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ABSTRACT

Collecting sufficient labeled data for spoken language understanding
(SLU) is expensive and time-consuming. Recent studies achieved
promising results by using pre-trained models in low-resource sce-
narios. Inspired by this, we aim to ask: which (if any) pre-training
strategies can improve performance across SLU benchmarks? To
answer this question, we employ four types of pre-trained models
and their combinations for SLU. We leverage self-supervised speech
and language models (LM) pre-trained on large quantities of un-
paired data to extract strong speech and text representations. We
also explore using supervised models pre-trained on larger external
automatic speech recognition (ASR) or SLU corpora. We conduct
extensive experiments on the SLU Evaluation (SLUE) benchmark
and observe self-supervised pre-trained models to be more power-
ful, with pre-trained LM and speech models being most beneficial
for the Sentiment Analysis and Named Entity Recognition task, re-
spectively. !

Index Terms— spoken language understanding, low resource,
pre-trained models

1. INTRODUCTION

Spoken language understanding (SLU) aims to extract semantics
from a spoken utterance, which is essential for spoken dialog sys-
tems, voice assistants and intelligent home devices [1, 2]. SLU com-
prises a wide range of tasks, including extracting the intent [3, 4, 5]
and associated entities [4, 6], recognizing emotion [7] for a given
utterance, or modeling the topic of user conversations [8, 9]. Tra-
ditional SLU systems consist of two cascaded modules, i.e., auto-
matic speech recognition (ASR) and natural language understanding
(NLU). Recent studies have explored deep learning-based end-to-
end (E2E) approaches that directly predict semantic meanings from
a speech signal without converting it to intermediate text [10, 11, 12].
These E2E approaches avoid the error propagation seen in pipeline
models as well as can capture non-phonemic signals such as pauses
and intonations that a text-based system cannot capture.

However, E2E models usually require a large amount of labeled
training data. SLU datasets are often expensive and time-consuming
to collect, and hence most publicly available SLU datasets are
limited in size. For low-resource applications, researchers have
explored pre-trained representations and achieved promising re-
sults [13, 14]. Pre-trained language models like BERT [15] and
DeBERTa [16] learn rich textual representations from unlabeled

*Equal contribution.
'Our code and models will be publicly available as part of the ESPnet-
SLU toolkit.
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text and are shown to advance the state-of-the-art (SOTA) per-
formance when fine-tuned on downstream NLU tasks. Similarly,
self-supervised speech representations can improve various speech
processing tasks [13, 17]. Inspired by these studies, there has been
a lot of interest in pre-training the acoustic [18, 12, 19] and seman-
tic [20, 21, 22, 18, 19] model components for SLU tasks on large
quantities of unlabeled speech and text data.

To this end, we ask the following questions: (i) Can pre-training
methodologies help to advance performance across various SLU
benchmarks? (ii) Which pre-training methodologies are most use-
ful to improve performance for a given SLU task? (iii) Can we
identify the kind of spoken utterances that are responsible for the
majority of performance gains achieved by a given pre-training
strategy? We seek to answer these questions by conducting a thor-
ough study of various pre-training paradigms in the context of
SLU. We investigate the following four types of pre-trained models
and their combinations: 1) self-supervised learning (SSL) speech
models [23, 24, 17, 25, 26], to generate powerful acoustic repre-
sentations from the raw audio; 2) self-supervised language models
(LM) [15, 16], to build strong semantic representations; 3) super-
vised ASR models pre-trained on large corpora [27, 28] and 4) su-
pervised SLU models pre-trained on other SLU corpora [7, 29]. We
conduct extensive experiments on the newly released Spoken Lan-
guage Understanding Evaluation (SLUE) benchmark [14], which
provides well-designed datasets with baselines and metrics for eval-
vating low-resource SLU. It consists of two SLU tasks: sentiment
analysis (SA) on SLUE-VoxCeleb and named entity recognition
(NER) on SLUE-VoxPopuli, with a small amount of labeled data to
fine-tune the SLU system. This makes it an interesting benchmark
to evaluate the efficacy of different pre-training approaches since the
SLU dataset is particularly under-resourced.

Our contributions are as follows:

* We investigate the efficacy of four types of pre-trained models
and their integrations in the context of SLU.

* We conduct extensive experiments on the SLUE benchmark
and show that each pre-training approach can improve perfor-
mance over the baseline E2E model without pre-training. Our
best models can outperform the baseline by a large margin on
both SA and NER tasks.

* Our results demonstrate that pre-training methodologies
based on self-supervised learning are more powerful than
those based on supervised learning. We hypothesize that
this is because self-supervised models are trained on huge
amounts of unlabeled data, which have extensive coverage
of acoustic and linguistic variations. We also observe strong
semantic representations from a pre-trained LM DeBERTa
to be most helpful for the SA task, whereas strong speech



representations produced by an SSL model WavLM to be
most beneficial for the NER task. We believe that future
research to build SLU systems should employ pre-training
paradigms based on self-supervised representations to boost
model performance, particularly in low resource scenarios.

* We analyze the performance gains from pre-training tech-
niques and find that most of the performance improvement
from self-supervised pre-training methods can be seen in se-
mantically and acoustically challenging utterances.

* Another interesting finding from our experiments is that the
word error rate (WER) in ASR transcripts is not very well cor-
related with the downstream SA task but is a good indicator
of the downstream NER performance.

2. METHODS

2.1. Problem formulation

As in ESPnet-SLU [30], we formulate the two SLU tasks (i.e., SA
and NER) as a unified sequence-to-sequence problem. The input is
a sequence of speech features extracted from the raw audio, and the
output is a sequence of tokens consisting of the transcript and SLU
labels. For SA, a sentiment label is prepended to the transcript. For
NER, each entity phrase in the transcript begins with an entity tag
and ends with a special token, which is consistent with the SLUE
toolkit [14]. Figure 1 shows our SLU systems. The attention-based
encoder-decoder architecture is adopted in our end-to-end (E2E) ap-
proaches. Specifically, we employ the Conformer [31] encoder and
Transformer [32] decoder. Note that we do not use a language model
for decoding. To better incorporate semantic information, we also
exploit a two-pass approach [33], as introduced in Section 2.3.

2.2. Self-supervised pre-trained speech models

Self-supervised speech models are pre-trained on large volumes of
unlabeled speech data and can generate powerful representations
for downstream tasks, especially for low-resource applications. We
employ pre-trained speech representations to replace the commonly
used log Mel filterbank features. Following prior work [13, 34], a
weighted sum of multiple hidden states is utilized. During train-
ing, the parameters of pre-trained models are frozen and never
updated. Five self-supervised speech models are evaluated, namely
TERA [23], VQ-APC [24], Wav2Vec2 [17], HuBERT [25] and
WavLM [26]. These models are trained using different objectives
and corpora (see Table 1).

2.3. Self-supervised pre-trained language models

Self-supervised LMs are pre-trained on a large amount of unlabeled
text data, which can generate high-quality semantic representations.
There are multiple ways to utilize pre-trained LMs, such as pipeline
approaches [14] and jointly modeling speech and text in a shared
latent space [22]. Inspired by prior work on two-pass ASR [35, 36],
we adopt a two-pass SLU approach [33] in this work, where the
first pass predicts SLU labels and ASR hypotheses from the audio,
and the second pass improves on the initial prediction by combining
both acoustic and semantic information from ASR hypotheses. More
specifically, the input speech (x) is first passed through an acoustic
encoder to generate acoustic embeddings (C,0). These embeddings
are then passed to the first-pass decoder, which predicts the first-pass
SLU labels (y},) and ASR transcript (Y.
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(a) Our E2E SLU system. Self-supervised speech representations can replace
the log Mel filterbank features. The entire model can be pre-trained on exter-
nal ASR or SLU corpora.
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(b) Our two-pass SLU system [33]. Self-supervised speech representations
can replace the log Mel filterbank features. The 2™¢ pass attends to both
acoustic information from 1% pass and semantic information from ASR tran-
script, as discussed in Section 2.3.

Fig. 1: Overview of our SLU systems.
Table 1: Summary of self-supervised pre-trained speech models
used in this work. The Mix 94k dataset is a mixture of LibriLight
60k [37], GigaSpeech 10k [27], and VoxPopuli 24k [38].

Model Architecture Dataset Objective

TERA 3-Trans LibriSpeech 960h masking
VQ-APC 3-GRU LibriSpeech 960h  auto-regressive
Wav2Vec2  7-Conv 24-Trans LibriLight 60k contrastive
HuBERT  7-Conv 24-Trans LibriLight 60k pseudo-labeling

WavLM 7-Conv 24-Trans Mix 94k pseudo-labeling

The ASR transcript is then tokenized and processed by a pre-
trained LM to generate semantic embeddings (csem). The acoustic
and semantic embeddings are concatenated along the time dimen-
sion to form a joint embedding. Finally, the joint embedding is
passed through a deliberation encoder before entering the second-
pass decoder to predict more accurate second-pass SLU labels (y2,).
In this work, we have only experimented with BERT [15] and De-
BERTa [16]; however, our method can incorporate any of the pre-
trained models provided by HuggingFace. 2

2.4. Supervised pre-trained ASR models

To compensate for the lack of labeled data in the under-resourced
SLU task, we explore pre-training an SLU model using a large-scale
external ASR corpus. This pre-training is expected to initialize the
model with strong acoustic processing ability, which can improve
performance on the downstream SLU task when fine-tuned on the
target dataset.

In this work, we adopt GigaSpeech [27] and SPGISpeech [28]
for the ASR pre-training, which are publicly available corpora con-
sisting of 10k and 5k hours of transcribed English speech, respec-
tively. We then initialize the SLU model with the pre-trained param-
eters, except for the embedding and softmax layers in the encoder
and decoder networks. Then, the model is fine-tuned for a target
task using a small amount of labeled data.

’https://huggingface.co/models
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Table 2: Overview of the two datasets in the SLUE benchmark [14].

Size (utterances / hours)

Dataset Tasks

Train Dev Test
SLUE-VoxCeleb  ASR, SA 5,777/12.8  955/2.1 4,052/9.0
SLUE-VoxPopuli ASR,NER 5,000/14.5 1,753/5.0 1,842/4.9

2.5. Supervised pre-trained SLU models

When the target task has limited data, it is natural to pre-train the
SLU model using other corpora designed for a similar task and then
fine-tune it for the target task. For SA, we use existing emotion or
sentiment datasets, IEMOCAP [7] and Switchboard (SWBD) Senti-
ment [29], which contain 12 and 140 hours of labeled speech data,
respectively. The nine emotion labels in IEMOCAP can be option-
ally converted into three sentiment labels in the following manner:
{happiness, excited, surprised: Positive}, {neutral: Neutral}, and
{fear, sadness, anger, frustration, disgust: Negative}. The SWBD
Sentiment dataset has three sentiment labels (Positive, Neutral, Neg-
ative). Thus, the labels in the two datasets can be preprocessed to
match the three labels used in the SLUE SA task. For NER, we pre-
train the model on the SLURP [4] dataset, which contains about 100
hours of audio data collected from single-turn user interactions with
a home assistant. We use the original entity tags for pre-training.

2.6. Combination of pre-trained models

The pre-trained models can be combined at either model-level or
output-level. For model-level combination, we employ SSL speech
representations to replace the log Mel filterbank features. We then
pre-train the entire encoder-decoder model on external corpora and
fine-tune it using the target SLU dataset. Besides, we combine
the self-supervised speech and language models in our two-pass
approach (Section 2.3). For output-level combination, we adopt
voting-based strategies to aggregate the decoded sequences from
different models. We apply the majority voting to obtain SA results.
As introduced in Section 2.1, the named entity tags are inserted into
the transcript, so we directly apply the recognizer output voting error
reduction (ROVER) [39] method to combine multiple hypotheses
and extract NER results from the combined word sequence. We also
obtain the ASR results for both tasks using ROVER.

3. EXPERIMENTAL SETUP

3.1. Datasets and tasks

We adopt the recently released SLUE benchmark [14] for evaluation,
which focuses on naturally produced speech and contains limited
labeled training data. The SLUE benchmark consists of two well-
designed datasets, i.e., SLUE-VoxCeleb and SLUE-VoxPopuli, and
three tasks, i.e., SA, NER and ASR. Specifically, SLUE-VoxCeleb is
used for ASR and SA, while SLUE-VoxPopuli is used for ASR and
NER. Details about each dataset are shown in Table 2. The train-
ing set is very limited, which is suitable for evaluating low-resource
SLU. The released test sets are blind without groundtruth labels. We
compare different methods using the development set.

3.2. Evaluation metrics

We adopt the evaluation metrics in the SLUE benchmark [14]. ASR
is evaluated using word error rate (WER). SA aims to classify an
input utterance as having negative, neutral, or positive sentiment,

which is evaluated using macro-averaged (unweighted) recall and
F1 scores. Since the negative class has only 3 instances in the of-
ficial development set, we find the results to be unstable. * Hence,
we use the macro F1 (F1¥) and recall (Recall*) computed only on
positive and neutral classes for model comparison. * NER focuses
on recognizing the named entities and their tags (types) in a given ut-
terance. There are 7 distinct entity tags. We use micro-averaged F1
and label-F1 scores for NER. The F1 score considers an unordered
list of named entity phrases and tag pairs, while the label-F1 only
considers the tag predictions and ignores the potential misspelling
and segmentation errors in speech recognition.

3.3. Implementation Details

Our models are implemented in PyTorch [40], and the experiments
are conducted using the ESPnet-SLU toolkit [30, 41]. The self-
supervised pre-trained speech and language models are obtained
from S3PRL [13], Fairseq [42] and HuggingFace [43], while the pre-
trained ASR and SLU models are downloaded from ESPnet Model
Zoo. Our models are based on the attention-based encoder-decoder
architecture described in Section 2.1. The encoder is a 12-layer
Conformer [31], while the decoder is a 6-layer Transformer [32].
The number of heads and dimension of a self-attention layer are set
to 4 and 256, respectively. The linear units are 1024 for the encoder
and 2048 for the decoder. During training, speed perturbation and
SpecAugment [44] are performed for data augmentation. We apply
dropout [45] and label smoothing [46] to mitigate overfitting. We
use the Adam [47] optimizer with a maximum learning rate of 2e-3
and a weight decay of 1e-6 or le-5. We also employ the Transformer
learning rate scheduler [32] with Sk warmup steps. We perform joint
CTC-attention training and decoding [48, 49]. More details about
our models and the config files will be publicly available as part of
the ESPnet-SLU [30] toolkit.

4. RESULTS

Table 3 presents the SA results on SLUE-VoxCeleb, and Table 5
shows the NER results on SLUE-VoxPopuli. In the following sub-
sections, we discuss the effect of different pre-trained models on the
performance of these SLU tasks.

4.1. Sentiment Analysis

Table 3 shows that all pre-trained approaches boost SA performance
on the SLUE-VoxCeleb dataset. Among all the models with SSL
features, the model using WavLM features achieves the best recall
(Recall*: 66.9) and F1 (F1*: 66.9). Further, models with HuBERT
and Wav2Vec2 also outperform the baseline, showing that self-
supervised speech representations are more powerful than the log
Mel features in the low-resource scenario.

For models pre-trained on large external ASR data, pre-training
on GigaSpeech (Recall*: 66.3, F1*: 66.6) achieves better scores
than pre-training on SPGISpeech, because GigaSpeech has larger
and more diverse training data. However, the best supervised model

3A small change in the negative class will drastically affect the overall
metric. For example, if a model achieves a recall of 60% in both positive
and neutral classes but fails to recognize any negative instances, the macro-
averaged recall will be 40%. If it happens to recognize one of the three
negative instances, the recall of the negative class will be 33% and the macro-
recall will be 51%. This means the metric averaged over all three classes is
very unstable.

4 After detailed discussions with the authors of the SLUE benchmark.



Table 3: Macro-averaged recall (Recall*) and F1 (F1*) scores (%)
computed only on positive and neutral classes for sentiment analy-
sis on SLUE-VoxCeleb. As discussed in section 3.2, we use Recall*
and F1* for model comparison. LM decoding is not used. Bold
values indicate the best performance obtained both with and with-
out output-level system combinations on this dataset and X indicates
outperforming the SA performance of no pre-train model.

Table 5: Micro-averaged F1 and label-F1 scores (%) for named
entity recognition on SLUE-VoxPopuli. LM decoding is not used
in our approaches. Bold values indicate the best performance ob-
tained both with and without output-level system combinations on
this dataset and X indicates outperforming the NER performance of
no pre-train model.

Pre-trained Model/Corpus ‘ Label-F1 () F1 (1) WER (})

Pre-trained Model/Corpus | Recall* (1)  F1* () WER () SLUE benchmark [14]
Our E2E approaches Oracle Text BERT 90.9 86.2 0.0
w/o pre-train N/A | 62.4 63.6 33.0 DeBERTa 91.1 87.5 0.0
TERA 62.5 62.4 27.1 Pipeline w/o LM Wav2Vec2+DeBERTa 83.5 63.3 14.0
VQ-APC 61.3 62.1 29.8 Pipeline w/ LM~ Wav2Vec2+DeBERTa 87.4 74.9 9.1
w/ SSL Wav2Vec2 64.5 64.4 14.2
HuBERT & m 12.8 E2E w/o LM ‘Wav2Vec2 69.1 55.6 14.0
WavLM 66.9 66.9 9.1 E2E w/ LM ‘Wav2Vec2 79.0 70.2 9.1
w/ ASR GigaSpeech 66.3 66.6 11.3 Our E2E approaches
SPGISpeech 63.3 64.1 14.2 wio pre-train  N/A | 676 547 342
w/ SLU IEMOCAP 62.4 62.9 33.2 TERA 70.9 71 286
SWBD Sentiment 64.7 64.8 219
VQ-APC 76.6 63.6 24.1
WavLM+IEMOCAP 643 652 93
WavLM+SWBD Sentiment 64.9 65.7 9.0 w/ SSL Wav2Vec2 83.3 69.5 128
S— — HuBERT 84.8 69.7 12.5
ass) BERT 64.7 65.1 29.5 WavLM 88.0 74.5 9.3
WM (2-pass) - pepERT: 662 613 295 :
WavLM+BERT 66.8 65.7 9.4 w/ ASR GigaSpeech 86.0 739 112
WavLM+DeBERTa 66.9 66.5 93 SPGISpeech 84.1 714 122
Our system combination w/ SLU SLURP ‘ 715 597 337
majority voting  best 3 models ‘ 67.9 69.0 9.7 WavLM+SLURP 87.5 75.7 9.0
Table 4: Macro-averaged recall and F1 scores (%) for sentiment w/LM (2-pass) DERT 69.2 545 338
Ivsi SLUE-VoxCeleb. As di d in Secti 32 DeBERTa 69.4 55.5 34.1
analysis on -VoxCeleb. As discussed in Section 3.2, we ac- Wavl M4BERT 873 735 96
tually do not use these Recall and F1 for model comparison since WavL.M+DeBERTa 877 74.0 95
they are unstable, but we do show that we outperform the results ° . P
. . . . ur system combination
reported in the SLUE benchmark using a similar Wav2Vec2 based ROVER best 4 models | 887 772 36

SLU model.

Pre-trained Model | Recall(t) F1(1) WER(})
SLUE benchmark [14]
Oracle Text BERT 43.0 43.6 0.0
DeBERTa 55.6 46.5 0.0
Pipeline w/o LM~ Wav2Vec2+DeBERTa 54.2 453 11.0
Pipeline w/ LM Wav2Vec2+DeBERTa 55.1 45.8 9.1
E2E Wav2Vec2 w/o LM 45.0 44.2 11.0
E2E Wav2Vec2 w/ LM 45.0 442 9.1
Our E2E approach
w/ SSL Wav2Vec2 ‘ 54.1 46.4 14.2

pre-trained on external ASR data has lower performance than the
best model using self-supervised speech representations.

For models pre-trained on external sentiment datasets, the per-
formance is higher when using the SWDB dataset, possibly due to
the larger size of SWDB sentiment compared to IEMOCAP. Two-
pass SLU models (Section 2.3) that use LMs to enhance semantic
processing power perform better than those pre-trained on exter-
nal SLU datasets. By incorporating DeBERTa as a pre-trained LM
(F1#:67.3), we can outperform, in terms of F1 value, all other pre-
training paradigms for SA.

Our results demonstrate that self-supervised speech models and
LMs can generate more robust speech and semantic representations,
respectively, underscoring the efficacy of leveraging self-supervised
models to pre-train SLU systems. Another remarkable observation
is that the WER of the two-pass SLU model with DeBERTa (WER:
29.5, F1#: 67.3) is much higher than that of the model using a
WavLM frontend (WER: 9.1, F1*: 66.9) but the two-pass approach
still achieves better SA performance. This result shows that WER

in ASR transcripts is not a good indicator of the downstream SA
performance.

To compare with the E2E results from the SLUE [14] bench-
mark, we also report the original Recall and F1 values in Table 4.
Our approach shows higher performance using the same Wav2Vec2
model (54.1 vs. 45.0 in recall, 46.4 vs. 44.2 in F1), demonstrating
the effectiveness of our encoder-decoder-based SLU modeling.

We further investigate integrating speech and text pre-training
approaches at the model-level using WavLM features as input for
our two-pass SLU model (see WavLM+BERT, WavLM+DeBERTa
in Table 3) as well as pre-training on external SLU datasets (see
WavLM+IEMOCAP, WavLM+SWDB Sentiment in Table 3). We
generally observe an improvement in performance in comparison to
the model that uses log Mel Filterbank features, except for the two-
pass SLU model with DeBERTa. We further experiment with output-
level combinations (see Section 2.6) of our best three models, i.e.,
pre-trained with WavLM, GigaSpeech, and DeBERTa. As shown in
Table 3 (see “Our system combinations”), this output-level model
combination (Recall*: 67.9, F1*: 69.0) outperforms all the individ-
ual models, indicating that we can advance the performance on SLU
benchmarks by combining different pre-training approaches.

4.2. Named Entity Recognition

Table 5 shows that similar to SA, all pre-training approaches im-
prove NER performance over the baseline SLU model without pre-
training. WavLM (F1: 74.5, Label F1: 88.0) performs the best in all
SSL models, and our findings for the utility of different pre-trained
SSL systems as feature extractors are mainly consistent with the SA
task. We also observe that pre-training on external ASR data, par-



ticularly the GigaSpeech dataset (F1: 73.9, Label F1: 86.0), boosts
performance but is still worse than using WavLM features.

We observe that models incorporating strong speech representa-
tions from the SSL model or external ASR dataset generally have
better performance than those using semantic representations ob-
tained through pre-trained LM or external SLU corpora. Using the
self-supervised WavLM model to extract speech features is found
to be most beneficial for advancing the NER performance of SLU
systems. We also find the NER performance of all encoder-decoder
models to be well correlated with the WER of ASR transcripts.

We compare our models with the results from the SLUE [14]
benchmark and observe that even without LM decoding, our best
model using WavLM features outperforms the SLUE E2E approach
with LM decoding (88.0 vs. 79.0 in label-F1, 74.5 vs. 70.2 in F1).

We also experiment with a model that takes WavLM features
as input and pre-trains using external LMs or SLU corpora (see
WavLM+BERT, WavLM+DeBERTa, WavLM+SLURP in Table 5)
and conclude that using WavLM features inside this pre-training
framework can boost the NER performance. Further, by pre-training
on the SLURP dataset, the model that uses WavLM features can
achieve an F1 score of 75.7, which is higher than the model pre-
trained using only WavLM features (F1: 74.5). This result shows
that gains achieved by pre-training on SLURP are complementary to
strong speech representations obtained from WavLM and provides
evidence that integration of different pre-training paradigms at the
model-level can advance the NER performance. We then investi-
gate the output-level combination (see Section 2.6) of our best four
models, i.e., pre-trained with WavLM, model-level combination of
WavLM and SLURP, model-level combination of WavLM and De-
BERTa and GigaSpeech. Results show that integrating different pre-
training approaches using ROVER (see “Our system combinations”
in Table 5) can further boost NER performance, which encourages
future research on combinations of different pre-training approaches.

5. ANALYSIS

Recently, there has been interest [50] in quantifying the semantic
complexity of SLU datasets and reporting the performance of a given
SLU system across different semantic complexities. Prior work [51]
has also shown that ASR pre-training can be particularly useful for
acoustically and semantically challenging utterances. Inspired by
these findings, we also compare the performance of our trained mod-
els across utterances of different acoustic and semantic complexi-
ties. To facilitate this analysis, we divide the development set into
classes of different difficulties with roughly similar number of utter-
ances. Our analysis helps us develop a deep understanding of gains
achieved by best performing pre-trained models on each of the SLU
tasks, i.e., using self-supervised DeBERTa for the SA task and self-
supervised WavLM for the NER task. We further compare perfor-
mance between supervised and self-supervised pre-training method-
ologies and characterize the utterances responsible for the perfor-
mance gap between the two approaches.

5.1. Acoustic Analysis

Figure 2 analyzes the gains in NER performance by using SSL fea-
tures as input. We quantify the acoustic complexity of spoken utter-
ance using WER of ASR transcripts produced by our baseline E2E
SLU model. We observe that the performance gap between the base-
line model and the pre-trained models increases as the ASR difficulty
of utterances increases in the VoxPopuli dataset. Further, when we
compare using self-supervised WavLM features and supervised pre-
training on GigaSpeech, most of the performance difference is ob-

B E2E SLU Model
B E2E SLU Model w/ Gigaspeech Pre-training
B E2E SLU Model w/ WavLM features

75.9 75.7
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Fig. 2: Results comparing the NER performance of our models with-
out pre-training, with ASR pre-training on GigaSpeech and with
WavLM features as input across different ASR difficulties measured
by WER of the no pre-train model on SLUE-VoxPopuli. The per-
formance gain from using self-supervised WavLM increases as the
ASR difficulty increases.

B E2E SLU Model
Il E2E SLU Model w/ SWBD Sentiment Pre-training
M 2 pass E2E SLU Model w/ DeBERTa

67.2 66.8

SAF1

<=0.2 (0.2,0.35] >0.35
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Fig. 3: Results comparing the SA performance of our models with-
out pre-training, with SLU pre-training on SWDB Sentiment and
with DeBERTa as a pre-trained LM across different ASR difficul-
ties measured using WER of the no pre-train model on SLUE-
VoxCeleb. The largest performance gap between the model using
self-supervised DeBERTA and the model pre-trained on SWDB Sen-
timent is from acoustically challenging utterances (WER> 0.35).

served in extremely difficult utterances (i.e., WER > 0.4). Hence,
we infer that SSL features are particularly beneficial for acoustically
challenging utterances.

Prior work [33] has shown that better semantic modeling can
help recover from ASR errors and hence can improve performance
on acoustically challenging utterances. Inspired by this, we similarly
analyze the performance gains of the two-pass SLU model with De-
BERTa across different acoustic complexities in Figure 3. We do not
observe any clear trend between SA performance and ASR WER for
our models on the VoxCeleb dataset, which is consistent with our
findings in Section 4.1. Interestingly, we observe that acoustically
difficult utterances (WER > 0.35) account for the maximum per-
formance gap between models pre-trained with self-supervised De-
BERTa and supervised SWBD Sentiment SLU model, demonstrat-
ing that LM features are more robust to errors in ASR transcript.

5.2. Semantic Analysis

Figure 4 analyzes the performance of the two-pass SLU model that
uses DeBERTa as a pre-trained LM. A spoken utterance with many
unique n-grams not seen in training utterances makes the semantic
understanding task more challenging [S51]. As a result, we catego-
rize the test utterances based on their n-gram overlap with training
utterances. We choose the Sentence BLEU [52] score as a proxy
for n-gram overlap and compute BLEU-4 to quantify the semantic
complexity of a given utterance. Figure 4a shows that SA perfor-
mance generally seems to improve for all models as lexical overlap
with training utterance increases. The two-pass model is observed to
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Fig. 4: Results comparing the SA performance of models without
pre-training, with SLU pre-training on SWDB Sentiment and with
DeBERTa as a pre-trained LM across different semantic difficulties
on SLUE-VoxCeleb. The semantic difficulty is measured using (a)
lexical overlap with training utterances and (b) utterance length. We
observe that self-supervised DeBERTa representations are particu-
larly useful for semantically complex utterances which have low n-
gram overlap with the training set or longer utterance length.

be better than the baseline SLU model in all categories of semantic
difficulty. Further, the performance gap between the baseline SLU
model and the two-pass SLU model with DeBERTa is greatest for
utterances with BLEU scores in the bucket of (0.15,0.4]. Both mod-
els seem to be similarly struggling on more challenging utterances
(i.e., for BLEU<= 0.15). Compared with the model pre-trained on
the SWBD sentiment dataset, the two-pass SLU system seems par-
ticularly helpful for semantically more complex utterances.

Another way to quantify semantic difficulty is using the length
of the ASR transcript for a given utterance. Figure 4b shows no clear
trend between SA performance and transcript length for all models.
However, we observe that the performance gap between the model
pre-trained on the SWBD sentiment dataset and the two-pass SLU
model with DeBERTa increases with an increase in transcript length.
We conclude that most of the performance difference between self-
supervised LM and supervised model trained on an external SLU
dataset is for semantically challenging utterances which have low
n-gram overlap with training utterances or longer utterance length.

We perform a similar analysis for the NER model using WavLM
features as shown in Figure 5. Figure 5a shows that NER perfor-
mance for all models improves with an increase in lexical overlap
with training utterances. The performance gains achieved by both
ASR pre-training and SSL features are highest for challenging utter-
ances (i.e., BLEU <= 0.3). Remarkably, most of the performance
gap between WavLM and GigaSpeech model is also on utterances
with high semantic complexity, probably due to extensive linguistic
and acoustic variations in large amounts of unlabelled data used to
train SSL speech models. Figure 5b breakdowns NER performance
based on the number of entities in a test utterance. An utterance
with many entity mentions requires better semantic understanding.
Again, we observe that self-supervised speech representations are
more robust to semantic complexity (Entity No. > 2) than super-

85| M E2E SLU Model
B E2E SLU Model w/ Gigaspeech Pre-training
1 LIL_E2E SLU Model w/ WavLM features

70.7 70.8

57 53.2
46.9

NER F1

43

29
18.5
15

<=0.3 (0.3,0.5] >0.5
BLEU

(a) NER performance across different lexical overlap (measured by BLEU
score) of test utterances with the training set.
B E2E SLU Model
B E2E SLU Model w/ Gigaspeech Pre-training
80| M E2E SLU Model w/ WavLM features

75

77.7 77.7

715 72

70

65

NER F1

60

55.3
55

50
<=1 2 >2

Number of Entities

(b) NER performance across different number of entities in test utterances.

Fig. 5: Results comparing the NER performance of models with-
out pre-training, with ASR pre-training on GigaSpeech and with
WavLM features as input across different semantic difficulties on
SLUE-VoxPopuli. The semantic difficulty is measured using (a) lex-
ical overlap with training utterances and (b) number of entities. We
observe that self-supervised WavLM representations are particularly
useful for semantically complex utterances which have low n-gram
overlap with the training set or many entity mentions.

vised representations pre-trained on an ASR dataset.

6. CONCLUSION

In this work, we present a thorough analysis of four types of pre-
training approaches for SLU. We show that each of the pre-trained
models can boost performance over the baseline SLU model without
pre-training. Our results show that self-supervised pre-trained mod-
els achieve higher performance than supervised pre-trained models.
Specifically, we demonstrate that SSL speech models give the most
performance gains for the NER task and pre-trained LMs give the
greatest performance improvement on the SA task. We also observe
that gains achieved by different pre-training methodologies are com-
plementary to each other and by combining different approaches, we
can further advance the SLU performance. Finally, we show a de-
tailed analysis to gain insights into our performance gains and infer
that self-supervised pre-trained models are particularly beneficial for
acoustically and semantically challenging utterances.

We recommend future studies to leverage self-supervised rep-
resentations to advance SLU performance, particularly for under-
resourced settings. We hope insights derived from our study will
facilitate future research on the tight integration of pre-training
methodologies for SLU.

7. ACKNOWLEDGMENTS

This work used the Extreme Science and Engineering Discovery En-
vironment (XSEDE) [53], which is supported by National Science
Foundation grant number ACI-1548562. Specifically, it used the
Bridges system [54], which is supported by NSF award number
ACI-1445606, at the Pittsburgh Supercomputing Center (PSC).



(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

8. REFERENCES

Dian Yu, Michelle Cohn, Yi Mang Yang, Chun-Yen Chen,
Weiming Wen, et al., “Gunrock: A social bot for complex
and engaging long conversations,” in Proc. EMNLP-1JCNLP:
System Demonstrations, 2019.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche,
Alexandre Caulier, David Leroy, Clément Doumouro, Thibault
Gisselbrecht, Francesco Caltagirone, Thibaut Lavril, et al.,
“Snips voice platform: an embedded spoken language under-
standing system for private-by-design voice interfaces,” arXiv
preprint arXiv:1805.10190, 2018.

Loren Lugosch, Mirco Ravanelli, Patrick Ignoto, Vikrant Singh
Tomar, and Yoshua Bengio, “Speech model pre-training for
end-to-end spoken language understanding,” in Proc. Inter-
speech, 2019.

Emanuele Bastianelli, Andrea Vanzo, Pawel Swietojanski, and
Verena Rieser, “SLURP: A spoken language understanding
resource package,” in Proc. EMNLP, 2020.

Alaa Saade, Alice Coucke, Alexandre Caulier, Joseph
Dureau, Adrien Ball, Théodore Bluche, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Caltagirone,
et al., “Spoken language understanding on the edge,” arXiv
preprint arXiv:1810.12735, 2018.

Miguel Del Rio, Natalie Delworth, Ryan Westerman, Michelle
Huang, Nishchal Bhandari, Joseph Palakapilly, Quinten Mc-
Namara, Joshua Dong, Piotr Zelasko, and Miguel Jetté,
“Earnings-21: A practical benchmark for ASR in the wild,”
in Proc. Interspeech, 2021.

C. Busso, M. Bulut, C. Lee, A. Kazemzadeh, E. Mower,
S. Kim, J. Changa, S. Lee, and S. Narayanan, “IEMOCAP:
Interactive emotional dyadic motion capture database,” Proc.
LREC, vol. 42, no. 4, pp. 335-359, 2008.

Daniel Ortega and Ngoc Thang Vu, “Lexico-acoustic neural-
based models for dialog act classification,” in Proc. ICASSP,
2018.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Elizabeth
Shriberg, Rebecca Bates, et al., “Dialogue act modeling for
automatic tagging and recognition of conversational speech,”
Computational Linguistics, vol. 26, no. 3, pp. 339-371, 2000.

Parisa Haghani, Arun Narayanan, Michiel Bacchiani, Galen
Chuang, Neeraj Gaur, Pedro Moreno, Rohit Prabhavalkar,
Zhongdi Qu, and Austin Waters, “From audio to semantics:
Approaches to end-to-end spoken language understanding,” in
Proc. SLT, 2018.

Dmitriy Serdyuk, Yonggiang Wang, Christian Fuegen, Anuj
Kumar, Baiyang Liu, and Yoshua Bengio, “Towards end-to-
end spoken language understanding,” in Proc. ICASSP, 2018.

Loren Lugosch, Mirco Ravanelli, Patrick Ignoto, Vikrant Singh
Tomar, and Yoshua Bengio, “Speech model pre-training for
end-to-end spoken language understanding,” arXiv preprint
arXiv:1904.03670, 2019.

Shu wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff
Lai, Kushal Lakhotia, et al., “SUPERB: Speech Processing
Universal PERformance Benchmark,” in Proc. Interspeech,
2021.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

Suwon Shon, Ankita Pasad, Felix Wu, Pablo Brusco, Yoav
Artzi, Karen Livescu, and Kyu J Han, “SLUE: New bench-
mark tasks for spoken language understanding evaluation on
natural speech,” arXiv preprint arXiv:2111.10367, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova, “BERT: pre-training of deep bidirectional trans-
formers for language understanding,” in Proc. NAACL HLT,
2019.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu
Chen, “DeBERTa: decoding-enhanced BERT with disentan-
gled attention,” in Proc. ICLR, 2021.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and
Michael Auli, “wav2vec 2.0: A framework for self-supervised
learning of speech representations,” Proc. NeurIPS, 2020.

Cheng-I Lai, Yung-Sung Chuang, Hung-Yi Lee, Shang-Wen
Li, and James Glass, “Semi-supervised spoken language un-
derstanding via self-supervised speech and language model
pretraining,” in Proc. ICASSP, 2021.

Ankita Pasad, Felix Wu, Suwon Shon, Karen Livescu, and
Kyu J Han, “On the use of external data for spoken named
entity recognition,” arXiv preprint arXiv:2112.07648, 2021.

Yung-Sung Chuang, Chi-Liang Liu, Hung yi Lee, and Lin shan
Lee, “SpeechBERT: An audio-and-text jointly learned lan-
guage model for end-to-end spoken question answering,” in
Proc. Interspeech, 2021.

Bhuvan Agrawal, Markus Miiller, Martin Radfar, Samridhi
Choudhary, Athanasios Mouchtaris, and Siegfried Kunzmann,
“Tie your embeddings down: Cross-modal latent spaces for
end-to-end spoken language understanding,” arXiv preprint
arXiv:2011.09044, 2020.

Yu-An Chung, Chenguang Zhu, and Michael Zeng, “SPLAT:
Speech-language joint pre-training for spoken language under-
standing,” arXiv preprint arXiv:2010.02295, 2020.

Andy T Liu, Shang-Wen Li, and Hung-yi Lee, “TERA: Self-
supervised learning of transformer encoder representation for
speech,” IEEE Trans. Audio, Speech, Lang. Process., vol. 29,
pp- 2351-2366, 2021.

Yu-An Chung, Hao Tang, and James Glass, “Vector-
quantized autoregressive predictive coding,” arXiv preprint
arXiv:2005.08392, 2020.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrahman
Mohamed, “HuBERT: Self-supervised speech representation
learning by masked prediction of hidden units,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 29, pp. 3451-3460, 2021.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shu-
jie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yosh-
ioka, Xiong Xiao, et al., “WavLM: Large-scale self-supervised
pre-training for full stack speech processing,” arXiv preprint
arXiv:2110.13900, 2021.

Guoguo Chen, Shuzhou Chai, Guanbo Wang, Jiayu Du, Wei-
Qiang Zhang, Chao Weng, Dan Su, Daniel Povey, Jan Trmal,
Junbo Zhang, et al., “GigaSpeech: An evolving, multi-domain
ASR corpus with 10,000 hours of transcribed audio,” arXiv
preprint arXiv:2106.06909, 2021.

Patrick K. O’Neill, Vitaly Lavrukhin, Somshubra Majumdar,
Vahid Noroozi, Yuekai Zhang, et al., “SPGISpeech: 5,000
hours of transcribed financial audio for fully formatted end-to-
end speech recognition,” in Proc. Interspeech, 2021.



[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

Eric Chen, Zhiyun Lu, Hao Xu, Liangliang Cao, Yu Zhang,
and James Fan, “A large scale speech sentiment corpus,” in
Proc. LREC, 2020.

Siddhant Arora, Siddharth Dalmia, Pavel Denisov, Xuankai
Chang, Yushi Ueda, Yifan Peng, Yuekai Zhang, Sujay Kumar,
Karthik Ganesan, Brian Yan, et al., “ESPnet-SLU: Advanc-
ing spoken language understanding through ESPnet,” Proc.
ICASSP, 2022.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Par-
mar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zheng-
dong Zhang, Yonghui Wu, and Ruoming Pang, “Conformer:
Convolution-augmented transformer for speech recognition,”
in Proc. Interspeech, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin, “Attention is all you need,” Proc. NeurlPS, 2017.

Siddhant Arora, Siddharth Dalmia, Xuankai Chang, Brian Yan,
Alan Black, and Shinji Watanabe, “Two-pass low latency
end-to-end spoken language understanding,” in Arxiv preprint
arXiv:2207.06670, 2022.

Xuankai Chang, Takashi Maekaku, Pengcheng Guo, Jing Shi,
Yen-Ju Lu, Aswin Shanmugam Subramanian, Tianzi Wang,
Shu-wen Yang, Yu Tsao, Hung-yi Lee, et al., “An explo-
ration of self-supervised pretrained representations for end-to-
end speech recognition,” arXiv preprint arXiv:2110.04590,
2021.

Ke Hu, Tara N Sainath, Ruoming Pang, and Rohit Prab-
havalkar, “Deliberation model based two-pass end-to-end
speech recognition,” in Proc. ICASSP, 2020.

Tara N. Sainath, Ruoming Pang, David Rybach, Yanzhang
He, Rohit Prabhavalkar, Wei Li, Mirké Visontai, Qiao Liang,
Trevor Strohman, Yonghui Wu, Ian McGraw, and Chung-
Cheng Chiu, “Two-pass end-to-end speech recognition,” in
Proc. Interspeech, 2019.

Jacob Kahn, Morgane Riviere, Weiyi Zheng, Evgeny
Kharitonov, Qiantong Xu, Pierre-Emmanuel Mazaré, Julien
Karadayi, Vitaliy Liptchinsky, Ronan Collobert, Christian Fue-
gen, et al., “Libri-Light: A benchmark for ASR with limited
or no supervision,” in Proc. ICASSP, 2020.

Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu,
Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan
Pino, and Emmanuel Dupoux, “VoxPopuli: A large-
scale multilingual speech corpus for representation learning,
semi-supervised learning and interpretation,” arXiv preprint
arXiv:2101.00390, 2021.

Jonathan G Fiscus, “A post-processing system to yield re-
duced word error rates: Recognizer output voting error reduc-
tion (rover),” in Proc. ASRU, 1997.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, et al., “PyTorch: An im-
perative style, high-performance deep learning library,” Proc.
NeurIPS, 2019.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique Yalta So-
plin, Jahn Heymann, Matthew Wiesner, Nanxin Chen, Adithya
Renduchintala, and Tsubasa Ochiai, “ESPnet: End-to-end
speech processing toolkit,” in Proc. Interspeech, 2018.

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam
Gross, Nathan Ng, David Grangier, and Michael Auli, “fairseq:
A fast, extensible toolkit for sequence modeling,” arXiv
preprint arXiv:1904.01038, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam
Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush, “Transform-
ers: State-of-the-art natural language processing,” in Proc.
EMNLP: System demonstrations, 2020.

Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu,
Barret Zoph, Ekin D. Cubuk, and Quoc V. Le, “SpecAugment:
A simple data augmentation method for automatic speech
recognition,” in Proc. Interspeech, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov, “Dropout: A simple
way to prevent neural networks from overfitting,” The journal
of machine learning research, vol. 15, no. 1, pp. 1929-1958,
2014.

Rafael Miiller, Simon Kornblith, and Geoffrey E Hinton,
“When does label smoothing help?,” Proc. NeurlPS, 2019.

Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,”  arXiv preprint arXiv:1412.6980,
2014.

Suyoun Kim, Takaaki Hori, and Shinji Watanabe, “Joint CTC-
attention based end-to-end speech recognition using multi-task
learning,” in Proc. ICASSP, 2017.

Takaaki Hori, Shinji Watanabe, and John R Hershey, “Joint
CTCl/attention decoding for end-to-end speech recognition,” in
Proc. ACL, 2017.

Joseph P. McKenna, Samridhi Choudhary, Michael Saxon,
Grant P. Strimel, and Athanasios Mouchtaris, “Semantic com-
plexity in end-to-end spoken language understanding,” in Proc.
Interspeech, 2020.

Siddhant Arora, Alissa Ostapenko, Vijay Viswanathan, Sid-
dharth Dalmia, Florian Metze, Shinji Watanabe, and Alan W.
Black, “Rethinking end-to-end evaluation of decomposable
tasks: A case study on spoken language understanding,” in
Proc. Interspeech, 2021.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu, “Bleu: a method for automatic evaluation of machine
translation,” in Proc. ACL, 2002.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peter-
son, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE:
Accelerating scientific discovery,” Computing in Science &
Engineering, vol. 16, no. 5, pp. 62-74, 2014.

Nicholas A Nystrom, Michael J Levine, Ralph Z Roskies, and
J Ray Scott, “Bridges: a uniquely flexible HPC resource for
new communities and data analytics,” in Proc. XSEDE, 2015.



	1  Introduction
	2  Methods
	2.1  Problem formulation
	2.2  Self-supervised pre-trained speech models
	2.3  Self-supervised pre-trained language models
	2.4  Supervised pre-trained ASR models
	2.5  Supervised pre-trained SLU models
	2.6  Combination of pre-trained models

	3  Experimental setup
	3.1  Datasets and tasks
	3.2  Evaluation metrics
	3.3  Implementation Details

	4  Results
	4.1  Sentiment Analysis
	4.2  Named Entity Recognition

	5  Analysis
	5.1  Acoustic Analysis
	5.2  Semantic Analysis

	6  Conclusion
	7  ACKNOWLEDGMENTS
	8  References

