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Abstract—Modern parallel architectures have both heteroge-
neous processors and deep, complex memory hierarchies. We
present Legion, a programming model and runtime system
for achieving high performance on these machines. Legion is
organized around logical regions, which express both locality and
independence of program data, and fasks, functions that perform
computations on regions. We describe a runtime system that
dynamically extracts parallelism from Legion programs, using
a distributed, parallel scheduling algorithm that identifies both
independent tasks and nested parallelism. Legion also enables
explicit, programmer controlled movement of data through the
memory hierarchy and placement of tasks based on locality
information via a novel mapping interface. We evaluate our
Legion implementation on three applications: fluid-flow on a
regular grid, a three-level AMR code solving a heat diffusion
equation, and a circuit simulation.

I. INTRODUCTION

Modern parallel machines are increasingly complex, with
deep, distributed memory hierarchies and heterogeneous pro-
cessing units. Because the costs of communication within these
architectures vary by several orders of magnitude, the penalty
for mistakes in the placement of data or computation is usually
very poor performance. Thus, to achieve good performance the
programmer and the programming system must reason about
locality (data resident close to computation that uses it) and
independence (computations operating on disjoint data, and
therefore not requiring communication and able to be placed
in possibly distant parts of the machine). Most contemporary
programming systems have no facilities for the programmer to
express locality and independence. The few languages that do
focus primarily on array-based locality [1], [2], [3] and avoid
irregular pointer data structures.

In this paper we describe Legion, a parallel programming
system based on using logical regions to describe the orga-
nization of data and to make explicit relationships useful for
reasoning about locality and independence. A logical region
names a set of objects. Logical regions are first-class values in
Legion and may be dynamically allocated, deleted and stored
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in data structures. Regions can also be passed as arguments
to distinguished functions called fasks that access the data in
those regions, providing locality information. Logical regions
may be partitioned into disjoint or aliased (overlapping) sub-
regions, providing information for determining independence
of computations. Furthermore, computations access logical
regions with particular privileges (read-only, read-write, and
reduce) and coherence (e.g., exclusive access and atomic
access, among others). Privileges express how a task may use
its region arguments, providing data dependence information
that is used to guide the extraction of parallelism. For example,
if two tasks access the same region with read-only privileges
the two tasks can potentially be run in parallel. Coherence
properties express the required semantics of concurrent region
accesses. For example, if the program executes f1(r); f2(r)
and tasks f; and f5 both require exclusive access to region r,
then Legion guarantees the result will be as if f1(r) completes
before fo(r) begins. On the other hand, if the tasks access r
with atomic coherence, then Legion guarantees only atomicity
of the tasks with respect to r: either task f(r) appears to run
entirely before fo(r) or vice versa.

Logical regions do not commit to any particular layout of
the data or placement in the machine. At runtime, each logical
region has one or more physical instances assigned to specific
memories. It is often useful to have multiple physical instances
of a logical region (e.g., to replicate read-only data, or to allow
independent reductions that are later combined).

To introduce the programming model, we present a circuit
simulation in Section II, illustrating regions, tasks, permissions
and coherence properties, the interactions between them, and
how these building blocks are assembled into a Legion pro-
gram. Subsequent sections each describe a contribution in the
implementation and evaluation of Legion:

o We define a software out-of-order processor, or SOOP,
for scheduling tasks with region arguments in a manner
analogous to how out-of-order hardware schedulers pro-
cess instructions with register arguments (Section III). In
addition to pipelining the execution of tasks over several
stages, our SOOP is distributed across the machine and
is also hierarchical to naturally extract nested parallelism
(because tasks may recursively spawn subtasks).

e Of central importance is how tasks are assigned (or
mapped) to processors and how physical instances of
logical regions are mapped to specific memory units
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struct Node { float voltage, new_charge, capacitance; };
struct Wire(rn) { Node@rn in_node, out_node; float current, ... ; };
struct Circuit { region r_all_nodes; /* contains all nodes for the circuit x/
region r_all_wires; /x contains all circuit wires %/ };
struct CircuitPiece {
region rn_pvt, rn_shr, rn_ghost; /* private, shared, ghost node regions */
region rw_pvt; /+ private wires region %/ };

void simulate_circuit(Circuit c, float dt) : RWE(c.r_all_nodes, c.r_all_wires)

// The construction of the colorings is not shown. The colorings wire_owner_map,
// node_owner_map, and node_neighbor_map have MAX_PIECES colors

// 0.MAX_PIECES — 1. The coloring node_sharing map has two colors 0 and 1.
Vi

// Partition of wires into MAX_PIECES pieces

partition(disjoint) p_wires = c.r_all_wires.partition(wire_owner_map);

// Partition nodes into two parts for all—private vs. all—shared

partition (disjoint) p_nodes_pvs = c.r_all_nodes.partition(node_sharing map);

// Partition all—private into MAX_PIECES disjoint circuit pieces

partition (disjoint) p_pvt_nodes = p_nodes_pvs[0].partition(node_owner_map);

// Partition all—shared into MAX_PIECES disjoint circuit pieces

partition (disjoint) p_shr_nodes = p_nodes_pvs[1].partition(node_owner_map);

// Partition all—shared into MAX_PIECES ghost regions, which may be aliased
partition (aliased) p_ghost_nodes = p_nodes_pvs[1].partition(node_neighbor_map);

CircuitPiece pieces] MAX_PIECES];
for(i = 0; i < MAX_PIECES; i++)
pieces[i] = { rn_pvt: p_pvt_nodes[i], rn_shr: p_shr_nodes[i],
rn_ghost: p_ghost_nodes][i], rw_pvt: p_wires[i] };
for (t = 0; t < TIME_STEPS; t++) {
spawn (i = 0; i < MAX_PIECES; i++) calc_new_currents(pieces][i]);
spawn (i = 0; i < MAX_PIECES; i++) distribute_charge(pieces[i], dt);
spawn (i = 0; i < MAX_PIECES; i++) update_voltages(pieces][i]);

}

}
// ROE = Read— Only—Exclusive
void calc_new_currents(CircuitPiece piece):
RWE(piece.rw_pvt), ROE(piece.rn_pvt, piece.rn_shr, piece.rn_ghost) {
foreach(w : piece.rw_pvt)
w—current = (W—in_node—voltage — w—out_node—>voltage) / w—sresistance;

// RAA = Reduce—Atomic
void distribute_charge(CircuitPiece piece, float dt):
ROE(piece.rw_pvt), RdA(piece.rn_pvt, piece.rn_shr, piece.rn_ghost) {
foreach(w : piece.rw_pvt) {
w—in_node—new_charge += —dt * w—current;
w—out_node—new_charge += dt * w—current;

}
}

void update_voltages(CircuitPiece piece): RWE(piece.rn_pvt, piece.rn_shr) {
foreach(n : piece.rn_pvt, piece.rn_shr) {
n—voltage += n—new_charge / n— capacitance;
n—new_charge = 0;
}
}

Listing 1. Circuit simulation.

(Section 1V). Often using application-specific informa-
tion results in better mappings than a generic mapping
strategy. We describe a mapping interface that allows
programmers to give the SOOP a specification of how to
map tasks and regions for a specific application, or even
part of an application. This mapping API is designed so
that any user-supplied mapping strategy can only affect
the performance of applications, not their correctness.

o We present results of experiments on three applications:
fluid-flow on a regular grid, a three-level AMR code solv-
ing a heat diffusion equation, and a circuit simulation. We
compare each application with the best reference versions
on three different clusters of multicore processors with
GPUs, including the Keeneland supercomputer [4].

II. EXAMPLE: CIRCUIT SIMULATOR

We begin by describing an example program written in
the Legion programming model. Listing 1 shows code for an
electrical circuit simulation, which takes a collection of wires
and nodes where wires meet. At each time step the simulation
calculates currents, distributes charges, and updates voltages.

The key decisions in a Legion program are how data is
grouped into regions and how regions are partitioned into sub-
regions. The goal is to pick an organization that makes explicit
which computations are independent. A Circuit has two
regions: a collection of nodes and a collection of wires (line
3 of Listing 1).! An efficient parallel implementation breaks
this unstructured graph into pieces that can be processed
(mostly) independently. An appropriate region organization
makes explicit which nodes and wires are involved in intra-
piece computation and, where wires connect different pieces,
which are involved in inter-piece computation.

Figure 1(b) shows how the nodes in a small graph might be
split into three pieces. Blue (lighter) nodes, attached by wires
only to nodes in the same piece, are private to the piece. Red
(darker) nodes, on the boundary of a piece, are shared with
(connected to) other pieces. In the simulation, computations
on the private nodes of different pieces are independent, while
computations on the shared nodes require communication. To
make this explicit in the program, we partition the nodes region
into private and shared subregions (line 18). To partition a
region, we provide a coloring, which is a relation between the
elements of a region and a set of colors. For each color ¢ in
the coloring, the partition contains a subregion r of the region
being partitioned, with  consisting of the elements colored c.
Note that the partition into shared and private nodes is disjoint
because each node has one color.

The private and shared nodes are partitioned again into
private and shared nodes for each circuit piece (lines 21
and 23); both partitions are disjoint. There is another useful
partition of the shared nodes: for a piece ¢, we will need the
shared nodes that border ¢ in other pieces of the circuit. This
ghost node partition (line 25) has two interesting properties.
First, it is a second partition of the shared nodes: we have
two views on to the same collection of data. Second, the
ghost node partition is aliased, meaning the subregions are
not disjoint: a node may border several different circuit pieces
and belong to more than one ghost node subregion (thus,
node_neighbor_map on line 25 assigns more than one
color to some nodes). The private, shared, and ghost node
subregions for the upper-left piece of the example graph are
shown in Figures 1(c), 1(d), and 1(e) respectively.

Figure 1(a) shows the final hierarchy of node partitions
and subregions. The * symbol indicates a partition is disjoint.
This region tree data structure plays an important role in
scheduling tasks for out-of-order execution (see Section III).
The organization of the wires is much simpler: a single disjoint

Note that all pointers declare the region to which they point. For example,
the definition of Wire (line 2) is parametrized on the region rn to which the
Node pointers in fields in_nodes and out_nodes point.



partition that assigns each wire to one piece (line 16).

Line 9 declares the main simulator function, which specifies
the regions it accesses and the privileges and coherence it
requires of those regions. The RWE annotation specifies that
the regions c.r_all nodes and c.r_all wires are
accessed with read-write privileges and exclusive coherence
(i.e., no other task can access these two regions concurrently
or be reordered around this task if they use either region).
Privileges specify what the function can do with the regions;
coherence specifies what other functions can do with the
regions concurrently. Functions that declare their accessed
regions, privileges, and coherence are called tasks and are the
unit of parallel execution in Legion.

Lines 31-57 perform the actual simulation by making three
passes over the circuit for each time step. Each pass loops
over an array of pieces (constructed on lines 27-30 from the
partitions), spawning a task for each piece. There are no ex-
plicit requests for parallel execution (spawn simply indicates
a task call and does not mandate parallel execution) nor is
there explicit synchronization between the passes. Which tasks
can be run in parallel within a pass and the required inter-
pass dependencies are determined automatically by the Legion
runtime based on the region access annotations on the task
declarations. The tasks spawned on lines 32-34 are subtasks
of the main simulate_circuit task. A subtask can only
access regions (or subregions) that its parent task could access;
furthermore, the subtask can only have permissions on a region
compatible with the parent’s permissions.

The calc_new _currents task reads and writes the
wires subregion and reads the private, shared, and ghost
node subregions for its piece. The distribute_charge
task reads the piece’s wires subregion and updates all nodes
those wires touch. However, rather than using read/write
privilege for the nodes (which would serialize these tasks
for correctness), the task uses reorderable reduction opera-
tions and atomic rather than exclusive access. The final task
update_voltages writes the shared and private nodes for
a piece and reads the results of the previous task’s reductions.

Listing 1 illustrates one way of constructing partitioned data
structures in Legion: populate a region with data (the example
makes use of whatever data has been allocated by the caller of
simulate_circuit) and then partition it into subregions.
One can also first partition an empty region into subregions
and then allocate data in the subregions.

III. THE SOFTWARE OUT-OF-ORDER PROCESSOR

Legion uses a software out-of-order processor, or SOOP, to
schedule tasks. A SOOP dynamically schedules a stream of
tasks in a manner akin to an out-of-order processor scheduling
a stream of instructions. Just as an instruction scheduler is
constrained by register dependences, the SOOP is constrained
by region dependences. The SOOP is pipelined, distributed,
and extracts nested parallelism from subtasks. There are two
major challenges in implementing an efficient task scheduler:

o For correctness, Legion must preserve data dependences
between tasks, which is non-trivial because the same data

all-private
nodes

p_pvt_nodes/ % p_shr_nodes /%

p_nodes_pvs

p_ghost_nodes

(@ s
Fig. 1.

©) gi
Partitions of r_all_nodes.

may be in multiple different regions or subregions.

e For performance, Legion must hide the extremely long
latencies associated with machines that have both dis-
tributed memory and many levels of memory hierarchy.

To solve the second problem Legion uses a deferred execu-
tion model that decouples the issuing of operations from when
operations are performed. Using a low-level runtime event sys-
tem (which we do not describe further in this paper), an issued
operation waits for other operations on which it is dependent
to complete before executing, but a waiting operation does
not cause the SOOP to block. With deferred execution, it is
worthwhile for the SOOP to run (potentially far) ahead of
actual execution, allocating resources to and issuing tasks that
may wait because they have data dependences on earlier tasks
that have not finished executing. Pipelining and distributing
the SOOP further improves throughput and hides latency.

To dynamically detect and enforce data dependences, the
SOOP considers, for each task ¢, the regions t uses and
ensures ¢ waits on any earlier task whose region uses conflict
with ¢’s. There is a difficulty, however. The programmer’s
regions are logical; a region names a set of objects, but
does not say where those objects are in memory. To ensure
dependences are satisfied the SOOP must also map t: assign
an appropriate physical instance to each of ¢’s logical regions.
Thus, dependence analysis requires knowing both which tasks
t depends on and how those other tasks are mapped.

Our SOOP design solves this problem by dividing the
analysis of dependences between two pipeline stages. The first
SOOP stage computes task dependences at the granularity of
logical regions (Section III-A), which does not give enough



‘ Exclusive  Atomic  Simultaneous Relaxed
Exclusive Dep Dep Dep Dep
Atomic Dep Same Cont Cont
Simultaneous Dep Cont Same None
Relaxed Dep Cont None None

Fig. 2. Dependence table.

information to map ¢, but does identify all tasks that must map
before ¢ can map. The third SOOP stage maps ¢ by carrying out
a more refined analysis of the (already mapped) tasks on which
t depends (Section III-C). Between these stages, the second
stage distributes tasks to other processors (Section III-B). Once
a task has been assigned a processor and physical instances it is
issued for deferred execution (Section III-D). The final SOOP
stage reclaims resources from completed tasks (Section III-E).

A. Stage 1: Mapping Dependences

Each processor in the system runs an instance of the SOOP.
When a parent task spawns a child task, the child is registered
with the SOOP on the parent’s processor; registration records
the subtask’s logical regions, privileges and coherence proper-
ties. Children are registered in the sequential order the parent
spawns them and enqueued for mapping dependence analysis.
In the circuit simulation in Listing 1, the spawn statements on
lines 32-34 register all three kinds of subtasks (in program or-
der) on the processor where simulate_circuit executes.

Detecting mapping dependences between a newly registered
task ¢ and a previously registered task ¢ requires comparing
the two sets of logical regions accessed. For each logical
region used by ¢’ that may alias (may share data with) a logical
region used by ¢, the privileges and coherence modes are
compared to determine whether a dependence exists. If both
regions need only read privileges there is never a dependence,
but if either task needs write or reduction privileges, the
coherence modes are compared using the table in Figure 2.
Dep indicates dependence while None indicates indepen-
dence. Same is a dependence unless the two tasks use the
same physical instance of the logical region. Since tasks have
not mapped physical instances at this point in the pipeline,
Same is always a mapping dependence. Cont indicates a
dependence contingent on the privileges of the two tasks (e.g.
an Atomic Read-Write task and Simultaneous Read-Only task
will not have a dependence).

The table lists simultaneous and relaxed coherence modes
that we have not yet discussed. Both modes allow other tasks
using the region to execute at the same time and differ only in
what updates must be observed. With simultaneous coherence,
a task must see all updates to the logical region made by other
tasks operating on the same region simultaneously (i.e., shared
memory semantics). With relaxed coherence, a task may or
may not observe concurrent updates.

A key property is that dependence analysis is not needed
between arbitrary pairs of tasks. In fact, it suffices to check
only siblings (children with the same parent) for dependences.

Observation 1. Let ¢; and ¢5 be two sibling tasks with no
dependence. Then no subtask of ¢; has a dependence with
any subtask of ts.

Recall from Section II that subtasks only access regions (or
subregions) that their parent accesses. Thus if the regions used
by ¢; and ¢5 do not alias, the regions used by any subtasks
of t; cannot alias the regions used by any subtask of to. If
regions of ¢ and ¢, alias but there is no dependence because
the regions have simultaneous or relaxed coherence, then by
definition there is no dependence between the subtasks.

Consider the first two subtasks spawned on line
32 in Listing 1, calc_new_currents (pieces[0])
and calc_new_currents (pieces([1]). The first of
these tasks reads and writes the private wires subregion
pieces[0].rw_pvt in exclusive mode, and reads in ex-
clusive mode the node subregions pieces[0].rn_pvt,
.rn_shr,and . rn_ghost (see line 39). The second subtask
must be checked against the first for any dependences; the
second subtask uses pieces[1l].rw_pvt (read / write
exclusive) and pieces[l].rn_pvt, .rn_shr, and
.rn_ghost (read-only exclusive). It may be helpful to refer
to the region tree for nodes in Figure 1(a) (recall that the
wires region tree consists of a single disjoint partition). We
give a few representative examples of reasoning about pairwise
aliasing (not all pairs are covered):

1) pieces[0].rw_pvt and pieces[1l].rw_pvt do
not alias as they are different subregions of a disjoint
partition.

2) pieces[0].rn_ghost and pieces[1].rn_shr
alias as they are in different partitions of the same

region.
3) Subregions of an aliased partition always
alias (e.g., pieces[0].rn_ghost and

pieces[1].rn_ghost).

4) pieces[0].rw_pvt and pieces[1].rn_pvt do
not alias because they are in different region trees.
Cases 2 and 3 indicate a possible dependence, however the
regions are accessed with only read privileges. All other cases
for these two subtasks are similar to one of the examples

above; thus, the two subtasks are independent.

A closer look at this example shows that whether rq
aliases 75 can be determined by examining their least common
ancestor ry L ro in the region tree. If r; LI ro either does not
exist (the regions are in different region trees) or is a disjoint
partition, then ry and ro are disjoint. If 71 LI o is an aliased
partition or a region, then r; and r, alias.

Consider tasks distribute_charge (pieces[0],dt)
and update_voltages[1] in Listing 1. The former task
uses region pieces[0].rn_ghost and the latter uses
region pieces[1l].rn_shr. The least common ancestor
is the region of all shared nodes p_nodes_pvs[1l],
so these two regions alias. Since both tasks modify
their respective subregions, there is a dependence and
the update_voltages task can only map after the
distribute_charges task has mapped.

We can now describe the algorithm for mapping dependence
analysis. The SOOP maintains a local region forest for each
task ¢, the roots of which are ¢’s region arguments and
including all partitions and subregions used by ¢. Dependence



analysis places the child tasks of ¢ on the regions they use,
maintaining the following invariant. Let v’ be a region used
by child task #, and let R be the set of regions r” such that
r"" is used by a task ¢’ registered after ¢’ and ¢’ depends on ¢’
because of aliasing between " and r’. Then ¢’ is listed on the
region that is the least common ancestor of the set R U {r'}.
Placing t' on an ancestor of 7’ coarsens the dependences
involving ¢’, which can result in false dependences. However,
the loss of information can be shown to be small and only
affects when ¢ can map; any information lost is recovered
during mapping. Furthermore, the benefit is that it dramatically
speeds up dependence analysis overall.

We can identify all mapping dependences between sibling
tasks and place tasks in the correct place in the region tree in
amortized time O(d) per region, where d is the depth of the
region forest. For region r’ used by task ¢, the analysis walks
the unique path in the region forest from a root to r’; task '
depends on all tasks on this path when the walk completes.
For each node m on the walk from the root to 7’ the following
actions are taken:

o If m is a region with multiple child partitions and m/ is
the child on the path to /, then any task in a subtree of
m other than m’ on which ¢’ depends is moved to m.

« If m is a non-disjoint partition and m/’ is the child on the
path to 7/, then any task in a subtree of m other than m’
that ¢’ depends on is moved to m.

o If m is a disjoint partition and m’ is the child on the path
to 7/, then no tasks in a subtree of m other than m’ can
conflict with ¢’; we simply move on to m/.

e If m = 7’ then any dependent tasks in r’’s subtree are
moved to 7.

There are two parts to this analysis: the walk from a region
root to 7’ and the off-path work to move dependent tasks to the
least common ancestor on the path. The walk to 7’ is bounded
by the depth of the region tree. The off-path work can be made
efficient by maintaining at each node a record of the mode of
each subtree (whether the subtree has any tasks and with what
privileges), enabling the off-path search to traverse directly and
only to dependent tasks. The off-path work is proportional to
how far a task is moved back up the region tree. Thus, for
each region argument a task is initially placed at some depth
in the forest and subsequently only moved up towards a root,
so the overall work per region is (amortized) O(d).

We illustrate dependence analysis using the four tasks
discussed above. Many more tasks are executed by the circuit
simulation, but this subset illustrates the important points. Fig-
ure 3 shows the node region tree in three stages. In Figure 3(a),
the two tasks calc_new_currents (pieces[0]) (cg)
and calc_new_currents (pieces[1]) (c1) have been
placed on their region arguments, which determines these
two tasks are independent. Next, in Figure 3(b), the task
distribute_charge (pieces[0],dt) (dy) has depen-
dences with both ¢y and c; caused by aliasing between the
pieces of the shared node partition and the ghost node parti-
tion, so both ¢y and ¢; are moved to the p_nodes_pvs[1]

region. Finally, the task update_voltages[1] causes dy
to also be moved to p_nodes_pvs[1] for essentially the
same reason; the final state of the node region tree is shown
in Figure 3(c).

B. Stage 2: Distribution

The first step in distribution is that ¢ waits for all tasks on
which ¢ depends to map; nothing happens to ¢ during this
time. Once ¢’s mapping dependences are satisfied, ¢ is ready
to be mapped and is placed in the SOOP’s mapping queue.
At this point SOOPs on other processors may ask to steal
t from its home SOOP. The home SOOP may decline the
request, but if the request is granted, task ¢ along with a copy
of t’s region forest is sent to the remote SOOP. If ¢ has not
been stolen when it reaches the head of the queue, the SOOP
decides whether to execute ¢ on the local processor or send
it to another processor. Thus, task distribution to processors
in Legion is both “pull” (stealing) and “push”. The various
policies (whether steal requests are granted, when to send
a task to another processor, etc.) are part of the mapping
interface and can be defined by the user (see Section IV).

C. Stage 3: Mapping

There are two steps to mapping a region r used by task
t. First, the mapper must ensure there is at least one valid
physical instance of r for ¢ to use. Not all instances have
up-to-date data at all times. For example, if an instance of
a subregion of r has been written by a previous task, it is
necessary to copy that subregion back to an instance of r so
that ¢ sees the correct data. In the second step, the mapping
interface selects one of the valid physical instances of r for
t to use or creates a new one. We focus on the first step; the
mapping interface is discussed further in Section IV.

Each logical region in the region tree maintains a list
of its physical instances and which sibling tasks are using
those instances and with what permissions. The important
correctness property established by stage 1 is that all tasks on
which ¢ depends map before ¢ maps and no task that depends
on t maps before ¢ finishes mapping. Thus, when ¢ maps, the
region tree will be in a state consistent with an execution in
which all tasks mapped in program order.

Detecting or creating a valid instance of r is, at its core,
dependence analysis on physical instances and thus similar
to the mapping dependence analysis on logical regions in
Section III-A. Consider mapping task ¢ with task ¢’ using
physical instance s’ of logical region 7/ in the region tree.
There are four cases.

1) If ¢ has only read privileges for ’ it cannot invalidate
any instance of r.

2) If ¢’ has read/write privileges for v/, and r aliases 7, then
s’ must be copied to an instance s” of 77’ and a fresh
instance of r created from s”. Instance s’ is removed
from the region tree.

3) If ¢’ has reduce privileges for v’ and ¢ has reduce priv-
ileges for r and both use the same reduction operator,
then nothing is done. This is the only case in which
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a writer does not require a valid instance—because
reductions can be reordered, combining the instances
of » and 7’ (if they alias) can be deferred to a later
consumer of the data (see case 4).

4) If ¢ has reduce privilege for 7/ and ¢ has read, write,
or reduce privileges with a different operator than ¢’ for
r, and r aliases 7/, then s’ must be reduced (using ¢'’s
reduction operator) to an instance s” of r L7’ and then
a fresh instance of r created from s”. Instance s’ is
removed from the region tree.

To map r, we walk from 7’s root ancestor in the region forest
to r, along the way exploring off-path subtrees to find region
instances satisfying cases 2 and 4. The details and analysis
are similar to the implementation of dependence analysis
in Section III-A; the amortized work per region mapped is
proportional to the depth of the region forest and independent
of the number of tasks or physical instances.

As part of the walk any required copy and reduction
operations are issued to construct a valid instance of r. These
operations are deferred, waiting to execute on the tasks that
produce the data they copy or reduce. Similarly, the start
of t’s execution is made dependent on completion of the
copies/reductions that construct the instance of r it will use.

Figure 3(d) shows part of the mapping of task
update_voltages[0]; we focus only on the
shared nodes. Because the immediately preceding
distribute_charges tasks all performed the same
reduction on the shared and ghost nodes they were allowed
to run in parallel. But update_voltages[0] needs
read/write privilege for pieces[0] .rn_shr, which forces
all of the reductions to be merged back to an instance
of the all-shared nodes region, from which a new
instance of pieces[0].rn_shr is copied and used by
update_voltages|[0].

D. Stage 4: Execution

After a task ¢ has been mapped it enters the execution stage
of the SOOP. When all of the operations (other tasks and
copies) on which ¢ depends have completed, ¢ is launched
on the processor it was mapped to. When ¢ spawns subtasks,
they are registered by the SOOP on which ¢ is executing, using
t as the parent task and ¢’s region arguments as the roots of
the region forest. Each child of ¢ traverses the SOOP pipeline
on the same processor as t, possibly being mapped to a SOOP
instance on a different processor to execute.

Mode: Read-Write

cnc, cnc,
dc? d(

Mode: Read-Write /g Mode: Read-Write /3¢

£ Dees Sy E‘i %iﬁi

calc_new_currents (b) distribute_charge depends (c) update_voltages depends on (d) An update_voltages map-

distribute_charge. ping.

Dependence analysis examples from circuit_simulation.

E. Stage 5: Clean-Up

Once task ¢ is done executing its state is reclaimed.
Dependence and mapping information is removed from the
region tree. The most involved aspect of clean-up is collecting
physical instances that are no longer in use, for which we use
a distributed reference counting scheme.

IV. MAPPING INTERFACE

As mentioned previously, a novel aspect of Legion is the
mapping interface, which gives programmers control over
where tasks run and where region instances are placed, making
possible application- or machine-specific mapping decisions
that would be difficult for a general-purpose programming
system to infer. Furthermore, this interface is invoked at
runtime which allows for dynamic mapping decisions based on
program input data. We describe the interface (Section IV-A),
our base implementation (Section IV-B), and the benefits of
creating custom mappers (Section IV-C).

A. The Interface

The mapping interface consists of ten methods that SOOPs
call for mapping decisions. A mapper implementing these
methods has access to a simple interface for inspecting proper-
ties of the machine, including a list of processors and their type
(e.g. CPU, GPU), a list of memories visible to each processor,
and their latencies and bandwidths. For brevity we only discuss
the three most important interface calls:

e select_initial_processor - For each task ¢ in
its mapping queue a SOOP will ask for a processor for
t. The mapper can keep the task on the local processor
or send it to any other processor in the system.

e permit_task_steal - When handling a steal request
a SOOP asks which tasks may be stolen. Stealing can be
disabled by always returning the empty set.

e map_task_region - For each logical region r used
by a task, a SOOP asks for a prioritized list of mem-
ories where a physical instance of r should be placed.
The SOOP provides a list of 7’s current valid physical
instances; the mapper returns a priority list of memories
in which the SOOP should attempt to either reuse or
create a physical instance of r. Beginning with the first
memory, the SOOP uses a current valid instance if one
is present. Otherwise, the SOOP attempts to allocate a
physical instance and issue copies to retrieve the valid
data. If that also fails, the SOOP moves on to the next
memory in the list.



The mapping interface has two desirable properties. First,
program correctness is unaffected by mapper decisions, which
can only impact performance. Regardless of where a mapper
places a task or region, the SOOPs schedule tasks and copies
in accordance with the privileges and coherence properties
specified in the program. Therefore, when writing a Legion
application, a programmer can begin by using the default
mapper and later improve performance by creating and refining
a custom mapper. Second, the mapping interface isolates
machine-specific decisions to the mapper. As a result, Legion
programs are highly portable. To port a Legion program to a
new architecture, a programmer need only implement a new
mapper with decisions specific to the new architecture.

B. Default Mapper

To make writing Legion applications easier, we pro-
vide a default mapper that can quickly get an applica-
tion working with moderate performance. The default map-
per employs a simple scheme for mapping tasks. When
select_initial_processor is invoked, the mapper
checks the type of processors for which task ¢ has implemen-
tations (e.g., GPU). If the fastest implementation is for the
local processor the mapper keeps ¢ local, otherwise it sends ¢
to the closest processor of the fastest kind that can run ¢.

The default mapper employs a Cilk-like algorithm for task
stealing [5]. Tasks are kept local whenever possible and only
moved when stolen. Unlike Cilk, the default mapper has
the information necessary for locality-aware stealing. When
permit_task_steal is called for a task, the default map-
per inspects the logical regions for the task being stolen and
marks that other tasks using the same logical regions should
be stolen as well.

For calls to map_task_region, the default mapper con-
structs a stack of memories ordered from best-to-worst by
bandwidth from the local processor. This stack is then returned
as the location of memories to be used for mapping each
region. This greedy algorithm works well in common cases,
but can cause some regions to be pulled unnecessarily close
to the processor, consuming precious fast memory.

C. Custom Mappers

To optimize a Legion program or library, programmers can
create one or more custom mappers. Each custom mapper
extends the default mapper. A programmer need only override
the mapper functions he wishes to customize. Mappers are
registered with the runtime and given unique handles. When a
task is launched, the programmer specifies the handle for the
mapper that should be invoked by the runtime for mapping
that particular task.

Supporting custom mappers has two benefits. First, it allows
for the composition of Legion applications and Legion libraries
each with their own custom mappers. Second, custom mappers
can be used to create totally static mappings, mappings that
memoize their results, or even totally dynamic mappings for
different subsets of tasks in Legion applications. We describe
examples of custom mappers in Section V.

Cluster ‘ Sapling Viz Keeneland
Nodes 4 10 32 (120)
CPUs/Node 2x Xeon 5680 2x Xeon 5680 2x Xeon 5660
HyperThreading on off off
GPUs/Node 2x Tesla C2070  5x Quadro Q5000  3x Tesla M2090
DRAM/Node 48 GB 24 GB 24 GB
Infiniband 2x QDR QDR 2x QDR

Fig. 4. System configurations used for the experiments.
V. EXPERIMENTS

We evaluate the efficiency and scalability of Legion using
three applications on three clusters (see Figure 4). All three
clusters were Linux-based, and the Legion runtime was built
using pthreads for managing CPU threads, CUDA[6] for
GPUs, and GASNet[7] for inter-node communication. The
RDMA features of GASNet were used to create a globally
addressable, but relatively slow, GASNet memory that is ac-
cessible by all nodes. For each application, multiple problem
sizes were used, and each size problem was run on subsets of
each machine ranging from the smallest (a single CPU core or
GPU) to the largest or near-largest (except Keeneland, where
we limited runs to 32 nodes to get sufficient cluster time).
By examining performance of the same size problem over
progressively larger machines, we measure Legion’s strong
scaling. By increasing the problem size as well, we also
measure weak scaling.

A. Circuit Simulation

The first experiment we investigate is the distributed circuit
simulation described in Section II. The Legion SOOP runtime
handles all of the resource allocation, scheduling, and data
movement across the cluster of GPUs. In particular, Legion’s
ability to efficiently move the irregularly partitioned shared
data around the system while keeping the private nodes and
wires resident in each GPU’s framebuffer memory is critical
to achieving good scalability.

Circuits of two different sizes were simulated. The first had
480K wires, connecting 120K nodes. The second is twice
as large, with nearly 1M wires connecting 250K nodes. In
addition to running these tests on varying numbers of nodes,
the number of GPUs used by the runtime was also varied. In
no case did the changes to nodes or number of GPUs per node
require changes to the application code.

The circuit simulation has a simple application-specific
mapper. At initialization time, the mapper queries the list of
GPUs in the machine and identifies each GPU’s framebuffer
memory and zero-copy memory (pinned memory that both the
GPUs and CPUs on a node can access directly). Once the
circuit is partitioned, the partitions are assigned a home GPU
in round-robin fashion. Every task related to that partition is
then sent to the home GPU, with no task stealing allowed. (In
a well-partitioned circuit, load imbalance is low enough that
the cost of moving the private data for a piece from one GPU
to another outweighs any benefits.)

The regions for the tasks are mapped as shown in Fig-
ure 5. Wires and private node data are kept in each GPU’s
framebuffer at all times. An instance of the all-shared-nodes
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Fig. 5. Tasks and data for the circuit simulation on a cluster of GPUs.

region is placed in GASNet memory and instances for just the
shared and ghost nodes needed by each GPU are placed into
that GPU’s zero-copy memory. This enables the application
kernels to access the data as well as the necessary inter-node
exchanges of data via the GASNet memory.

Figure 6(a) shows the performance of the Legion circuit
simulation relative to a hand-coded single-GPU implemen-
tation written in CUDA. The hand-coded implementation is
able to keep the entire simulation state in fast framebuffer
memory. Each line shows the scaling of a particular problem
size as the number of compute nodes is varied. Our results
demonstrate excellent strong scaling, with speedups of 39.0X
for the small problem on 48 GPUs and 62.5X for the larger
problem size on 96 GPUs. The inset in the graph shows
the relative performance for small numbers of GPUs. On a
single GPU, our Legion implementation is within 5% of the
performance of the hand-coded simulation.

Figure 6(b) shows the fraction of the overall simulation
time (summed over all nodes) spent in the application kernels
compared to the various pieces of the Legion SOOP runtime.
As the node count increases, the non-communication overhead
stays relatively constant. As expected, the communication
overhead grows quadratically with the number of nodes.

B. Particle Simulation

Our second experiment is a port of the fluidanimate bench-
mark from the PARSEC benchmark suite[8], which does a
particle-based simulation of an incompressible fluid. Each
particle interacts only with nearby particles. The benchmark
divides the space in which the fluid can move into a three-
dimensional array of cells such that the range of interaction is
limited to just the cells adjacent (including diagonals) to the
one a particle resides in. The application divides the array into
grids and assigns each grid to a thread. Per-particle locking
safely accesses particles in cells that lie on the edge of a grid.
This fine-grained locking scheme along with the assumption
of a shared address space gives good scaling in a multicore
processor, but prohibits running beyond a single node.

To extend the scaling further, our port uses region partition-
ing to divide the array into grids in a similar way, but avoids
relying on shared memory to handle interactions between
grids. Instead, the Legion version creates explicit ghost copies
of cells on grid boundaries and uses those ghost cells to
exchange information between the grids.
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Fig. 6. Circuit simulation results.

The particle simulation’s mapper is very simple: it maps
one grid’s tasks onto each processor and maps all that grid’s
regions (both internal and ghost regions) into that processor’s
system memory. The exchange of ghost cell data between
processors is handled by the Legion runtime as a ghost cell
region is alternately mapped to two different memories.

Figure 7(a) compares the performance of the Legion im-
plementation against the PARSEC version, using a relatively
small problem (300K particles on a 15x21x15 array of
cells). Speedups for both the Legion and threaded PARSEC
implementations are measured relative to PARSEC’s serial
version, which eliminates all locking operations. Between 1
and 4 threads, the PARSEC and Legion results are nearly
indistinguishable, indicating neither the Legion runtime nor
the restructuring of the implementation to allow multi-node
scaling impose any significant overhead. At 8 threads and
above, performance begins to vary. Both the Legion and
PARSEC versions on Viz flatten out as they over-subscribe
the 12 physical cores. On Sapling, which has HyperThreading
enabled, deviations from linear begin sooner as the operating
system’s thread placement choices begin to matter.

To measure scaling beyond a single node, three different
problem sizes were run on each of the three systems. The
results are presented in Figure 7(b). For the smallest problem
(300K particles), we observe a 20% speedup from 1 to 2
nodes (16 threads total), but slow down beyond that due to
communication overhead; at 4 nodes there are twice as many
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Fig. 7. Fluid simulation results.
ghost cells as interior grid cells. The larger problem sizes
(2.4M and 19M particles) perform much better, with scaling
of up to 5.4x when going from 1 node to 16 because of a
lower communication-to-computation ratio.

C. Adaptive Mesh Refinement

Our final application is based on the third heat equation
example from the Berkeley Labs BoxLib project [9]. This
application is a three-level adaptive-mesh-refinement (AMR)
code that computes a first order stencil on a 2D mesh of
cells. Updating the simulation for one time step consists of
three phases. In the first phase, the boundary cells around a
box at a refined level linearly interpolate their values from
the nearby cells at the next coarser level. The second phase
performs the stencil computation on each cell in every level. In
the third phase, cells at a coarser level that have been refined
are restricted to the average of the cells that they physically
contain at the next finest level of refinement.

Achieving high-performance on this application is partic-
ularly challenging for several reasons. First, the application
has a very high communication-to-computation ratio which,
for a fixed problem size, begins as being memory bound and,

with increasing node count, becomes network bound as the
perimeter-to-area ratio of cell grids increases. Second, when
choosing how to partition cells into grids, the programmer
must consider the locality between cells within a level as
well as across levels. For cross-level cell dependences, op-
timal mapping decisions can only be made at runtime as the
location of refinements are dynamically determined. Finally,
this application has parallelism both between tasks running
at the same level and tasks running across levels, leading to
complicated input-dependent data dependences.

BoxLib’s implementation partitions cells within a level into
a number of grids based on the number of nodes in the machine
and distributes one grid from each level to each node. This
optimizes for memory bandwidth and load balance, but does
not exploit cross-level locality between grids from different
levels of refinement. Furthermore, BoxLib does not block grids
into sub-grids to take advantage of intra-grid locality.

Our Legion implementation performs two optimizations that
allow us to outperform BoxLib. First, for each level of refine-
ment we recursively partition the logical region of cells based
on the number of nodes in the machine and the sizes of the
L2 and L3 caches. Our second optimization takes advantage
of the cross-level locality. We wrote an application-specific
mapper that dynamically discovers relationships between grids
at different levels of refinement. The mapper dynamically
performs intersection tests between logical regions containing
grids of different refinement levels. If the mapper discovers
overlaps between grids from different levels, the mapper places
them on the same node in the machine. The mapper memoizes
the intersection tests to amortize their cost. The mapper also
dynamically load balances by distributing unconstrained grids
from the coarsest level onto under-loaded nodes.

We compared our Legion implementation against BoxLib
on three different problem sizes with a fixed number of cells
per level of refinement, but with randomly chosen refinement
locations. BoxLib also supports OpenMP and we took their
best performance from using 1, 2, 4, or 8 threads per node.
Our Legion implementation always uses one thread per node to
illustrate that in this application locality is significantly more
important than fine-grained data-parallelism.

Figure 8 gives the results. On just one node, blocking for
caches using Legion achieves up to 2.6X speedup over BoxLib.
As node count increases, the mapper’s ability to exploit cross-
level locality further increases the performance advantage to
5.4X by reducing the total communication costs.

As the node count increases the AMR code becomes highly
dependent on interconnect performance. BoxLib performs
much better on Keeneland than on Viz due to the better
interconnect. At higher node counts BoxLib begins to catch up
(see Figure 8(c)) because our application’s intra-level ghost-
cell exchange algorithm uses GASNet memory to communi-
cate ghost cells, requiring a linear increase in network traffic
with the number of nodes. BoxLib uses direct node-to-node
exchanges of ghost cells, similar to our fluid application. A
future implementation of our AMR code will employ a similar
ghost cell exchange algorithm to improve scalability.



450

® e |egion Cells=16384 -
R 400w -m Legion Cells=8192 Lse
2 ¢ & Legion Cells=4096 =T ®
S 350 s o e
g * % BoxLib Cells=16384 =7
'c 300-| ¥ v BoxLib Cells=8192 SIS
5 & A BoxLib Cells=4096 P
2 ,
g 2s0f ~ A
[ e
o .27
@ 200t : 5
o L%
8 27 _---77
% 150+ by Ceemm T
2 ® y--T" b
2 100F o Tl
S o
O _z
501 =
0 : ‘ i
Node Count
(a) Sapling results.
450 —3
400 : : /iijffr:f"'i':/,,4
23 S0 o e e Legion Cells=16384
S o 9 =
€ 300} PR = m Legion Cells=8192
° ot ¢ ¢ Legion Cells=4096
g 2501 ‘// : * + BoxLib Cells=16384
2 00l : v -v BoxLib Cells=8192 ||
e 7 & & BoxLib Cells=4096
[ 2
@ 150 i ¢ e - = = s ¢
B '3 SR S _
= 100F SREET .
8 e A
50 ®°
o ; ’
Node Count
(b) Viz results.
800 5
700F : : S :
= 600 ; D e e eiie
s e b Lz
£ L - _zZ ---¢
< 500 S AE RS o T T TS LD
c A - =
] e
& a00f /¥ L
] .
@ 300 ez S e ¢ Legion Cells=16384 |
kS P S ® & Legion Cells=8192
S 200} p @ @ Legion Cells=4096 |
3 <y * =+ BoxLib Cells=16384
100t #. - v v BoxLib Cells=8192 |4
X & a BoxLib Cells=4096
R 7 8 16
Node Count
(c) Keeneland results.
Fig. 8. Throughput of adaptive mesh refinement code.

VI. RELATED WORK

Legion began as an outgrowth of Sequoia, a locality-aware
programming language capable of expressing computations in
deep memory hierarchies [1]. Sequoia is a special case of
the Legion programming model in which only arrays can be
recursively partitioned, all access is exclusive, there is a static
mapping of tasks and data (though extensions to Sequoia make
this mapping more dynamic [10]) and, most fundamentally,
the decomposition of tasks and the decomposition of data is
one-to-one. Legion generalizes the Sequoia model by allowing
for dynamic partitioning of pointer data structures through
regions, enabling dynamic mappings through the mapper in-

terface, and allowing different coherence properties. Legion’s
decoupling of the task tree from the region tree leads directly
to the scheduling problem solved by our software out-of-order
processor for tasks with region arguments.

The SSMP programming model is the most similar work to
Legion [11]. Like Legion, SSMP supports dynamic detection
of dependences between tasks based on data requirements.
However, SSMP only supports a single disjoint rectilinear
partition of an array, unlike Legion which supports multiple
arbitrary partitions of regions. Furthermore, the SSMP runtime
must perform dependence checks between every pair of tasks
created in the system. Legion’s programming model only re-
quires dependence checks between tasks with the same parent
task which enables scalable nested parallelism in distributed
machines. SSMP only operates on shared memory machines.

Chapel has several concepts to support the expression of
locality [12]. Domains are similar to logical regions in that
they describe maps from indexes to objects. Domains can
create sub-domains by slicing the index sets from a parent
domain. Domains are a higher level concept than regions;
the domain index sets support dimensionality and iterators,
whereas logical regions can only be accessed by pointers.
Also, the act of creating subdomains in Chapel does not track
disjointness information, making it more challenging for the
Chapel compiler or runtime to infer task independence.

In addition to domains, Chapel also supports the notion
of domain maps and locales to enable the programmer to
efficiently map domains onto hardware [13]. Locales are a
flat array of abstract locations. Programmers can use locales by
writing domain maps that specify how domains are subdivided
and assigned to locales. Domain maps provide the same
functionality as partitions and mappers in Legion, but require
the user to correctly implement domain maps for the program
to be correct. Legion explicitly isolates correctness from
performance by defining the Mapper interface. In addition,
Chapel’s flat array of locales makes it challenging to fully
utilize deep memory hierarchies. Chapel currently supports
clusters and GPUs in isolation [14], but we are not aware
of any results that make use of both.

X10 is another parallel programming language designed to
operate on distributed memory machines [15]. X10’s places
enable programmers to talk about where to place both data
and tasks. However, once data and tasks have been placed they
are fixed, which mandates that data movement be explicitly
managed by user level code or implicitly by the compiler
[16]. Recently X10 has introduced regions into the compiler’s
intermediate representation [17]. Unlike Legion, regions in
X10 are not visible to the programmer but are inferred from
high level arrays through static analysis. X10 provides support
for clusters of GPUs [18], but requires the programmer to write
all code managing data movement through both the cluster and
GPU memory hierarchies.

Deterministic Parallel Java (DPJ) is a parallel extension of
Java that, like Legion, uses regions to express locality, but does
static dependence analysis on region arguments to functions to
find dependences[19]. The primary goal of DPJ is to provide



a programming model that guarantees determinism while also
supporting parallelism. As a result, the DPJ programming
model is more restrictive than Legion. DPJ only supports a
static form of Legion’s exclusive and atomic coherence modes
which mandates the same coherence for the lifetime of a
region. DPJ can express the populate-then-partition style of
using regions, but not the partition-then-populate. Overall, DPJ
is more static, and thus provides more guarantees and less
flexibility than Legion. DPJ efforts have so far focused on
JVM implementations on shared memory machines.

There have also been several other efforts that use partitions
to either avoid or detect conflicts in shared memory programs
dynamically. Object assemblies are a mechanism for partition-
ing a shared memory heap to enable parallel execution [20].
Object assemblies only support a disjoint partitioning of the
heap unlike Legion which allows for multiple partitions of
any data structure. Legion further uses the information from
partitions to operate on distributed architectures.

Galois is a programming system based on optimistic par-
allelism that dynamically detects memory conflicts between
concurrent threads at the very fine granularity of object ac-
cesses. To achieve reasonable performance Galois supports
a partitioning interface for breaking up data structures [21].
Galois relies on shared memory and only leverages partition-
ing for coarser locking and conflict detection. Several other
recent efforts have proposed task schedulers based on dynamic
detection of memory conflicts, but these also have assumed
underlying shared memory hardware [22], [23], [24].

SPMD languages such as Titanium [25] and UPC [3]
have mechanisms for describing array partitions in distributed
memories. However, the partition operations supported only
operate on two-level memory hierarchies consisting of local
and global memory. Part of Legion’s low-level runtime system
is constructed using UPC’s GASNet runtime system [7].

In previous programming systems regions have primarily
been used as a construct for describing memory management
schemes [26], [27] or for enforcing safety policies [28].
We follow [27] in Legion’s decision to make regions first
class. In these works, however, regions have memory layout
implications. Logical regions in Legion enable the programmer
to describe locality independent of memory layout.

VII. CONCLUSION

We have presented Legion, a programming model for
expressing the abstract locality and independence properties
of program data by using logical regions. The Legion pro-
gramming model enables a distributed Software-Out-of-Order
Processor (SOOP) scheduling algorithm. The SOOP algorithm
leverages the locality and independence properties captured
by logical regions to efficiently execute programs. We also
described a novel mapping interface that guides the SOOP exe-
cution and allows tuning of program performance independent
of correctness. We demonstrated that for three benchmarks
our SOOP runtime enabled Legion implementations that were
faster than existing codes and that the SOOP was able to scale
on distributed, heterogeneous machines.
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