2408.17211v1 [cs.DC] 30 Aug 2024

arxXiv

Application-Driven Exascale: The JUPITER
Benchmark Suite

Andreas Herten ®@, Sebastian Achilles
Thomas Breuer/®, Daniel Caviedes-Voullieme
Wolfgang Frings ®, Ana Gonzalez-Nicolas
Jenia Jitsev®, Chelsea Maria John @, Jan H. Meinke
Stepan Nassyr®, Carolin Penke
Estela Suarez

, Damian Alvarez
, Mehdi Cherti
, Eric B. Gregory
, Catrin I. Meyer|®, Pavel Mezentsev
, Manoel Rommer @, Ujjwal Sinha/®, Benedikt von St. Vieth
, Dennis Willsch

, Jayesh Badwaik ®, Eric Behle ®, Mathis Bode|®,

, Adel Dabah ®, Salem El Sayed ®,

, Kaveh Haghighi Mood®, Thorsten Hater|®,

, Jan-Oliver Mirus ®,
, Olaf Stein/®,

, llya Zhukov

Jiilich Supercomputing Centre
Forschungszentrum Jiilich
Jiilich, Germany

Abstract—Benchmarks are essential in the design of modern
HPC installations, as they define key aspects of system compo-
nents. Beyond synthetic workloads, it is crucial to include real
applications that represent user requirements into benchmark
suites, to guarantee high usability and widespread adoption of a
new system. Given the significant investments in leadership-class
supercomputers of the exascale era, this is even more important
and necessitates alignment with a vision of Open Science and
reproducibility. In this work, we present the JUPITER Bench-
mark Suite, which incorporates 16 applications from various
domains. It was designed for and used in the procurement
of JUPITER, the first European exascale supercomputer. We
identify requirements and challenges and outline the project
and software infrastructure setup. We provide descriptions and
scalability studies of selected applications and a set of key
takeaways. The JUPITER Benchmark Suite is released as open
source software with this work at github.com/FZJ-JSC/jubench,

Index Terms—Benchmark, Procurement, Exascale, System De-
sign, System Architecture, GPU, Accelerator

I. INTRODUCTION

The field of High Performance Computing (HPC) is gov-
erned by the interplay of capability and demand driving each
other forward. During the design and purchase phase of super-
computer procurements for public research, the capability of
a machine is usually assessed not only by theoretical, system-
inherent numbers, but also by effective numbers relating to ac-
tual workloads. These workloads are traditionally benchmark
programs that test specific aspects of the system design — like
the floating-point throughput, memory bandwidth, or internode
latency. While these synthetic benchmarks are well-suited for
the assessment of distinct features, for a more integrated
and realistic perspective, they should be complemented by
application benchmarks. Application benchmarks use state-
of-the-art scientific applications to assess the performance
of integrated designs. Complex application profiles utilize
various types of hardware resources dynamically during the
benchmark’s runtime, showcasing real-world strengths and
limitations of the system.

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 1EEE

This paper introduces the JUPITER Benchmark Suite, a
comprehensive collection of 23 benchmark programs metic-
ulously documented and designed to support the procurement
of JUPITER, Europe’s first exascale supercomputer. On top of
7 synthetic benchmarks, 16 application benchmarks were de-
veloped in close collaboration with domain scientists to ensure
relevance and rigor. Additionally, this paper offers valuable
insights into the state-of-the-practice of exascale procurement,
shedding light on the challenges and methodologies involved.

Preparations for the procurement of JUPITER were
launched in early 2022 and finally came to fruition with the
awarding of the contract in October 2023. JUPITER is funded
by the EuroHPC Joint Undertaking (50 %), Germany’s Federal
Ministry for Education and Research (25 %), and the Ministry
of Culture and Science of the State of North Rhine-Westphalia
of Germany (25 %), and is hosted at Jiilich Supercomputing
Centre (JSC) of Forschungszentrum Jiilich. As part of the
procurement, the benchmark suite was developed to motivate
the system design and evaluate the proposals committed for
the Request for Proposals. The suite focuses on application
benchmarks to ensure high practical usability of the system.
This work presents the JUPITER Benchmark Suite in detail,
highlighting design choices and project setup, describing the
benchmark workloads, and releasing them as open source
software. The suite includes 23 benchmarks across different
domains, each with unique characteristics such as compute-
intensive, memory-intensive, and I/O-intensive workloads. The
applications are grouped into three categories: Base, repre-
senting a mixed base workload for the system, High-Scaling,
highlighting scalability to the full exascale system, and syn-
thetic, determining various key hardware design features. The
benchmark suite represents a first step towards Continuous
Benchmarking to detect system anomalies during the produc-
tion phase of JUPITER.

The main contributions of this paper are:

o An in-depth description of the use of benchmarks in HPC

procurement, including relevant background information.

https://orcid.org/0000-0002-7150-2505
https://orcid.org/0000-0002-1943-6803
https://orcid.org/0000-0002-8455-3598
https://orcid.org/0000-0002-5252-8179
https://orcid.org/0000-0001-6616-8867
https://orcid.org/0000-0001-9922-9742
https://orcid.org/0000-0003-3979-4795
https://orcid.org/0000-0001-7871-7544
https://orcid.org/0000-0001-5865-0469
https://orcid.org/0000-0001-9175-469X
https://orcid.org/0000-0002-7217-6027
https://orcid.org/0000-0002-9463-9264
https://orcid.org/0000-0003-2869-8255
https://orcid.org/0000-0001-9408-5719
https://orcid.org/0000-0002-8578-4961
https://orcid.org/0000-0002-6249-7169
https://orcid.org/0000-0002-1221-7851
https://orcid.org/0000-0003-3777-7393
https://orcid.org/0000-0003-2831-9761
https://orcid.org/0000-0002-9271-6174
https://orcid.org/0009-0000-4114-5482
https://orcid.org/0009-0006-7975-1393
https://orcid.org/0000-0002-0035-244X
https://orcid.org/0000-0002-4043-3885
https://orcid.org/0009-0007-3513-5932
https://orcid.org/0000-0002-4609-0940
https://orcid.org/0000-0002-5386-633X
https://orcid.org/0000-0002-6684-7103
https://orcid.org/0000-0003-0748-7264
https://orcid.org/0000-0003-3855-5100
https://orcid.org/0000-0003-4650-3773
https://github.com/FZJ-JSC/jubench
github.com/FZJ-JSC/jubench

o The description of a novel methodology to assess exascale
system designs in the form of High-Scaling benchmarks.

o The development of suitable benchmark workloads based
on a representative set of scientific problems, applica-
tions, and synthetic codes.

o Scalability results on the preparation system for all ap-
plication benchmarks of the suite.

« Insights and best practices learned from application scal-
ing and the procurement process in general.

o Release of the full JUPITER Benchmark Suite as open
source software.

After providing background information (section II) and
details on the used infrastructure (section IIl), the suite’s indi-
vidual benchmarks are presented in Key takeaways

are provided in followed by a conclusion and
outlook in [section VII

II. BACKGROUND
A. Requirements

The main requirements of the benchmark suite stem from
the need to represent existing and upcoming user communities
in the system design process. This ensures a fitting design and
fosters adoption of the system by users. The suite must cover
the wide user portfolio of the HPC center, containing typical
applications from various domains utilizing the current HPC
infrastructure, and also represent expected future workloads.
Moreover, it is essential to ensure diversity in terms of meth-
ods, programming languages, and execution models, since
such diversity is an inherent characteristic of the application
portfolio for upcoming large-scale systems.

The context of a procurement poses high requirements for
replicability, reproducibility, and reusability ||1]]. Replicability,
i.e., the seamless execution on the same hardware by the de-
veloper, is an elementary requirement to guarantee robustness.
Beyond that, reproducibility describes the seamless execution
on different hardware by someone else, making it a key
requirement in the context of the procurement since both the
site and the system provider must be able to run the suite to
obtain the same results. Ensuring reusability, i.e., designing
the framework for easy adaptation for a variety of tasks in the
future, is essential to justify the substantial investment involved
in the creation of the suite.

Vendors participating in the procurement process must also
invest considerable time in system-specific adjustments while
meeting the procurement’s requirements and complying to its
rules, usually within short time scales. Therefore, it is in
everyone’s best interest to have clear, well-defined guidelines
and, ideally, to leverage an existing benchmark suite to build
on established expertise.

B. JUPITER Procurement Scheme

The procurement for the JUPITER system uses a Total-
Cost-of-Ownership-based (TCO) value-for-money approach,
in which the number of executed reference workloads over the
lifespan of the system determines the value. Given the size of
state-of-the-art supercomputers as well as their corresponding

power consumption, costs for electricity and cooling are a
substantial part of the overall project budget. Using a mixture
of application benchmarks as well as synthetic benchmarks,
operational costs are computed in a well-defined procedure.
While synthetic benchmarks allow for assessing key perfor-
mance characteristics, they do not allow a realistic assessment
of resource consumption during the lifetime of the system for
TCO. Therefore, a greater emphasis is placed on application
performance rather than on synthetic tests.

Given the targeted system performance of 1 EFLOP/s with
64 bit precision, an additional novel benchmark type focusing
on the scale of the system is introduced — High-Scaling
benchmarks. A subset of applications able to fully utilize
JUPITER is identified and use cases were defined to make
them part of this novel category. In the course of the paper,
we will refer to either High-Scaling benchmarks or Base
benchmarks, to differentiate between both.

The JUPITER system is envisioned to consist of two con-
nected sub-systems, modules in the Modular Supercomputing
Architecture (MSA) concept [2]. JUPITER Booster is the
exascale-level module utilizing massive parallelism through
GPUs for maximum performance with high energy efficiency
(FLOP/J). JUPITER Cluster is a smaller general-purpose
module employing state-of-the-art CPUs for applications with
lower inherent parallelism and stronger memory demands.
Both compute modules are procured jointly, together with
a third module made of high-bandwidth flash storage. The
benchmark suite has dedicated benchmarks for all modules,
partly even benchmarks spanning Cluster and Booster, dubbed
MSA benchmarks. Execution targets of the benchmarks are
listed in the last columns of [Table TI}

During the procurement, the results of the execution of the
benchmark suite for a given system proposal are weighted and
combined to compute a value-for-money metric. The outcomes
are compared and incorporated with other aspects into the final
assessment of the system proposals.

C. Implementation for JUPITER

The previous two sections outline general requirements
for the JUPITER Benchmark Suite. Their assessment and
implementation is laid out in the following and are visually
sketched in Fig. [T}

Based on an analysis of current and previous compute-
time allocations on predecessor systems, the suite covers a
variety of scientific areas and includes applications from the
domains of Weather and Climate, Neuroscience, Quantum
Physics, Material Design, Biology, and others. Beyond that,
diversity in workloads is realized: Artificial-Intelligence-based
(AI) methods as well as classical simulations, codes based on
C/C++ and Fortran, OpenACC and CUDA. Various applica-
tion profiles are included, such as memory-bound or sparse
computations. Future trends of workloads, e.g., the uptake
of machine learning algorithms, are inferred from general
trends in research communities and from recent changes in
allocations on the predecessor system.

=
Qi
" 8 e Base

Review Selection Preparation

T §
Nng Ay E < v
2 ~ -

Evaluate

Descriptions
Scripts

1

Raw Suite Procurement

Fig. 1. Major steps in the creation of the JUPITER Benchmark Suite. Based on current workloads, a set of applications is selected. Benchmarks are prepared
and then optimized in a feedback loop. Finally, descriptions are revised, and the suite is packaged for procurement.

The requirement of replicability is met by streamlining
and automating benchmark execution employing the JUBE
framework [3]. Reproducibility is ensured by extensive doc-
umentation of all components and the verification of com-
putational results. Thorough testing ensures stable execution
in different environments, e.g., with a varying number of
compute devices, and lowers risks of commitments by vendors.
Reusability is accomplished by a modular design, effective
project management workflows, clear licensing, and open
source publication. To ensure a high quality of the suite, the
benchmarks are standardized through a well-defined setup,
with consistent directory structures, uniform descriptions, and
similar JUBE configurations. The infrastructure aspects are

discussed further in [section IIIJ).

For each of the Base benchmarks, i.e., the sixteen bench-
marks used for the TCO/value-for-money calculation, a
Figure-of-Merit (FOM) is identified and normalized to a time-
metric. In most cases, the FOM is the runtime of either the full
application or a part of it. In case the application focuses on
rates, the time-metric is achieved by pre-defining the number
of iterations and multiplying with the rate. Each benchmark
is executed on a certain number of nodes of the preparation
system (see in order to create a reference
execution time. The number of nodes is usually selected to be
8, but deviations are possible due to workload-inherent aspects.
This is a trade-off between resource economy and agility
in benchmark creation (fewer nodes are more productive),
and robustness towards anticipated generational leaps in the
hardware of the envisioned system (fewer nodes incorporate
latent danger to severely change application profiles when the
requested runtime can be achieved with one node). The time-
metric, determined on the reference number of nodes, is the
value to be improved upon and committed to by proposals of
system designs. The number of nodes used to surpass the time-
metric can be freely specified by the proposal, but is typically
smaller than the reference number of nodes.

Five applications used in the Base benchmarks are capable
of scaling to the full scale of the preparation system. They
form the additional High-Scaling category and define a set of
benchmarks that aim to compare the proposed system designs
with the preparation system for large-scale executions. By
requirement, the future system is known to achieve 1 EFLOP/s
High-Performance Linpack (HPL) performance, implying a
theoretical peak performance larger than that. In JUPITER’s
procurement, runtimes must be committed for the High-
Scaling benchmarks using a 1 EFLOP/s(th) (1 EFLOP/s the-

oretical peak performance) sub-partition. For each high-scaling
application, a workload is defined to fill a 50 PFLOP/s(th)
sub-partition of the preparation system (about 640 nodes)
and a 20x larger sub-partition of the future system (20 x
50 PFLOP/s = lEFLOP/S) The final assessment is based
on the ratio of the runtime value committed for the future
1EFLOP/s(th) sub-partition and the reference value. When
the benchmark’s specific workload configuration fills up a
large portion of the GPU memory on the preparation system,
there is a danger that on a proposed system the scaled-up
version could become limited by available memory and not
showcase an accelerator’s full compute capability. This is due
to the trend of growing imbalance between the advancement
of compute power and memory. To give more flexibility in
system design, up to four reference variants of the respective
workload are prepared, taking up 25 % (tiny, T), 50 % (small,
S), 75 % (medium, M), and 100 % (large, L) of the available
GPU memory on the preparation system (40 GB), respectively.
The system proposal may choose the variant that best exploits
the available memory on the proposed accelerator after scale-
up.

The seven synthetic benchmarks are selected to test indi-
vidual features of the hardware components, such as compute
performance, memory bandwidth, I/O throughput, and network
design. Each benchmark has an individual FOM with unique
rules and possibly sub-benchmarks, evaluated distinctly.

D. Related Work

Benchmarks have always played an important role in HPC.
One objective is the assessment and comparison of techni-
cal solutions, whether at the scale of world-leading cluster
systems [4]], [5] or on a smaller node-level scale [6]-[8].
Benchmarks can be specific to one application topic [9[]—[/11]]
or cover multiple areas in the form of suites [12]-[15].

Foundational work focused on identifying common patterns
across various applications, with the objective of classifying
them based on similar computational and communication
characteristics [[16]. These patterns, referred to as dwarfs, are
defined at a high level of abstraction and are intended to
capture the most relevant workloads in high-performance com-
puting. categorizes the benchmarks of the JUPITER
Benchmark Suite according to these dwarfs, and also gives
the predominant scientific domain a benchmark represents.

'Some benchmarks have algorithmic limitations, like requirement of
powers-of-two in node counts. In this case, the smaller, closest compatible
number of nodes is taken (for example, 512 nodes).

TABLE I
RELATION OF BENCHMARKS OF THE JUPITER BENCHMARK SUITE TO
DOMAINSY AND Berkeley Dwarfs [|16]]; OTHER USE-CASES OF THE
APPLICATIONS MIGHT HAVE OTHER PROFILES.

i)
25
5 3 =
ﬁ j = o z;), g o
22353238 5 ¢
3 @ 2 5
2 & s &3S =
Benchmark Domain ! Dwarfs
Amber* MD l
Arbor Neurosci. | e
Chroma-QCD QCD '
GROMACS MD '
ICON Climate '
JUQCS QC '
nekRS CFD '
ParFlow* Earth Sys.
PIConGPU Plasma '
Quantum Espresso ~ Materials Sci. | e
SOMA* Polymer Sys. |
MMoCLIP Al (MM) | e
Megatron-LM Al (LLM) | e
ResNet* Al (Vision) | e
DynQCD QCD '
NAStJA Biology |
Graph500 Graph i Graph Traversal (D. 9)
HPCG CG '
HPL LA ‘e
IOR Filesys. ' Input/Output
LinkTest Network ' P2P, Topology
OoSuU Network i Message Exchange, DMA
STREAM Memory ' Regular Access

* The benchmarks were prepared for the procurement, but not actually used.
§ The following abbreviations are used: MD - Molecular Dynamics; QCD -
Quantum Chromo Dynamics; QC - Quantum Computing; CFD - Computa-
tional Fluid Dynamics; MM - Multi-Modal; LLM - Large Language Model;
LA - Linear Algebra; P2P - Point-to-Point; DMA - Direct Memory Access.

While dwarfs can be viewed as a set of blueprints for
application-inspired synthetic benchmarks, their simplicity by
design prevents them to fully capture all dynamics of real
applications. To address this issue in supercomputer co-design,
more complex and versatile computational motifs, termed
octopodes, are proposed by Matsuoka, Domke, Wahib, et
al. [17].

SPEC [18]], [19] is one of the most extensive, well-
known benchmarking initiatives aimed at commercial users.
The benchmark suite SPECaccel2023 uses the offloading
APIs OpenACC and OpenMP to measure performance with
computationally intensive parallel applications, following the
principle “same source code for all”. Benchmarks for the use
case of system design and exascale procurement [20] have
specific requirements (see and are typically
not made publicly available due to concerns regarding sensitive
information and elaborate implementation. The PRACE Uni-
fied European Applications Benchmark Suite [21] represents a
step towards a culture of open sharing, but its future support is
uncertain. Other notable efforts include the CORAL-2 bench-
marks [22]] used for procurement of the three exascale systems
in the US, and the recently developed NERSC-10 Benchmark

Suite [23] used in an ongoing procurement. HPC centers
can benefit from each other’s experience, driven by a spirit
of Open Science, reproducibility, and sustainable software
development [1f]. The integration of DevOps principles, such
as Continuous Benchmarking, is gaining popularity to support
these aims [24], [25].

III. BENCHMARK INFRASTRUCTURE
A. Preparation Systems

The JUPITER Benchmark Suite was prepared on JUWELS,
in particular JUWELS Booster, a top 20 system [26] hosted at
JSC [27]. JUWELS Booster was installed in 2020 and provides
a performance of 73 PFLOP/s(th) peak and 44 PFLOP/s for
the HPL. The system is connected to the JUST 5 storage
system [28]. JUWELS Booster provides 936 GPU nodes
integrated into 39 Eviden BullSequana XH2000 racks, with
2 racks (48 nodes) building a cell in the DragonFly+ topology
of the high-speed interconnect. Each node has 4 NVIDIA
A100 GPUs and 4 NVIDIA Mellanox InfiniBand HDR200
adapters, with one adapter available per GPU. 2 AMD EPYC
Rome 7402 CPUs (2 x 24 cores) are connected to 512 GB
DDR4 memory.

Preparations for the High-Scaling benchmarks utilized a
50 PFLOP/s(th) sub-partition of the JUWELS Booster.

JUWELS provides general software dependencies through
EasyBuild [29]. Reproducibility is achieved by either using up-
stream installation recipes, easyconfigs, or upstreaming custom
recipes.

B. JUBE

Every benchmark is implemented in the JUBE [3] work-
flow environment to facilitate productive development and
reproducibility. In benchmark-specific definition files, JUBE
scripts, parameters and execution steps (compilation, compu-
tation, data processing, verification) are defined. These are
then interpreted by the JUBE runtime, resolving dependencies
and eventually submitting jobs for execution to the batch
system. By inheriting from system-specific definition files,
platform.xml, batch submission templates are populated
and independence of the underlying system is achieved. The
various sub-benchmarks and variants are implemented by fags,
which select different versions of parameter definitions. After
execution, the benchmark results are presented by JUBE in a
concise tabular form, including the FOM.

Within the JUPITER procurement, the JUBE scripts are
part of the documentation. They exactly define execution
parameters and instructions with descriptive annotations. A
textual documentation is provided as part of the benchmark-
accompanying description.

C. Descriptions

Beyond the execution reference through JUBE scripts, each
benchmark is accompanied by an extensive description. All
descriptions are normalized, using identical structure with
similar language. Example parts are information about the
source and the compilation, execution parameters and rules,

ABBREVIATIONS ARE USED:

TABLE 11

OVERVIEW OF COMPONENTS OF THE JUPITER BENCHMARK SUITE. SOME DEFINING DETAILS ARE GIVEN. IF USED, SIGNIFICANT

LIBRARIES ARE SHOWN (ALL BENCHMARKS USE MPI FOR DISTRIBUTION). FOR HIGH-SCALE BENCHMARKS, THE SUPER-SCRIPT
INDICATES THE AVAILABLE MEMORY VARIANTS (TINY, SMALL, MEDIUM, LARGE). FOR MODULE/DEVICE, THE FOLLOWING

— EXECUTION ON GPUS OF JUPITER BOOSTER,
BOOSTER, qa — EXECUTION ON THE CPUS OF JUPITER CLUSTER,

— EXECUTION ON THE CPUSs oF JUPITER
— MSA EXECUTION WITH CPUs OF JUPITER CLUSTER

AND GPUs oF JUPITER BOOSTER.

Application Features

Execution Targets

Benchmark Progr. Language, Licence Nodes Nodes Module/
Name [Libraries, JProg. Models Base High-Scale Device
NMcm Vars %%%%
Amber* Fortran, CUDA Custom 1 v
Arbor C++, CUDA/HIP BSD-3-Clause 8 642TSML v
Chroma-QCD C++, QUDA, CUDA/HIP JLab 8 512SML v
GROMACS C++, CUDA/SYCL LGPLv2.1 3/128 v
ICON Fortran/C, OpenACC/CUDA/HIP BSD-3-Clause 120/300 v
juQcs Fortran, CUDA/OpenMP None 8 5125% v v
S nekRS C++/C, OCCA, CUDA/HIP/SYCL BSD-3-Clause 8 6425ML v
= ParFlow* C, Hypre, CUDA/HIP LGPL 4 v
= PIConGPU C++, Alpaka, CUDA/HIP GPLv3+ 8 6405ML v
;: Quantum Espresso Fortran, ELPA, OpenACC/CUF GPL 8 vV
h SOMA* C, OpenACC LGPL 8 v
MMoCLIP Python, PyTorch, CUDA/ROCm! MIT 8 v
Megatron-LM Python, PyTorch/Apex, CUDA/ROCm' BSD-3-Clause 96 v
ResNet* Python, TensorFlow, CUDA/ROCm! Apache-2.0 10 vV
DynQCD C, OpenMP None 8 v
NAStIA C++, MPI MPL-2.0 8 v
T Graph500 C, MPI MIT 4/16/all v
HPCG C++, OpenMP, CUDA/HIP BSD-3-Clause 1/4/all v v
L HPL C, BLAS, OpenMP, CUDA/HIP BSD-4-Clause 1/16/all v v
2 IOR C, MPI GPLv2 -/> 648 v Y
£ LinkTest C++, MPI/SIONIib BSD-4-Clause+ all v v/
7 osuU C, MPI, CUDA BSD 12 v vV
l STREAM C, CUDA/ROCm/OpenACC Custom 1 v v
NMem Vars %%%%
Benchmark Progr. Language, Licence Nodes Nodes Module/
Name [Libraries, JProg. Models Base High-Scale Device

* The benchmarks were prepared for the procurement, but not actually used.

! For PyTorch and TensorFlow, CUDA and ROCm backends are available; through extensions, also backends for Intel GPUs exist (not

in mainline repositories).

$IOR features two sub-benchmarks, easy and hard. The number of nodes is a free parameter in easy. In hard, it can also be chosen

freely, as long as more than 64 nodes are taken.

detailed instructions for execution and verification, sample
results, and concluding commitment requests. In all relevant
sections, relations to the JUBE scripts are made in addition to
the textual descriptions. For the vendors, the use of JUBE is
recommended but not mandatory.

PDFs generated from the benchmark descriptions are part of
the committed procurement documentation, including hashes
of archived benchmark repositories.

D. Git and Submodules

All components of a benchmark are available in a single
Git repository as a single source of truth. A common structure
is established, containing description, JUBE scripts, auxiliary
scripts, benchmark results, and the source code of the bench-
marked application. Utilizing the attached issue tracker, project
management and collaboration are facilitated.

Per default, the sources are included as references in the
form of Git Submodules. Submodules enable a direct linkage

to well-defined versions of source code, but do not unneces-
sarily clutter the benchmark repository by static, potentially
extensive copies. They are well integrated into the Git work-
flow and easily updated. In cases where inclusion as a Git
Submodule is not possible, scripts and detailed instructions
for download are provided.

For delivery as part of the procurement specification pack-
age, each benchmark repository is archived as a tar file.

If too large for inclusion in the Git repository, input data is
provided as a separate download, including a verifying hash.

E. Project Management

The benchmark suite development efforts were supported
efficiently by clear project management workflows over several
months.

A core team of HPC specialists and scientific researchers
initiated the process early, curating a list of potential bench-
marks based on their expertise and experience with existing

HPC systems, while also incorporating insights from previous
procurements. In close collaboration with domain scientists,
this list was gradually refined to ensure a balanced and diverse
selection that met the requirements outlined in[subsection TI-A]

Competent teams, each led by a team captain, were re-
sponsible for individual applications. GitLab issues were used
to document biweekly meetings and track per-application
progress in the form of a pre-defined checklist with 11 points
(ranging from source code availability, over JUBE integration,
to description creation). Collaborative hack days facilitated
collaboration while running the benchmarks on the preparation
system.

IV. BENCHMARKS

This section describes the JUPITER Benchmark Suite, con-
taining 23 benchmarks: 7 synthetic and 16 application bench-
marks. In the procurement process, the number of application
benchmarks was reduced to 12. gives an overview of
all benchmarks, including application features and execution
targets.

With this work, the JUPITER Benchmark Suite is re-
leased as open source software at https://github.com/FZJ-JSC/
jubench, with individual repositories for each benchmark [30]-
[52].

A. Application Benchmarks

In the following, we describe in detail eleven of the applica-
tion benchmarks, divided into Base and High-Scaling bench-
marks. The benchmarks are based on prominent workloads in
the HPC community and were specifically developed for the
suite. Given their complex computational dynamics, a certain
level of technical and scientific background is necessary and
will be provided accordingly. The remaining benchmarks,
Amber, ParFlow, SOMA, ResNet, and DynQCD, are briefly
introduced first for completeness; they are either using closed-
source software (DynQCD) or were ultimately not used for the
JUPITER procurement (the others).

o Amber [53], [54] is a popular commercial molecular
dynamics code for biomolecules. The Satellite Tobacco
Mosaic Virus (STMV) case from the Amber20 bench-
mark suite [S5[(1067095 atoms) is chosen. The code is
mainly optimized for single GPU calculations and is not
intended to scale beyond a single node.

o ParFlow [56]], [57] is a massively-parallel, open source,
integrated hydrology model for surface and subsurface
flow simulation. The ClayL test from ParFlow’s test suite
(simulating infiltration into clay soil) is selected, with a
problem size of 1008 x 1008 x 240 cells [58].

e SOMA [59]] performs Monte Carlo simulations for the
“Single Chain in Mean Field” model [60], studying the
behaviour of soft coarse-grained polymer chains in a
solution.

e ResNet [61] uses convolutions and residual connections
for training deep neural networks and serves as a refer-
ence model in computer vision tasks. The suite includes
ResNet50, implemented in TensorFlow with Horovod.

e DynQCD [62] is a CPU-only code which per-
forms numerical simulations for Lattice Quantum-
Chromodynamics (LQCD). The benchmark generates 600
quark propagators using a conjugate gradient solver for
sparse LQCD fermion matrices, with high demands to the
memory sub-system.

1) Base Benchmarks (Selection): The Base benchmarks are
designed to incentivize system designs that optimize the time
to solution. They are first executed on a reference number of
nodes on the preparation system (see[subsection II-C)). Figure
gives an overview of application runtimes and respective
strong scaling behaviors for surrounding number of nodes.
While the absolute number can be used to judge system
designs quantitatively, the strong scaling behavior can be used
as an additional data point to understand the overall design
qualitatively. Note the example for reading the graph in the
figure caption.

a) GROMACS: GROMACS [63]-[66] is a versatile
package to perform molecular dynamics simulations, focus-
ing on biochemical molecules and soft condensed matter
systems. The application integrates Newton’s equations of
motion for systems with hundreds to millions of particles and
provides time-resolved trajectories. Two biological systems
from the Unified European Applications Benchmark Suite
(UEABS) [21] are used, test cases A and C. Test case A
simulates a GIuCl ion channel embedded in a membrane.
Test case C contains 27 replicas of the STMV with about
28 000000 atoms and allows testing the scalability of system-
supplied Fast Fourier Transform (FFT) libraries.

b) ICON: The ICOsahedral Non-hydrostatic model
(ICON) [67] is a modelling framework for weather, climate,
and environmental prediction used for operational weather
forecasting at the German Weather Service. ICON also pro-
vides an Earth System Model for climate simulations, i.e., a
general circulation model of the atmosphere, including a land
module [68] and an ocean model [69]. While the atmosphere
part has been ported to GPUs [70], the ocean component is still
running on CPUs only. ICON is available under a permissive
open source licence. The JUPITER benchmark case is based
on the atmosphere component, with global forecast simulation
in two resolutions, resulting in two sub-benchmarks: R02B09
(bkm grid point distance) and R02B10 (2.5km grid point
distance) [71]]. The coarser resolution is targeted for execution
on 120 nodes, and the finer resolution is for 300 nodes. While
reasonable scaling to 2x the node count (240 nodes and 600
nodes, respectively) is possible, this is not the usual mode of
operation for ICON. These simulations are crucial for ICON’s
development towards a storm-resolving climate model with
1km resolution or even less [72]. A unique aspect of the
ICON benchmark is its large input dataset: R0O2B09 requires
1.8 TB of data, RO2B10 needs 4.5 TB. Therefore, the ICON
benchmark also tests the performance of I/O operations on a
system.

¢) Megatron-LM: Megatron-LM [73]] is a prominent
codebase in Natural Language Processing (NLP), known for
its vast scale and performance capabilities. It employs the

https://github.com/FZJ-JSC/jubench
https://github.com/FZJ-JSC/jubench

Amber -~

Chroma-QCD.~

Arbor
498s - h

8

GROMACS (STMVY

DynQCD " GROMACS (lon}”

4335

8 T3 “ 128

ParFlow .~

2 ICON (R02B09)- ICON (R02B10)-, MMoCLIP NASHA -
21 3665 &~ 945 - 11755 2585
87 7 - " |
& 300 8 8
ResNet

Quantum Espresso

10525

0.5 1 15 2 0.5 1 15 2

0.5 1 15 2 0.5 1 15 2 0.5 1 15 2

Relative Number of Nodes

Fig. 2. Overview of relative runtimes of all Base applications on the reference system, JUWELS Booster. Shown at (1, 1) is the execution on the reference
number of nodes with the reference runtime, with the absolute values shown close to the horizontal and vertical axes, respectively. Beyond the reference
execution, strong-scaled relative runtimes (with respect to the reference runtime) on the surrounding number of nodes are given (usually 0.5, 0.75%, 1.5,
and 2x the reference; some benchmarks deviate). As an example, consider Arbor: the reference number of nodes (8) is noted at horizontal 1, the reference
runtime of 498 s at vertical 1; further data-points are given for 4 nodes (663 s), 12 nodes (332s), and 16 nodes (250s) — 0.5%, 1.5%, and 2x the reference

number of nodes of 8. See also [Table 11}

transformer model architecture [74]] and leverages various
parallelization techniques and optimizations [75]]-[/78] through
PyTorch to achieve high hardware utilization with excellent
efficiency. The training of various recent open source GPT-like
models was carried out with Megatron-LM [79]], making this
benchmark crucial to assess a system’s capability to handle
disruptive generative Al workloads. The benchmark trains a
175 billion parameter model, converting the usual throughput
metric (tokens per time) to a hypothetical time-to-solution
FOM by training 20 million tokens.

d) MMoCLIP: Contrastive Language-Image Pre-training
(CLIP) [80] is a method that conducts self-supervised learning
on weakly-aligned image-text pairs with open vocabulary
language, resulting in language-vision foundation models. The
approach enables usage of substantially increased datasets,
like web-scale datasets [81], [82]. The OpenCLIP [83]], [84]
codebase, an open source implementation of CLIP, enables
efficiently distributed training of CLIP models by using mul-
tiple data parallelism schemes through PyTorch, scaling to
more than a thousand GPUs. Due to its strong transferability
and robustness, OpenCLIP is used in diverse multi-modal
learning approaches and downstream applications [85]-[87],
and efficient training is crucial for the machine learning
community dealing with open, fully reproducible foundation
models.

The MMoCLIP benchmark is curated from OpenCLIP. It
trains an ViT-L-14 model on a synthetic dataset of 3200 000
image-text pairs and records the total training time as a FOM.

e) Quantum ESPRESSO: Quantum ESPRESSO
(QE) [88[|-[90] is an open source, density-functional-theory-
based electronic structure software used both in academia
and industry. QE calculates different material properties
using a plane wave basis set and pseudo-potentials and can
exploit novel accelerators well [91]. The dominant kernel in

QE performs a three-dimensional FFT, which is usually a
memory-bound kernel and is communication-bound for large
systems [91]].

For the benchmark suite, the Car-Parrinello Molecular
Dynamics model was chosen. The benchmark is based on
a use case created in the MaX project [92], [93] and does
calculations for a slab of ZrO2 with 792 atoms.

f) NAStJA: The Neoteric Autonomous Stencil code for
Jolly Algorithms (NAStJA) is a massively-parallel simula-
tion framework of biological tissues using a Cellular Potts
Model [94], [95]. This model relies on nearest neighbour
interactions and is parallelized by dividing the overall work-
load into multiple sub-regions, called blocks. Each block is
treated independently by an MPI process, with boundaries
being exchanged. Using NAStJA, tissues composed of thou-
sands to millions of cells can be simulated at subcellular
resolution [96]. As a test case, adhesion-driven cell sorting
is used, a common process in tissue development and segre-
gation [97]]. The benchmark investigates the first 5050 Monte
Carlo (MC) steps of a system of size 720 x 720 x 1152 um?,
containing roughly 600000 cells. NAStJA utilizes MPI for
parallelization/distribution and is one of the few CPU-only
benchmarks in the suite. The application exhibits an irregular
memory access pattern at each iteration, which is not suitable
for GPU execution.

2) High-Scaling Benchmarks: In this section, we describe
the five High-Scaling benchmarks in detail.

Figure [3] juxtaposes the weak-scaling behaviours of the
applications over a wide range of node numbers, using the
reference HPC system JUWELS Booster.

a) Arbor: Arbor is a library for simulating biophysically-
realistic neural networks, bridging the gap between point
and nanoscale models [98]]. Developed in the HBP [99], it
aims at efficient use of modern HPC hardware behind an

t(no)
t(n)

Chroma-QCD

2 07 JUQCS (Comp)
32 =% JUQCS (MPI)
2 06 —8— nekRS
wn =— PIConGPU

0.5

0.4 4

0.3

1 2 4 8 16 32 64 128 256 512 1024

Nodes

Fig. 3. Weak scaling efficiency of the five High-Scaling benchmarks over
a wide range of JUWELS Booster node numbers. For JUQCS, two lines
are drawn; one for the computation and one for the communication (see
section [[V-A2c).

intuitive interface. Neurons are modelled by morphology, ion
channels, and connections. Arbor is written in C++ with
a Python interface and available under a permissive open
source license. The user-centric description is discretized and
aggregated to optimize data layouts for individual hardware.
At runtime, the cable equation is integrated alternating with a
system of ODEs for the channels. Users model channels via a
domain-specific language that must be compiled for the target
hardware. Communication is performed, concurrently with
time evolution, every n steps, determined by neural delays.
The benchmark is parameterized to fill the GPU memory in
the variants T, S, M, L. To differentiate from point models,
it is weighted heavily towards computation, emphasized by a
sparse connectivity. A complex cell from the Allen Institute
was selected and adapted to random morphologies of fixed
depth [100]. Cells are organized into rings propagating a single
spike. Rings are interconnected to place load on the network
without altering dynamics, yielding a deterministic, scalable
workload. Profiling shows two cost centers: 52 % ion channels
and 33 % cable equation; hiding communication completely.
The Base version runs on 32 JUWELS Booster nodes, filling
all 4 GPUs’ memory. This was scaled up to the full Booster to
verify efficient resource usage and extrapolated to 1 EFLOP.
The number of generated spikes is used for validation.

b) Chroma: Chroma [101] is an all-purpose applica-
tion for LQCD computations. It is compiled on top of the
USQCD software stack [[102], which provides LQCD-specific
libraries for communication, data-parallelism, I/O, and, im-
portantly, sparse linear solver libraries optimized for different
architectures. Key libraries used in this benchmark include
QMP for MPI wrapping, QDP-JIT for data-parallelism and
parallel-I/O via QIO, and the GPU-targeted QUDA solver
library [[103]]. Chroma and the USQCD stack are open source
and community-developed. Chroma is one of the most widely
used LQCD suites and is representative of LQCD codes in
general.

LQCD calculations generally depend heavily on solving
very large, regular, sparse linear systems (dimension 10% —10?
generally). Due to the regularity of the data and the calculation,
LQCD lends itself to many levels of concurrency.

The Chroma LQCD benchmark in the JUPITER Benchmark
Suite contains the representative benchmarks for the Hybrid
Monte-Carlo (HMC) component of the LQCD simulations.
In the benchmark, a number of HMC update trajectories are
performed using the 34 1 flavours of Clover Wilson fermions
— three light quark flavours with identical mass, and a fourth
flavour with heavier mass — and the Liischer-Weisz gauge
action. The 4D lattice is initialized with a random SU(3)
element on each link. Checkpointing is disabled by a source
patch to remove the I/O overhead for the calculations. The
benchmark also contains a fix to Chroma, allowing simulation
of 4D lattice volumes greater than 23! and among the largest
LQCD simulations anywhere to date. The benchmark perfor-
mance is sensitive to the decomposition configuration used for
distributing the 4D lattice to different tasks and to the affinity
between the CPU, GPU, NUMA domains, and the network
controller for each task.

The benchmark is validated by comparing the output with
a reference solution with a tolerance of 10710 for the Base
benchmark and 10~ for High-Scaling benchmarks.

The relevant metric (FOM) is the total time spent in HMC
updates, excluding the first update, which includes overhead
for tuning QUDA parameters. So a minimum of two updates
must be prescribed.

c) JUQCS: JUQCS is a massively parallel simulator for
universal gate-based Quantum Computers (QCs) [[104] written
in Fortran 90 using MPI, OpenMP, and CUDA. During the
past decades, JUQCS has been used to benchmark some of
the largest supercomputers worldwide, including the Sunway
TaihuLight and the K computer [[105] as well as JUWELS
Booster [106], and it was part of Google’s quantum supremacy
demonstration [107]]. Various versions of JUQCS are available
in binary form as part of a container [[108]]; a light version with
available sources was created specifically for this benchmark
suite [[109]. JUQCS simulates an n-qubit gate-based QC by
iteratively updating a rank-n tensor of 2" complex numbers
(state vector) stored in double precision and distributed over
the supercomputer’s memory. The total available memory
determines the size of the largest QC that can be simulated.
For instance, a universal simulation of n = 45 qubits requires
a little over 16 x 2%° B = 0.5 PiB. Many operations require
the transfer of half of all memory, i.e., 2" /2 complex double-
precision numbers, across the network, which can help to
assess the performance of a supercomputer’s communication
network [105], [106]. As Fig. E]shows, the deviation of JUQCS
w.r.t. the theoretically expected linear scaling (green triangles)
reveals both a drop in performance from intra-node to inter-
node GPU communication (from 1 to 2 nodes) and another
drop when communication enters the large-scale regime at 256
nodes.

All present JUQCS benchmarks simulate successive ap-
plications of a single-qubit quantum gate that requires large

memory transfers. The Base benchmark simulates n = 36
qubits requiring 1 TiB of GPU memory. The High-Scaling
benchmark contains two memory variants: a large memory
variant with n = 42 qubits requiring 64 TiB (L) and a small
memory variant with n = 41 qubits requiring 32 TiB of GPU
memory (S). Rules are given for extrapolation to an Exascale
setup using n = 46 (L) or n = 45 qubits (S). For all test cases,
verification is done using the theoretically known results [105].
In addition, an MSA version of the JUQCS benchmark
simulates n = 34 qubits on both JUWELS Cluster and Booster
simultaneously. The total amount of memory is split into two
parts, with 128 GiB residing on the CPU nodes and 128 GiB
residing on the GPU nodes. MPI is used for communication
between the Cluster and the Booster, and the number of MPI
tasks is similarly split into two. On the Cluster, each MPI task
launches 12 OpenMP threads, with one thread per CPU core.
On the Booster, each MPI task controls one of the GPUs.

d) nekRS: nekRS [110] is a fast CFD solver designed
for GPUs that solves the low-Mach Navier-Stokes equations
(NSEs), potentially coupled with multiphysics effects. nekRS
has been run at scale on many large supercomputers, featuring
excellent time-to-solution due to its high GPU throughput,
and was nominated for the 2023 Gordon-Bell Award [111]].
nekRS uses high-order spectral elements [112] in which the
solution, data, and test functions are represented as locally
structured N*"'-order tensor product polynomials on a set of
E globally unstructured curvilinear hexahedral brick elements.
There are two key benefits to this strategy. First, high-order
polynomial expansions significantly reduce the number of un-
knowns (n ~ EN?) needed to achieve engineering tolerances.
Second, the locally structured forms allow tensor product sum
factorization, which yields low O(n) storage cost and O(nN)
work complexity [[113]]. The leading order O(nN) work terms
can be cast as small dense matrix-matrix products with good
computational intensity [114]]. nekRS is written in C++ and the
kernels are implemented using the portable Open Concurrent
Compute Abstraction (OCCA) library [115] for abstraction
between different parallel languages/hardware architectures.

The benchmark case is derived from a Rayleigh-Bénard
convection (RBC) application [[116], [117] which simulates
turbulence induced by a temperature gradient — a typical
case executed at scale.The simulation domain is a sheet. It
is much more extended in the periodic directions than in the
wall-bounded direction. The chosen polynomial order is 9 with
600 time steps per run. Verification is based on pre-computed
results and derived tolerances. The High-Scaling benchmark
variants use between 28836 900 (small, ~11229 per GPU)
and 57760000 (large, ~22.492 per GPU) elements, which
is more than the minimum number of elements required for
the "strong scaling limit" of 7000 — 8000 elements per GPU.
The Base benchmark case uses 719 104 elements resulting in
22472 elements per GPU.

e) PIConGPU: PIConGPU is an open source, fully rela-
tivistic particle-in-cell (PIC) code designed for studying laser-
plasma interactions and astrophysical phenomena. It uses the
PIC algorithm with several key components, namely, parti-

cle initialization, charge calculations using grid interpolation,
field calculations using densities, and time-marching due to
Lorentz force. This approach allows particles to interact via
fields on the grid rather than direct pairwise interactions,
reducing computational steps from N? to N for N particles.
PIConGPU employs a unique data model with asynchronous
data transfers to handle the computational challenge. It can
simulate complex plasma systems with billions of particles on
GPU clusters [118]]. PIConGPU is developed with a hardware-
agnostic approach using the Alpaka library [119]], [120], pro-
viding outstanding performance across all supported platforms,
like CPUs, AMD and NVIDIA GPUs, and FPGAs [[121]]. The
benchmark suite uses a 3D test-case simulating the Kelvin-
Helmholtz Instability (KHI), a non-relativistic shear-flow in-
stability, utilizing a pre-ionized hydrogen plasma with peri-
odic boundary conditions. While relevant for various research
communities, the nature of shear-flows and the use of periodic
boundary conditions does not impose a significant load imbal-
ance throughout the simulation. Therefore, the performance of
the code is based on its structure rather than the physics of the
problem. In the KHI use case, the number of particles per cell
is kept constant to 25, using as many cells as the GPU memory
allows. A grid size of & = (4096, 2048, 1024) is chosen for the
small memory variant, and extended to (4096, 2048, 2048) (M)
and (4096, 4096, 2560) (L) for the larger variants. PIConGPU
employs domain decomposition for distribution, dividing the
computational domain into smaller subdomains along three
dimensions. To distribute along these three dimensions, the
maximum number of nodes that can be utilized is limited to
640, rather than 642.

B. Synthetic Benchmarks

The JUPITER Benchmark Suite also includes seven well-
known synthetic benchmarks: Graph500, HPCG, HPL, IOR,
LinkTest, OSU, and STREAM (including a GPU variant).
The IOR and LinkTest implementation are presented in the
following, highlighting some unique aspects of the setup.

a) IOR: IOR is the de facto standard for measuring I/O
performance and is being used by the 10500 [[122] to compare
the I/O characteristics of storage systems. The benchmark
provides a large list of parameters such as block size, transfer
size, API, and task reordering, which in turn allows simulating
multiple I/O patterns. To target the high-bandwidth, NVMe-
based JUPITER storage module, the upper and lower bounds
on the mean read and write bandwidth are our focus in the
Benchmark Suite. Similar to 10500, two variants of the IOR
are implemented, Easy and Hard. The Easy variant requires
a transfer size of 16 MiB, with each process writing to its
own file. The Hard variant uses a transfer size of 4 KiB and
a block size of 4 KiB, with all processes writing and reading
a single file. The setup forces multiple processes to write to
the same file system data block, stressing the filesystem with
the lock processes. The remaining parameters were selected to
avoid caching effects. The number of nodes is a free parameter
(with a lower bound) to allow for optimization on the level of
parallelism that the underlying file system can provide.

b) LinkTest: LinkTest [[123] is designed to test point-to-
point connections between processes in serial or parallel mode
and is capable of handling very large numbers of processes.
It is an essential tool in network operations, used mostly
internally by system administrators for acceptance testing,
maintenance, and troubleshooting.

The JUPITER Benchmark Suite utilizes LinkTest’s bisection
test, to concisely evaluate interconnectivity between parts of
the system’s network, quantified by a single metric. In the
bisection test, a number of test processes (one per high-
speed network adapter) is separated to two equal halves of
the system, and messages are bounced between partnering
processes in parallel (bidirectional mode). To achieve optimal
bandwidth, the message size is set to 16 MiB. An assessment
is made mainly based on the minimum bisection bandwidth.

V. LESSONS LEARNED

We developed the JUPITER Benchmark Suite building upon
our experience from previous HPC system procurements. The
suite constitutes a substantial expansion from those earlier
endeavours, and should be considered as a living object
that will continue to evolve over time. In the following, we
summarize the lessons learned, covering first the perspective
of application developers, then the benchmark suite creation,
and finally the overall procurement process.

A. Application Development

The applications of the JUPITER Benchmark Suite not
only need to be executed on current large-scale resources like
JUWELS Booster, but also need to be extrapolated to larger
future resources, amplifying scaling challenges.

To understand the performance characteristics on a future
system better, it proved useful for some application developers
to create models of their applications. JUQCS, for example,
has a non-trivial weak scaling behaviour. In the benchmark,
the execution time is reported in relation to an ideal scenario,
enabling comparability. A model was developed for nekRS
to predict the performance of a later part of the simulation
early in the process, allowing much shorter and more resource-
efficient benchmarks. During scalability studies for PICon-
GPU, a model for the scaling behaviour could be developed,
informing valid simulation parameters for the benchmark
setup.

While the approximate scale of the future system is known,
the details of the setup are not. When domain decomposition is
important for performance, preliminary studies are usually em-
ployed to determine the best parameters for production runs.
But decomposition studies are impossible in the benchmark
context, especially for an unknown system design. Through
labour- and resource-intensive investigation, estimates, rules,
or scripts for ideal domain decomposition were devised, e.g.,
for Chroma-QCD, PIConGPU, NAStJA, and DynQCD. This
also documented the experience of individual researchers,
improving reproducibility. To understand different scaling
regimes of the application, a network communication model
was developed for JUQCS. The model can be employed

10

to understand topological aspects of the high-speed network
of current and future systems, for example with respect to
congestion.

The preparation for future system designs had a direct
effect on application development. For example, it became
apparent for Arbor developers that they need to optimize
memory usage, as memory capacity and bandwidth will
continue to extend more slowly compared to compute per-
formance. During benchmark preparation, they also needed
to trade highly-valued user experience for scalability, as the
approach of referring to connection endpoints with labels
did not scale as required. A short-term solution (using local
indexing) was found for the suite, and a hash-based solution
is being developed upstream. On a similar note, Chroma-QCD
authors needed to patch the code to facilitate execution on the
envisioned scale. Unexpected effects can occur depending on
the extrapolation method to the future system. For Chroma-
QCD, it was found out that the employed benchmark is not
guaranteed to converge, and a cut-off after a certain number
of iterations is a more robust approach.

Result verification is essential for a benchmark suite to
ensure the validity of submitted results. Yet, the experience
with verification during the suite preparation varied. Some
results could be verified either exactly (JUQCS), or within
a certain numerical limit by comparing to a pre-computed
solution (Chroma-QCD); more involved simulations were ver-
ified by extracting key metrics from the computed solution
for comparison to a model (ICON, nekRS). The verification
of some applications with iterative algorithms, which were
stopped before convergence, relied on framework-inherent
verification and required key data in the output (PIConGPU,
Megatron-LM) — arguably the weakest form of verification.

B. Benchmark Design

Creating a vast benchmark suite that picks up the status quo
in workloads, and bringing it to mature levels, is a resource-
intensive endeavour. Beyond the human resources, compute
resources of the reference system constitute a significant
investment. To use these resources efficiently, it is important to
design benchmarks with runtimes as short as possible, while
keeping it as large as needed. Short runtimes also enable
swift turn-around times for rapid prototyping — especially
useful in a large suite. The size of the input data and the
files generated at runtime should be minimized to ensure that
the benchmark suite is easy to handle. For reproducibility,
non-core application parts like pre-processing or data-staging
should be kept short. Modelling domain decomposition effects,
also beyond typical production execution profiles, is further
consuming resources.

Preparing for target system designs with unknown details
and scales beyond available resources is a demanding task.
Care should be taken to consider future hardware trends in
the benchmark design. To explicitly accommodate different
compute-to-memory ratios, up to four memory variants of
benchmarks were introduced. On the preparation system, the
memory variants can be used to study artificially-limited com-

pute profiles and determine possible bottleneck shifts on future
systems. With unknown hardware, algorithmic behaviours
might shift as well, and iterations may not converge. A more
robust approach is to not compute until convergence, but stop
after a predetermined amount of iterations.

Some parameters in the benchmark suite are free to chose,
like the number of nodes, others are fixed, for example
simulation parameters. Thorough execution rules and mod-
ification guidelines determine the envisioned outcome and
need to be developed as part of the suite. Beyond general
rules, benchmarks may explicitly deviate to either loosen or
tighten rules. Parameter validation should be part of the overall
verification process; further extending on the importance of the
verification task.

C. Procurement

Using application benchmarks in the procurement of HPC
systems is essential to realistically represent user requirements
when deciding the configuration of the future system. An
additional challenge was given by the particular system ar-
chitecture of JUPITER, in which two compute modules of
very disparate sizes, a small CPU-only module and an exascale
GPU-accelerated module, are coupled together with a shared
storage module. It took some discussions until finding the
right number and balance between CPU and GPU benchmarks,
which ended up being in the ratio of about 1:5.

To formulate and develop the benchmarks, it proved fruitful
to collaborate closely with the domain researchers intending
to utilize the system. Established relationships in joint projects
are especially productive, while it is more difficult for new
user domains. A fundamental limitation of our approach is
the reliance on existing application codes executed on
current systems. By design, disruptive approaches are not well
covered and a tendency to favour evolutionary technology is
introduced. However, considering the effort associated with
adopting new technologies among HPC users, this focus on
incremental developments is justified. Still, predicting future
system usage trends is crucial — like the AI applications in
the suite, which aim at representing a user domain expected
to gain importance over time. However, the rapidly evolving
software and algorithms in this domain make it hard to
accurately estimate their future needs. It is therefore important
to consider the most recent breakthroughs in Al beyond the
HPC context, including also commercially-driven domains.

The time window for the development of the JUPITER
Benchmark Suite was limited by the constraints of the procure-
ment process. The endeavour started several months before
the procurement, and required dedicated work by tens of
people. Clear management structures and collaboration plat-
forms were essential tools for extensive collaboration. In
particular, transparent communication with all bidders was
crucial, which was possible thanks to the dialogue phase that
was part of the procurement. The suite development fostered
collaboration, team-building, and knowledge-sharing. Code
and environment optimizations were openly shared between
benchmark developers and vendors, iteratively improving the

11

benchmarks further. The suite itself is now open source and
can benefit the wider HPC community.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the JUPITER Benchmark Suite,
which has been successfully employed in the procurement
process of the exascale system JUPITER. The suite has served
as a valuable tool in assessing HPC system performance during
the procurement and beyond. The benchmark applications (see
were chosen to represent the workloads on the
future system after careful consideration of requirements and
constraints. Bidders used this suite to test different technolo-
gies, put together their proposals, and prepare and commit
the associated performance numbers. The procuring entity
selected the vendor based on these values, together with
multiple additional evaluation criteria. At the time of writing,
the JUPITER system is being installed. The benchmark suite
will be employed again during the acceptance procedure.

The JUPITER Benchmark Suite lays a foundation to further
extend and automate HPC system benchmarking. Facilitated
by the reusable design of the suite, Continuous Benchmark-
ing will be realized as future work, employing the CI/CD
features of GitLab in conjunction with novel tools such as
Jacamar [25]]. Running the suite at regular intervals (e.g.,
after maintenances), we will ensure that the system does
not see performance degradation over its lifetime or after
updates. Application optimization for JUPITER will continue
during the system deployment and installation phase, utilizing
experiences gained and tools created. We will strive for fur-
ther improvements regarding the reproducibility of individual
benchmarks, including a focus on verification. Also, individual
technical enhancements are in progress (for example, using
git-annex for the large input data).

ACKNOWLEDGMENT

Many benchmarks presented in this work have roots in
projects that received funding from national and European
sources; for example, Quantum Espresso (from the MaX
project [124]]) or nekRS (from the CoEC project [|125]]). The
authors thank the funding agencies for their support and the
colleagues from the projects for being available for advice
when designing the suite.

The authors would like to thank the following people
for their contributions: Max Holicki and Yannik Miiller,
for their contributions to the LinkTest benchmark; Jonathan
Windgassen and Christian Witzler for their support with the
nekRS benchmark; Hans De Raedt for the discussions and
help with the JUQCS benchmark.

The double-anonymous review of this publication was en-
abled by the Anonymous GitHub service at https://anonymous.
4open.science/. The authors thank the creator, also for the
immediate, last-minute support.

Finally, the authors would like to thank EuroHPC JU,
BMBF, MKW-NRW, and GCS for the supportive atmosphere,
productive discussions, and for the financial support of the
JUPITER project.

https://anonymous.4open.science/
https://anonymous.4open.science/

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

REFERENCES

J. Fehr, J. Heiland, C. Himpe, and J. Saak, “Best prac-
tices for replicability, reproducibility and reusability
of computer-based experiments exemplified by model
reduction software,” AIMS Mathematics, vol. 1, no. 3,
pp. 261-281, 2016, ISSN: 2473-6988. DOI: 10.3934/
Math.2016.3.261.

E. Suarez, N. Eicker, T. Moschny, et al., “Modular
Supercomputing Architecture: A success story of Eu-
ropean R&D,” Tech. Rep. 9, 2022, p. 24. pot: [10.
5281/ZENODO.6508394.

T. Breuer, J. Wellmann, F. Souza Mendes Guimaries,
C. Himmels, and S. Luehrs, JUBE, version REL-2.6.1,
Nov. 2023. por: [10.5281/zenodo.10228432.

The TOP500 list, http://www.top500.org, Accessed:
2024-03-13.

J. J. Dongarra, P. Luszczek, and A. Petitet, “The
LINPACK benchmark: Past, present and future,” Con-
currency and Computation: Practice and Experience,
vol. 15, no. 9, pp. 803-820, 2003. DoT1: https://doi.
org/10.1002/cpe.728.

A. Sorokin, S. Malkovsky, G. Tsoy, A. Zatsarinnyy,
and K. Volovich, “Comparative performance evalua-
tion of modern heterogeneous high-performance com-
puting systems CPUSs,” Electronics, vol. 9, no. 6, 2020,
ISSN: 2079-9292. DoI: 110.3390/electronics9061035.
R. Xu, X. Tian, S. Chandrasekaran, Y. Yan, and
B. Chapman, “NAS parallel benchmarks for GPG-
PUs using a directive-based programming model,” in
Languages and Compilers for Parallel Computing, J.
Brodman and P. Tu, Eds., Cham: Springer International
Publishing, 2015, pp. 67-81, ISBN: 978-3-319-17473-
0. por: 10.1007/978-3-319-17473-0_5.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The
PARSEC benchmark suite: Characterization and ar-
chitectural implications,” in Proceedings of the 17th
International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’08, Toronto, On-
tario, Canada: Association for Computing Machinery,
2008, pp. 72-81, 1SBN: 9781605582825. por: |10.
1145/1454115.1454128

A. Herten, T. Hater, W. Klijn, and D. Pleiter, “Perfor-
mance comparison for neuroscience application bench-
marks,” in High Performance Computing, M. Weiland,
G. Juckeland, S. Alam, and H. Jagode, Eds., Cham:
Springer International Publishing, 2019, pp. 418-431,
ISBN: 978-3-030-34356-9. potr: |10.1007/978-3-030-
34356-9_31.

J. Albers, J. Pronold, A. C. Kurth, et al., “A modular
workflow for performance benchmarking of neuronal
network simulations,” Frontiers in Neuroinformatics,
vol. 16, 2022, 1SSN: 1662-5196. Dor1: 10.3389/fninf.
2022.837549.

S. Farrell, M. Emani, J. Balma, et al., “MLPerf™
HPC: A holistic benchmark suite for scientific machine

12

[12]

[13]

(14]

(15]

[16]

(17]

(18]

[19]

learning on HPC systems,” in 2021 IEEE/ACM Work-
shop on Machine Learning in High Performance Com-
puting Environments (MLHPC), Los Alamitos, CA,
USA: IEEE Computer Society, Nov. 2021, pp. 33-45.
DOI: 10.1109/MLHPC54614.2021.00009.

J. Dongarra and P. Luszczek, “HPC challenge: Design,
history, and implementation highlights,” in Contem-
porary High Performance Computing: From Petas-
cale toward Exascale, J. S. Vetter, Ed. Chapman and
Hall/CRC, 2013, vol. 1, ch. 2, ISBN: 9781466568358.
J. A. Stratton, C. I. Rodrigues, 1.-J. Sung, ef al,
“Parboil: A revised benchmark suite for scientific
and commercial throughput computing,” University
of Illinois at Urbana-Champaign, Center for Reliable
and High-Performance Computing, Technical Report
IMPACT-12-01, 2012. [Online]. Available: http ://
impact . crhc . illinois . edu/ Shared / Docs / impact - 12 -
01.parboil.pdf.

A. Danalis, G. Marin, C. McCurdy, et al, “The
scalable heterogeneous computing (SHOC) benchmark
suite,” in Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units,
ser. GPGPU-3, Pittsburgh, Pennsylvania, USA: As-
sociation for Computing Machinery, 2010, pp. 63—
74, 1SBN: 9781605589350. por: |10.1145/1735688.
1735702.

S. Che, M. Boyer, J. Meng, et al., “Rodinia: A bench-
mark suite for heterogeneous computing,” in 2009
IEEE International Symposium on Workload Charac-
terization (IISWC), 2009, pp. 44-54. po1: 10.1109/
IISWC.2009.5306797.

K. Asanovi¢, R. Bodik, B. C. Catanzaro, et al.,
“The landscape of parallel computing research: A
view from berkeley,” Tech. Rep. UCB/EECS-2006-
183, Dec. 2006. [Online]. Available: http://www?2.
eecs.berkeley.edu/Pubs/TechRpts/2006/EECS - 2006-
183.html.

S. Matsuoka, J. Domke, M. Wahib, et al., “Preparing
for the future—rethinking proxy applications,” Com-
puting in Science & Engineering, vol. 24, no. 2,
pp- 85-90, 2022. por: 10.1109/MCSE.2022.3153105,
G. Juckeland, W. Brantley, S. Chandrasekaran, et
al., “SPEC ACCEL: A standard application suite for
measuring hardware accelerator performance,” in High
Performance Computing Systems. Performance Model-
ing, Benchmarking, and Simulation, S. A. Jarvis, S. A.
Wright, and S. D. Hammond, Eds., Cham: Springer
International Publishing, 2015, pp. 46—-67, ISBN: 978-
3-319-17248-4. poI: |10.1007/978-3-319-17248-4_3.

S. Boehm, S. Pophale, V. G. Vergara Larrea, and
O. Hernandez, “Evaluating performance portability of
accelerator programming models using SPEC AC-
CEL 1.2 benchmarks,” in High Performance Comput-
ing, R. Yokota, M. Weiland, J. Shalf, and S. Alam,
Eds., Cham: Springer International Publishing, 2018,

https://doi.org/10.3934/Math.2016.3.261
https://doi.org/10.3934/Math.2016.3.261
https://doi.org/10.5281/ZENODO.6508394
https://doi.org/10.5281/ZENODO.6508394
https://doi.org/10.5281/zenodo.10228432
http://www.top500.org
https://doi.org/https://doi.org/10.1002/cpe.728
https://doi.org/https://doi.org/10.1002/cpe.728
https://doi.org/10.3390/electronics9061035
https://doi.org/10.1007/978-3-319-17473-0_5
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1007/978-3-030-34356-9_31
https://doi.org/10.1007/978-3-030-34356-9_31
https://doi.org/10.3389/fninf.2022.837549
https://doi.org/10.3389/fninf.2022.837549
https://doi.org/10.1109/MLHPC54614.2021.00009
http://impact.crhc.illinois.edu/Shared/Docs/impact-12-01.parboil.pdf
http://impact.crhc.illinois.edu/Shared/Docs/impact-12-01.parboil.pdf
http://impact.crhc.illinois.edu/Shared/Docs/impact-12-01.parboil.pdf
https://doi.org/10.1145/1735688.1735702
https://doi.org/10.1145/1735688.1735702
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://doi.org/10.1109/MCSE.2022.3153105
https://doi.org/10.1007/978-3-319-17248-4_3

(20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

pp. 711-723, 1SBN: 978-3-030-02465-9. DO1: 10.1007/
978-3-030-02465-9_51.

N. Malaya, B. Messer, J. Glenski, et al., “Experiences
readying applications for exascale,” in Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC
’23, Denver, CO, USA: Association for Computing
Machinery, 2023, ISBN: 9798400701092. por: |10.
1145/3581784.3607065.

PRACE, UEABS: Unified European Applications
Benchmark Suite, https://repository.prace-ri.eu/git/
UEABS/ueabs, Accessed: 2024-03-13, 2022.
CORAL-2 benchmarks, https://asc.llnl.gov/coral-2-
benchmarks, Accessed: 2024-08-23.

NERSC-10 benchmark suite, https://www.nersc.gov/
systems/nersc- 10/benchmarks/, Accessed: 2024-03-22.
O. Pearce, A. Scott, G. Becker, et al., “Towards
collaborative continuous benchmarking for HPC,” in
Proceedings of the SC ’23 Workshops of The Interna-
tional Conference on High Performance Computing,
Network, Storage, and Analysis, ser. SC-W ’23, Den-
ver, CO, USA: Association for Computing Machinery,
2023, pp. 627-635, 1SBN: 9798400707858. DOT: |10.
1145/3624062.3624135.

R. Adamson, P. Bryant, D. Montoya, et al., “Creat-
ing continuous integration infrastructure for software
development on DOE HPC systems,” Computing in
Science & Engineering, pp. 1-9, 2024. DoOI: |10.1109/
MCSE.2024.3362586.

“TOP500 Nov 2023.” (Nov. 2023), [Online]. Avail-
able: https://top500.org/lists/top500/2023/11/.

D. Alvarez, “JUWELS Cluster and Booster: Exascale
pathfinder with Modular Supercomputing Architecture
at Juelich Supercomputing Centre,” Journal of large-
scale research facilities JLSRF, vol. 7, A183, Oct.
2021, 1SSN: 2364-091X. pot: [10.17815/jlsrt-7-183.
S. Graf and O. Mextorf, “JUST: Large-scale multi-
tier storage infrastructure at the Jiilich Supercomput-
ing Centre,” Journal of large-scale research facilities
JLSRF, vol. 7, A180-A180, 2021. poI1: |10.17815/jIsrf-
5-172.

K. Hoste, J. Timmerman, A. Georges, and S. De
Weirdt, “EasyBuild: Building software with ease,”
in 2012 SC Companion: High Performance Comput-
ing, Networking Storage and Analysis, IEEE, 2012,
pp. 572-582. po1: 10.1109/SC.Companion.2012.81.
K. Haghighi Mood, A. Herten, and S. Achilles,
Jupiter benchmark suite: Amber, 2024. DOI: [10.5281/
ZENODO.12737559.

T. Hater, A. Herten, and J. Badwaik, Jupiter bench-
mark suite: Arbor, 2024. DOI: |10.5281/ZENODO.
12737757.

E. B. Gregory, A. Herten, and S. Achilles, Jupiter
benchmark suite: Chroma-lgcd, 2024. DOI: 10.5281/
ZENODO.12737626.

13

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

J. H. Meinke, A. Strube, A. Herten, S. Achilles, and
K. Haghighi Mood, Jupiter benchmark suite: Gromacs,
2024. por: [10.5281/ZENODO.12787776.

C. I. Meyer, N. Nobre Wittwer, M. Rommer, et al.,
Jupiter benchmark suite: Icon, 2024. DOI: 10.5281/
ZENODO.12787963.

D. Willsch, H. De Raedt, A. Herten, and S. Achilles,
Jupiter benchmark suite: Juqcs, 2024. DOI: 10.5281/
ZENODO.12788076.

C. Witzler, J. Windgassen, M. Bode, A. Herten, and S.
Achilles, Jupiter benchmark suite: Nekrs, 2024. DOTI:
10.5281/ZENODO.12788254.

A. Gonzalez-Nicolas, D. Caviedes-Voullieme, A.
Strube, et al., Jupiter benchmark suite: Parflow, 2024.
DOI: 10.5281/ZENODO.12788364.

U. Sinha, J. Badwaik, A. Herten, and S. Achilles,
Jupiter benchmark suite: Picongpu, 2024. DOI: 10.
5281/ZENODO.12788381.

K. Haghighi Mood, A. Herten, and S. Achilles, Jupiter
benchmark suite: Quantum espresso, 2024. DOI: |10.
5281/ZENODQO.12788398.

J. Badwaik, A. Smolenko, A. Herten, S. Achilles, and
T. Breuer, Jupiter benchmark suite: Soma, 2024. DOTI:
10.5281/ZENODOQ.12788506.

M. Cherti, S. Achilles, A. Herten, C. John, and J.
Badwaik, Jupiter benchmark suite: Mmoclip, 2024.
DOI: 10.5281/ZENODO.12788226.

C. John, S. Kesselheim, C. Penke, et al., Jupiter
benchmark suite: Megatron-Im, 2024. DOT: 10.5281/
ZENODO.12788115.

C. John, A. Strube, S. Kesselheim, A. Herten, S.
Achilles, and J. Ebert, Jupiter benchmark suite:
Resnet, 2024. DOI: 10.5281/ZENODO.12788436.

K. Szabo, A. Herten, S. Achilles, J. Badwaik, and S.
Nassyr, Jupiter benchmark suite: Dynqgcd, 2024. DOT:
10.5281/ZENODO.12737680.

E. Behle, A. Herten, and S. Achilles, Jupiter bench-
mark suite: Nastja, 2024. DOI: 10.5281/ZENODO.
12788527,

D. Alvarez, A. Strube, A. Herten, and S. Achilles,
Jupiter benchmark suite: Graph500, 2024. DOIL: |10.
5281/ZENODQ.12788553.

J.-O. Mirus, T. Breuer, S. Achilles, and A. Herten,
Jupiter benchmark suite: Hpcg, 2024. DOI: |10.5281/
ZENODO.12788585.

S. Achilles, A. Herten, and K. Haghighi Mood, Jupiter
benchmark suite: Hpl, 2024. DOI: |10.5281/ZENODO.
12788612,

Y. Miiller, M. Holicki, A. Herten, and S. Achilles,
Jupiter benchmark suite: Linktest, 2024. DOI: |10.5281/
ZENODO.12788705.

T. Breuer, A. Herten, and S. Achilles, Jupiter bench-
mark suite: Osu micro-benchmarks, 2024. DOI: 10.
5281/ZENODO.12788751.

https://doi.org/10.1007/978-3-030-02465-9_51
https://doi.org/10.1007/978-3-030-02465-9_51
https://doi.org/10.1145/3581784.3607065
https://doi.org/10.1145/3581784.3607065
https://repository.prace-ri.eu/git/UEABS/ueabs
https://repository.prace-ri.eu/git/UEABS/ueabs
https://asc.llnl.gov/coral-2-benchmarks
https://asc.llnl.gov/coral-2-benchmarks
https://www.nersc.gov/systems/nersc-10/benchmarks/
https://www.nersc.gov/systems/nersc-10/benchmarks/
https://doi.org/10.1145/3624062.3624135
https://doi.org/10.1145/3624062.3624135
https://doi.org/10.1109/MCSE.2024.3362586
https://doi.org/10.1109/MCSE.2024.3362586
https://top500.org/lists/top500/2023/11/
https://doi.org/10.17815/jlsrf-7-183
https://doi.org/10.17815/jlsrf-5-172
https://doi.org/10.17815/jlsrf-5-172
https://doi.org/10.1109/SC.Companion.2012.81
https://doi.org/10.5281/ZENODO.12737559
https://doi.org/10.5281/ZENODO.12737559
https://doi.org/10.5281/ZENODO.12737757
https://doi.org/10.5281/ZENODO.12737757
https://doi.org/10.5281/ZENODO.12737626
https://doi.org/10.5281/ZENODO.12737626
https://doi.org/10.5281/ZENODO.12787776
https://doi.org/10.5281/ZENODO.12787963
https://doi.org/10.5281/ZENODO.12787963
https://doi.org/10.5281/ZENODO.12788076
https://doi.org/10.5281/ZENODO.12788076
https://doi.org/10.5281/ZENODO.12788254
https://doi.org/10.5281/ZENODO.12788364
https://doi.org/10.5281/ZENODO.12788381
https://doi.org/10.5281/ZENODO.12788381
https://doi.org/10.5281/ZENODO.12788398
https://doi.org/10.5281/ZENODO.12788398
https://doi.org/10.5281/ZENODO.12788506
https://doi.org/10.5281/ZENODO.12788226
https://doi.org/10.5281/ZENODO.12788115
https://doi.org/10.5281/ZENODO.12788115
https://doi.org/10.5281/ZENODO.12788436
https://doi.org/10.5281/ZENODO.12737680
https://doi.org/10.5281/ZENODO.12788527
https://doi.org/10.5281/ZENODO.12788527
https://doi.org/10.5281/ZENODO.12788553
https://doi.org/10.5281/ZENODO.12788553
https://doi.org/10.5281/ZENODO.12788585
https://doi.org/10.5281/ZENODO.12788585
https://doi.org/10.5281/ZENODO.12788612
https://doi.org/10.5281/ZENODO.12788612
https://doi.org/10.5281/ZENODO.12788705
https://doi.org/10.5281/ZENODO.12788705
https://doi.org/10.5281/ZENODO.12788751
https://doi.org/10.5281/ZENODO.12788751

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

S. Achilles, T. Breuer, K. Thust, et al., Jupiter bench-
mark suite: Stream, 2024. DOI: 10.5281/ZENODO.
12788781l

S. Achilles, A. Herten, and K. Haghighi Mood,
Jupiter benchmark suite: Stream, 2024. DOI: |10.5281/
ZENODO.12788801.

R. Salomon-Ferrer, A. W. Gotz, D. Poole, S. Le Grand,
and R. C. Walker, “Routine microsecond molecu-
lar dynamics simulations with AMBER on GPUs.
2. explicit solvent particle mesh Ewald,” Journal of
Chemical Theory and Computation, vol. 9, no. 9,
pp. 3878-3888, 2013. po1: 10.1021/ct400314y.

D. A. Case, H. M. Aktulga, K. Belfon, et al., “Amber-
tools,” Journal of Chemical Information and Modeling,
vol. 63, no. 20, pp. 6183-6191, 2023. por: 10.1021/
acs.jcim.3c01153.

D. Cerutti. “Amber20 benchmarks.” (2020), [On-
line]. Available: https ://ambermd . org / Amber20 _
Benchmark_Suite.tar.gz.

S. F. Ashby and R. D. Falgout, “A parallel multi-
grid preconditioned conjugate gradient algorithm for
groundwater flow simulations,” Nuclear science and
engineering, vol. 124, no. 1, pp. 145-159, 1996. por:
10.13182/NSE96- A24230.

J. E. Jones and C. S. Woodward, “Newton—Krylov-
multigrid solvers for large-scale, highly heterogeneous,
variably saturated flow problems,” Advances in water
resources, vol. 24, no. 7, pp. 763774, 2001. DOTI: 10.
1016/S0309-1708(00)00075-0.

J. Hokkanen, S. Kollet, J. Kraus, A. Herten, M. Hry-
wniak, and D. Pleiter, “Leveraging HPC accelerator
architectures with modern techniques — hydrologic
modeling on GPUs with ParFlow,” Computational
Geosciences, May 2021. DOT: 10.1007/s10596-021 -
10051-4.

L. Schneider and M. Miiller, “Multi-architecture
monte-carlo (mc) simulation of soft coarse-grained
polymeric materials: Soft coarse grained monte-carlo
acceleration (soma),” Computer Physics Communica-
tions, vol. 235, pp. 463-476, 2019, 1SSN: 0010-4655.
DOI: https://doi.org/10.1016/j.cpc.2018.08.011.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0010465518303072.

K. C. Daoulas and M. Miiller, “Single chain in
mean field simulations: Quasi-instantaneous field ap-
proximation and quantitative comparison with Monte
Carlo simulations,” The Journal of Chemical Physics,
vol. 125, no. 18, 2006. DOI: 10.1063/1.2364506.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 770-778. por: |10.1109/CVPR.
2016.90.

S. Borsanyi, Z. Fodor, J. N. Guenther, ef al., “Leading
hadronic contribution to the muon magnetic moment
from lattice qcd,” Nature, vol. 593, no. 7857, pp. 51—

14

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

55, Apr. 2021, ISSN: 1476-4687. DpoI: 10 . 1038/
s41586-021-03418- 1. [Online]. Available: http://dx.
doi.org/10.1038/s41586-021-03418-1.

H. J. C. Berendsen, D. van der Spoel, and R.
van Drunen, “GROMACS: A message-passing par-
allel molecular dynamics implementation,” Computer
Physics Communications, vol. 91, no. 1, pp. 43-56,
Sep. 1995, 1ssN: 0010-4655. por: 10.1016/0010 -
4655(95)00042-E.

S. Pall, M. J. Abraham, C. Kutzner, B. Hess, and
E. Lindahl, “Tackling exascale software challenges in
molecular dynamics simulations with GROMACS,” in
Solving Software Challenges for Exascale, ser. Lecture
Notes in Computer Science 8759, S. Markidis and
E. Laure, Eds., Springer International Publishing, Apr.
2014, pp. 3-27, 1SBN: 978-3-319-15976-8. DOI: |10.
1007/978-3-319-15976-8_1.

M. J. Abraham, T. Murtola, R. Schulz, et al.,
“GROMACS: High performance molecular simula-
tions through multi-level parallelism from laptops to
supercomputers,” SoftwareX, vol. 1-2, pp. 19-25, Sep.
2015, 1SSN: 2352-7110. poI: [10.1016/].501ftx.2015.06.
001

S. Pall, A. Zhmurov, P. Bauer, et al., “Heterogeneous
parallelization and acceleration of molecular dynamics
simulations in GROMACS,” The Journal of Chemical
Physics, vol. 153, no. 13, p. 134110, Oct. 2020, ISSN:
0021-9606. por: [10.1063/5.0018516.

G. Zingl, D. Reinert, P. Ripodas, and M. Baldauf,
“The ICON (ICOsahedral non-hydrostatic) modelling
framework of DWD and MPI-M: Description of the
non-hydrostatic dynamical core,” Quarterly Journal of
the Royal Meteorological Society, vol. 141, no. 687,
pp. 563-579, 2015. por: 10.1002/qj.2378.

M. Giorgetta, R. Brokopf, T. Crueger, et al., “ICON-A,
the atmosphere component of the ICON earth system
model. part i: Model description,” Journal of Advances
in Modeling Earth Systems, vol. 10, Jun. 2018. DOTI:
10.1029/2017MS001242.

P. Korn, N. Briiggemann, J. H. Jungclaus, et al.,
“ICON-O: The ocean component of the ICON earth
system model—global simulation characteristics and
local telescoping capability,” Journal of Advances in
Modeling Earth Systems, vol. 14, no. 10, 2022. DOTI:
10.1029/2021MS002952.

M. A. Giorgetta, W. Sawyer, X. Lapillonne, et al.,
“The ICON-A model for direct gbo simulations
on gpus (version icon-cscs:baf28a514),” Geoscientific
Model Development, vol. 15, no. 18, pp. 6985-7016,
2022. poI: 10.5194/gmd-15-6985-2022,

C. Hohenegger, P. Korn, L. Linardakis, et al., “ICON-
Sapphire: Simulating the components of the earth
system and their interactions at kilometer and sub-
kilometer scales,” Geoscientific Model Development,
vol. 16, no. 2, pp. 779-811, 2023. DOI: 10.5194/gmd-
2022-171.

https://doi.org/10.5281/ZENODO.12788781
https://doi.org/10.5281/ZENODO.12788781
https://doi.org/10.5281/ZENODO.12788801
https://doi.org/10.5281/ZENODO.12788801
https://doi.org/10.1021/ct400314y
https://doi.org/10.1021/acs.jcim.3c01153
https://doi.org/10.1021/acs.jcim.3c01153
https://ambermd.org/Amber20_Benchmark_Suite.tar.gz
https://ambermd.org/Amber20_Benchmark_Suite.tar.gz
https://doi.org/10.13182/NSE96-A24230
https://doi.org/10.1016/S0309-1708(00)00075-0
https://doi.org/10.1016/S0309-1708(00)00075-0
https://doi.org/10.1007/s10596-021-10051-4
https://doi.org/10.1007/s10596-021-10051-4
https://doi.org/https://doi.org/10.1016/j.cpc.2018.08.011
https://www.sciencedirect.com/science/article/pii/S0010465518303072
https://www.sciencedirect.com/science/article/pii/S0010465518303072
https://doi.org/10.1063/1.2364506
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1038/s41586-021-03418-1
http://dx.doi.org/10.1038/s41586-021-03418-1
http://dx.doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1016/0010-4655(95)00042-E
https://doi.org/10.1016/0010-4655(95)00042-E
https://doi.org/10.1007/978-3-319-15976-8_1
https://doi.org/10.1007/978-3-319-15976-8_1
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1063/5.0018516
https://doi.org/10.1002/qj.2378
https://doi.org/10.1029/2017MS001242
https://doi.org/10.1029/2021MS002952
https://doi.org/10.5194/gmd-15-6985-2022
https://doi.org/10.5194/gmd-2022-171
https://doi.org/10.5194/gmd-2022-171

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

[82]

B. Stevens, C. Acquistapace, A. Hansen, et al., “The
added value of large-eddy and storm-resolving models
for simulating clouds and precipitation,” Journal of the
Meteorological Society of Japan. Ser. 11, vol. 98, no. 2,
pp- 395435, 2020. poI: 10.2151/jmsj.2020-021.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J.
Casper, and B. Catanzaro, Megatron-LM: Training
multi-billion parameter language models using model
parallelism, 2020. arXiv: 1909.08053 [cs.CL].

A. Vaswani, N. Shazeer, N. Parmar, et al., “At-
tention is all you need,” in Advances in Neural
Information Processing Systems, 1. Guyon, U. V.
Luxburg, S. Bengio, et al., Eds., vol. 30, Curran
Associates, Inc., 2017. [Online]. Available: https://
proceedings . neurips . cc/paper _files/paper/2017/file/
3t5ee243547dee911bd053c1c4a845aa-Paper.pdf.

D. Narayanan, M. Shoeybi, J. Casper, et al., “Efficient
large-scale language model training on GPU clusters
using Megatron-LM,” in Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC °21, St.
Louis, Missouri: Association for Computing Machin-
ery, 2021, 1SBN: 9781450384421. por: |10. 1145/
3458817.3476209.

V. Korthikanti, J. Casper, S. Lym, et al., Reducing
activation recomputation in large transformer models,
2022. arXiv: [2205.05198 [cs.LG]!

T. Dao, FlashAttention-2: Faster attention with better
parallelism and work partitioning, 2023. arXiv: 2307.
08691 [cs.LG]lL

S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He,
“ZeRO: Memory optimizations toward training trillion
parameter models,” in Proceedings of the International
Conference for High Performance Computing, Net-
working, Storage and Analysis, ser. SC ’20, Atlanta,
Georgia: IEEE Press, 2020, 1SBN: 9781728199986.
C. M. John, J. Ebert, C. Penke, S. Kesselheim, and
A. Herten, “OpenGPT-X — Training Large Language
Models on HPC Systems,” ISC High Performance
2023, Hamburg (Germany), 21 May 2023 - 25 May
2023, May 21, 2023. por: 10.34732/XDVBLG -
SVNDMJL

A. Radford, J. W. Kim, C. Hallacy, et al., Learning
transferable visual models from natural language su-
pervision, 2021. arXiv: 2103.00020 [cs.CV].

C. Schuhmann, R. Vencu, R. Beaumont, et al,
“Laion-400m: Open dataset of clip-filtered 400 million
image-text pairs,” Data-Centric AI Workshop NeurlPS,
arXiv:2111.02114, 2021.

C. Schuhmann, R. Beaumont, R. Vencu, et al.,
“LAION-5B: An open large-scale dataset for train-
ing next generation image-text models,” in Thirty-
sixth Conference on Advances in Neural Information
Processing Systems (NeurIPS), Datasets and Bench-
marks Track, vol. 35, 2022, pp. 25278-25294. [On-

15

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

(91]

[92]

(93]

[94]

[95]

line]. Available: https://openreview. net/forum ?id =
M3Y74vmsMcY.

G. Ilharco, M. Wortsman, R. Wightman, et al., Open-
clip, version 0.1, Jul. 2021. DpoT1: |10.5281/zenodo .
5143773.

M. Cherti, R. Beaumont, R. Wightman, et al., “Re-
producible scaling laws for contrastive language-image
learning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023,
pp- 2818-2829.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B.
Ommer, “High-resolution image synthesis with latent
diffusion models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, 2022, pp. 10684-10695.

H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction
tuning,” in Thirty-seventh Conference on Neural Infor-
mation Processing Systems, 2023. [Online]. Available:
https://openreview.net/forum?id=wOH2xGHIkw.

Q. Sun, Q. Yu, Y. Cui, et al., “Emu: Generative pre-
training in multimodality,” in The Twelfth International
Conference on Learning Representations, 2023.

P. Giannozzi, S. Baroni, N. Bonini, et al., “QUAN-
TUM ESPRESSO: A modular and open-source soft-
ware project for quantum simulations of materials,”
Journal of Physics: Condensed Matter, vol. 21, no. 39,
p- 395502, Sep. 2009. por: [10.1088/0953-8984/21/
39/395502.

P. Giannozzi, O. Andreussi, T. Brumme, et al., “Ad-
vanced capabilities for materials modelling with Quan-
tum ESPRESSO,” Journal of Physics: Condensed
Matter, vol. 29, no. 46, p. 465901, Oct. 2017. DOLI:
10.1088/1361-648X/aa8f79.

P. Giannozzi, O. Baseggio, P. Bonfa, et al., “Quan-
tum ESPRESSO toward the exascale,” The Journal of
Chemical Physics, vol. 152, no. 15, p. 154105, Apr.
2020, 1SSN: 0021-9606. DOI: 10.1063/5.0005082

I. Carnimeo, F. Affinito, S. Baroni, et al., “Quantum
ESPRESSO: One further step toward the exascale,’
Journal of Chemical Theory and Computation, vol. 19,
no. 20, pp. 6992-7006, 2023. DOTI: [10.1021/acs.jctc.
3c00249.

MaX benchmark repository, https://gitlab.com/max-
centre/benchmarks/-/blob/master/Quantum_Espresso/
CP/ZrO2/supercell_11layer/.

MaX: Materials at the eXascale. an EU Centre of
Excellence for supercomputing applications, https://
www.max-centre.eu/, Accessed: 2024-03-14.

M. Berghoff and I. Kondov, “Non-collective scalable
global network based on local communications,” in
2018 IEEE/ACM 9th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems (scalA),
2018, pp. 25-32. DOI: 10.1109/ScalA.2018.00007,

F. Graner and J. A. Glazier, “Simulation of biological
cell sorting using a two-dimensional extended Potts

https://doi.org/10.2151/jmsj.2020-021
https://arxiv.org/abs/1909.08053
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://arxiv.org/abs/2205.05198
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://doi.org/10.34732/XDVBLG-SVNDMJ
https://doi.org/10.34732/XDVBLG-SVNDMJ
https://arxiv.org/abs/2103.00020
https://openreview.net/forum?id=M3Y74vmsMcY
https://openreview.net/forum?id=M3Y74vmsMcY
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://openreview.net/forum?id=w0H2xGHlkw
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1063/5.0005082
https://doi.org/10.1021/acs.jctc.3c00249
https://doi.org/10.1021/acs.jctc.3c00249
https://gitlab.com/max-centre/benchmarks/-/blob/master/Quantum_Espresso/CP/ZrO2/supercell_11layer/
https://gitlab.com/max-centre/benchmarks/-/blob/master/Quantum_Espresso/CP/ZrO2/supercell_11layer/
https://gitlab.com/max-centre/benchmarks/-/blob/master/Quantum_Espresso/CP/ZrO2/supercell_11layer/
https://www.max-centre.eu/
https://www.max-centre.eu/
https://doi.org/10.1109/ScalA.2018.00007

[96]

[97]

(98]

[99]

[100]

[101]

[104]

[105]

[106]

[107]

model,” Phys. Rev. Lett., vol. 69, pp. 2013-2016, 13
Sep. 1992. por: [10.1103/PhysRevLett.69.2013.

M. Berghoff, J. Rosenbauer, F. Hoffmann, and
A. Schug, “Cells in silico — introducing a high-
performance framework for large-scale tissue model-
ing,” BMC bioinformatics, vol. 21, no. 1, pp. 1-21,
2020. por: 10.1186/s12859-020-03728-7.

M. S. Steinberg, “On the mechanism of tissue recon-
struction by dissociated cells, I. Population kinetics,
differential adhesiveness, and the absence of directed
migration,” Proceedings of the National Academy of
Sciences, vol. 48, no. 9, pp. 1577-1582, 1962. DOIL:
10.1073/pnas.48.9.1577.

N. A. Akar, B. Cumming, V. Karakasis, et al., “Arbor
— a morphologically-detailed neural network simula-
tion library for contemporary high-performance com-
puting architectures,” in 2019 27th Euromicro In-
ternational Conference on Parallel, Distributed and
Network-Based Processing (PDP), 2019, pp. 274-282.
DOI: 10.1109/EMPDP.2019.8671560.

K. Amunts, A. C. Knoll, T. Lippert, ef al., “The Human
Brain Project—synergy between neuroscience, com-
puting, informatics, and brain-inspired technologies,”
PLoS Biology, vol. 17, no. 7, €3000344, 2019. po1:
10.1371/journal.pbio.3000344,

Y. N. Billeh, B. Cai, S. L. Gratiy, ef al., “Systematic
integration of structural and functional data into multi-
scale models of mouse primary visual cortex,” Neuron,
vol. 106, no. 3, 388-403.e18, 2020, 1SSN: 0896-6273.
DOTI: https://doi.org/10.1016/j.neuron.2020.01.040,

R. G. Edwards and B. Joo, “The Chroma software
system for Lattice QCD,” Nucl. Phys. B Proc. Suppl.,
vol. 140, G. T. Bodwin, D. K. Sinclair, E. Eichten, et
al., Eds., p. 832, 2005. pot: [10.1016/j.nuclphysbps.
2004.11.254!

USQCD, https://usqcd-software.github.10/,

M. A. Clark, R. Babich, K. Barros, R. C. Brower, and
C. Rebbi, “Solving Lattice QCD systems of equations
using mixed precision solvers on GPUs,” Comput.
Phys. Commun., vol. 181, pp. 1517-1528, 2010. DOT:
10.1016/j.cpc.2010.05.002.

K. De Raedt, K. Michielsen, H. De Raedt, et al., “Mas-
sively parallel quantum computer simulator,” Comput.
Phys. Commun., vol. 176, p. 121, 2007. por: 10.1016/
j.cpc.2006.08.007.

H. De Raedt, F. Jin, D. Willsch, et al., “Massively
parallel quantum computer simulator, eleven years
later,” Comput. Phys. Commun., vol. 237, pp. 47-61,
2019. pot: 10.1016/j.cpc.2018.11.005.

D. Willsch, M. Willsch, F. Jin, K. Michielsen, and H.
De Raedt, “GPU-accelerated simulations of quantum
annealing and the quantum approximate optimiza-
tion algorithm,” Comput. Phys. Commun., vol. 278,
p- 108411, 2022. poI: 10.1016/j.cpc.2022.108411.

F. Arute, K. Arya, R. Babbush, er al., “Quantum
supremacy using a programmable superconducting

16

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

processor,” Nature, vol. 574, pp. 505-510, 2019. poI:
10.1038/541586-019-1666-5.

H. De Raedt and D. Willsch. “Jiilich universal quantum
computer simulator (docker container).” (2021), [On-
line]. Available: https://jugit.fz-juelich.de/qip/juqcs-
docker.

H. De Raedt and D. Willsch. “Jiilich universal quantum
computer simulator (light version).” (2024), [Online].
Auvailable: https://jugit.fz-juelich.de/qip/juqcs-light,

P. Fischer, S. Kerkemeier, M. Min, et al., “NekRS,
a GPU-accelerated spectral element Navier—Stokes
solver,” Parallel Computing, vol. 114, p. 102982,
2022. pot: 10.1016/j.parco.2022.102982.

E. Merzari, S. Hamilton, T. Evans, et al., “Exascale
multiphysics nuclear reactor simulations for advanced
designs,” in Proceedings of the International Confer-
ence for High Performance Computing, Networking,
Storage and Analysis, ser. SC 23, Denver, USA:
Association for Computing Machinery, 2023, ISBN:
9798400701092. po1: 10.1145/3581784.3627038.

A. T. Patera, “A spectral element method for fluid dy-
namics: Laminar flow in a channel expansion,” Journal
of Computational Physics, vol. 54, pp. 468-488, 1984.
DoI: [10.1016/0021-9991(84)90128-1.

S. A. Orszag, “Spectral methods for problems in com-
plex geometries,” Journal of Computational Physics,
vol. 37, pp. 70-92, 1980. poI:|10.1016/0021-9991(80)
90005-4.

M. O. Deville, P. F. Fischer, and E. H. Mund, High-
Order Methods for Incompressible Fluid Flow. Cam-
bridge Monographs on Applied and Computational
Mathematics, Cambridge University Press, 2002. DOI:
10.1017/CB0O9780511546792!

D. S. Medina, A. St-Cyr, and T. Warburton, “OCCA: A
unified approach to multi-threading languages,” arXiv
preprint arXiv:1403.0968, 2014.

Hidden (Blind Review), ‘“Boundary layers in ther-
mal convection are fluctuation-dominated,” Journal of
Fluid Mechanics (submitted), 2024.

Hidden (Blind Review), “A high-scaling in-situ work-
flow for deciphering boundary layer effects in high-
Rayleigh-number convection,” (submitted), 2024.

M. Bussmann, H. Burau, T. E. Cowan, et al., “Ra-
diative signatures of the relativistic Kelvin-Helmholtz
instability,” in Proceedings of the International Con-
ference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’13, Denver, Colorado:
ACM, 2013, 5:1-5:12, ISBN: 978-1-4503-2378-9. DOI:
10.1145/2503210.2504564.

E. Zenker, B. Worpitz, R. Widera, et al., “Alpaka —
an abstraction library for parallel kernel acceleration,”
in 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2016,
pp. 631-640. poI: 10.1109/IPDPSW.2016.50.

B. Worpitz, Investigating performance portability of
a highly scalable particle-in-cell simulation code on

https://doi.org/10.1103/PhysRevLett.69.2013
https://doi.org/10.1186/s12859-020-03728-7
https://doi.org/10.1073/pnas.48.9.1577
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1371/journal.pbio.3000344
https://doi.org/https://doi.org/10.1016/j.neuron.2020.01.040
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://usqcd-software.github.io/
https://doi.org/10.1016/j.cpc.2010.05.002
https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/10.1016/j.cpc.2018.11.005
https://doi.org/10.1016/j.cpc.2022.108411
https://doi.org/10.1038/s41586-019-1666-5
https://jugit.fz-juelich.de/qip/juqcs-docker
https://jugit.fz-juelich.de/qip/juqcs-docker
https://jugit.fz-juelich.de/qip/juqcs-light
https://doi.org/10.1016/j.parco.2022.102982
https://doi.org/10.1145/3581784.3627038
https://doi.org/10.1016/0021-9991(84)90128-1
https://doi.org/10.1016/0021-9991(80)90005-4
https://doi.org/10.1016/0021-9991(80)90005-4
https://doi.org/10.1017/CBO9780511546792
https://doi.org/10.1145/2503210.2504564
https://doi.org/10.1109/IPDPSW.2016.50

[121]

[122]

[123]

[124]

[125]

various multi-core architectures, Master Thesis, Sep.
2015. port: [10.5281/zenodo.49768.

H. Burau, R. Widera, W. Honig, et al., “PIConGPU: A
fully relativistic particle-in-cell code for a GPU clus-
ter,” IEEE Transactions on Plasma Science, vol. 38,
no. 10, pp. 2831-2839, 2010. po1: 10.1109/TPS.2010.
2064310.

J. Kunkel, G. Markomanolis, J. Bent, and J. Lof-
stead, Vi4io/io-500-dev: Zenodo citation release, ver-
sion v1.1, Sep. 2018. DOI: 10.5281/zenodo.1422814.
LinkTest: Communication API benchmarking tool,
https://gitlab.jsc.fz- juelich.de/cstao- public/linktest/,
Accessed: 2024-03-22.

MaX3 CoE, https://www.max-centre.eu/, Accessed:
2024-08-23.

CoEC, https://coec-project.eu/, Accessed: 2024-08-23.

17

https://doi.org/10.5281/zenodo.49768
https://doi.org/10.1109/TPS.2010.2064310
https://doi.org/10.1109/TPS.2010.2064310
https://doi.org/10.5281/zenodo.1422814
https://gitlab.jsc.fz-juelich.de/cstao-public/linktest/
https://www.max-centre.eu/
https://coec-project.eu/

	Introduction
	Background
	Requirements
	JUPITER Procurement Scheme
	Implementation for JUPITER
	Related Work

	Benchmark Infrastructure
	Preparation Systems
	JUBE
	Descriptions
	Git and Submodules
	Project Management

	Benchmarks
	Application Benchmarks
	Base Benchmarks (Selection)
	High-Scaling Benchmarks

	Synthetic Benchmarks

	Lessons Learned
	Application Development
	Benchmark Design
	Procurement

	Conclusions and Future Work
	Acknowledgment

