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Abstract—We present a parallel distributed-memory algorithm
for large deformation diffeomorphic registration of volumetric
images that produces large isochoric deformations (locally volume
preserving). Image registration is a key technology in medical
image analysis. Our algorithm uses a partial differential equation
constrained optimal control formulation. Finding the optimal
deformation map requires the solution of a highly nonlinear
problem that involves pseudo-differential operators, biharmonic
operators, and pure advection operators both forward and back-
ward in time. A key issue is the time to solution, which poses the
demand for efficient optimization methods as well as an effective
utilization of high performance computing resources. To address
this problem we use a preconditioned, inexact, Gauss-Newton-
Krylov solver. Our algorithm integrates several components: a
spectral discretization in space, a semi-Lagrangian formulation
in time, analytic adjoints, different regularization functionals
(including volume-preserving ones), a spectral preconditioner, a
highly optimized distributed Fast Fourier Transform, and a cubic
interpolation scheme for the semi-Lagrangian time-stepping. We
demonstrate the scalability of our algorithm on images with
resolution of up to 1024° on the “Maverick” and “Stampede”
systems at the Texas Advanced Computing Center (TACC). The
critical problem in the medical imaging application domain is
strong scaling, that is, solving registration problems of a moderate
size of 2565 —a typical resolution for medical images. We are able
to solve the registration problem for images of this size in less
than five seconds on 64 x86 nodes of TACC’s ’Maverick” system.

Index Terms—Diffeomorphic Image Registration, Optimal
Control, Newton-Krylov Methods, Scientific Computing, High
Performance Computing.

I. INTRODUCTION

Deformable registration (also known as image alignment,
warping, or matching) refers to methods that find point corre-
spondences between images by comparing image intensities.
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We refer to these point correspondences as the deformation
map (see Figure | in §II). An example for a low dimensional
image registration problem is affine registration; it creates
simple maps consisting of rotations, translations, and scal-
ings [49]. Typically, affine registration is used as an initial-
ization step for large deformation diffeomorphic registration
(LDDR), which is the problem we are concerned with in the
present work. In LDDR, we typically search for a deformation
map for which the degrees of freedom are the ambient space
times the number of grid points defined in the image space.
LDDR is much more flexible than affine registration and thus,
in general, more informative in clinical studies [55], [38].
Such high-dimensional transformations can be defined in many
different ways [49], [50], [55]. Image registration is an ill-
posed inverse problem; it does not have a unique solution.
Not all large deformation maps are admissible since they can
shuffle the points arbitrarily to match intensities. It is crucial
to impose constraints on the deformation while allowing for
flexibility. The most important constraint is that the map is
diffeomorphic (see Figure 2 in §II).

Solving an LDDR problem in a rigorous way requires the
solution of a non-convex partial differential equation (PDE)
constrained optimal control problem [10], [26], [31], [41].
This problem is ill-posed and involves non-linear and ill-
conditioned operators. Most state-of-the-art packages circum-
vent these issues by sacrificing scalability and settling for
crude solutions using simple but suboptimal algorithms. In
many cases this works sufficiently well, but in several other
cases, it does not. There is significant activity in trying to im-
prove the existing algorithms. With regards to performance op-
timizations, most codes use open multi-processing (OpenMP)
or graphics processing unit (GPU) acceleration; there are very
few codes that utilize distributed memory parallelism. As a
result they are not scalable to the full resolution; to solve
problems for large images most codes use subsampling. This
is limiting considering the current imaging resolutions. Seven
Tesla magnetic resonance imaging (MRI) scanners can reach
a resolution of up to 0.5mm (= 450° voxels) [44]. Ultra-
high resolution computed tomography (CT) captures 0.25 mm
resolution (=~ 5123 voxels) [36].

Beyond the need for strong scaling of image registration
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Fig. 1: The image registration problem (data taken from [50], [3]). The input (original data) are image intensities pr and pr.
The output is y, the deformation map. Our goal is to find y so that pr(y) (the deformed pr) is as close as possible to pr
(with respect to some appropriate measure). One way to achieve this is to use rigid registration (i.e., searching for a map that
entirely is described by rotations and translations). The result of a rigid registration is shown in the third image from the left;
the fourth image shows the difference between the two images pr and pr after rigid registration. As one can see, there are
still significant differences in the intensity values. If we use a deformable registration instead, we can compute a much more
flexible y,, which results in a much smaller misfit |pr — pr(y,)|- The deformation map y, for this method is visualized in the
last figure to the right. The grid lines, superimposed on top of pr(y,) were a Cartesian grid before the deformation. We use

them to visualize the overall deformation.

algorithms for clinical applications, there is also need for weak
scaling for imaging in biology, biophysics, and neuroscience.
Animal Micro-CT reaches O(um) resolution (=~ 20003 vox-
els) [56], [64]. In small animal neuroimaging, CLARITY [58],
a novel optical imaging technique, can deliver sub-micron
resolution for the whole brain of the animal, resulting in
10-100 billion-voxel images. To our knowledge, none of the
existing schemes for LDDR allow for the registration of such
large volumetric images [5], [9].

Contributions: The design goals for our 3D LDDR scheme
are the following: (1) ability to represent large diffeomorphic
deformations; (2) algorithms based on rigorous mathematical
foundations; (3) algorithmic optimality with respect to both
the deformation map resolution and the image resolution; and
(4) parallel scalability. Here, we propose an algorithm that
achieves these goals and has the following characteristics:

o It is based on optimal control theory. Our formulation
allows the control of the registration quality in terms of
image correspondence and different quality metrics for
the diffeomorphism/deformation map (see § ).

o It uses a semi-Lagrangian approach for solving the
transport equations that govern the deformation of the
image. This approach leads to algorithmic optimality
(see § ).

o It uses a spectral discretization in space (see § ).
This discretization enables flexibility in the choice of
regularization operators for the deformation map. Such
flexibility is necessary since different image registration
applications have different requirements. It also allows
for efficient solvers of saddle-point linear systems.

o It uses optimal algorithms based on an adjoint-based for-
mulation solved via a line-search globalized, inexact, pre-
conditioned Gauss-Newton-Krylov scheme (see § ).

o It uses distributed-memory parallelism for scalability,
employs several performance optimizations specific to
our problem, and uses a parallel FFT for elliptic solvers

and differentiations that has been shown to scale to
hundreds of thousands of cores (see § ). It employs
several optimizations for the most expensive part of the
computation (cubic interpolation) (see § ). It also
supports GPU acceleration (not discussed here).

In addition, we analyze the overall complexity of our method
in terms of communication, computation, and storage. The
class of deformations we consider here are one of the most
challenging since we enable locally volume preserving maps,
which find many applications [54], [63], [29], [12]. We present
results for synthetic and neurological images and demonstrate
the performance of our algorithm (see §1V) for both volume
preserving and more generic deformation maps.

Related work on high performance computing methods
Jor 3D image registration: A rich literature survey on high
performance computing (HPC) in image registration can be
found in [53], [18], [35]. General surveys on image registration
can be found in [49], [55]. Formulations related to the one
discussed in this work are reviewed in [45], [46], [47].

State of the art registration packages that are used in
the medical imaging and medical image computing commu-
nity include ELASTIX [39], ANTS [6], DARTEL [4], and
DEMONS [60], [61], [43]. All of these offer some kind
of diffeomorphic registration scheme. These packages mostly
support OpenMP, but do not use GPUs or Message Passing
Interface (MPI) acceleration (exceptions to be discussed be-
low). An important distinction should be made between the
image resolution (number of voxels) and the map resolution
(number of degrees of freedom for the map parameterization).
In general, the higher the map resolution, the better the
registration quality [38], [39] but the harder the optimization
problem since it has more degrees of freedom. Most existing
codes downsample the map resolution significantly.

'In the medical imaging jargon this is referred to as “mass preserving”
maps.



The majority of researchers have used GPUs to accelerate
the calculations. For example, the solver for the LDDR scheme
in [28] uses a preconditioned gradient descent (not Newton)
algorithm with a hardware-provided trilinear interpolation on a
GPU architecture. It supports the distributed solution of mul-
tiple independent LDDR image registration problems (in an
embarrassingly parallel way), but does not support distributed
memory parallelism for a single LDDR problem.

Two popular packages that exploit GPU acceleration are
NIFTYREG [48] and PLASTIMATCH [52]. They use B-
spline parameterized low-resolution maps (503 coefficients),
a tri-linear interpolation scheme, and gradient descent type
optimization; NIFTYREG supports soft constraints to penalize
volume change.

An MPI version of NIFTYREG for bigger images [33]
exists, but the map resolution remains the same (50 regular
grid for the deformation field). The pioneering works [62],
[42] support MPI. Their formulation is based on elastic
deformation maps (not LDDR). A GPU-LDDR scheme that
supports somewhat high-resolution maps (128%) is [59]. It uses
steepest descent (not Newton) and does not support MPI; no
timings are reported.

To summarize, existing schemes do not support scalable
LDDR algorithms and no scaling studies have been reported.

Limitations: In multiframe volume registration (e.g., 4D
Cine-MRI) one seeks to register multiple images using a
smooth, continuous mapping [13], [9]. Our solver can be used
as is, but our diffeomorphic map parameterization is better
suited for registering two images. Our parameterization can be
extended without any major algorithmic changes but the soft-
ware engineering would require some work. Another missing
piece is a preconditioner that is insensitive to the regularization
parameter. There are several techniques for doing so, e.g., grid
continuation and multilevel preconditioning [10], [1], [47].
Here we focus on the single-level solver. The single node
performance of the interpolation can be improved by more
sophisticated blocking, manual vectorization, and possibly
prefetching. Similar considerations hold true for the GPU
version of the interpolation. This is ongoing work. Another
limitation is that we only consider a discretization on Cartesian
grids. This is not always the best grid [62]. The structure of
our algorithm changes significantly for unstructured grids.

II. BACKGROUND

Let Q = [0,27)% C R? be the spatial domain, in which we
define functions (images). 0f) denotes the boundary of {2 and
x a point in Q. Let p(x) € R be a function defined on . In
imaging p(x) is the image intensity at a point x; in optimal
control p(x) is the state field. In the registration problem, we
have a reference image, denoted by pgr(x), and a template
image, denoted by pr(x); the goal is to find a vector valued
deformation map, denoted by y(x), that maps a point of the
template image pr to a corresponding point in the reference
image pr [49], [50].

Let v(x) be the velocity field that generates the map y.
In our formulation, we introduce a pseudotime to denote the

-

det(Vyp) > 1 det(Vyp) <0 det(Vyp) =0
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Fig. 2: Here we illustrate diffeomorphic and non-
diffeomorphic transformations in 2D by considering an in-
finitesimal area Q. We can think of Qasa single grid cell
(pixel). The first figure on the left depicts the undeformed
area. The second figure shows an admissible deformation that
shrinks the original area. The third figure depicts an area-
preserving deformation (in 3D it would be volume preserving).
The fourth figure shows the result of a deformation that
expands the area. The fifth illustration is not diffeomorphic
since material lines that did not cross each other in the
original (leftmost illustration), cross now. The sixth, rightmost,
is illustration corresponds to a singular deformation in which
all the spatial information is lost by shrinking Qra single
point. The last two deformations are not useful in image
analysis. However, without any constraints on the deformation
map, pixels with non-diffeomorphic behavior appear almost
always. For this reason appropriate regularization of the
problem is necessary.

deformation of the template image at time ¢, denoted by
p(x,t). We define p(x,t = 0) to be the undeformed template
image pr, and p(x,t = 1) to be the result of applying the
deformation map (which needs to be compared to pr(x)).

For the optimal control problem, A(x, t) is the adjoint field,
‘H is the reduced Hessian operator, g is the gradient field,
and S > 0 is the scalar regularization parameter. We use
periodic boundary conditions for all differential operators. For
the discretization, IN; is the number of grid points per i-
th dimension; N1 N5N3 is the total number of unknowns in
space; n; is the number of time steps and 6t the time step size.
We use p for the number of MPI tasks, ts for the latency in
seconds, and t,, for the reciprocal of the bandwidth when we
do complexity analysis. Boldface lowercase symbols indicate
vectors in R3.

A. Image registration

The image registration problem can be abstractly defined as
follows. Given two functions (i.e., images) pr(x) and pr(x),
we seek a vector function y,(x) such that the L2-distance
(i.e., the residual) between pr(y;(x)) and pgr(x) is minimal.
We can think of y;(x) as deforming an (infinite) grid of
points in the template image pr so that their intensity after the
deformation matches the reference image pp in the L2-norm.

It can be shown that this problem has an infinite number of
solutions, most of which are not useful. To resolve this, one
needs to impose additional constraints, such as smoothness
(i.e., Vy; () exists), although this alone may not be sufficient

2QOther types of distance measures can be used (see, e.g., [49], [50], [55]).
There are no significant changes in our formulation or algorithm if we would
consider other, popular distance measures.



to ensure that the map is plausible. Note, that we require
det(Vy,(x)) > 0 for all x € Q to guarantee that y,(x)
is a diffeomorphism (for an illustration, see 2). In velocity-
based LDDR it can be shown that such a diffeomorphic map
y, exists, if the generating velocity field v(x,t) is adequately
smooth [9], [15], [13]; a typical requirement is that v is an
H?-function [9]. The deformation map y; can be computed
from v by solving

8ty(w7t) + 'U(.’B,t) ! Vy(mat) = 07 y(.’B, O) =, (1)

where y, () = y(a, 1). It can be shown that if the velocity
is incompressible (i.e., divv = 0 for every x in (), then
det Vy(x,t) = 1 and the diffeomorphism is referred to as
volume preserving [27]. Here, we consider both the general
and the incompressible velocity cases. The latter case is more
challenging. We only consider stationary velocity fields, that
is, v(x,t) = v(x).

In the following we drop the dependence of the functions
on the spatial position  for notational convenience.

B. Formulation

The solution to the image registration problem can be
found by solving the following PDE-constrained optimization
problem [30], [13], [45]:

) 1
min J[v] = Sl = prliz) + 5 ||AUHL2(Q (2a)
subject to
dip(t) +v - Vp(t) =0 in Q x (0,1], (2b)
p(0) = pr in €, (20)
dive =0 in Q. 2d)

The second term of 7 enforces smoothness for v and 8 > 0
is the regularization parameter. In this formulation, p; (x) =
p(x,1) = pr(y,), where y, is the solution of (1) at t = 1.
The constraint (2b) defines an implicit function between p;
and v; given v we solve (2b) for p.

a) Computing the gradient of J: Given v, we need
several steps to compute the gradient g = 9,J. First we
compute p(1) by solving (2b) (with initial condition defined by
(2¢)). Then we compute the adjoint function A(¢) by solving

the backward-in-time adjoint equation [34], [10]
—OA(t) — div (vA(Y)) = inQx[0,1), Q)
A1) = pr — p(1) in €.

Once we have the state and adjoint fields, we can evaluate the
gradient given by

g(v) == BA%v + (I — VA—ldiv)/O AHVp(t)dt. (4

31t can be shown that the space of possible diffeomorphisms generated by
time-varying velocities is strictly larger than the space generated by stationary
velocities. This does not have practical implications when we register two
images (see, e.g., [45]). However, it is restrictive if we want register a sequence
of images, like in optical flow problems.

The operator P = I — VA_ldiV, also known as the Leray
operator [57], eliminates the incompressibility constraint for
v. Furthermore, we define the vector field

1
b(x) ::/0 Az, t)Vp(x, t) dt,

so that g(v) = BA%v + Pb. The gradient g is a nonlinear
elliptic integro-differential operator where the state (forward
in time) and adjoint (backward in time) transport PDEs are
“hidden” in b.

Evaluating the gradient requires solving two transport equa-
tions, inverting the Laplacian and applying gradient, diver-
gence, and biharmonic operators. (If we do not wish to
compute a volume preserving map we can drop (i.e., not
enforce) the incompressibility constraint. Then, in the gradient
calculation, we only need to replace the P operator with
an identity operator.) The first-order optimality condition
for (2) requires that g(v) = 0. Most registration packages use
steepest descent (first order) methods to find an optimal point
(minimizer) [6], [9], [13]. However, steepest descent methods
only have a linear convergence rate. Using Newton methods,
which provide a much better convergence rate, is considered
to be prohibitive, especially for LDDR for two main reasons.
First, it is cumbersome to derive the equations for the second
order optimality conditions. Second, a naive implementation
of Newton methods can be very costly if not done carefully.

b) The Newton and Gauss-Newton Hessian operators H.:
To solve g(v) = 0 for v we use an Armijo line-search
globalized Newton method [51]. The key operation is the
action of the Hessian H(v) on a vector field ¥, which is
commonly referred to as the Hessian matvec. This matvec is
computed by performing the following steps: First of all, we
need to solve (Zb) and (3) to compute the state and adjoint
variables p and ), respectively. After computing these fields,
we need to solve (5a) for the incremental state variable p
and (5c¢) for the incremental adjoint variable ;\, accumulating
them in time to compute b and finally evaluating (5¢).

pt) +v - Vi(t) + 8- Volt) =0 in Qx (0,1], (5)
5(0)=0in 0, (5b)
—A(t) — div(A(H)v + A(t)D) =0 in Q x [0,1), (5¢)
A1)+ p(1) =0 in Q, (5d)
H(v)o := BAZH +Pb  in Q, (5e)
where
1
h— / MOV(E) + AOVA(H) dt.
0
Notice that (52) and (5¢) require storing p(t), p(t), and A(¢)

for all £. Also notice that certain terms in (5) drop if we enforce
divv = 0. The Newton step, v, is obtained by solving the
linear system H(v)v = —g(v). For a Gauss-Newton Hessian,
we drop the two terms that involve A(t), i.e., the last term in
(5¢) and the second term in b.
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Fig. 3: Illlustration of the semi-Lagrangian scheme (figure
modified from [47]). The square domain corresponds to a grid
block assigned to a single MPI task. Point x is a regular grid
point and X is the material point at t = 0 that landed at x at
time 6t . The semi-Lagrangian algorithm requires interpolation
of v, p, p, A\, and \ at these off-grid points; as illustrated here,
these points can lie in other MPI tasks. We communicate these
points, interpolate their values, and then communicate them
back.

III. METHODS

Given two images pr and pr our goal is to find y;. We
use an optimize-then-discretize approach for (2). Our scheme
can be summarized as follows:

e We solve (2) for v.

e Once we have v, we use (1) to compute y;.

» To find v we solve g(v) = 0 (where g(v) is given by
(4)) using a preconditioned Newton-Krylov method.

o In space we use Fourier expansions (regular grids with
periodic boundary conditions) and in time we use a semi-
Lagrangian scheme.

« We use data parallelism in space (the regular grid).

o All spatial differential operators (and their inverses if
needed) are computed spectrally using our parallel FFT.

o All spatial algebraic operators are done in parallel.

We provide more details for our algorithm in the following
subsections.

A. Newton-Krylov solver and preconditioning

For the optimization we use a Newton method global-
ized with an Armijo line-search. We use a preconditioned
Conjugate-Gradient (PCG) method to compute the Newton
step. The linear solves using PCG are done inexactly using
a tolerance that depends on the relative norm of the gradi-
ent [17]. The preconditioner is the inverse of the biharmonic
operator (A~2) and can be applied in nearly linear time using
FFTs (with a logarithmic factor). This preconditioner delivers
mesh-independence—but not 3-independence (see §I'V). Since
the problem is highly nonlinear we use parameter continua-
tion on (. The target value for 3 is application dependent
and, in our algorithm, determined by various metrics defined
on Vy; [45]. We use the TAO module from the PETSc
library [8], [7] for numerical optimization, which supports
user-defined, matrix free PCG. TAO provides interfaces that
allow one to control two main parameters in the Newton-
Krylov solver: (i) the accuracy of the solution of the linear

system to compute the Newton step (the relative tolerance
of the PCG method used to solve the Hessian equation);
and (4¢) the nonlinear termination criteria. We provide the
algorithms to determine these parameters and, given v and v,
efficient routines for the function evaluation 7 (v), the gradient
evaluation g(v), the Hessian matvec H (v)® and the action of
the preconditioner A~ 2.

B. Discretization

We use Cartesian grids to approximate spatial functions and
spatial differential operators. We use an explicit Runge-Kutta
second-order semi-Lagrangian method to discretize in time.

1) Space: We use a spectral projection scheme for all
spatial operations on a regular grid defined on €2 with periodic
boundary conditions. For simplicity, we consider the isotropic
case, in which the grid spacing is the same in all directions;
that is, the number of points per direction is given by
N; = Ny = N3 = N. Our actual implementation does not
require this (see §IV for an example). We approximate

ple) = prexp(—k - @),
k

where k = (k1, ko, k3) € N? is a multi-index with —N/2 +
1 < k; < N/2,5 =1,2,3. The corresponding regular grid
points are given by x; = 27i/N, where i = (iy,i2,i3) € N?
and 0 <i; <N —-1,7=1,2,3.

We refer to {px } as the spectral coefficients of p. Mappings
between {p;} and {pg } are done using the forward and inverse
Fast Fourier Transform (FFT). We use a similar spectral dis-
cretization for A\ and for each component of the velocity field
v. All derivatives are performed by first taking the FFT and
then filtering the spectral coefficients appropriately. In general,
the input images pr and pr may not be periodic functions. In
that case a spectral approximation will create excessively high
aliasing errors. To address this, we use zero-padding for pgr
and pr. Also, in general, images will have discontinuities and
thus are not differentiable, creating similar aliasing problems.
So, before applying our algorithm, we smooth them spectrally
with a Gaussian filter whose bandwidth is 27/N (the grid
size). Notice that our spectral representation with periodic
boundary conditions allows us to apply all the different spatial
operators—including A7' and A72%2n a stable, accurate,
and extremely efficient manner. As a result, the main cost of
the computation will be solving the transport equations, not
applying and inverting elliptic differential operators.

2) Time: We choose a semi-Lagrangian method since it
is unconditionally stable [19] and allows us to take a small
number of time steps n; € N. This is critical since we store
several space-time fields. For example, when solving (52)
for p(t), we need p(t) for all ¢t. For large n, the storage
requirements become excessive and more sophisticated check-
pointing schemes [2] are required—which are more expensive.
If we were using a Courant-Friedrichs-Lewy (CFL) restricted
scheme for solving the transport equations, storing the time

4The CFL condition defines an upper bound on the time step size to ensure
a stable solution of stiff, time-dependent PDEs [40].



history would have been impossible, since we had to store
hundreds of time steps (see, e.g., [45], [46], [47]).

To explain the semi-Lagrangian method we reintroduce
the notational dependence in space. We consider the general
transport equation for a scalar field v(x,t) (with a stationary
velocity)

aty(wat) +’U(£C) ’ VI/(QJ,t) = f( I/(:B,t),m) )

For example, for (5¢) we have v = X and f= Adivo +
div (AD). Then, for each x, to compute v(x, §t ) given v(zx,0),
we first compute a new point X, the semi-Lagrangian point,
using the scheme below:

X.=x—dtv(z),

X:x—%(v(w)—i—v(X*)), ©
and then we set
w(X) =v(X,0);
Jo(X) = f(v ( ), X);
ve(@) = ro(X) + 0t fo(X); 7
fe(@) = f(vi(2), )
v(e,6t) = (X)) + E(fO(X) + fi()).

This scheme is fully explicit and unconditionally stable. Recall
that @ is a regular grid point and thus v(,0) and v(x) are
known. X, and X are not regular grid points. Computing v
and v at these off-grid locations requires multiple interpola-
tions: three interpolations for v(X ), interpolations for the f
terms that depend on the semi-Lagrangian point X, and finally
one interpolation for v(X, 0). If f depends on derivatives of v,
we first differentiate on the regular grid and then we interpolate
the derivatives. The same scheme is used for the adjoint
equations by changing the time variable from ¢ to 7 =1 — ¢,
so that —9;\(t) = O0-A(7) and A\(t = 1) = A\(7 = 0). Note
that the interpolation cannot be done using a FFT, since the
interpolation points can be spaced irregularly between grid
points.

Cubic interpolation is typically preferred, compared to
linear interpolation, because the interpolation errors will be
accumulated throughout the time stepping without a time-step
factor [11]. We use a tricubic interpolation scheme, which
we discuss in §

C. Farallel algorithms

The main computational kernels are the 3D FFTs to com-
pute derivatives, elliptic operators and their inverses, the
interpolation to off-grid points needed for the semi-Lagrangian
time stepping, the Krylov solver (PCG) for the Hessian, and
the Newton solver. The 3D FFT has well-known algorithmic
complexity. The interpolation on semi-Lagrangian points is the
most expensive parts of the computation, despite being local.
As it turns out, about 60% of the overall time for the image
registration problem is spent on interpolation. The Krylov and
Newton solvers are sequential across iterations whereas all
the function, gradient, and Hessian evaluations are done using

Fig. 4: Here we explain the data partitioning, which is based
on the pencil decomposition for 3D FFTs [25]. The colors
indicate the data partitioning; each color corresponds to the
data assigned to an MPI task. Subfigure (a) represents the
input distribution of the (volumetric) image. After an FFT
in the first coordinate, in (b) we do the FFT in the second
coordinate. This requires \/p concurrent alltoall between
groups of \/p MPI tasks. This process is repeated for the third
direction in (c) and has the same communication costs as (b)
(image modified from [23]).

data parallelism. Below we give more details on the FFT, the
interpolation, and how we put everything together.

1) Partitioning and FFT: Let N;, i = 1,2,3, be the
number of grid points in the i*" dimension. Also assume
we have p = pips MPI tasks. We partition the data using
the pencil decomposition of 3D FFT (see Figure 4). Each
MPI task gets (N1/p1) (Na/p2) N3 grid points. There is no
partitioning in time and all the time steps are stored in memory.
The scalability of the 3D FFT has been well studied [16],
[25]. The 3D FFT requires O( =2 5N° 1og N') computations and

O(ts\/p + tw 3N ) communlcatlons. We use the open-source
package AchFT [24], [22] that supports both GPU and CPU
FFTs and is based on the 1D FFTs implemented in the FFTW
package [21]. Our code features optimizations for the V and
div operators that allow us to avoid multiple 3D FFTs. For
example, Vp = (01p,02p,05p) requires NoNs 1D FFTs
across the first coordinate, diagonal scaling, and then the same
number of inverse FFTs again across the first dimension. A
similar process is required for the other components but they
require collective all-to-all communications for rearranging the
data. The remaining operators P, A%, and A~2 are diagonal
and require standard 3D FFTs.

2) Interpolation: For every grid point x; we have to find
points X ; required in (7) using (6). In the distributed case,
every processor interpolates all the points that fall into the
region defined by its pencil (that would be subfigure (a)
in Figure 4). This is essentially an alltoallv operation.
We refer to this step as “scatter” phase. Note that the points
need to be constructed only when the velocity field changes.
In a Newton iteration for a given v we have to compute
these points only once for v (forward transport) and for —v
(adjoint equations); that is the scatter phase needs to be done
once per field per Newton iteration. This results in speedups
due to savings in communication and computation. After the
scatter phase is completed, each process has to perform a cubic
interpolation on the points that it owns locally as well as the
points it received from the other processors. After this step is



done, an alltoallv operation is necessary to send/recv all
the interpolation results. This needs to be done once per time
step.

The computation is organized as follows. For every forward
or adjoint solve, we invoke an inferpolation planner, which
performs the scatter phase and stores the semi-Lagrangian
points and creates the communication plans for the trans-
port equation. Then the actual transport (7), which involves
multiple interpolations at every time step, is performed. For
divergence-free v, the computation of (2b) and (3) involves
only interpolations. For (52) and (5c¢) it also involves differ-
ential operators for the gradient and divergence operators that
appear on the right-hand side.

Note that it is possible for an interpolation point to fall in-
between the locally owned domains of the processes. This is
because the local domain of each process is disjoint from oth-
ers. For this reason, every processor maintains a layer of ghost
points, regular grid points that belong to other processors.
The values of v at these points must be synchronized before
interpolation takes place. Notice that for every point we have to
bring in 64 scalar values and perform roughly 10 x 64 floating
point operations. The constant is related to the 64 coefficients
(43) required to build and evaluate the tricubic interpolant
times five flops per coefficient. Therefore, the computation to
memory traffic ratio will be O(1)—the computation is memory
bound. Blocking, prefetching, and vectorization can be used
to improve the performance.

Algorithm 1 Parallel tricubic interpolation.

Input: {X, }€Q,, owner(X;), {z;}€Q,, worker(x;),
v(x;), MPI task r
Output: v(X;)
1: Communicate v values for ghost points.
2: Send/recv X ;s from r to/from owner(X,/).
3: Locally interpolate to compute v(X ;).
4: Send/recv v(X;) to/from worker(z;) to r.

The execution flow of the interpolation algorithm is ex-
plained in Algorithm I, for an MPI task r. Let v(x;) be
the value of the scalar field v at a regular grid point x;.
Also, let X ;» be the corresponding semi-Lagrangian points
for each 4’ computed by (6). Let ; be the spatial domain
assigned to the MPI task j. As shown in figure 3, X, € Q,
does not imply that x;, € €2, and vice versa. For an off-grid
point X ;s, owner(X /) computes the MPI task that owns that
point. That is, X;» € Q, but ;s € Qoyner(x,,)- Similarly,
x; € Qbut X; € Qworkm,(xi,). Of course for most points
both the owner and worker domains will be identical to €2,.
In line | every task sends values of v that it owns to its four
neighbors (recall that we use a pencil decomposition) with
a communication cost of 4(t,N?/p + t)) (the four corner
neighbors can be combined with the messages of the edge
neighbors, but appropriate ordering of the messages). In line 2,
for X ;» whose corresponding regular grid point x; belongs to
a different MPI task, r sends v(X;/) to that task.

In line 3 the interpolation takes place. This phase requires
roughly O(600N3/p) floating point operations. This is fol-
lowed by an alltoall communication in line 4 to send/recv
interpolation results. Our GPU implementation follows a sim-
ilar strategy.

3) Algorithm for incremental state equation: We sum-
marize the steps needed to solve the incremental forward
problem (52) for one time step in algorithm 2 to illustrate
the communication and computation pattern.

Algorithm 2 One time step of the solution of the incremental
forward problem.
Input: v(x;), v(x;), p(xs,0), p(xs, 0t ), p(x,0), X5
Output: p(xz;,0t)
: po(X;) = p(X;,0) using Algorithm
Vp(x;i,0) using FFT.
fo(x:) = —0(x;) - Vp(zs,0).
fo(X;) using fo(x;) and Algorithm
ps(@i) = po(X ;) + 0t fo(X5).
Vps(x;) using FFT.
fe(@i) = —v(z;) - Vp*é(wi)
p(i, 0t ) = po(Xs) + G (fo(Xi) + fu(wi)).
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This calculation requires four interpolation steps using Al-
gorithm 1, one for the scalar interpolation in line | and three
for the vector interpolation in line 4. It also requires four FFTs:
two for line 2 (it is two because we need to go the spectral
domain, differentiate, and then back to the spatial domain) and
two for line 6. The other parts are triple “for-loops” over all the
grid points ¢ in €),.. The FFTs require global synchronizations.
The total cost of the incremental adjoint solve is four 3D
FFTs and two interpolations. The incremental adjoint requires
the same computations (for divergence-free velocity fields).

4) Complexity of Hessian matvec and overall algorithm:
Every Hessian matvec requires n; forward and adjoint solves
or 8n; FFTs and 4n, interpolations. The remaining operations
of applying the regularization and the preconditioner are
negligible since they include just 2 FFTs each. The gradient
is also cheaper since (2b) and (3) are simpler than the
ones in (5). Regarding memory, every task needs to store
2n, N3 /p+5N?3 /p values for the incremental adjoint and state
variables. Therefore, accounting the complexities for the FFT
and interpolation we obtain,

7.5N3 600N3
Taop ~ Ny (8 » log N 44 )

3N3 N2
ﬂxlpi ~ 87’Lt <3tg\/ﬁ+ twp) + 47’Lt <t5 + twp)

This estimate assumes that the semi-Lagrangian points are
uniformly distributed across processors, however, this is not
guaranteed and depends on the velocity field and the CFL
number. In practice the interpolation is the predominant cost
of the calculation, at least for the problem sizes we have tested.
For fixed 3 the number of Newton iterations are independent of
the mesh size, the inversion of highly ill-conditioned operators
is done in linear time.



Fig. 5: 3D visualization of a synthetic registration problem
(volume rendering). From left to right: (i) reference image pp,
(i1) template image pr, and (iii) initial (before registration)
residual differences between pgr and pr. The reference image
PR is generated from pr by solving the forward problem with
a known velocity v* (details can be found in the text). Dark
areas indicate large residual differences and white areas zero
residual differences.

IV. RESULTS
A. Experimental setup

In this section, we give details on the experimental setup
we used to test our solver.

1) Images: We use one real-world and one synthetic im-
age to test our algorithm. For the synthetic case we con-
struct the template image as follows: pr(x) = (sin(x1) +
sin?(x9) + sin?(x3))/3; the velocity is given by v*(x) =
(cos(x1) sin(xq), cos(wy) sin(wy), cos(z1) sin(z3))T; the ref-
erence image pr is the solution of (2b) with the exact velocity
v* (see Figure 5 for an illustration of this problem).” We use
a synthetic case to perform the scaling studies, since medical
images come with a fixed resolution/grid size. To test our
scheme on real medical images, we use two 3D MRI brain
images of different individuals (“multi-subject registration
problem”; grid size: 256 x 300 x 256). This data is from
the Non-rigid Registration Evaluation Project (NIREP) [14].
(see Figure 6 for an illustration).

2) Implementation and Hardware: Our code is imple-
mented in C++ and uses MPI and the OpenMP library for
multithreading. The code is compiled with the Intel C++
compiler using the —03 flag. Although we have GPU imple-
mentations both for the FFT and the interpolation, we have
not used accelerators in the results we report here. We carry
out runtime experiments on the TACC’s “Maverick” system.
Each compute node contains dual, ten-core Intel Xeon ES-
2680 v2 (Ivy Bridge) processors running at 2.8GHz with
12.8GB/core of memory. Each node also has an NVIDIA
Tesla K40 GPU accelerator. We also report large-scale runs
on TACC’s “Stampede” system (two eight-core Xeon E5-2680
vl (Sandy Bridge) processors with 32GB host memory per
node). As mentioned before, we use PETSc’s TAO for the
nonlinear optimization, vector operations of PETSc for vector

5For the incompressible case we use a similar but divergence free velocity
field v*.

5The data is available at http://nirep.org; the interested reader is
referred to [14] for more details. We consider the first two datasets na01 and
na02 from this repository.

linear operations, and AccFFT for the Fourier transforms. The
basic interface to TAO is the functional, gradient, Hessian
matvec, and preconditioner, as well as routines to select the
tolerances for the nonlinear solver and for the Newton steps.

3) Parameters: The regularization parameter (3 is set to
1E—2 for the scalability runs (for both, the synthetic and
the real-world brain example). The number of time steps
ng controls the accuracy and should be related to the CFL
number. For simplicity and to be able to compare different
cases, we have kept it fixed to n, = 4. The gradient tol-
erance is g, = 1E—2 unless otherwise stated. We use an
inexact Newton method with quadratic forcing. We do not
report continuation results; all the runs are done for a single
(experimentally determined) value of 8. We report (i) wall-
clock times, (¢¢) communication times, as well as (:7) the time
to solution for our method with respect to different registration
problems and parameter settings. Since the problem is non-
convex and we are not interested in high-accuracy solutions,
we opt for a Gauss-Newton approximation.

B. Scalability using synthetic images

We use a fixed set of parameters, which we experimentally
determined to yield a good balance between computational
complexity and computational performance. We illustrate the
registration problem in Figure 5. We report results for dif-
ferent grid resolutions (N; € {64,128,256,512,1024}), and
different numbers of cores and MPI task configurations (p €
{1,2,4,8,16,64,256}). The results are reported in Table
(“Maverick” runs) and Table II (large scale “Stampede” runs).
First, we interpret the 2563 runs (#1—#3), which represents
a strong scaling analysis (in general, in image registration,
strong scaling is what we’re most interested in). From 32 tasks
to 512 tasks the parallel efficiency is 67%, whereas from 32
to 1024, the efficiency is 50%. This is not ideal—however,
it is quite good. The majority of the calculation for low task
counts goes to the interpolation computation, whereas, as we
increase the number of tasks, the majority of time goes to the
FFT communication phase.” Similar conclusions can be drawn
for the 1283 set; again, going from 16 tasks to 256 tasks, we
observe 50% efficiency. For the 5123 (#11-#13) the efficiency
is 72%. The latter is a problem with 1.5 billion unknowns for
the velocity, without counting the unknowns for the state and
adjoint fields; it only takes 32 seconds to solve to an accuracy
of practical interest.

If we look the weak scaling results, we can consider runs
#3, #8, and #13, in which we increase the problem size by
a factor of eight and the number of tasks also by a factor of

"Many image registration codes don’t even compute gradients and the
termination criterion is the number of iterations. Given the limitations in the
resolution and the image quality a relative reduction of the gradient by 1% is
typically considered quite excessive.

8We use FFTs for the discretization of differential operators since this
allows us to invert them at the cost of a spectral diagonal scaling. This offers
the opportunity to exactly fulfill and efficiently eliminate the incompressibility
constraint from the optimality system. Also, it allows for an efficient precon-
ditioning of the Hessian with essentially no construction cost (see §lII for
details).
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Fig. 6: 3D visualization of the registration problem for the brain images. From left to right: (i) reference image pg, (i)
template image pr, (iii) the residual differences between pr and pr (before registration), and (iv) the residual differences
between pr and pr(y,) (deformed template image; after registration). Dark areas indicate a large residual and white areas

no residual differences.

Table I: Computational performance of our solver for the synthetic registration problem illustrated in Figure

on TACC’s

“Maverick” computing system. We neglect the incompressibility constraint for these runs. We report the time to solution, and
the communication and execution times for the FFT and the interpolation, respectively (in seconds). We report timings as a

function of the number of unknowns (in space), and the number of nodes and tasks.

We use 16 tasks per node.

FFT interpolation

N3  nodes tasks time to solution communication execution communication  execution
#1 643 1 16 1.54 1.20E—1 9.69E—2 1.82E—1 8.20E—1
#2 2 32 9.50E—1 1.42E—1 4.88E—2 1.15E—1 4.27E—1
#3 1283 1 16  1.52E+1 1.73 1.35 1.84 6.66
#4 2 32 7.88 1.30 547E—1 1.17 3.49
#5 4 64  4.70 1.19 2.83E—1 5.43E—1 1.87
#6 16 256  2.01 6.68E—1 6.60E—2 1.86E—1 4.91E—1
#7 2563 2 32 7.99E+1 1.44E+1 1.01E4+1 1.08E+1 2.83E+1
#8 8 128  2.30E+1 7.27 1.56 2.60 8.04
#9 32 512 7.23 2.67 3.38E—1 5.93E—1 2.00
#10 64 1024 4.72 1.70 1.72E—1 4.80E—1 1.04
#11 5123 8 128 1.91E+2 4.50E+1 2.38E+1 2.18E+1 6.89E+1
#12 32 512  6.07E+1 1.90E+1 4.18 4.22 1.74E+1
#13 64 1024  3.29E+1 1.28E+1 1.77 2.33 8.57

eight. The overall timings are 15.2 seconds, 23 seconds, and
32 seconds, respectively, which again is not perfect. If we look
more closely at how the time is allocated, we observe that the
execution time for the FFT scales perfectly in these three runs
(1.35 seconds, 1.56 seconds, and 1.77 seconds, respectively).
The interpolation execution also scales well, both in terms
of communication and computation. The deterioration of the
overall time is due to the FFT communication costs. The
largest problem we solved for the synthetic case was run #19,
in which we have 3.2 billion unknowns for the velocity field on
2048 MPI tasks on “Stampede”. It took 85 seconds. The good
scalability of the computation phase confirms the algorithmic
optimality of the preconditioned Newton—Krylov method. We
report results for the incompressible case in Table

C. Real-world registration problem

We report exemplary results for the brain data sets illustrated
in Figure 6 (grid size: 256 x 300 x 256). We set the g, to 1IE—2
and the maximal number of outer iterations (Newton steps) to
50, and 5 = 1E—4. We study strong scaling and the sensitivity
of the convergence of our solver with respect to changes in the
regularization weight 3. We report scalability results for the
brain images in Table ['V. We display exemplary result for the

Table V: Sensitivity of the computational work load
with respect to varying regularization weights [ €
{1E—2,1E—3,1E—4}. We report results for four Newton
iterations for the brain images. We report the number of
Hessian matvecs and the time to solution (in seconds) and
in parenthesis its relative increase from the base case.

B matvecs  time to solution ( relative )
#30 1E—1 43 2.42E+1 ( 1.0)
#31 1E-3 217 1.11E42 ( 4.6)
#32 1E-5 1689 8.58E+2 (35.0)

considered datasets in Figure 7. We report results for varying
choices of the regularization parameter 5 in Table

We observe that we can significantly reduce the compu-
tational timings if we switch to parallel architectures. The
scaling results are consistent with what we observed for the
synthetic data sets. We can reduce the wall clock time by
two orders of magnitude if we change from one task on one
node to 64 MPI tasks on 32 nodes. We can fit the entire
problem on one node. This demonstrates the practicability of
our solver. The communication and execution times of the
FFT and the interpolator drop significantly as we increase



Table II: Computational performance of our solver for the synthetic registration problem illustrated in Figure 5 on TACC'’s
“Stampede” computing system. We neglect the incompressibility constraint for these runs. We report the time to solution, and
the communication and execution times for the FFT and the interpolation, respectively (in seconds). We report timings as a
function of the number of unknowns (in space), and the number of nodes and tasks. We use 2 tasks per node.

FFT interpolation

N3  nodes tasks time to solution communication execution communication execution
#14 5123 256 512  3.84E+1 4.61 2.62 4.12 1.98E+1
#15 512 1024  2.02E+1 2.23 1.30 2.38 9.42
#16 1024 2048 1.31E+1 1.69 6.29E—1 1.25 4.83
#17 10243 256 512 3.54E+2 3.29E+1 3.10E+1  3.72E+1 1.93E4-2
#18 512 1024  1.69E+2 2.23E+1 1.39E+1 1.79E+1 8.85E+1
#19 1024 2048 8.57E+1 1.15E+1 6.75 8.78 4.42E+1

Table III: Computational performance of our solver for a synthetic registration problem similar to the one illustrated
in Figure 5 on TACC’s “Maverick” computing system. We use the incompressibility constraint for these runs (mass preserving
diffeomorphism). We report the time to solution, and the communication and execution times for the FFT and the interpolation,
respectively (in seconds). We report results for a fixed grid size (128%) as a function of the number of nodes and tasks. We use
2 tasks per node.

FFT interpolation

nodes tasks  time to solution communication execution communication execution

#20 1 1 1.48E+2 0 1.98E+1  2.82 9.26E+1
#21 2 4  4.27E+1 3.18 5.73 8.39E—1 2.31E+1
#22 4 8  2.25E+1 2.17 2.72 5.83E—1 1.15E+1
#23 8 16  1.09E+1 1.10 1.25 4.03E—1 5.80
#24 16 32 5.69 6.69E—1 6.20E—1 2.68E—1 2.93
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Fig. 7: Exemplary registration results for the brain data sets. We display, from left to right axial slices of (i) the reference image
PR, (11) the template image pr, the residual differences (iii) between pr and pr before registration and (iv) after registration,
(v) a point-wise map of the determinant of the deformation gradient (the color map represents volume change ranging from
0 to 2, where det(Vy,) = 0 is black, det(Vy,) € (0,2) corresponds to different shades of orange (from dark to bright),
and det(Vy,) > 2 is white), and (vi) the deformed template image pr(y,) with a grid in overlay (closeup to the right). The
values for the determinant of the deformation gradient are strictly positive (i.e., the deformation map is diffeomorphic).



Table IV: Strong scaling results for the brain images computed on “Maverick”. We set the regularization parameter to
B = 1E—2. We perform two Newton iterations for these scalability runs. We report the number of nodes, the number of MPI
tasks, and the communication and execution times for the FFT and the interpolation (in seconds).

FFT interpolation
nodes tasks time to solution communication execution communication execution
#25 1 1 1.34E+43 0.00E+1 2.59E+2 2.70E+1 7.72E+42
#26 2 4  3.92E+2 2.76E+1 6.91E+1 5.73 1.90E+-2
#27 8 16  9.54E+1 8.59 1.38E4+1 1.20 4.78E+1
#28 16 32 4.85E+1 4.94 6.50 5.35E—1 2.36E+1
#29 32 256  1.20E+1 4.03 1.10 8.77TE—2 3.31

the number of nodes. The interpolation time contributes again
critically (about or more than 50% of the time to solution).

As for the sensitivity with respect to the regularization
parameter we can see that the number of Hessian matvecs
(a proxy for the overall Newton-Krylov iterations) increases,
as we reduce the regularization parameter from 5 = 1E—3 to
B = 1E—5. The time to solution increases by a factor of 35 for
the smallest 3 reported here. This clearly demonstrates that the
performance of our preconditioner is not ideal; it deteriorates
with a reduction in 3. As we have seen in the former section,
the solver behaves independent of the mesh size. Implementing
an improved scheme for preconditioning the Hessian requires
more work.

V. CONCLUSION

We presented a complete algorithm for large deformation
diffeomorphic medical image registration. We were able to
solve problems of unprecedented scale. One may ask how such
runs translate to a clinical setting. As the cost of computing
drops, we are hopeful that 32- and 256-task calculations will
be possible at a modest cost.

The proposed algorithm is flexible and scalable. It supports
different types of regularization functionals and can be ex-
tended to different image distance measures. Our approach can
be easily extended to vector images and—with some additional
work—can also be extended to non-stationary (time-varying)
velocities [30], [9]. This will be necessary to register time-
series of images or optical flow problems. All the parallelism
related issues remain the same. A major remaining challenge
is the design of preconditioners that are insensitive to the
regularization parameter.

Finally, our algorithm relates to other applications besides
medical imaging. For example applications in weather predic-
tion and ocean physics (for tracking Lagrangian tracers in the
oceans) [37], for reconstruction of porous media flows [20],
and registration of Micro-CTs for material science and biol-
ogy [32]. Although our method is highly optimized for regular
grids with periodic boundary conditions, many aspects of our
algorithm carry over.
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