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Abstract—This work describes the early stage of an interactive
and accelerated AI-driven framework for Practical Driving
Courses and Driving Licence Exams. The core of the project is
an innovative multi-parameter AI-assisted telemetry system able
to compute test scores and outcome, useful for human-neutral
auditability of Driving Licence Exams. The distributed Artificial
Intelligence (AI) system available at the Track Testbed will be
able to perform driving behaviour classifications and will suggest
specific improvements based on the analysis of vehicle trajectories
acquired during the driving test. Finally, the project will target
the creation of a large dataset for driving test classification of
key performance parameters. The system is envisioned to have a
relevant impact on all the certification, driving licence operators
and regulator entities.

Index Terms—Camera-base systems, edge computing, trajec-
tory analysis, computer vision, artificial intelligence, motorcycle
driving test

I. INTRODUCTION

The state-of-the-art of Internet of Things (IoT) sensors for
driving/riding is significantly evolving in the last years, driven
by the automotive ecosystem and next-generation autonomous
driving applications, requiring a massive amount of online
data to predict, compute and maintain optimal car/motorbike
trajectories and behaviour. However, in the context of human
learning and training driving phases for motorbikes, such
instruments are currently not adequate to provide instructive
feedback to anomalous, dangerous or inaccurate manoeuvres,
since they are designed to interact with a computing system
rather than humans. Since 2006 (Directive 2006/126/EC of the
European Parliament on driving licences), very similar exam
procedures have been defined in EU Countries (and world-
wide). Nevertheless, there is a significant lack of standard,
measurable and auditable means of verification for motorcycle
practical examinations. For example, in 2021 in the province
of Naples (Italy), only 1.9% of exam failures have been
experienced, while more than 30% in the province of Cagliari
(Italy). In Finland, it takes 3 years to get a full licence
for motorcycles, with a minimum of 37 hours of driving,
while in other EU Countries there is no minimum amount
defined. There is a need for a system that provides reliable and

Fig. 1. The motorcycle driving licence test takes place on predefined paths
delimited with traffic cones. Original image from [1]

rigorous means of evaluations, guaranteeing fair and equitable
treatments. The AI-RIDE project chases this goal, presenting
the adoption of an accelerated, online and embedded Artificial
Intelligence framework in the context of motorcycle rider
training, particularly targeting the Practical Driving Courses
(PDC) and Driving Licence Exam (DLE) sessions verification
tools. The project will target a disruptive innovation step in
the context of driving learning techniques, significantly going
beyond the state-of-the-art of current instruments used in the
PDC and DLE ecosystem. In addition, the Project will enable
the definition of a reliable scoring system, overcoming the
current basic pass/fail system while providing useful and mea-
surable indications of typical exam errors and unsafe driving
procedures. The outcome of a driving licence exam depends
on several factors, such as the performance time, the trajectory
precision, the speed management, the driver’s body posture
and the motorbike position. Most of such factors’ performance
may be computed using data analytic tools resorting to video
frames from external cameras; video cameras installed along
the circuit track may provide information to AI systems to
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extract information about position, speed, and trajectory. For
the Italian law [2], the driving licence exam consists of three
phases: the first two aimed at demonstrating driving skills on
a “safe” circuit closed to traffic, and, only after passing these
steps, the final test on a public road. Our research project
focuses on the first two tests with a known a priori scenario
where it is possible to put cameras and sensors suitable for
the automatic evaluation of the candidate’s driving skills. In
particular, these tests take place on predefined paths with
standard measures delimited with traffic cones (see Fig. 1):
one path is smaller with close passages and low speed and the
other is larger and requires higher speeds. On both of them
there is a slalom at the beginning, then a curve, and finally a
straight section. On the long track, the vehicle must be stopped
in a specific space. Everything must be done respecting time
constraints.

The tests must be carried out without committing penalties
that otherwise jeopardise the success of the exam. These
penalties are:

• irregularly coordinate driving, demonstrating poor skill;
• touch one or more cones;
• skip a cone during the slalom phase or exit the course;
• put one foot on the ground;
• (long track only) stop the motorcycle with the front wheel

which has not passed the first alignment or which has
passed the second alignment;

• take more than 25 seconds to complete the long track;
• take less than 15 seconds to complete the short track;
In the following sections of this paper we will show how

we designed the system to be able to recognise each penalty
and perform the outcome of a driving licence exam. In Section
II we talk about the state-of-the-art of technologies that our
system will rely on. In Section III we describe the logic that
we are planning to use to deal with every single point of the
penalties list. In Section IV we show the preliminary tests
and results behind the choice of the hardware and software
components of the system. Finally, in Section V we summarise
what we have done till now and the future work we are
planning to do.

II. RELATED WORK

Although the announcement reported in [3] is discussing
some generic AI-based automated procedures under imple-
mentation in Singapore and expected to be available in 2024,
to the best of our knowledge, no complete solutions based
on AI and computer vision are available on the market or
have been reported in the scientific literature to automate
training and testing procedures for motorbike driving lessons
and exams. Nevertheless, our system will rely on and put
together some functionalities widely used in the computer
vision domain: object detection, background subtraction and
tracking.

A. Object detection

In our scenario, we have only three objects to recognise:
the cones, the motorcycle and the person on top of it. Several

methods based on deep learning have been proposed in the
literature for this task. Conventionally, two main types of
networks for object detection can be identified: two-stage ones
and single-stage ones. The former divide the detection task into
two steps: first a set of candidate regions corresponding to sub-
windows of the image in which it is likely there is an object
of interest are generated and, then, these regions are tested
using architectures borrowed from the object classification task
producing in output a vector of size equal to the number
of C classes to be analysed. The i-th entry of this vector
corresponds to the probability that in the region there is an
object of class i (0 < i < C). Among the best-known
methods are Region-Based Convolutional Network (R-CNN)
[6], which allows locating objects by training a model using
a small amount of annotated data; Spatial Pyramid Pooling
(SPP) net, Fast R-CNN [7], which guarantees better mean
average precision than the previous ones and Faster R-CNN
[8] that generates region proposals in a less expensive way
than both R-CNN and Fast R-CNN. On the other hand, single-
stage networks simultaneously produce candidate regions and
their classification, often efficiently representing an a priori
number of detectable objects with certain predetermined scales
and aspect ratios, called anchors. The actual positioning and
size of the regions represented by an anchor are obtained
by refining the initial data of the anchor by estimating
appropriate offset factors by means of regression. Among
them, Single Shot MultiBox Detector (SSD) [9], which is
based on a convolutional feed-forward network capable of
producing a set of predetermined cardinality of bounding
boxes, each characterised by a vector of confidence values
about the presence of objects inside it. Then, a non-maximum
suppression procedure allows for identifying a subset of these
bounding boxes, corresponding to the objects in the image.
The first layers of the SSD network are based on standard
architectures used for the classification of images (truncated,
however, before any classification level), layers which are
generally referred to as the backbone. Auxiliary levels are
then added to produce, also by regression, refinements on the
position and size of the bounding boxes. A further well-known
method is constituted by YOLO (You Look Only Once) [10];
after the first publication in 2016 many improved versions
have been presented and since YOLOv3 [11] the algorithm
is computationally suitable for real-time (can even reach 155

Fig. 2. Motorcycles, persons and cones detection with Yolov5; a) original
image from [4] b) original image from [5]
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Fig. 3. The processing pipeline: the blue rectangles are the image processing steps, while the red ovals indicate the penalties we are looking for.

fps). Nowadays YOLOv5 [12] is the most used and supported
detector by the computer vision community. In Fig. 2 you
can see a couple of examples that could be useful for this
research. The authors of YOLOv7 [13] [14] state that its
performances surpass all known object detectors in both speed
and accuracy in the range from 5 FPS to 160 FPS. Single-
stage methods have been appreciated for their computational
convenience, which makes them an ideal choice for real-time
applications. However, the recorded performances have often
been lower than with two-stage methods. To this end, many
recent works, such as [15], [16], have tried to bring some
successful features of two-stage detectors into single-stage
detectors, without altering their computational convenience.

B. Background subtraction

Background subtraction is one of the fundamental image
processing tasks frequently used in applications such as video
surveillance, human activity recognition and autonomous nav-
igation. It might be regarded as a binary image segmentation
aimed at separating the background from the foreground,
usually consisting of moving objects of interest. Among the
classical methods for achieving background subtraction, we
mention Gaussian Mixture Models GMM [17] and codebooks
[18], both of which require a small number of video frames to
understand the statistics both of foreground and background
pixels. Other low complexity methods have been tested in
specific scenarios, such as traffic and parking monitoring [19],
[20]. The advent of deep learning has given some new devel-
opment also in Background Subtraction (BGS). For instance,
in [21], semantic segmentation extracted at a lower pace by
using deep learning paradigms is integrated into a real-time
BGS achieving state-of-the-art performance. Similarly, other
supervised approaches both video-agnostic and video-group-
optimized have been proposed [22] taking advantage of spatial
and temporal information that is processed thanks to end-to-
end convolutional neural networks. In our scenario, videos are
from one know category and, therefore, video-group-optimized

algorithms are the natural candidates for achieving BGS which
might be beneficial for detecting possible contacts between
the bikers and the cones as well as for assessing the area of
final stopping and checking it is within the first and second
alignments.

C. Tracking

Single-camera tracking means assigning an identification
number (ID) to all the moving elements present in a given
frame and recognising the same subjects in the following
frames by carrying forward the assigned IDs; the image
coordinates of the tracked object are projected at ground level
(z = 0) to obtain the bi-dimensional (x, y) position; the
temporal sequence of these coordinates is the track of that
moving object. In our scenario, there is only one object to
track, the motorcycle with the rider on top of it. In this
case, it is possible to use a robust background subtraction
algorithm to achieve very good results because there are no
occlusions along the track. Nevertheless, deep learning has
made it possible to obtain great performances also in tracking
[23], [24]. A reference site that shows the results of the best
algorithms is [25]: the winner of the CVPR19 competition
proposed in [26] is still the top algorithm today. It uses a
detection based on Faster R-CNN and a similarity estimation
based on features of size 128 produced by the patches of the
converted image in the HSV color space. In the second place,
there is [27] whose code in open-source format is freely usable
and modifiable.

III. METHODS

In this section, we describe the logic that we are planning to
use to compute the overall score of the observed driving test.
The basic idea relies on the assumption that the motorcycle is
the only moving element in the scene. Every penalty occurs
always nearby the motorcycle (touching or skipping a cone,
driver’s foot on the ground, failing the stop in the designed
area). With background subtraction, we can easily identify
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Fig. 4. Skipped cone or exit the course: the track is divided into virtual zones to understand if the path follows the right sequence or it the motorcycle enters
in any forbidden area.

Fig. 5. Trajectories analysis: the blue symbols are the cones, the green line is the reference path, the red line is the path of the test drive, the northwest lines
the areas containing the error

the area of interest to analyse in the current frame. In this
way, there is no need to process the whole image but only
a small part of it. The area should be big enough to include
the relevant scenario around the motorbike, like the nearby
cones or the circuit edges. Fig. 3 depicts the main processing
pipeline applied to the video stream of each camera. The blue
rectangles are the image processing steps of the pipeline, while
the red ovals indicate the penalties we are looking for. The
Trajectory analysis module is build on top of the Tracking one
to implement custom logic according to the specific penalty
definition. As soon as a single penalty is detected the exam
ends with a failure. Only irregular driving is not connected to a
specific event but it is decided by the human examiner. Relying
on the computer vision techniques described in section II, in
the following paragraphs we will discuss how we deal with
every single point of the penalties list.

A. Touching a cone

Background subtraction is the perfect technique to discover
this penalty: when a cone’s position changes over time after
it has been touched also the background changes correspond-
ingly. This is the flag to start the verification procedure. As you
can observe in Fig. 3 the Touched cone oval has input from
the Background subtraction module, but also from the Object
detection one. This is to be sure that we are dealing with
a cone and to avoid false positives due to other unexpected
moving elements (e.g. cat or dog on the circuit). A very tough
situation is when the cone is slightly touched and it does not
change position after this event. We will dedicate particular
attention to this case.

B. Putting a foot on the ground

When there is an unexpected stop during the test and
the rider puts the foot on the ground this is confirmed by
the motorcycle’s speed which goes down to zero and this
is a parameter that Trajectory analysis can easily measure.
Unfortunately, there is also the case when the rider slightly
touches the ground without stopping the vehicle, because
he/she is losing balance. This is maybe the harder task to
deal with only external cameras. Due to the perspective and
the high speed of the gesture, it can be very hard also for
the human eye to understand if the foot has actually touched
the ground. We will try some experiments with a dedicated
camera at ground level, but the presence of the cones should
create many visual occlusions in this setup. As further work,
we plan to compute the driver pose estimation that could be
useful for such a task.

C. Skipping a cone or exiting the course

This penalty is flagged by the Trajectory analysis module.
The track and the surrounding area are divided into virtual
zones as shown in Fig. 4: if the driver starts at the right of
the first cone the correct path is determined by the sequence
START - A1 - A2 - B2 - B3 - A3 - A4 - B4 - B5 - A5 - C -
R - START; the examiner often allows to start also at the left
of the first cone. In this case the correct sequence is START
- B1 - B2 - A2 - A3 - B3 - B4 - A4 - A5 - B5 - C - R -
START. With the virtual zone approach, it is straightforward to
accept both possible sequences that depend on the side chosen
at the beginning of the test. Furthermore, it is relatively easy
to understand if the driver exits from the course. The edges



of the circuits are also virtual delimiters and an outside zone
is a forbidden place (the filled area in Fig. 4); as soon as the
motorcycle’s position is in that area the penalty is flagged.

D. Driving irregularly or showing poor skill

Some interesting works has been made about the assess-
ment of the car driving style [28]. In our case the test has
two main factors to consider: the spatial precision and the
temporal/spatial precision of the driver. We provide three
independent scores to measure the quality of the trajectory
followed by the candidate biker.
The first step of the system setup requires the computation of
the reference (or optimal) trajectory. The reference trajectory
can be computed as follow:

• by the analysis of some drives performed by one or more
driving instructors;

• directly by humans choice settings.
The points of optimum trajectory are projected in a three-

dimensional space and each point is characterised by three
attributes:

• x: the x position projected in the bi-dimensional space of
the camera

• y: the y position projected in the bi-dimensional space of
the camera

• t: the time the motorbike is in the point (x, y), the time
is expressed in milliseconds.

We transform the (x, y, t) coordinate space into (x, y, t) where
(x, y) is the rectified space. The rectification transforms the
camera space into a metric space. This transformation permits
us to have an absolute measure of track in terms of kinematics.
The score related to the simply spatial position is computed by
subtracting the calculus of two areas. As shown in Fig. 5, we
can easily calculate the area of the trajectory considering it as
a closed path by connecting its start and end point. Equation
1 describes the calculus of the area.

At = u · ∀m,n ∈ Ig,
∑

{xm,yn} 1 (1)

where Ig is the area delimited by the perimeter of the closed
path and u is the size in meters of each pixel in the rectified
space. At/u is simply the number of the pixels in the rectified
space. We consider now Aref . We calculate Aref on the
reference trajectory. We compare now Ati with Aref . For each
i-th test dive is calculated a new Ati . The score “a”, (Sa) is
computed as described in equation 2.

Sa
ti = [Aref − (Aref

⋂
Ati)] + [Ati − (Aref

⋂
Ati)] (2)

The best score is zero.
The aim of the next score considers the spatial/temporal data
and provides an analysis of the harmoniously of the driving.
The analysis of spatial/temporal data is more complicated
because the various sets of acquired data do not have synchro-
nisation. We focus our interest on the speed and acceleration
of the motorbike. In fact, we label each point of the reference
trajectory (considering the rectified space) with its proper
speed and relative acceleration. The test drive has to respect

some parameters and too much high speed or acceleration has
to be considered a penalty. In practice this score is composed
of various attributes described by equations 3, 4, 5 and 6.
In order to perform this calculus, we reshape [29] the shortest
acquired data or the data of the reference trajectory to the
longer one. This elaboration permits us to have two arrays
aligned in the space from the beginning of the test to the end
of the test and to have a relation with the time that is used to
calculate kinematic features.
Let’s consider:

• Speedrp = rsj is the reshaped speed array of the reference
trajectory

• Speedtd = tsj is the reshaped speed array of the test drive
By reshaping arrays we reshape time values too so we can
easily calculate the acceleration by dividing the speed by the
time.

• Accrp = raj is the reshaped acceleration array of the
reference trajectory

• Acctd = taj is the reshaped acceleration array of the test
drive

Let’s define N equal to the length of the defined arrays. The
score is composed of these values:

Sc
speed−max = max

(
rsj − tsj

)
∀i = j ∈ {0, . . . , N)} [m/s] (3)

Sc
acc−max = max

(
raj − taj

)
∀i = j ∈ {0, . . . , N)} [m/s2] (4)

The computation of the equations provides an average be-
haviour and uses the RMS definition [30] on the arrays
previously defined.

Sc
speed−rms =

√√√√ 1

N
·

N∑
j=0

(
rsj
)2−

√√√√ 1

N
·

N∑
j=0

(
tsj
)2

[m/s]

(5)

Sc
acc−rms =

√√√√ 1

N
·

N∑
j=0

(
raj
)2 −

√√√√ 1

N
·

N∑
j=0

(
taj
)2

[m/s2]

(6)

The last parameter we are going to evaluate is the Hausdorff
distance [31] [32] among the reference trajectory and the
actual trajectory during a test drive.

E. Stopping outside the target area

In the long track test, it is mandatory to stop the motorcycle
with the front wheel inside a narrow target area of 0.5m
delimited by four cones. If the front wheel has not passed
the first alignment or if it has passed the second alignment
there is a failure penalty. We think that a dedicated low-cost
camera and a solid background subtraction method should be
enough to verify the position of the wheel in the designed area,



as depicted in Fig. 3 where the Stop Failure oval is connected
only with the Background subtraction module.

F. Time constraints

There is a penalty if the driver takes more than 25 seconds
to accomplish the long track or less than 15 seconds for the
short one. The task consists in comparing the travel time of the
test with these time constraints. The start signal is manually
given by the examiner that pushes the button to start the
official chronometer. For the stop signal, we use two different
strategies depending on the test we are evaluating. For the long
track test, we already analysed if the motorcycle has correctly
stopped in the designed area (see the previous paragraph).
If this test has been successful we can consider as the stop
timestamp the first frame where the motorcycle is not moving.
For the shorter track, the motorcycle should not stop at the end
but we can still use the virtual zones depicted in Fig. 4. The
moment when the motorcycle returns correctly in the START
area represents the stop timestamp.

IV. MATERIALS

The activities of this project started less that a month ago,
at the beginning of August 2022. Therefore it is too early to
provide quantitative test results; in this section we describe the
very first object detection experiments based on the videos
taken at the Testbed track, with the goal of choosing the
number, the positions and the features of the cameras to cover
the two circuits and to be able to deal with all the problems
that we described in section III.

A. The data acquisition set up

We made a couple of acquisition days at the Testbed Track
located in Pontedera during some students’ training. As you
can see in Fig. 6 the camera positions are marked by the label
CX where X is the number of the camera. All the cameras
were placed at the height of 6 meters and there is a total of 6
cameras: 4 for the short track in every direction and 2 for the
long one only at the end and the beginning of it. This is not the
final number of cameras, we will need more on the side of the
long track. This is just a sub-minimal layout to begin with the
research. We used two different cameras and they are shown
by different colours in Fig. 6: the green is related to the short
track only and it is made with a low-cost Full HD webcam
(resolution 1920x1080 at 30 fps), while the red indicates
the GoPro Hero 10 action camera. The last one is a very
interesting commercial product because it is designed mainly
for sport activities outdoor and therefore it is waterproof and
stabilised, it can record many hours of video standalone, it
can transfer data via wifi, and, above all, it offers very high
resolution and frame rate capabilities: it is possible to record
video up to 240 fps shooting with 2704×1520 or 1920×1080
resolution and 120 fps with the 4K resolution (3840x2160).
An industrial camera with the same capabilities has a price
ten times the GoPro price. Unfortunately, we discovered a big
downside: the device is too powerful and, after 4-5 minutes of
stand-still recording, has overheating issue and turns itself off.

That day was very hot with a temperature of 37◦ Celsius. We
made a lot of tries also indoors at 25◦ Celsius and the problem
happened again after 8-9 minutes of recording. Clearly, this
cannot be the camera we need in the final set-up, but still,
it is very useful for some video sessions to experiment with
different resolutions and frame rates.

Fig. 6. The map of the Pontedera Testbed Track and the positions of the six
cameras used during the acquisition days. The label CX indicates the position
of camera X, while PX points show where to install the supporting poles for
the cameras

B. Early object detection experiments

In this research, we have only a few elements to detect: the
pilot, the motorbike and the traffic cones. We already shown in
Fig. 2 some examples. As previously described in section II we
focus our attention on the YOLO object detector for its good
real-time performance and the wide support from the computer
vision community. Several interesting tools provide a YOLO
approach to the faced problems. We do not intend to provide a
YOLO review, our focus is to put in evidence the tools useful
to our theoretical and experimental. For these reasons, we will
cite only some tools that provide a well-documented API and
a stable source code usable on the Linux OS. OpenVINO
[33] is a tool provided by Intel provided with the step-by-
step demo, python tutorials, DL Workbench and samples. It
reports numerous examples using Docker container [34] or the
programming language Python [35]. Open Model Zoo [36] for
OpenVINO toolkit delivers a wide variety of free, pre-trained
deep learning models and demo applications that provide full



(a) (b) (c)
Fig. 7. First results with YOLOv5: (a) source image, (b) one false positive due to the shadow and two classification errors for the cones; (c) correct result

(a) (b) (c)
Fig. 8. The smaller the better: (a) poor results on original image 2704x1520 - process time 20 sec, (b) medium precision with partial crop 1731x1133 -
process time 10 sec, (c) good results on smaller crop 543x442 - process time 4 sec

application templates to help you implement deep learning in
Python, C++, or OpenCV Graph API (G-API) [37]. Models
and demos are available in the Open Model Zoo GitHub
repo [36] and licensed under Apache License Version 2.0.
OpenVINO is provided with super-resolution libraries based
on An Attention-Based Approach for Single Image Super
Resolution paper [38]. The use of super-resolution algorithms
could be very important in our context due to the wide areas
to cover, the high frame per second required by our objectives,
and the need to keep the costs of the devices down. On
the other hand, we try to minimise the computation time.
During deep experimentation, we will decide which is the best
strategy.
The Ultralytics [39] online framework presents interesting
functionalities that allow testing the capabilities of YOLOv5
[40]. We used this tool to make some object detection tests
and the results are shown in Fig. 7. In the middle picture, there
are two different types of error: the bad classification and the
false positive. For the bad classification of the cones there
is nothing to worry about, because the cones class it is not
in the standard default model used by YOLO. This problem
will be solved by upgrading the existing model with the cone
class or, maybe better, building a custom dataset containing
only the three classes of this domain. The false positive is
actually the shadow of the motorcycle which is recognised
as a second motorcycle. Also in this case there is no big
deal: it happens only in some frames and we already know
that there is only one motorcycle on the circuit. This new
detection will be discarded by the tracking algorithm which
will choose only the element coherent with the previous frame.

Another interesting result is shown in Fig. 8: starting from the
original image (a) and then selecting part of it (b) or just
the interesting area we get an expected faster response due to
smaller resolution, but also better performance of the detection
results. This confirms the idea that we should select the area
of interest around the motorcycle with background subtraction
and then perform object detection only on this small image.

V. CONCLUSIONS AND FURTHER WORK

AI-Ride is a research project based on computer vision and
artificial intelligence techniques, that aims to build an interac-
tive and accelerated AI-driven framework for Practical Driving
Courses and Motorcycle Driving Licence Exams. In this paper
we focus on the multi-parameter AI-assisted telemetry system
able to compute test scores and outcomes of driving test,
useful for human-neutral auditability. The distributed AI multi
camera system will be able to recognised all the penalties that
jeopardise a driving licence exams by means of a computer
vision logic that process the streams from the cameras. It
will also perform driving behaviour classifications and will
suggest specific improvements based on the analysis of vehicle
trajectories acquired during the driving test. A lot of work
will be done in the next months: we showed the very first
experiment we made at the Track Testbed in Pontedera, mainly
to decide how many cameras we need to cover all the circuits
and the technical characteristics to achieve the best results. The
system relies on background subtraction, object detection and
tracking to solve all the user cases. Nevertheless, some penalty
like Foot on the ground is very tough to discover. Human pose
estimation could be useful for this task; both the posture of



the rider and the motorcycle can add valuable information in
the evaluation of the driver’s skill.
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