2014.

The paragraphs below give details on setup, workloads and

hardware used for each of our experiments.

1) SPEC CPU2006 Benchmarks: The SPEC CPU2006

suite is a set of 19 benchmark programs written in C/C++.

Each program comes with a training workload that we used

for profiling, and a reference workload, approximately 10×
larger, used for measuring overhead.

We compiled for each program a baseline version without

instrumentation and a fully-instrumented version. The runtime

difference between these two is the overhead of instrumenta-

tion. In addition, we used ASAP to create optimized executa-

bles for cost level 0.01, and for sanity levels between 80% and

100%. We increased the resolution for sanity levels close to

100%, because small changes in the sanity level have a large

impact on overhead in this region.

All the experiments were run for AddressSanitizer and Un-

definedBehaviorSanitizer. For AddressSanitizer, we disabled

873873



stack trace collection to mimic a production scenario where

performance is more important than informative debug output.

We also turned off error recovery (UBSan will by default print

a warning message and attempt to recover if some checks

fail), choosing to always abort the program when an error

is detected. Unfortunately, not all benchmarks are compatible

with both instrumentation tools; we could run 14 benchmarks

for ASan and 12 for UBSan.1.

All data points have been measured on machines with a

3.4GHz Intel Core i7 CPU (4 cores, hyperthreading) and 8GB

RAM.

2) OpenSSL: We compiled OpenSSL with AddressSan-

itizer. This is sufficient to protect the library from the

Heartbleed vulnerability. To enable AddressSanitizer, only

minor modifications to OpenSSL were needed: we changed

crypto/mem.c to ensure that no custom memory al-

locators were used. We also compiled OpenSSL with

-DOPENSSL_NO_BUF_FREELISTS, and disabled Address-
Sanitizer for the OPENSSL_cpuid_setup function be-

cause it contains incompatible inline assembly. We used the

OpenSSL test suite as the profiling workload for the initial

phase of ASAP.

To determine the instrumentation overhead, we mea-

sured OpenSSL’s performance in a number of benchmarks.

OpenSSL is most widely used in web servers; we bench-

marked the throughput of a web server by measuring the

number of pages that can be served per second. Our measure-

ments use OpenSSL’s built-in web server with a 3KB static

HTML file. We also looked at the throughput of OpenSSL’s

cryptographic primitives, and the time it takes to run the test

suite. OpenSSL performance measurements were done on a

workstation with an Intel Xeon CPU (4 cores @ 2GHz) and

20GB RAM.

3) Python: We compiled the Python 3.4 interpreter with

AddressSanitizer and UndefinedBehaviorSanitizer instrumen-

tation. We obtained profiling data by by running Python’s unit

test suite. This same workload is used by the Ubuntu package

maintainers for creating a profile-guided-optimization build of

Python.

We evaluated performance using the default benchmarks

from the Grand Unified Python Benchmark Suite [12]. All

measurements were done on a workstation with an Intel Xeon

CPU (4 cores @ 2GHz) and 20GB RAM.

C. Performance Results

We report the cost of security, with and without ASAP,

in Figure 5. For each benchmark, we display three values:

1Under ASan, omnetpp does not compile because it uses a custom new
operator. Xalancbmk and dealII do not compile due to a bug in LLVM’s
cost model used by ASAP. Perlbench and h264ref abort at runtime due
to buffer overflows involving global variables.
Under UBSan, 10 of 19 benchmarks abort because they perform undefined

behaviors such as left-shifting a signed int by 31 places, multiplication
overflow, or calling functions through function pointers of the wrong type.
We could run 4 of them nevertheless, by selectively disabling one or two
types of checks, and included them in the evaluation. We could not compile
omnetpp with UBSan.

The overhead of full instrumentation (leftmost, dark bars), the

overhead with ASAP at cost level 0.01 (gray bar, center), and

the residual overhead (light bars, right). This data reveals a

number of results:

Full instrumentation is expensive. On SPEC, both Ad-

dressSanitizer and UndefinedBehaviorSanitizer typically cause

above 50% overhead.

ASAP often reduces overhead to acceptable levels. For
eight out of 14 SPEC benchmark, ASAP reduces ASan over-

head to below 5%. This result is also achieved for seven out

of 12 benchmarks with UBSan. For three UBSan benchmarks,

the overhead at cost level 0.01 is slightly larger than 5%.

For the remaining benchmarks, ASAP gives no security

benefits because they are not elastic: their residual overhead

is larger than 5%. In this case, ASAP can only satisfy the

overhead budget by producing an uninstrumented program.

ASAP eliminates most overhead due to checks. In all cases
except for soplex, the overhead at cost level 0.01 is very

close to the residual overhead. Although many checks remain

in the programs (87% on average for the benchmarks in

Figure 5, generally more for larger programs such as Python),

they do not influence performance much, because they are in

cold code. These results show that ASAP correctly identifies

and removes the hot checks.

ASAP’s performance does not depend on precise profiling.
This is a corollary from the last observation. A bad profiling

workload would not allow ASAP to identify the expensive

checks, and thus lead to a large difference between overhead at

c = 0.01 and residual overhead. Conversely, a perfect profiling
workload can only improve ASAP’s performance up to the

residual overhead.

Even small reductions in security lead to large performance
gains. In Figure 6, we show the speedups obtained when

reducing the sanity level step by step. The gray area corre-

sponds to the entire security-performance space that ASAP

can navigate. The lightest gray area, or 47% of the total

overhead, can be eliminated by removing just 1% of the

sanity checks. This shows how additional cycles invested into

security give diminishing returns, and confirms that indeed

only few checks are hot.

D. Security Evaluation

Developers and operators who use ASAP need to know how

safe the resulting programs are. In particular, we measure how

ASAP affects the detection rate of software instrumentation:

what is the chance that a bug or vulnerability that was

previously prevented by instrumentation is present in a ASAP-

optimized program?

As discussed in §III on the sanity/performance trade-off, the

detection rate depends primarily on the sanity level, i.e., the

fraction of critical instructions that are protected with sanity

checks. Since the sanity level is directly determined by the

cost level, we can find an overall minimum cost level at

which all known vulnerabilities would have been caught. The

following paragraphs present our results of case studies on the

OpenSSL Heartbleed vulnerability, Python bugs, and the RIPE

874874



SPEC
ASan

SPEC
UBSan

0

25

50

75
40

1.
bz

ip
2

42
9.

m
cf

44
4.

na
m

d

45
6.

hm
m

er

46
2.

lib
qu

an
tu

m

47
0.

lb
m

47
3.

as
ta

r

48
2.

sp
hi

nx
3

40
1.

bz
ip

2

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

45
0.

so
pl

ex

45
8.

sj
en

g

47
0.

lb
m

47
3.

as
ta

r

48
2.

sp
hi

nx
3

O
ve

rh
ea

d 
in

 %

R
es

id
ua

l
A

S
A

P
F

ul
l

(a) ASAP performance results for SPEC benchmarks where omin < 5%.

Phoronix
ASan

Phoronix
UBSan

0

40

80

120

C
ra

fty

G
ra

ph
ic

sM
ag

ic
k

A
da

pt
iv

e 
T

hr
es

.

G
ra

ph
ic

sM
ag

ic
k

A
da

pt
iv

e 
T

hr
es

h.

G
ra

ph
ic

sM
ag

ic
k

B
lu

r

G
ra

ph
ic

sM
ag

ic
k

H
W

B
 C

ol
or

Jo
hn

 th
e 

R
ip

pe
r:

B
lo

w
fis

h

Jo
hn

 th
e 

R
ip

pe
r:

D
E

S

Jo
hn

 th
e 

R
ip

pe
r:

M
D

5

LA
M

E
 M

P
3 

E
nc

.

Li
bJ

P
E

G

P
rim

es
ie

ve

T
S

C
P

C
ra

fty

Jo
hn

 th
e 

R
ip

pe
r:

B
lo

w
fis

h

Jo
hn

 th
e 

R
ip

pe
r:

D
E

S

O
ve

rh
ea

d 
in

 % R
es

id
ua

l
A

S
A

P
F

ul
l

(b) ASAP performance results for Phoronix benchmarks where omin < 5%.

Fig. 5. Summary of ASAP performance results. For each benchmark, we show three values: The darkest bar represents overhead for full instrumentation.
The next bar shows overhead with ASAP at cost level 0.01. The lightest bar show the residual overhead, i.e., overhead that is due to other factors than
sanity checks. Only elastic benchmarks (with residual overhead of less than five percent) are shown. ASAP brings the overhead of instrumentation close to
the minimum overhead, while preserving a high level of security. For the benchmarks shown here, ASAP removes 95% of the overhead due to checks, and
obtains an average sanity level of 87%.

875875



ASan

0

20

40

60

80

100

120

Jo
hn

 th
e 

R
ip

pe
r:

D
E

S
46

2.
lib

qu
an

tu
m

Jo
hn

 th
e 

R
ip

pe
r:

M
D

5
47

0.
lb

m
G

ra
ph

ic
sM

ag
ic

k
A

da
pt

iv
e 

T
hr

es
h.

G
ra

ph
ic

sM
ag

ic
k

B
lu

r
T

S
C

P

42
9.

m
cf

Li
bJ

P
E

G

44
4.

na
m

d

47
3.

as
ta

r

40
1.

bz
ip

2

48
2.

sp
hi

nx
3

LA
M

E
 M

P
3 

E
nc

.

45
6.

hm
m

er

P
rim

es
ie

ve
Jo

hn
 th

e 
R

ip
pe

r:
B

lo
w

fis
h

C
ra

fty

O
ve

rh
ea

d 
in

 %
UBSan

Jo
hn

 th
e 

R
ip

pe
r:

D
E

S
Jo

hn
 th

e 
R

ip
pe

r:
B

lo
w

fis
h

42
9.

m
cf

47
0.

lb
m

40
1.

bz
ip

2

43
3.

m
ilc

44
5.

go
bm

k

45
8.

sj
en

g

C
ra

fty

48
2.

sp
hi

nx
3

45
0.

so
pl

ex

Sanity level

100%

99%

98%

95%

90%

80%

Overhead

Omax

Omin

5%

Fig. 6. This graph shows the space of possible performance-security trade-offs. The orange line shows overhead of existing instrumentation tools; it averages
at 54% for ASan and 45% for UBSan. ASAP can reduce this overhead down to the blue minimal overhead line. The shade of the area corresponds to the
sanity level (darker = fewer checks). Reducing the sanity level by a small value has a large impact on overhead; for example, reducing the sanity level to 99%
reduces overhead by 47% on average. There are a few cases where programs with more sanity checks are slightly faster than programs with fewer checks
(e.g., libquantum with ASan or lbm with UBSan). This is due to the sometimes unpredictable effects of checks on caches, compiler heuristics, optimizations
etc.

benchmark; they demonstrate that a cost level of 0.01 would

have been sufficient to prevent all vulnerabilities studied.

1) OpenSSL Heartbleed: The OpenSSL Heartbleed vul-

nerability is due to a bug in OpenSSL that manifests when

processing heartbeat messages. Such messages have a length

field and a payload, the size of which is expected to match the

length field. Yet, attackers can send a heartbeat message with

a length field larger than the payload size. When constructing

the reply, the server would copy the request payload to the

response, plus whatever data followed it in memory, up to the
requested length. This allows the attacker to read the server’s

memory, including sensitive data like passwords.

The vulnerability can happen because the C programming

language does not enforce memory safety. A pointer to the

request packet can be used to read memory beyond the

packet boundary, even though this memory belongs to different

objects. The vulnerability is made worse because, for perfor-

mance reasons, memory that is no longer used is not cleared.

This means that the response returned to the attacker may

contain not only data that is currently used, but also sensitive

data from previous requests.

An attack that exploits the Heartbleed bug causes the

OpenSSL program to read data past the bounds of the original

request. Because of this, any instrumentation that detects over-

flowing memory reads will prevent the vulnerability. Indeed,

compiling OpenSSL with AddressSanitizer produces a check

that catches the overflow.

When we profiled OpenSSL using its test suite as profiling

input, that critical check was never executed. This is because

heartbeat messages are an optional and rarely used feature of

OpenSSL, and the test suite does not cover them. This means

that ASAP estimates the cost of the critical check to be zero

and will never remove it, regardless of the target overhead

specified.

We extended the test suite with a test case for heartbeat

messages. Now the cost of the critical check is non-zero, but

there are 15,000 other more expensive checks accounting for

99.99% of the total cost. We can further increase the check’s

cost by using larger payloads for the heartbeat messages we

test. With a payload of 4KB, still 99.2% of the cost is spent in

more expensive checks. Thus ASAP will preserve this sanity

check for all cost levels larger than 0.008. This cost level

corresponds to a target overhead that lies just slightly above

the minimum overhead omin of AddressSanitizer. It leads to

only 5% reduction in throughput on a web server serving a

3kB web page via OpenSSL.

2) Python: The interpreter of the widely used Python

scripting language consists of about 350KLOC of C code,

1,900 of them assertions. When compiled with ASan instru-

mentation, the interpreter binary contains 76,000 checks.

We used the following methodology to evaluate the security

of an ASAP-optimized Python interpreter: We started from the

source code of the most recent 3.4 version of the language.

Into this code, we inserted a set of bugs that have been

876876



present in earlier revisions; these form our reference set. Our

criteria for choosing these bugs were (1) the bugs must be

real-world problems recently reported on the Python issue

tracker, (2) they must be detectable using instrumentation or

assertions, and (3) they must be deterministically reproducible.

We inserted the bugs by reverse-applying the relevant parts of

the patch that fixed them.

The three bugs that we analyze are #10829, a buffer

overflow in printf-style string formatting that ASan detects;
#15229, an assertion failure due to an uninitialized object;

and #20500, an assertion failure when an error occurs during

shutdown.2

We ran the Python test suite as profiling workload and

used the profiling data to generate an ASAP-optimized Python

interpreter. Whenever the cost level is larger than 0.005, this

interpreter is protected against all bugs that we analyzed. At

cost level 0.01, the overhead of Python is at 55%, due to the

large minimum overhead incurred from metadata handling in

AddressSanitizer. §VI-E contains a more detailed evaluation

of sanity checks and bugs in Python.

3) RIPE benchmarks: The RIPE benchmark suite [37] is a

set of exploits for synthetic buffer overflows. It consists of a

vulnerable program that attacks itself. In total, it features 850

unique attacks that differ in five characteristics: (1) the location

of the buffer, e.g., on the stack or inside a structure; (2)

the code pointer being overwritten, e.g., a return address; (3)

whether the target pointer is overwritten directly or indirectly;

(4) the type of shellcode; and (5) the function where the

overflow happens, e.g., memcpy or sprintf.
The RIPE benchmark is well-known in the security com-

munity and contains a large number of exploits. However, its

synthetic nature makes it problematic for evaluating ASAP:

First, the exploits are all very similar; they differ only in few

aspects of their construction, so that the number of effectively

different scenarios is much smaller than 850. In particular,

there are only ten distinct program locations where a memory

corruption happens, so that the security gained by instrumen-

tation is based on only ten sanity checks. Second, RIPE is

designed for the sole purpose of overflowing buffers. There is

no relevant workload that could be used for profiling. For the

lack of an alternative, we exercised all the different overflow

mechanisms to obtain profiling data. Third, RIPE makes strong

assumptions about the compiler and the operating systems.

Many exploits depend on the order of objects in memory,

or on particular pointer values. Small changes in compilation

settings or even between different runs of a program can cause

such assumptions to fail; this makes it difficult to compare

benchmarks.

For these reasons, we do not evaluate individual exploits

in detail, and solely measure the minimal cost level needed

to preserve the protection against buffer overflows gained

by ASan instrumentation. ASAP preserves all critical sanity

checks inserted by ASan for cost levels larger than 0.0004.

Furthermore, nine out of ten buffer overflows happen inside

2Reports available on the Python bug tracker at http://bugs.python.org/

library functions such as memcpy, which ASan redirects to

its safe runtime library. Checks in ASan’s runtime library are

part of the residual overhead that ASAP does not yet address.

ASAP currently preserves these checks at all cost levels.

4) Security Evaluation Summary: In our case studies on

OpenSSL, CPython, and RIPE, we determined the minimum

cost level to protect against all known vulnerabilities to be

0.008, 0.005, and 0.0004, respectively. We rounded this up to

0.01 and use this as default cost level for our performance

experiments. A cost level of 0.01 corresponds to a sanity level

of 94% in OpenSSL and 92% in CPython.

Note that a cost level of 0.01, even though it worked well

in our experiments, does not imply that the resulting binaries

are protected against all unknown vulnerabilities. Neither does

such a cost level generalize to other software. Users of ASAP

should analyze the result, e.g., by examining the elided checks

as described in §V.

E. Discussion of Sanity Checks

To understand the security effect of ASAP, it is helpful to

analyze the properties of sanity checks that are removed and

preserved, respectively.

We first consider the 100 most expensive sanity checks

in the Python interpreter. These checks together account for

29% of the total cost. They are in hot core locations of the

interpreter: 49 of them belong to core Python data structures

such as maps or tuples; 23 are in the main interpreter loop;

22 are in reference counting and garbage collection code; and

six in other parts of the interpreter. Any meaningful Python

program exercises the code where these checks reside. A bug

in these parts of the interpreter would likely affect many

Python scripts and thus be immediately detected. Hence we

are confident that removing these checks in production is safe.

The Python developers seem to partially agree with this: 6 out

of these 100 checks are assertions in code regions that are

only compiled when Py_DEBUG is defined, i.e., only during

development.

In contrast, the checks that guard real-world bugs are

executed rarely. The bugs in our case study are executed only

(i) when a format string contains the "%%" character sequence,
(ii) when a Python script circumvents the usual constructors

and directly executes __new__, or (iii) when an error is raised
during interpreter shutdown. We did not select the bugs to be

particularly rare—it just happens to be that most real-world

bugs are tricky corner cases.
Figure 7 sheds further light on this issue. For this graph, we

looked at the checks in Python 2.7, and differentiate between

checks that are located in buggy code, and “normal” checks.

We take as buggy code those parts of the source code that have

received bug fixes between the time Python 2.7 was released,

until the current version 2.7.8.

We find that checks in buggy code are executed less

frequently than regular checks. This makes them less likely

to be affected by ASAP. For example, at cost level 0.01,

ASAP removes 8% of all checks, but only 5% of the checks

in buggy code. If we assume that our notion of buggy code

877877



0.7

0.8

0.9

1.0

0.00010.0010.010.11.0
Cost level

S
an

ity
 le

ve
l

Type Checks in buggy code Regular checks

Fig. 7. Fraction of checks preserved by ASAP, for various cost levels. The
dark line corresponds to the sanity level as computed by ASAP. The bright
line corresponds to the fraction of protected buggy code. Because checks in
buggy code have a lower cost on average than regular checks, they are more
likely to be preserved.

is representative, we can conclude that the sanity level as

computed by ASAP (92% in this case, for a cost level of 0.01)

is a lower bound on the fraction of bugs that are protected by

checks (95% in this case). This follows from the fact that the

dark line is always below the bright line in Figure 7.

This experiment also shows that there are a few bugs in hot

code, so using ASAP does reduce security. The computed

sanity level gives developers an estimate of this reduction

and allows them to make informed choices regarding the best

trade-off between security and performance.

F. CVE Vulnerability Survey

We complete our security evaluation by studying known

security vulnerabilities from the CVE database [23]. We focus

on memory-related vulnerabilities because sanity checks are

particularly promising for protecting against this category.

The CVE data set contains 879 memory-related vulnerabil-

ities for the year 2014. For 180 of these, it was possible to

obtain the source code and patch that fixed the vulnerability.

From the source code and patch, we determined the location

of the memory error itself. The error is not always located in

the patched program part. For example, a common pattern is

that developers add a missing check to reject invalid input.

In this case, we searched for the location where the program

accesses the illegal input and corrupts its memory. For 145

vulnerabilities, we could tell with sufficient certainty where

the memory error happens.

We then manually analyzed the bugs to determine whether

they lie in hot or cold parts of the program. We used four

criteria to classify a code region as cold: (1) the code does not

lie inside loops or recursively called functions, (2) the code

is only run during initialization or shutdown, (3) comments

indicate that the code is rarely used, and (4) the code is

adjacent to much hotter regions which would dominate the

overall runtime. In absence of these criteria, we classified a

code region as hot.

Overall, we found 24 vulnerabilities that potentially lie

in hot code regions. The other 121 (83%) lie in cold code

where ASAP would not affect checks protecting against them.

Because our criteria for cold code are strict, we think this

is a conservative estimate. It provides further evidence that a

large fraction of vulnerabilities could be prevented by applying

instrumentation and sanity checks only to cold code areas,

The results of our CVE study are publicly available and can

be accessed at http://dslab.epfl.ch/proj/asap.

VII. EXTENSIONS AND FUTURE WORK

1) Elastic Instrumentation Tools: We believe there is a

promising, yet unexplored area of building elastic instrumenta-

tion tools. This requires a change of mind: with techniques like

ASAP, it is no longer the overall instrumentation overhead

that matters, but the minimum, residual overhead when all

checks are removed.

Builders of an elastic instrumentation tool take different

design decisions. Consider, for example, the cost of a check in

AddressSanitizer vs. SoftBound. SoftBound checks are more

expensive because the metadata lookup is more complex. In

contrast, a dynamic memory allocation is cheap for SoftBound

because only a single lookup table entry needs to be updated,

whereas AddressSanitizer needs to set up large shadow mem-

ory areas around the allocated memory object. Similar trade-

offs exist for other operations such as function calls, memory

de-allocation, or pointer arithmetic.

2) Other Sources of Overhead: With ASAP, we tackle

the runtime overhead due to sanity checks. However, runtime

overhead is not the only reason that prevents instrumentation

from being used in practice. For example, systems where

memory is the main bottleneck cannot afford to spend 15%

of it for shadow memory. In other cases, performance might

degrade due to registers being used for sanity checks, or cache

lines being filled with metadata. The challenge in reducing

this overhead is that the relationship between checks and

metadata is complex. In most cases, it is not possible to predict

statically where metadata will be used. Still we believe that

it should be possible to gradually eliminate some of these

other hurdles similarly to how ASAP deals with overhead

from sanity checks.

3) Probabilistic and Dynamic Instrumentation: We are also
considering a probabilistic version of ASAP. By default,

ASAP uses a static cost threshold, above which a check is re-

moved. It could alternatively remove checks probabilistically,

with the probability proportional to a check’s cost. An attacker

who wanted to exploit a particular vulnerability then could

not guarantee that it is exposed in the present instance of the

program. Thus, the attacker risks that the attack is detected

and that a zero-day vulnerability becomes known.

A probabilistic mechanism also enables collaboration be-

tween multiple users, or multiple machines in a cloud service.

They could run software with different sets of sanity checks, in

a way that further reduces overhead but causes vulnerabilities

to be detected with high probability by at least one participant.

878878



In a different scenario, users could use ASAP to build

binaries at a range of cost levels. We could envision a system

that dynamically switches between these binaries according to,

for example, system load or the nature of requests. This leads

to a system that automatically becomes more secure when

resources are available.

VIII. CONCLUSION

We presented ASAP, a new approach to give developers

control of how much runtime overhead they are willing to

invest into adding security to their software systems. Our

ASAP prototype automatically and selectively adds sanity

checks to the software, making it as safe as possible for the

chosen overhead.

The most expensive sanity checks lie in code that is fre-

quently executed. However, exploits frequently target poorly

tested and rarely executed code, where sanity checks are

comparatively cheap. ASAP leverages this inverse relationship

to prevent vulnerabilities from being exploited, while incurring

only a low overhead that is suitable for production environ-

ments.

ACKNOWLEDGMENTS

We thank Azqa Nadeem for her work on the experimen-

tal evaluation and CVE case study. We are thankful to Ed

Bugnion, John Regehr, and our colleagues at the Dependable

Systems Lab for ideas and helpful discussions. We would also

like to thank the anonymous reviewers for their feedback. This

work has been partially supported by ERC Starting Grant No.

278656 and by EPSRC grant EP/L022710/1.

REFERENCES

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In CCS, 2005.

[2] Qualys Security Advisory. Ghost: glibc gethostbyname vulnerability.
http://www.openwall.com/lists/oss-security/2015/01/27/9.

[3] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and
Miguel Castro. Preventing memory error exploits with WIT. In IEEE
S&P, 2008.

[4] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand.
Baggy bounds checking: An efficient and backwards-compatible defense
against out-of-bounds errors. In USENIX ATC, 2009.

[5] Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim
Gruen, Nathan Giles, and Rajeev Barua. A compiler-level intermediate
representation based binary analysis and rewriting system. In EuroSys,
2013.

[6] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient
detection of all pointer and array access errors. In PLDI, 1994.

[7] Trishul M. Chilimbi and Matthias Hauswirth. Low-overhead memory
leak detection using adaptive statistical profiling. In ASPLOS, 2004.

[8] Clang User’s Manual. Undefined behavior sanitizer. http://clang.llvm.
org/docs/UsersManual.html.

[9] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke,
Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. StackGuard:
Automatic adaptive detection and prevention of buffer-overflow attacks.
In USENIX ATC, 1998.

[10] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. Safecode:
enforcing alias analysis for weakly typed languages. In PLDI, 2006.

[11] GCC coverage testing tool, 2010. http://gcc.gnu.org/onlinedocs/gcc/
Gcov.html.

[12] Grand unified Python benchmark suite. https://hg.python.org/
benchmarks/.

[13] Charles Antony Richard Hoare. Assertions: A personal perspective. In
Software pioneers, pages 356–366. Springer, 2002.

[14] Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler, and
Michael Franz. Profile-guided automated software diversity. In CGO,
2013.

[15] Intel Corporation. Intel architecture instruction set extensions program-
ming reference. http://download-software.intel.com/sites/default/files/
319433-015.pdf, 2013.

[16] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks,
James Cheney, and Yanling Wang. Cyclone: A safe dialect of C. In
USENIX ATC, 2002.

[17] Richard WM Jones and Paul HJ Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In AADEBUG, 1997.

[18] Baris Kasikci, Thomas Ball, George Candea, John Erickson, and Madan-
lal Musuvathi. Efficient tracing of cold code via bias-free sampling. In
USENIX ATC, 2014.

[19] Samuel C Kendall. BCC: Runtime checking for C programs. In USENIX
ATC, 1983.

[20] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea,
R Sekar, and Dawn Song. Code-Pointer Integrity. In OSDI, 2014.

[21] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis and transformation. In CGO, 2004.

[22] Linux 2.6.7. NX (No eXecute) support for x86. https://lkml.org/lkml/
2004/6/2/228, 2004.

[23] MITRE. Vulnerabilities and exposures. http://cve.mitre.org.
[24] Santosh Nagarakatte, Jianzhou Zhao, Milo M K Martin, and Steve

Zdancewic. SoftBound: Highly compatible and complete spatial memory
safety for C. In PLDI, 2009.

[25] Santosh Nagarakatte, Jianzhou Zhao, Milo M K Martin, and Steve
Zdancewic. CETS: Compiler enforced temporal safety for C. In ISMM,
2010.

[26] National Vulnerability Database. https://web.nvd.nist.gov/view/vuln/
statistics, 2014.

[27] George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-
safe retrofitting of legacy code. In POPL, 2002.

[28] Pwn2Own contest. http://www.pwn2own.com/.
[29] John Regehr. Use of assertions. http://blog.regehr.org/archives/1091,

2014.
[30] The Rust programming language. http://www.rust-lang.org/.
[31] Olatunji Ruwase and Monica S Lam. A practical dynamic buffer

overflow detector. In NDSS, 2004.
[32] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and

Dmitry Vyukov. AddressSanitizer: A fast address sanity checker. In
USENIX ATC, 2012.

[33] Skape. Preventing the exploitation of SEH overrides. http://www.
uninformed.org/?v=5&a=2.

[34] Joseph L Steffen. Adding run-time checking to the portable C compiler.
Software: Practice and Experience, 1992.

[35] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal
war in memory. In IEEE S&P, 2013.

[36] Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and Armando Solar-
Lezama. Towards optimization-safe systems: Analyzing the impact of
undefined behavior. In SOSP, 2013.

[37] John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and
Wouter Joosen. RIPE: Runtime intrusion prevention evaluator. In
ACSAC. ACM, 2011.

[38] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
Yongle Zhang, Pranay U. Jain, and Michael Stumm. Simple testing
can prevent most critical failures: An analysis of production failures in
distributed data-intensive systems. In OSDI, 2014.

879879


