Addressing Data-Centric Security Requirements for
IoT-Based Systems

Juan D. Parra Rodriguez*, Daniel Schreckling, Joachim Posegga?
Institute of IT-Security and Security Law
University of Passau, Innstrae 43, Passau, Germany
Email: *dp@sec.uni-passau.de, Tds@sec.uni-passau.de, ijp@sec.uni-passau.de

Abstract—Allowing users to control access to their data is
paramount for the success of the Internet of Things; therefore,
it is imperative to ensure it, even when data has left the users’
control, e.g. shared with cloud infrastructure. Consequently, we
propose several state of the art mechanisms from the security
and privacy research fields to cope with this requirement.

To illustrate how each mechanism can be applied, we derive
a data-centric architecture providing access control and privacy
guaranties for the users of IoT-based applications. Moreover, we
discuss the limitations and challenges related to applying the
selected mechanisms to ensure access control remotely. Also, we
validate our architecture by showing how it empowers users to
control access to their health data in a quantified self use case.

Index Terms—Internet of Things; Security Architecture; Data-
Centric Security; Differential Privacy; Secure Cloud Storage;
Encryption

I. INTRODUCTION

In response to the highly unbalanced resource distribution in
the Internet of Things (IoT), resource-constrained devices tend
to only collect data while cloud servers store and process high
amounts of information. Though practical for developers and
for data availability purposes, this raises security and privacy
issues. Particularly, because data is delivered to the cloud in
plain text, thus making it impossible for users to perform
access control on their data.

In spite of extensive research to address security challenges
for the IoT [1], [2], [3], a unified data-centric solution to
ensure that users can perform access control on their data, even
outside of their computers and devices is currently not avail-
able. Notwithstanding, there is extensive research on several
fields of security and privacy such as homomorphic encryption,
trusted computation, or differential privacy that could help IoT-
based application to provide some access control and privacy
guarantees for the user. As a result, we aim to start the journey
towards a security framework addressing data-centric security
requirements on access control and privacy by proposing an
architecture including such mechanisms.

Our contributions are summarized as follows:

e we present a data-centric security architecture, for sys-
tems using [oT gateways, that empowers users to control
access to their data. The security architecture has been
defined considering several attacker models. To synthe-
size the attacker models we based the architecture on

perimeters including components trusted by the user to
handle his data.

e our security architecture applies current state of the art
privacy and security mechanisms to its different compo-
nents. More to the point, these mechanisms are the result
of a survey to find techniques applicable for the IoT set-
ups covered by our architecture.

« we present a concrete validation scenario for our proposal
through a quantified self use case. The main goal is
to allow users to control who has access to their data
through technical means, yet permitting external systems
to perform aggregation operations from information pro-
vided by users opting in. More to the point, information
disclosed by users for aggregation purposes contemplates
the use of mechanisms to protect the user’s identity and
privacy.

The rest of this paper is organized as follows. We present
relevant security requirements and the architecture for IoT-
based applications used for our analysis in Sections II and III.
Afterwards in Section IV, we present the attacker models
based on different perimeters including trusted entities; more-
over, this section includes a discussion on perimeter enforce-
ment based on secure hardware and software combinations.
Then, Section V lists state of the art software-based mech-
anisms helping to tackle security requirements in particular
perimeters. Later on, we integrate every software-based mech-
anism into a unified security architecture and show how it can
be applied to a quantified self use case in Section VI. Last but
not least, we cover the limitations of our architecture and our
conclusions in Sections VII and VIII.

II. SECURITY REQUIREMENTS

Herein we describe the set of data-centric security require-

ments addressed by our security architecture:

R1 A user can grant access to data to other users while
keeping it confidential for unauthorized entities.

R2 The identity associated with the data being accessed can
only be determined by a set of authorized entities.

R3 A user can partially expose data to external entities in
order to protect his privacy.

Notably, the biggest challenge is to ensure these security

requirements in spite of data being stored and processed by

external systems, and in spite of the distributed nature of IoT-

based applications.

(©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/S10T.2016.007




III. ARCHITECTURE

This section defines terminology for the architectural com-
ponents that will be used throughout the paper (See Figure 1).

IoT Device is considered to be an electronic platform, e.g.
Arduino or a sensor, with some wired or wireless connectivity
such as WiFi, IEEE 802.15.4, or an analogue or digital wired
connection.

Gateway is an electronic system, such as an ODROID or
a Raspberry Pi, running a full-fledged operating system and
communicating not only with IoT devices, but also with the
Internet. The purpose of the gateway is twofold: it enables
devices with different protocols to interact with each other,
and at the same time it can process data for aggregation,
analysis or security purposes and preform temporary data
storage. Since gateways need to keep physical proximity with
IoT devices and sensors, they are likely to be deployed inside
a NAT (Network Addressing Translation) network, e.g. at
home. As a result, they do not necessarily offer services to the
internet through inbound connections due to NAT and firewall
restrictions.

External System can be any application on the Inter-
net offering services to the gateway through an API using
protocols such as CoAP, HTTP, etc. We call such systems
external as they are not in direct control of the user but are
managed by a third-party. External systems include but are not
limited to email, social networks and weather forecast services.
Moreover, these systems can include some storage capabilities
to fulfill the application’s goal. However, even though some
storage-related calls could be invoked by the gateway, e.g.
create a post on a social network, the external system would
do some kind of processing on the data, therefore controlling
data in terms of format, size, etc. Please note that an external
system can also consist of another gateway and multiple IoT
devices behind it.

External Storage is a term we use to refer to systems
offering data storage functionality. Such systems can offer
enhanced CRUD (Create Read Update Delete) APIs, or any
kind of storage and querying interface, such as SQL. Examples
of such systems include Dropbox, Google Drive, or a MySQL
database, etc. In contrast to external systems which manipulate
input data following a specific business logic, external storage
system store and return data as provided by the user.

Visualization Device refers to any kind of platform allow-
ing users to visualize and process data coming from IoT De-
vices, Gateways, External Systems or Storage. These platforms
are commonly Web browsers, mobile phones, tablets, etc.
Although a direct connection between a visualization device
and a gateway is possible (assuming that network connectivity
from the visualization device to the gateway is available), we
have decided to leave it out of the architecture to consider a re-
alistic scenario coping with the network restrictions described
in the gateway’s definition. Further, it is assumed that the IoT
device, the gateway, the external system and the visualization
device can be programmed in a Turing complete language.

P1

PO

External

Gateway System

External
Storage

Visualization Device

Fig. 1. IoT System Architecture and Security Perimeters (PO,P1,P2,P3)

IV. PERIMETERS AND ATTACKER MODELS

Given that users may desire more or fewer security guar-
antees, depending on what they consider an acceptable trade-
off between functionality and security, we use the concept
of a Perimeter as the set of components in the architecture
trusted by the user. First, this section will define the perimeters
considered in this paper based on a general system architecture
we consider for IoT systems. Second, we will justify the
choice of our perimeters by outlining the numerous options on
how such perimeters can be supported by soft- and hardware
technologies which already exist or are under development.

A. Perimeters and Attackers

As described above, Figure 1 outlines the general IoT
system architecture we consider. It also depicts the four
perimeters we consider in this contribution. They reflect
components trusted by the user. In our paper, this implies
that a user relies on the fact that an attacker is unable to
perform sophisticated physical hardware attacks on a device
and that the execution of any code on the device does not break
data secrecy. Trusted components inside a perimeter are also
assumed to securely transmit data to properly authenticated
entities inside the perimeter. This renders the consideration
of active or passive insider attackers trying to manipulate or
eavesdrop communication unnecessary.

Hence, our perimeter model proves useful to clearly define
where the attacker can be: Outside of the perimeter. Further,
we can indicate the power of an attacker by indexing perime-
ters. Perimeters with a given index ¢ are always a proper subset
of perimeters with j when ¢ < j. For instance, in PO it is
assumed that an attacker cannot interfere with the IoT device;
conversely, in PO an attacker could tamper with the gateway,
the external system, external storage and the visualization
device.

Additionally, our perimeter model also indicates the trust
level a user is prepared to assign to specific components.
A user which only accepts a perimeter of level 0 is more
paranoid than a laid-back user who trusts every possible
component participating in the processing of his data and who
is comfortable with a maximum perimeter of level 3.

Below, we sketch various technologies which show that such
perimeters can actually be implemented and indicate in which
perimeter they can be used to secure it.



B. Perimeter Enforcement

Processing of accumulated data is fundamental for IoT-
based systems. As the applications in the IoT domain are ma-
nifold and so are the program logics behind it. All components
in our high-level architecture, apart from the external storage
component, can execute some use case specific and possibly
untrusted, third-party code. Further, if authorized, data may
be transmitted to systems running malware or to systems
whose operating system has been compromised. Hence, apart
from a mere trust in specific manufacturers or software,
the decision whether a component can be considered trusted
is hard and would require considerable effort. We consider
trusted execution environments (TEE) as a feasible solution
for this purpose.

In the best case a TEE should ensure the following prop-
erties [4]. The integrity and secrecy of software modules
executed by a TEE and the data it processes should be pro-
tected. TEEs should also provide storage in which confidential
data of a module can be stored securely while the module
is not executed. Through remote attestation, clients which
are required to exchange messages with specific software
modules should be able to verify that they are in fact talking
to this particular module. To be able to actually talk to
such modules, a TEE should ensure secure provisioning of
software modules, i.e. entities are able to send data to specific
modules on specific devices while maintaining their secrecy
and integrity. Finally, a TEE should enable the authentic and
confidential communication between software modules and
device peripherals.

The size and complexity of the trusted computing base
(TCB) required for each architectural component will depend
on the number and type of properties implemented in it. We
will list some of the most prevalent technologies we consider
feasible to be deployed in IoT environments and indicate in
which perimeter they could be used for enforcement.

1) TEE with Micro-Controller Support: A TEE can be
implemented by means of complex hardware and software
support. However, constraints on resources and price often
render such solutions infeasible. Thus, approaches such as
SMART [5], TrustLite [6] or TyTan [7] exploit properties of
low-end micro controller units or of recent CPU technologies
feasible for IoT devices to build simplified TEEs. SMART
introduces a new primitive based on low-end micro controller
hardware and software TCB which protects tasks through
read-only memory and provides attestation mechanisms. To
achieve this, it uses ROM as a secure storage with minor
hardware modifications and some adjustments to the memory
management in the controller itself. Of course, this renders
the secure storage to be vulnerable against physical attacks.
Further, the approach does not allow changes to tasks and
relies on the micro controller to sanitize memory when access
violations occur. TrustLite also aims for embedded devices
but gives greater flexibility. It extends SMART by supporting
task interruption and dynamic changes on the attested code.
However, TrustLite dynamics is also limited as it requires the

configuration, loading, and isolation of all software compo-
nents at boot time. TyTan [7] removes the later restriction of
TrustLite, allows for the dynamic loading of modules and is
able to give real-time guarantees.

Trusted execution environments specifically designed for
embedded devices are particularly feasible for IoT devices
in perimeter PO. While a user may simply trust such simple
devices a TEE can ensure the correctness of firmware updates,
protect data against possibly malicious software accidentally
installed by the user or by the exploitation of a vulnerability
in the gateway.

2) TEE with Trusted Hardware Support: McCune et al.
introduce Flicker [8] which exploits the dynamic root of trust
measurement (DRTM) enabled by trusted platform modules
(TPM) [9] or mobile trusted modules (MTM) [10], TPMs for
mobile devices. A static root of trust measurement (SRTM)
ensures system integrity beginning with the boot process, i.e.
it measures all software loaded since the loading of the BIOS.
The idea is to subsequently rely on the OS to perform process
isolation. This implies, that the whole OS becomes the TCB
which appeared to be infeasible. DRTM was designed to solve
this problem by being able to dynamically reset the CPU into a
fixed state and start measuring from the reset on. This concept
was intended to also support a hypervisor based system where
the hypervisor would be measured and attested by the TPM.
Unfortunately, hypervisors are still complex and the TCB has
considerable size.

Thus, Flicker tries to further reduce the TCB by introducing
pieces of application logic (PAL) which must be defined and
implemented by the developer of an application. Whenever
these PALs must be executed, Flicker suspends the OS,
executes the PAL, allows the manipulation of secure storage,
increments the instruction pointer stored in the TPM, seals
all security critical storage again and then restores the OS.
As Flicker runs with highest privileges it can protect the PAL
from the OS, even if the latter was compromised.

Flicker introduces large overhead due to its intense use of
the TPM. Thus, McCuner further refines his DRTM based
model by introducing a hypervisor called TrustVisor [11]
which uses software-based uTPMs which are associated with
PALs. In contrast to a hardware TPM which runs in an
often slower and completely isolated piece of hardware, the
uTPM runs on the main CPU. As the TrustVisor is managing
PAL and uTPM execution it is measured by the physical
TPM which builds a new root of trust, the TrustVisor root
of trust measurement (TRTM). While Flicker only protects
the PAL from the OS also enables the protection of the OS
from the PAL. However, the non-security sensitive part of
the application, i.e. code not inside a PAL, may still contain
malware that can compromise OS.

We believe that the approaches introduced above can ben-
efit from newer CPU based technologies, such as the ARM
TrustZone[12], Trustsonic! or Samsung KNOX?, and the Intel

Uhttps://www.trustonic.com/
Zhttps://www.samsungknox.com/



Software Guard Extensions (SGX) [13]. The functionality and
computing power of a TPM is restricted and the physical
binding with the devices is rather weak. Therefore, Flicker and
TrustVisor could further benefit from the power and security
features of these platforms. With SEDA [14], Asokan et al.
already show how the Intel research architecture Siskiyou
Peak for embedded devices can support powerful and efficient
security mechanisms such as swarm attestation for low-level
devices by enhancing SMART and TrustLite.

In this way, trusted execution environments supported by
trusted hardware become a valuable enforcement mechanism
for PO-P3.

3) TEE with Trusted Hardware and Virtualization Support:
Of course, various virtualization techniques can be deployed
in powerful devices [15]. Thus, perimeter P2 and P3 can easily
deploy virtualization mechanisms which enable the isolation
of possibly malicious code and control the access to security
critical data and credentials.

However, virtualization is also a valid option for mobile
and embedded devices our architecture puts in P1 and P2.
This has been shown by numerous implementations such as
TrustDroid [16] and Boxify [17]. Also the solution by Wessel
et al. [18] which improves mobile device security by deploying
operating system-level virtualization becomes an attractive
option for these perimeters as it provides storage encryption,
integrity protection and remote management.

Combined with a TPM or more advanced processor tech-
nologies the measurement of appropriate hypervisors or snad-
boxes mentioned above could form a dynamic root of trust
which can be asserted by a connecting client.

In fact, the more recent solution Sprobes by Ge et al. [19]
exploits the ARM TrustZone and introduces introspection
without a separate hypervisor. While this approach only shows
how to limit kernel execution to approved code pages in order
to prevent rootkit exploits, this work introduces a lightweight
solution by exploiting modern processor architectures. Al-
though this approach requires dynamic code rewriting, we
assume that this work can be further exploited and applied to
approaches implementing TEEs by controlling memory access
with program counter.

Another recent approach combines TrustVisor (see above)
with the Google Native Client (NaCl) [20]. NaCl uses a
combination of a secure runtime and software-based fault
isolation (SFI) [21] to sandbox native application code. The
combination with TrustVisor and thus the use of a TPM
generates a two-way sandbox called MiniBox [22]. It allows
the attacker to control applications as well as the operating
system. Thus, MiniBox can provide sufficient trust to be placed
in P1-P3. Through its TPM and pTPM usage it can also
provide attestation to a client within the same perimeter.

Finally, we want to highlight an approach which uses fully
abstract compilation. Fully abstract compilers translate fully
indistinguishable source level programs into indistinguishable
target level programs. This property is also called contex-
tual equivalence and assumes programs at source level to
be correct, i.e. if they do not allow data leaks, the target

level program will possess the same property. While this
assumption requires additional implementation effort from the
developer fully abstract compilation provides fine granular
access control on data and ensures data secrecy and integrity.
Implementations for the fully abstract compilation of object-
oriented programming languages into untyped assembly target
languages exist [23], [24].

Particularly intersting is the work by Strackx et al. Similar to
TrustVisor, they define self-protecting modules (SPMs) [25].
They can be executed using shared resources such as memory
or CPUs, can authenticate towards other modules, can securely
communicate with other modules and ensure that the sensitive
information they store can only be modified by code from the
module itself. While their first contribution requires special
hardware support their second approach, Fidel [26], targets
commodity systems. To achieve this, they complement their
work with an additional hypervisor, a small kernel which
enforces fine-grained data access and a fully abstract compiler
able to generate secure SPMs. Similar to TrustVisor a TPM
can provide the required DTRM during the launch of the
hypervisor. Both models allow powerful attackers which can
control the operating system and can inject malicious software
or other potentially hostile SPMs. However, as for almost all
approaches, attackers which can run physical hardware attacks
are excluded in their attacker model.

Of course, both approaches are feasible for perimeters P1
through P3. On top, depending on the device configuration
these approaches could also be deployed in PO. In particular,
Fidel requires only limited hardware support and provides
tremendous security guarantees for data secrecy at the same
time.

V. EXISTING SOFTWARE-BASED MECHANISMS

This section will describe state of the art mechanisms
addressing security requirements described in Section II. After
describing each mechanism, we state in which components
of the architecture it can be applied, the perimeter according
to the IoT System Architecture in Figure 1, and the security
requirements addressed by it. Further, when a mechanism can
be applied in several perimeters, we describe the mechanism
assuming the strongest attacker model. i.e. the smallest perime-
ter possible, in which the mechanism could be used.

A. Cryptographic Mechanisms

1) Homomorphic Encryption: The basic principle behind
homomorphic encryption is to use a transformation, i.e. en-
cryption function, that preserves structure, i.e. an homomor-
phism. That is to say, given an encryption function f, such
that f(z+y) = f(x)® f(y), an external party which does not
know x and y can perform the addition of two encrypted values
f(x) and f(y), by using the operator ¢. Since f(z) ® f(y)
produces f(z + y), the actual value for the sum (z + y) can
only be decrypted by users with the proper key to reverse f.

One of the biggest challenges of homomorphic encryption
is to support polynomials of arbitrary degree efficiently. As a
result, it is common to see homomorphic encryption tailored



to particular applications in which feasible performance is
achieved [27], [28], [29].

Given that the gateway and the visualization device are
likely to have less computational resources than external
systems, we focused our survey on server-side processing on
encrypted data. The key contribution of such approaches is
that gateways and visualization devices can offload storage
and processing of data to external systems, yet maintaining
their data encrypted at all times. The most relevant approaches
for server-side aided homomorphic encryption are HElib [30]
and CryptoNets [31]. The former is a library supporting
SIMD (Simple Instructions Multiple Data) operations homo-
morphically and specifying their cost. This library has been
produced in C and C++ and it has been open sourced under
GPL Licence. CryptoNets allows to apply neural networks to
encrypted data using homomorphic encryption, though it is
not available as open source.

Encrypting and decrypting data on the gateway and the
visualization device while performing homomorphic opera-
tions on the external system could be applied to perimeter
P2. Moreover, homomorphic encryption tackles R1 while
letting the gateway and the visualization device to offload
computation and storage of data to an external system.

2) Searchable Encryption: Song et. al proposed a set of
cryptographic schemes for searching on encrypted data [32].
Moreover, they demonstrate that an attacker who reads the
cipher text cannot learn anything about the plain text. Further
they provide controlled searching, i.e. the server cannot per-
form a query without the user’s authorization, and also the
user can ask the server to search for a secret keyword without
revealing it to the server. Also, algorithms presented by Song
et. al are practically applicable, given that they have O(n)
number of stream cipher and block cipher operations for a
message of length n.

The theoretical foundations presented by Song et. al [32]
were leveraged by CryptDB [33], along with additional
schemes such as order-preserving and homomorphic encryp-
tion, to implement SQL-aware cryptographic schemes. This
allows CryptDB to support SQL queries on encrypted data;
however, developers must specify beforehand the primitives
used by the application’s queries, e.g. join, and the particular
fields they are used in. Unfortunately, this is required to
guarantee effective query resolution; for instance, if one re-
quires a SORT BY aggregation for a particular column, order-
preserving encryption on the column is naturally required
to resolve the query. According to the authors’ evaluation,
CryptDB supports 99.5% of the queries observed in a 126
million SQL trace extracted from production systems. Also,
CryptDB reduces the throughput by 14.5%, thus making
it an acceptable solution for server-side encrypted storage.
CryptDB also supports multiple principals by chaining keys,
e.g. encrypted the group key with each user’s key, so they can
decrypt the group’s key while keeping it confidential to third
parties.

CryptDB’s architecture relies on two components: a server
side database which performs queries on encrypted data, and a

proxy used by the application to generate and send encrypted
queries, generated from standard SQL statements, to the server.
Therefore, data confidentiality is protected when the database
server is compromised, since the server can neither decrypt
the query, nor the result. On the other hand, when the proxy
is compromised, the confidentiality of data belonging to users
who are currently logged cannot be ensured; notwithstanding,
data readable by users who are not currently logged in, through
the compromised proxy, is kept confidential.

Another approach to encrypt data on the user’s side while
allowing the server to perform searches on the encrypted data
is Mylar [34]. Mylar is implemented as a plug-in for the
Meteor JavaScript framework, which uses elliptic curves to
encrypt data on the user’s browser while allowing users to
send encrypted keyword searches to the server. Moreover, in
the process of resolving the keyword search, the server neither
learns the query, nor the plain text of the result. Like CryptDB,
Mylar also supports data sharing through chaining if keys, as
CryptDB does. On top of this, this framework also considers
integrity protection for parts of the code hosted by untrusted
servers; to this end, a browser plug-in verifies signatures of
the sources loaded from the application while ensuring proper
isolation of the cryptographic keys from untrusted servers
through the Same Origin Policy.

The applicability of all concepts described in this subsection
lies in perimeter P2 and they would address requirement R1.
However, there are subtle differences depending on which
method is applied. If CryptDB is applied, the database would
comprise an external storage component, and the proxy used
for the SQL translation would be executed on the gateway and
the visualization device. On the other hand, if Mylar is applied,
the developer needs to be able to modify the behaviour of
the gateway, the visualization device and the external system.
The later is required because Meteor not only generates the
browser-side code, i.e. visualization device, but also generates
the code for the external system to host the application and
the data, along with specific business logic required the search
on the encrypted data set.

B. Partial Data Exposure

1) Differential Privacy: According to the literature [35],
[36], differential privacy operates on databases containing rows
where the data of an individual is held in a single row. Further,
differential privacy ensures that the ability of an adversary
to inflict harm on any set of people is essentially the same,
independent of whether any individual opts in or out of the
dataset. This is done by focusing on the probability of any
given output of a privacy mechanism and how this probability
can change with the addition or deletion of any row.

Differential privacy mechanisms rely on adding some kind
of noise to the data, in order to prevent the disclosure of the
exact value provided by a participant on the dataset, while
producing acceptable results when data is aggregated. This is
possible because noise is canceled out during the aggregation
process for particular probability distributions. However, most
of the work on differential privacy assumes a database in



which a participant answers a particular question only once
(provides only one value). Intuitively, this is a prerequisite
to ensure that data cannot be “averaged” to find the actual
value for a participant over time, i.e. longitudinal attacks.
This poses a critical pitfall for the IoT domain because IoT
devices will generate data periodically, and it is not feasible
to assume that each device provides a single measurement in
its lifetime. Therefore, only very particular mechanisms such
RAPPOR [37] and the work on differential privacy under con-
tinual observation by Dwork et. al [36] can provide guaranties
against untrusted aggregations attempting a longitudinal attack
on measurements received over time. These two approaches
can be tuned by modifying parameters on the client-side to
find the proper trade-off between usability and privacy.

On the one hand, RAPPOR provides support for collecting
one or more categorical responses, i.e. whether a particular
entity belongs to a category or not. RAPPOR could also
be used to collect population statics on numeric and ordinal
values, i.e. use predicates associated with particular range of
values. Further, RAPPOR can be used to calculate statistics
on non-categorical domains or when the categories are not
known in advance through Bloom filters. On the other hand,
differential privacy under continual observation [35] allows to
count how many times a certain event has occurred in the past.

Both of the aforementioned differential privacy techniques
could be applied to perimeter PO by including them in the IoT
device itself to support R3. Hence, it must be noted that for
both schemas the systems doing the aggregation do not need
to be in the perimeter because even if the decoding of the data
is not implemented properly, e.g. Bloom filter for RAPPOR,
there are no threats against confidentiality.

2) Sanitization: Sanitization is a term commonly used
when sensitive data is removed (or redacted) from a document
to reduce privacy risks. Recently, the National Institute of
Standards and Technology (NIST) released a technical re-
port on de-identification techniques [38]. In our architecture,
sensitive data could be removed at any point. The smallest
perimeter that could be used is PO. Applying de-identification
or sanitization solves requirement R3 and requirement R2.
Further, under the right conditions, de-identification and san-
itization could provide a stronger property than R2 because
the identity associated with the data cannot be determined
by anyone; however, whether this possible in practice is still
an ongoing debate due to the difficulty to ensure that data
remains unlinked to other datasets that could ultimately reveal
the identity of the data owner.

C. Hidden Channels

Lulia et. al propose a Web-based protocol for users who
want to communicate with each other through existing external
systems, e.g. Facebook, while keeping information confidential
and hiding from a casual observer that such confidential
exchange of data takes place [39]. In a nutshell, in the scheme
proposed by Lulia et. al a user can publish a “regular”
message, and encode information in the message in such a
way that the recipient can fetch an encrypted file. This file

can be hosted in a publicly available Dropbox or Google Drive
folder and it is referenced by a URL shortener service such
as tinyurl. Once the user, with whom data should be shared
with, has downloaded the encrypted file, it is subsequently de-
crypted with the user’s key. The whole process of publishing,
retrieving, and replacing the original message in the graphical
interface (HTML) is transparently performed by a browser
plug-in. An interesting fact of this approach is that other users
who are not aware of how data from the “regular” message
should be decoded will not suspect that an encrypted message
is being shared between the creator of the message and another
user. Furthermore, even if a user who is not intended to read
the data manages to find the location of the encrypted file, he
still will not be able to read the clear text from it.

For clarity, let us assume a scenario in which Alice manages
the gateway and she wants to send an encrypted message to
Bob holding a visualization device. In this scenario, the gate-
way would perform the encryption. Afterwards, the gateway
would encode the location of the encrypted file in a “regular”
message and post it to the external system, e.g. Facebook.
Subsequently, the gateway would use an external storage
system, e.g. Dropbox, to make the file available to Bob. Once
Bob reads the “regular” messages from the external system,
his visualization device should then decode location from the
public external storage, fetch the file and decrypt it with
Bob’s key. The last step could be performed through browser
plug-ins or applications running on the visualization device.
Moreover, communication in the other direction would work
symmetrically. Lulia et. al have shown how this mechanism
can be implemented sharing messages through Facebook and
other online services.

The method described previously can be applied to perime-
ter P2; however, the functionality available as a browser
plug-in needs to be implemented in the gateway and the
visualization device. Furthermore, this approach addresses
requirement R1, and the key differentiator of this technique
is that R1 is achieved without modifying the external system.

D. Anonymity

1) Onion Routing: Tor (The Onion Router) is an open-
source, circuit-based and low-latency service for anonymous
communication [40]. Roughly speaking, Tor allows a sender
to choose a multi-hop circuit comprised of Onion Routers to
send his message. Messages are encrypted using several layers
to ensure that Onion Routers participating in the circuit can
forward the message, yet without having access to the data
being exchanged. Furthermore, since the sender of the message
chooses the path it is very hard for nodes to collude and brake
the anonymity of the sender. In Tor’s architecture there is a key
component taking care of circuit establishment and message
exchange installed on the sender’s machine called the Onion
Proxy.

Onion Routing could be applied to perimeter P2. On the
one hand, the visualization device could keep its anonymity,
thanks to the plethora of possibilities to install Tor clients for
Visualization devices [41], [42], [43]. On the other hand, a



gateway could also be configured to send network requests
through Tor anonymously. This is possible by configuring the
gateway to send every network request through the SOCKS5 3
interface of the Onion Proxy; alternatively, specific libraries
can be used to overwrite network-related system calls, so they
can be redirected through Tor, for any application [44]. Onion
Routing addresses requirement R2 in a stronger sense because
no one is be able to find the sender’s identity. However, care
must be taken to avoid sending information that may uniquely
identify the sender of the data, and also a proper number of
nodes in the network should be ensured.

2) Garlic Routing: The Invisible Internet Project (I2P) is an
open-source anonymous network allowing applications to send
messages to each other [45]. Unlike Tor where Onion Routers
are not necessarily run by regular users, I2P requires that every
user accessing the I2P network runs his own “router” to join
the network. Also, applications accessed through this network
need to use the proper I2P interfaces to communicate with
the outside world. Another key difference between Tor and
I2P, is that I2P uses Garlic Routing which uses a Distributed
Hash Table (DHT) instead of centralized directory servers. As
a result, when a router joins the network, it establishes a set
of inbound and outbound tunnels used to relay messages, and
each user can decide how many hops are required to find an
acceptable trade-off between anonymity and usability.

Similarly to Onion Routing, Garlic Routing could be applied
to perimeter P2 since I2P offers libraries for mobile devices.
Furthermore, I2P can be executed in the gateway since it is
implemented in Java.

3) Pseudonyms: There is a recent IETF draft for privacy-
enhanced tokens proposing a schema for “Pseudonym-based
Authorization Tokens” [46] based on one-way functions, e.g.
cryptographic hash. In this protocol, tokens do not reveal
any information about the client. Furthermore, by observing
messages exchanged, including the tokens, an observer cannot
know whether two messages were generated by the same
sender. Most importantly, with the pseudonym-based autho-
rization tokens, only an entity with the proper key material
can find out the real identity of the sender, and an attacker
who obtains a token cannot derive valid tokens from it.

This approach could be applied to perimeter PO, since in
some IoT devices it is currently possible to evaluate crypto-
graphic hash functions, and this would improve the privacy
of an IoT device towards the gateway. Alternatively, the
same argument applies between the gateway and an external
system, or even between any pair of devices communicating
in the architecture, e.g. visualization device communicating
with external system. Moreover, in cases when this technique
is applied but IP networks are used, anonymity of the client
could only be preserved by applying also the Onion or Garlic
Routing approach described in V-D1. Pseudonyms address
requirement R2 since only a selected set of users can derive
the identity of the token bearer, i.e. entities who posses the
proper key material.

3SOCKSS is a protocol to exchange network packets through a proxy server

VI. SECURITY ARCHITECTURE

We extend the initial architecture shown in Figure 1 to tackle
the access control and privacy requirements from Section II.
Subsequently, we apply our security architecture concepts to
a quantified self use case and show its advantages.

A. Big Picture

In the security-enhanced architecture shown in Figure 2, the
mechanisms introduced in Section V are placed in compo-
nents where they are applicable. Besides, to illustrate against
which attacker model they are effective, each mechanism is
coloured following the same color coding used for the security
perimeters. For instance, the partial exposure mechanism in
the IoT device is coloured with the weakest gray, i.e. the
same as perimeter PO, to show that applying it to the IoT
device protects the user’s data against attackers outside of
the gateway. Furthermore, we use the color for the strongest
attacker model, i.e. smallest perimeter, against which the
mechanism is effective: in the example, we chose PO even
though partial data is also effective for to P1, P2, and P3.

In cases when different characteristics are required for client
and server side, e.g. homomorphic encryption, we indicate
which side is applied to each component. Also, in the case of
hidden channels only clients are visible because this technique
neither modifies the external system, nor the external storage.

In our architecture, both the external storage and exter-
nal system include searchable encryption capabilities. This
is required because the same goal can be achieved by an
application hosting the code and the encrypted data, i.e. Mylar,
or encrypted data could stored by an external storage and avail-
able through an SQL interface, i.e. CryptDB. Furthermore,
since most of the mechanisms applied to the gateway are also
required for the visualization device, in order to achieve secure
communication, they are also drawn in each component.

B. Illustrating Use Case

The proposed data centric security architecture is applicable
in the quantified self use case, where the main concept is
tracking aspects of a users daily life (i.e food calories, health
status, heart rates, oxygen levels etc) and his performance
(i.e. physical activities, calories burnt, motion data etc). Such
data may be collected by IoT devices, e.g. step tracking
bracelets and smart watches, and sent to the IoT gateway
(Raspberry Pi) using Bluetooth Low energy (BLE) or other
wireless protocols. In the specific use case scenario, a company
proposing a holistic approach to the quantified self concept
provides an external system with an integrated Personal Health
Record (PHR), which is accessible through a Web browser,
and a native smart-phone application to interact with the user.
Users of this system can instruct their gateways to upload
data from their IoT devices in encrypted form to the external
system. Furthermore, as specified in requirement R1, they
can selectively share parts of their data with their caring
circle including their physicians, relatives and friends, etc.
Also, whenever the user wants to visualize his quantified self
data (which is stored encrypted by server), he can use his



loT Device Gateway

Partial Data Exposure — Anonymity

Partial Data Exposure

Hidden Channels (clieht)

Searchable Encryption (client)

Homomorphic Encryption (client) ImmmB Homomorphic Encryption (server)

External System

Searchable Encryption (server)

L

External Storage

Visualization Device
Anonymity

Searchable Encryption (client)
Hidden Channels (client) Homomorphic Encryption (client)

Searchable Encryption (server)

Fig. 2. Security Enhanced Architecture

visualization device (Web browser or smart-phone). This can
be achieved exploiting searchable encryption on the external
storage (or external system depending on whether Mylar or
CryptDB is used) , and placing the proper functionality on the
gateway and the visualization device as well, so as to decrypt
the information and send encrypted queries to the server. In
this particular use case, we are assuming that the user of the
quantified self system feels comfortable with perimeter P2.

It is likely that the company developing the holistic quan-
tified self application (external system + smart-phone appli-
cation) would be motivated to provide additional services,
e.g. at additional cost, based on aggregated values resulting
from analysing the data from several devices and users. This
is not possible once our proposal for searchable encryption
has been implemented. Nonetheless, a middle ground can
be implemented to allow the quantified self application to
calculate aggregated values with acceptable accuracy while
protecting the users’ privacy, even against a subpoena from the
government, i.e. requirement R3. Users could have incentives,
e.g. lower monthly costs, to share their data de-identified and
using differential privacy, which could be easily applied by the
gateway under the user’s control. In turn, this would allow the
external system to earn revenue based on aggregated values
using data only from users who have opted in to share their
data while protecting the users privacy. An interesting aspect of
our proposal is that hinders an external system from harvesting
the users data without their knowledge through technical
means. However, this also has a silver-lining for companies
supporting such mechanisms: users will feel safer knowing
that their data can only be used when they opt in, instead of
by default therefore improving the application’s popularity. At
the same time, the company implementing the quantified self
use case cannot be forced to deliver confidential data from its
customers by any government because it is encrypted in the
first place.

VII. LIMITATIONS AND CHALLENGES

Although mechanisms listed in this paper help to improve
privacy and security guaranties for users, there are important
considerations to keep in mind and tackle when possible.
These considerations include ensuring proper system boot-
strapping, password recovery among others.

Bootstrapping of a secure IoT-Based system remains an
important challenge. Key agreement and out-of-band delivery
of Trusted Execution Environments such that they can be
remotely attested later on should be carefully implemented.
Furthermore, mechanisms for replacing Trusted Execution En-
vironments due to failures, among other reasons, and ensuring
that this does not become the weakest link in the security chain
needs to be assessed for each particular implementation.

Another critical point calling for a practical solution is that
most of the mechanisms described in Section V rely on chain-
ing keys to store group and users’ keys. For instance, when
the server stores a key encrypted with the user’s password,
the user’s life is simplified because he can log in from any
Web browser, while keeping the user’s key confidential from
the server. However, if the user forgets his password there are
no means to recover this key. In the end, this problem boils
down to an ancient problem balancing safety versus security.
On the one hand, if one stores the key in plain text, the user
can always log in (safety), but someone may have access to
this key and then harm the user (security). So, in summary
users of such secure systems should be well educated and keep
secure backups from their passwords and keys, since strong
guarantees for secrecy come with a price, i.e. there is no “I
forgot my private key” mechanism. Further, additional issues
such as interoperability, software stability and performance are
key aspects for the integration.

Regarding software maturity, it is clear that Tor has been
extensively used by real users showing its stability. At the
same time, there are many systems currently using building
blocks from CryptDB [47]. On the other hand, there are other
components in the architecture which are either not open
source, e.g. CryptoNets, or have not been yet thoroughly tested
in real-life use cases yet, e.g. HELib.

From the performance point of view, some components
mentioned in the architecture have been already used from
hardware commonly used for IoT gateways; for example, Tor
or I2P can be installed on a Raspberry Pi [48], [49]. Nonethe-
less, in spite of coming a long way since its initial definition
on 1978 by Rivest [50], homomorphic encryption still faces
an important performance challenge. Recently, framework
for testing homomorphic encryption schemes named HETest
was introduced [51]. In this work, it is stated that although



encryption and decryption with HELIb is fast, i.e. order of
tens of milliseconds, performing homomorphic evaluations can
take hours.

Applicability of homomorphic encryption is hindered by its
requirement to compute circuit-based operations, rarely seen
in real-life. Also, applying cryptographic schemes such as
CryptDB require care regarding the kind of data stored [52].

Last but not least, an unavoidable fact is the so called
analogue loophole mentioned in Digital Rights Management
(DRM). The analogue loophole is defined as the intrinsic pos-
sibility of copying and distributing content (or data) through
analogue means once it is represented in a human readable
format. For instance, regardless of the number of software and
hardware-based mechanisms employed to share confidential
information from an IoT device to a visualization device, the
user receiving the data can always take a picture and post it
online, therefore breaking the secrecy of the data completely.
Although this is impossible to solve, it is relevant to clarify
the limits of the technical mechanisms presented herein.

VIII. CONCLUSIONS

We have reached a point in which several security concepts
that were only theoretically possible are becoming feasible in
practice. A clear example is allowing users to query on their
encrypted data without revealing the clear text to the server
hosting it (See Section V).

A similar argument holds for the trusted execution environ-
ments feasible for the IoT domain. Expensive trusted platform
modules with restricted functionalities start to vanish. They
are replaced by cheaper and faster multi-purpose processing
units. As sketched above, their combination with recent re-
search results which introduce sophisticated compilation and
virtualization technologies, is able to further reduce the TCB
and increase the performance as well as security assurance
even in the absence of trusted elements of platform modules.
Although, many of these new devices still lack the ability
to counter strong physical hardware attacks and thus may
leak confidential data they become an attractive alternative to
expensive and slow tamper-resistant hardware. We assume that
this also holds for manufacturers of embedded devices. Instead
of integrating trust anchors offered by only a small number
of specialized suppliers, cheaper solutions with a reduced set
of fabrication requirements but with distinct security benefits
may be a clear advantage in the competition for a mass market.
In particular, this holds for solutions which offer a physical
integration such as the ARM TrustZone.

In general, compromises are required to reach applicability
of security and privacy systems. For example, the crypto-
graphic methods compiled in this paper can support confi-
dentiality, yet they cannot guarantee integrity or availability
of the encrypted data. This cannot be prevented because, in
spite of not being able to decrypt the information stored in the
external system, a malicious administrator could still modify
it or even delete it.

All in all, we have focused on a specific set of require-
ments on access control and privacy. It has been particularly

interesting to consider the IoT-based system as a whole, i.e.
including external systems. After exploring state of the art
mechanisms, we conclude that there are enough applicable
mechanisms to improve the security guarantees for the users’
data when external systems are willing to apply them.

ACKNOWLEDGEMENTS

This research has been supported by the EU under the
H2020 AGILE (Adaptive Gateways for dIverse muLtiple En-
vironments), grant agreement n. H2020-688088. Additionally
it was partially funded by the “Bavarian State Ministry of
Education, Science and the Arts” as part of the FORSEC
research association. Further, the authors would like to thank
Ilias Maglogiannis and Andreas Menychtas for providing
valuable input for the use case validation.

REFERENCES

[1] R. Roman, P. Najera, and J. Lopez, “Securing the Internet of Things,”
Computer, vol. 44, no. 9, pp. 51-58, Sept 2011.

[2] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in Internet of Things: The road ahead,” Computer
Networks, vol. 76, pp. 146 — 164, 2015.

[3] E. Vasilomanolakis, J. Daubert, M. Luthra, V. Gazis, A. Wiesmaier,
and P. Kikiras, “On the Security and Privacy of Internet of Things
Architectures and Systems,” in 2015 International Workshop on Secure
Internet of Things (SIoT), sep 2015, pp. 49-57.

[4] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M.
McCune, Trustworthy Execution on Mobile Devices: What Security
Properties Can My Mobile Platform Give Me? Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 159-178. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30921-2_10

[5] K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik, “SMART: Secure
and Minimal Architecture for (Establishing a Dynamic) Root of Trust,”
in NDSS 2012, 19th Annual Network and Distributed System Security
Symposium, February 5-8, San Diego, USA, San Diego, UNITED
STATES, 02 2012.

[6] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite:
A Security Architecture for Tiny Embedded Devices,” in Proceedings
of the Ninth European Conference on Computer Systems, ser. EuroSys
’14. New York, NY, USA: ACM, 2014, pp. 10:1-10:14.

[7]1 F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “TyTAN: Tiny Trust Anchor for Tiny Devices,” in Proceedings of
the 52Nd Annual Design Automation Conference, ser. DAC °15. New
York, NY, USA: ACM, 2015, pp. 34:1-34:6.

[8]1 J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An Execution Infrastructure for Tcb Minimization,” in Pro-
ceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008, ser. Eurosys '08. New York, NY, USA: ACM,
2008, pp. 315-328.

[9] Vincent J. Zimmer and Shiva R. Dasari and Sean P. Brogan, “Trusted

Platforms - UEFI, PI and TCG-based firmware,” White Paper by Intel

Corporation and IBM Corporation, September 2009.

Trusted Computing Group, “TCG Mobile Trusted Module Specifica-

tion (Version 1.0, Revision 1),” https://www.trustedcomputinggroup.org/

specs/mobilephone/tcg-mobile-trusted-module- 1.0.pdf, June 2007.

J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,

“TrustVisor: Efficient TCB Reduction and Attestation,” in Proceedings

of the 2010 IEEE Symposium on Security and Privacy, ser. SP *10.

Washington, DC, USA: IEEE Computer Society, 2010, pp. 143-158.

N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM Trustzone

to Build a Trusted Language Runtime for Mobile Applications,” in Pro-

ceedings of the 19th International Conference on Architectural Support

for Programming Languages and Operating Systems, ser. ASPLOS ’14.

New York, NY, USA: ACM, 2014, pp. 67-80.

Intel Corporation, “Intel® Software Guard Extensions (INTEL SGX),”

https://software.intel.com/sites/default/files/332680-002.pdf, June 2015,

accessed: 2016-06-10.

[10]

[11]

[12]

[13]



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

N. Asokan, F. F. Brasser, A. Ibrahim, A. Sadeghi, M. Schunter,
G. Tsudik, and C. Wachsmann, “SEDA: scalable embedded device
attestation,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-
6, 2015, 1. Ray, N. Li, and C. Kruegel, Eds. ACM, 2015, pp. 964-975.
E. Reshetova, J. Karhunen, T. Nyman, and N. Asokan, “Security
of os-level virtualization technologies: Technical report,” CoRR, vol.
abs/1407.4245, 2014. [Online]. Available: http://arxiv.org/abs/1407.4245
S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and
B. Shastry, “Practical and Lightweight Domain Isolation on Android,”
in Ist ACM CCS Workshop on Security and Privacy in Mobile Devices
(SPSM’11). ACM, 2011.

M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-
Rekowsky, “Boxify: Full-fledged App Sandboxing for Stock Android,”
in 24th USENIX Security Symposium. USENIX, 2015.

S. Wessel, F. Stumpf, I. Herdt, and C. Eckert, “Improving Mobile
Device Security with Operating System-level Virtualization,” in 28th
IFIP International Information Security and Privacy Conference (SEC
2013), 2013, accepted for publication.

X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing Kernel Code
Integrity on the TrustZone Architecture,” CoRR, vol. abs/1410.7747,
2014.

B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, “Native Client: A Sandbox for Portable,
Untrusted x86 Native Code,” in IEEE Symposium on Security and
Privacy, IEEE, 3 Park Avenue, 17th Floor, New York, NY 10016, 2009.
U. Erlingsson and F. B. Schneider, “SASI Enforcement of Security
Policies: A Retrospective,” in Proceedings of the 1999 Workshop on
New Security Paradigms, ser. NSPW ’99. New York, NY, USA: ACM,
2000, pp. 87-95.

Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry,
“Minibox: A two-way sandbox for x86 native code,” in 2014 USENIX
Annual Technical Conference (USENIX ATC 14). Philadelphia, PA:
USENIX Association, June 2014, pp. 409-420.

P. Agten, R. Strackx, B. Jacobs, and F. Piessens, “Secure compilation
to modern processors: extended version,” Department of Computer
Science, KU Leuven, CW Reports CW619, April 2012, partner: KUL;
project: NESSoS; tier: NoTier; citations: 1.

M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and
F. Piessens, “Secure Compilation to Protected Module Architectures,”
ACM Trans. Program. Lang. Syst., vol. 37, no. 2, pp. 6:1-6:50, Apr.
2015.

R. Strackx, F. Piessens, and B. Preneel, “Efficient Isolation of Trusted
Subsystems in Embedded Systems.” in SecureComm, ser. Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, S. Jajodia and J. Zhou, Eds., vol. 50. Springer,
2010, pp. 344-361.

R. Strackx and F. Piessens, “Fides: Selectively hardening software
application components against kernel-level or process-level malware,”
in Proceedings of the 19th ACM conference on Computer and
Communications Security (CCS 2012). ACM Press, October 2012, pp.
2-13. [Online]. Available: https:/lirias.kuleuven.be/handle/123456789/
354603

P. Hallgren, M. Ochoa, and A. Sabelfeld, “InnerCircle: A parallelizable
decentralized privacy-preserving location proximity protocol,” 2015 13th
Annual Conference on Privacy, Security and Trust, PST 2015, pp. 1-6,
2015.

M. J. Atallah and K. B. Frikken, “Securely outsourcing linear algebra
computations,” in Proceedings of the 5th ACM Symposium on Informa-
tion, Computer and Communications Security, ser. ASIACCS *10. New
York, NY, USA: ACM, 2010, pp. 48-59.

C. Wang, K. Ren, J. Wang, and K. M. R. Urs, “Harnessing the
Cloud for Securely Solving Large-Scale Systems of Linear Equations,”
in Distributed Computing Systems (ICDCS), 2011 31st International
Conference on, June 2011, pp. 549-558.

S. Halevi and V. Shoup, “Algorithms in HEIlib,” Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 8616 LNCS, no. PART 1, pp.
554-571, 2014.

N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “CryptoNets: Applying Neural Networks to
Encrypted Data with High Throughput and Accuracy,” Microsoft
Research, Tech. Rep. MSR-TR-2016-3, feb 2016. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=260989

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]
[42]
[43]
[44]
[45]
[46]
[47]
(48]
[49]

[50]

(51]

[52]

D. X. Song, D. Wagner, and A. Perrig, “Practical Techniques for
Searches on Encrypted Data,” in Proceedings of the 2000 IEEE
Symposium on Security and Privacy, ser. SP ’00. Washington, DC,
USA: IEEE Computer Society, 2000, pp. 44— [Online]. Available:
http://dl.acm.org/citation.cfm?id=882494.884426

R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting Confidentiality with Encrypted Query Process-
ing,” in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, ser. SOSP "11. New York, NY, USA: ACM, 2011,
pp. 85-100.

R. A. Popa, E. Stark, S. Valdez, J. Helfer, N. Zeldovich, and
H. Balakrishnan, “Building Web Applications on Top of Encrypted
Data Using Mylar,” in [1/th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, 2014, pp. 157-172. [Online]. Available: https://www.
usenix.org/conference/nsdil4/technical-sessions/presentation/popa

C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin, “Pan-
Private Streaming Algorithms,” Proceedings of The First Symposium on
Innovations in Computer Science (ICS 2010), pp. 1-32, 2010.

C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise to
Sensitivity in Private Data Analysis,” in Proceedings of the Third Con-
ference on Theory of Cryptography, ser. TCC’06. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 265-284.

U. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Randomized
Aggregatable Privacy-Preserving Ordinal Response,” in Proceedings of
the 21st ACM Conference on Computer and Communications Security,
Scottsdale, Arizona, 2014.

S. L. Garfinkel, “De-Identification of Personal Information,” NIST,
Tech. Rep. NISTIR 8053, 2015. [Online]. Available: http://dx.doi.org/
10.6028/NIST.IR.8053

F. Beato, I. Ion, S. Capkun, B. Preneel, and M. Langheinrich, “For Some
Eyes Only: Protecting Online Information Sharing,” in Proceedings
of the Third ACM Conference on Data and Application Security and
Privacy, ser. CODASPY *13. New York, NY, USA: ACM, 2013, pp.
1-12.

R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
generation Onion Router,” in Proceedings of the 13th Conference on
USENIX Security Symposium - Volume 13, ser. SSYM’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 21-21.

“Orbot Proxy with Tor,” https://play.google.com/store/apps/details?id=
org.torproject.android, accessed: 2016-06-10.

“iTunes Onion Browser,” https://itunes.apple.com/en/app/
onion-browser/id519296448mt=8, accessed: 2016-06-10.

“Tor Browser,” https://www.torproject.org/projects/torbrowser.html.en,
accessed: 2016-06-10.

“TorSocks,” https://github.com/dgoulet/torsocks/, accessed: 2016-06-10.
“I2P: The Invisible Internet Project,” https://geti2p.net/en/, accessed:
2016-07-10.

J. Cuellar, S. Suppan, and H. Poehls, “ietf-draft: Privacy-Enhanced
Tokens for Authorization in ACE,” https://www.ietf.org/id/draft-cuellar-
ace-pat-priv-enhanced-authz-tokens-00.txt, June 2015.

“CryptDB,” https://css.csail.mit.edu/cryptdb/, accessed: 2016-06-10.
“Onion Pi: Make a Raspberry Pi into a Anonymizing Tor Proxy,” https:
/Mlearn.adafruit.com/onion-pi/install-tor, accessed: 2016-08-10.
“I2PBerry allows Raspberry Pi users to surf the I2P anonymously,” https:
/Iwww.element14.com/community/community/raspberry-pi/blog/2014/
07/22/i2pberry-allows-raspberry-pi-users-to-surf-the-i2p-anonymously,
accessed: 2016-08-10.

R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On Data Banks and
Privacy Homomorphisms,” Foundations of secure computation, pp. 169—
177, 1978.

M. Varia, S. Yakoubov, and Y. Yang, HEtest: A Homomorphic
Encryption Testing Framework. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 213-230. [Online]. Available: http://dx.doi.org/
10.1007/978-3-662-48051-9_16

M. Naveed, S. Kamara, and C. V. Wright, “Inference Attacks on
Property-Preserving Encrypted Databases,” in Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 644-655.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813651



