
A Flexible Reservation Algorithm for Advance Network Provisioning ∗

Mehmet Balman1, Evangelos Chaniotakis2, Arie Shoshani1, Alex Sim1

1Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Energy Sciences Network, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Email: {mbalman, echaniotakis, ashoshani, asim}@lbl.gov

April, 2010 †

Abstract

Many scientific applications need support from a
communication infrastructure that provides predictable
performance, which requires effective algorithms for
bandwidth reservations. Network reservation sys-
tems such as ESnet’s OSCARS, establish guaranteed
bandwidth of secure virtual circuits for a certain
bandwidth and length of time. However, users currently
cannot inquire about bandwidth availability, nor have
alternative suggestions when reservation requests fail. In
general, the number of reservation options is exponential
with the number of nodes n, and current reservation
commitments. We present a novel approach for path
finding in time-dependent networks taking advantage
of user-provided parameters of total volume and time
constraints, which produces options for earliest completion
and shortest duration. The theoretical complexity
is only O(n2r2) in the worst-case, where r is the
number of reservations in the desired time interval. We
have implemented our algorithm and developed efficient
methodologies for incorporation into network reservation
frameworks. Performance measurements confirm the
theoretical predictions.

1 Introduction

We are witnessing a new era that offers opportunities
to conduct scientific research taking advantage of recent
advancements in computational and storage technologies.
Computationally intensive science spans multiple scientific
domains, such as particle physics, climate modeling, and
bio-informatics simulations. Scientific applications
generate many terabytes and even petabytes of data. In
addition to extreme storage requirement, these large-scale

∗SC10 November 2010, New Orleans, Louisiana, USA
†
This document was prepared as an account of work sponsored by the United

States Government. While this document is believed to contain correct information,
neither the United States Government nor any agency thereof, nor The Regents of
the University of California, nor any of their employees, makes any warranty, express
or implied, or assumes any legal responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by its trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency
thereof, or The Regents of the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof or The Regents of the University of California.

applications necessitate collaborators to access very
large data sets resulting from simulations performed in
geographically distributed institutions. Often, scientific
experimental facilities generate massive data sets that
need to be transferred to validate the simulation data in
remote collaborating sites. For example, in high energy
physics, the Large Hadron Collider (LHC) is expected
to generate 100 gigabits per second in the near future.
The generated data is propagated to other research sites
for further analysis. Similarly, in the Earth System Grid
(ESG) [2], 35 terabytes of data is shared by more than
16000 users worldwide; and the next generation climate
data archive is expected to be more than 1 petabyte.

The need for transferring data chunks of ever-increasing
sizes through the network shows no sign of abating. A ma-
jor component needed to support these needs is the com-
munication infrastructure which enables large-scale data
replication, high performance remote data analysis and
visualization, and also provides access to computational
resources. In order to provide high-speed on-demand data
access between collaborating institutions, national govern-
ments support next generation research networks such as
Internet2 and the Energy Sciences Network (ESnet) [1].
Delivering network-as-a-service that provides predictable
performance, efficient resource utilization and better coor-
dination between compute and storage resources is highly
desirable. Research institutions developed dedicated high-
bandwidth networks which are able to provision the
communication channels when the data, especially large-
scale massive data, is ready to be transferred.

We study the network provisioning and advanced
bandwidth reservation in ESnet for on-demand high
performance data transfers. A reservation request from a
user includes desired bandwidth allocation between end-
points with duration and starting time information. The
bandwidth reservation system, called On-demand Secure
Circuits and Advance Reservation System (OSCARS) [3],
serves as the network provisioning agent on ESnet.
OSCARS checks network availability and capacity for the
specified duration of time, and allocates it for the user if
it is available. Otherwise, it reports to the user that it is
unable to provide the required allocation. Accordingly, it

1

falls upon the user to search for a time-frame of a required
bandwidth by trial-and-error, not having knowledge of
the network’s available capacity at a certain instant of
time. We address the problem of improving the current
ESnet advance network reservation system, OSCARS,
by presenting to the clients possible reservation options
and alternatives for earliest completion time and shortest
transfer duration.

In this paper, we present a novel approach for path
finding in time-dependent transport networks with
bandwidth guarantees. We report an algorithm, where
the user specifies the total volume that needs to be
transferred, a maximum bandwidth that can be used and
provisioned in the client sites, and a desired time window
within which the transfer should be done. The proposed
algorithm can find alternate allocation possibilities,
including earliest time for completion, or shortest transfer
duration - leaving the choice to the user. We describe the
algorithm and show that its complexity is quadratic with
number of nodes and existing reservations. It is therefore
quite practical when applied to large networks with
hundreds, even thousands of routers and links. We have
implemented our algorithm for testing and incorporation
into a future version of OSCARS. However, the algorithm
is not specific to OSCARS, and can be used with any
network reservation framework.

The organization of this paper is as follows. In Section
2, we highlight related work in the literature and compare
with our new approach. In Section 3, we explain network
reservation, define the problem and give details of a new
network reservation service. In Section 4, we present
challenges in time-dependent transport networks with
bandwidth guarantees. In Section 5, we provide details
about our methodology and discuss the efficiency of the
proposed algorithm. In Section 6, we give implementation
details and describe data structures developed to enhance
the performance of the algorithm. Finally, we conclude
with a brief summary and discussion on future work.

2 Related Work

Dedicated bandwidth channels are crucial requirements
in distributed computing middleware to satisfy large
scale data movement [14, 18]. On-demand bandwidth
circuits provide predictable performance and data
transfer duration. Advance network reservation helps
users and client tools in the cooperating organizations
to prepare for efficient and reliable data movement. This
also enables well-organized resource utilization in which
communicating parties can plan ahead and provision
collaborating resources.

There are few studies in advance bandwidth reservation
in the literature [11, 19, 6]. The network reservation
problem and path computation with guaranteed
bandwidth have been categorized into several domains in
[20, 13]. One of those problems is to reserve a fixed slot

in which we find a path from source to destination with
a specific bandwidth requirement. Some other problems
include finding the path with the largest bandwidth
in a specific time slot, and finding the first time slot
in which there is a path with the specified bandwidth
requirement from source to destination. Those problems
can be solved by extending and modifying known graph
algorithms. They do not address flexible reservation,
and do not provide alternative suggestions to the user.
The proposed solution methods in [20, 13] represent
time-dependent network topology by keeping available
bandwidth information for every link in each time slot.
This slotted time window model has high cost and it is
not effective for real-life advance reservations systems.

Bandwidth scheduling problems for multiple data
transfer requests are introduced in [15, 21, 10]. The
main objective in [15] is to assign a network path for
each reservation request with fixed bandwidth in a
predetermined time period. A greedy heuristic is given
in which requests consuming less resource are given
preference in scheduling. These algorithms have high
complexity and large space requirements. They do not
compute an optimal reservation for a massive data transfer
request, and do not suggest any allocation pattern.

In our approach, we discretize the time-dependent
dynamic network topology by dividing the search interval
into time steps. Each time step represents a stable status
of the topology. We provide a methodology to calculate
static snapshot graphs in each time steps and and apply
max-bandwidth algorithm while traversing over the
search interval. We show that the number of subsequent
combinations of time steps is bounded by the number
of reservations in the system. Searching the given time
interval is accomplished in polynomial time. Hence, we
provide an efficient algorithm to find possible advance
network reservation options for the given data transfer
requirements.

3 Advance Network Reservation: Background
Information

ESnet provides high-bandwidth connections between more
than 40 research laboratories and academic institutions for
data sharing and video/voice communication. Experimen-
tal facilities, supercomputing centers and thousands of sci-
entists are connected with ESnet. The ESnet’s bandwidth
reservation system, OSCARS, establishes guaranteed
bandwidth of secure virtual circuits at a certain time, for a
certain length of time and bandwidth. Though OSCARS
operates within the ESnet, it also supplies end-to-end pro-
visioning between multiple autonomous network domains.
OSCARS gets reservation requests through a standard
web service interface, and conducts a Quality-of-Service
(QoS) path for bandwidth guarantees. Multi-Protocol
Label Switching (MPLS) and the Resource Reservation
Protocol (RSVP) enable ESnet to create a virtual circuit

using Label Switched Paths (LSP’s). It contains three
main components: a reservation manager, a bandwidth
scheduler, and a path setup subsystem [12]. The
bandwidth scheduler needs to have information about the
current and future states of the network topology in order
to accomplish end-to-end bandwidth guaranteed paths.

The OSCARS bandwidth reservation system keeps
track of changes in the network status and maintains a
topology graph which can simply be described as follows.
Every port in a router has a maximum bandwidth
available for reservation, and each network link connecting
two ports (providing communication from one router
towards another one) has an ‘engineering metric’. The
engineering metric is used by network engineers to assign
usage priority and preference to particular links to
determine the most desirable paths to reserve. This is a
common technique used in dedicated networks. Although
we are not bounded by this metric and our algorithm
works without taking it into account, we also consider
the engineering metric in path computation.

A reservation request R to OSCARS consists of a source
node vs and destination node vd, requested bandwidth
M, start time ts and end time te: R = (vs, vd, M, ts, te).
Since there might be bandwidth guaranteed paths in the
system that are already fully or partially committed,
the reservation system needs to ensure availability of
the requested bandwidth from source to destination for
the requested time interval. In order to eliminate over
commitment, committed reservations between start and
end times are examined to extract available bandwidth
information for each link in the time period. The shortest
path is calculated based on the engineering metric on
each link, and a bandwidth guaranteed path is set up
from source to destination, to commit the reservation
request for the given time period.

Problem Definition: Advance network reservation
systems like OSCARS enable users to obtain guaranteed
requested bandwidth for a certain duration of time.
However, if the requested reservation cannot be granted,
no further suggestion is returned back to the user,
except a failure message. As mentioned above, in such
a situation, users have to go through a trial-and-error
sequence, and may need to try several advance reservation
requests until they get an available reservation. These
try-and-error attempts may also overload the system.
Even if a user successfully reserves the network after
several trials, the choice of the allocation might not be
one of the optimal ones available in the system. Further,
there is no possibility from the user’s point of view to be
aware of the other possibilities that might fit better into
his/her requirements. In other words, users cannot, in
general, make an optimal choice. Moreover, the current
method of selecting a path may lead to ineffective use of
the overall system such that network resources may not
be used as optimally as possible.

Our goal is to enhance the OSCARS reservation system
by extending the underlying mechanism to provide a new
service in which users submit their constraints and the
system suggests possible reservation options satisfying
users’ requirements.

Flexible Network Reservation: We developed a
new methodology in which users submit constraints and
the system suggests possible reservations options. In
this approach, instead of giving all reservation details
such as the amount of bandwidth to allocate between
start/end times, users provide maximum bandwidth they
can use, total size of the data requested to be transferred,
the earliest start time, and the latest completion time.
Moreover, users can set criteria such that they would like
to reserve a path for earliest completion time or reserve
a path for shortest transfer duration. Such a request
can be represented as: S = (vs, vd, Mmax, D, tE , tL),
where D is the total size of data to be sent from vs to
vd, and tE the earliest start time, tL is the latest end
time. The flexible network reservation algorithm finds
out a reservation R = (vs, vd, M, ts, te) for the earliest
completion or for the shortest duration where M ≤ Mmax

and tE ≤ ts < te ≤ tL. The maximum bandwidth
Mmax is related to the capability of the client and server
hosts between source and destination end-points. It also
depends on intermediate hosts and routers (in the client
sites) in order to achieve end-to-end optimization. Even
if the network can provide a higher bandwidth than
the maximum requested, there is no value in providing
that since the user is not able to use all the available
bandwidth due to limitations in the client and server sites.
The focus of our work is to optimize bandwidth allocation
in the wide-area backbone (between edge routers). Other
projects such as TeraPath [4] and LamdaStation address
reservations between the clients and edge routers.

4 Time-Dependent Transport Networks

In advance network reservation, we first need to ensure the
availability of the requested bandwidth before committing
a bandwidth allocation request. The foremost question
is how to find the maximum bandwidth available for
allocation from a source node to a destination node.
The max-bandwidth path algorithm [17] is well known
in quality-of-service (QoS) routing problems in which
a path is constructed from source to destination whose
bandwidth is maximized, given that each link is associated
with an available bandwidth value.

The QoS condition is a bottleneck constraint in
max-bandwidth path calculation. Alternatively, in
shortest path calculation, we find a path whose sum of
weights is minimized, and QoS constraint is additive
(minimum delay path, or minimum hop count path).
The max-bandwidth path algorithm is a slightly modified
version of Kruskal and Dijkstra’s algorithms with the
same asymmetrical time complexity [17]. In the shortest

path algorithm, the weight of a path is the sum of values
added by each link in the path. On the other hand, the
weight of a path in max-bandwidth is the minimum link
bandwidth, the bottleneck link over the path. Those
algorithms are very fast and efficient, and they have
been adapted to deal with many problems in routing and
gateway protocols. In a graph with n nodes, there is
a total n! paths from source to destination. The main
advantage of those types of graph algorithms is that
maximum n2 paths are visited even in the worst-case.

We deal with a dynamic network such that the
bandwidth value for every link is time dependent.
While constructing a path and calculating the available
bandwidth over a path, we need to consider another
variable, time; therefore, the dimension of the problem
is extended by adding the time variable such that the
state of the topology depends on the time period. Graph
algorithms for time-dependent dynamic networks has
been studied in the literature especially for max-flow and
shortest path algorithms [16, 9, 7]. The most common
approach is the discrete-time algorithms in which the time
is modeled as a set of discrete values and a static graph
is constructed for every time interval. As an example, [8]
uses time-expanded max flow for data transfer scheduling,
and [16] presents various shortest path algorithms for
dynamic networks with time-dependent edge weights.

Analogous Example: We need different types of
algorithms to analyze time-dependent max-bandwidth
path calculation. The following is given to clarify the
advance bandwidth reservation in dynamic networks.
Assume a vehicle travels from city A to city B where
there are multiple cities between A and B connected with
separate highways. Each highway has a specific speed
limit but the speed is lower if there is high traffic load on
the road, and we know the load on each highway for every
time period. The first question is which path the vehicle
should follow in order to reach city B as early as possible.
Alternatively, we can delay our journey and start later if
the total travel time would be shortened. Thus, for both
questions, we need to find the route along with the staring
time and end time. There is one more condition we need
to satisfy, since we are dealing with bandwidth reservation
where allocation should be set in advance when a request
is received. If we apply this condition to the example prob-
lem described above, we have to set the speed limit before
starting and cannot change that during the entire journey.
Therefore, known algorithms do not fit into our problem
domain. This distinguishes our path calculation from
other time-dependent graph algorithms in the literature.

5 Methodology and Algorithm

We define the network topology as a time-dependent
directed graph GT (V, E, XE(T)), with a vertex set V

of n nodes, and an edge set E ⊆ V × V of m links
between nodes. For every edge, ek : (vi, vj), there is a

stepwise-constant function of available bandwidth xek(t)
where t is a variable in time domain T . The available
bandwidth xek(t) in GT is time-dependent, nonnegative,
and bounded by an upper limit uek , where uek is the
maximum bandwidth available for allocation in ek; such
that, 0 ≤ xek(t) ≤ uek for any instance of time in T .

When an advance reservation Ri = (vsi , v
d
i , Mi, t

s
i , t

e
i) is

found between start time tsi and end time tei , we setup a
path δi from source node vsi to destination node vdi that
can satisfy the allocation of the requested bandwidth
Mi. For every edge along the path δi : (eki , ekj , . . .), we
allocate Mi amount of bandwidth for the future use of
reservation Ri. The available bandwidth xek of each edge
in δi is updated in the topology graph GT for the time
period of [tsi , t

e
i].

Figure 1: Example for Advance Network Reservation

The example in Figure 1 is given to clarify the
underlying mechanism in advance network reservation.
The top part shows maximum bandwidth of each edge
of the network graph. At some point of time, assume
that there are four reservations confirmed and active
in the system; R1 = {A → B → D, 900Mbps, t1, t6},
R2 = {A → C → D, 400Mbps, t4, t7}, R3 = {A →
B → D, 700Mbps, t9, t12}, R4 = {A → C →
D, 500Mbps, t9, t12}. Thus, the first reservation, R1,
is for 900Mbps between t1 and t6 from source A to
destination D. The system calculated a path based on
engineering metric satisfying requested allocation, and
allocated bandwidth over A → B → D. R2, R3, and
R4 are interpreted similarly. The bottom part of Figure
1 shows the extent over time of these four reservations.
Figure 2 shows the available bandwidth and allocated
bandwidth in link A→ B over time.

The first graph in Figure 3 represents the status in
[t1, t4] and the second represents the status in [t4, t6].
Every link in Figure 3 shows available, allocated, and total
capacity values of bandwidth, in the order given. We
can confirm a new reservation request from source A to

Figure 2: Available bandwidth and allocated bandwidth
in link A→ B over time

Figure 3: Network Flow in specific time periods([t1, t4],
[t4, t6])

destination D with start time t1 and end time t4, with
500Mbps guaranteed bandwidth, since we can allocate
path A→ C → D for the [t1, t4] time period. We can only
allocate 100Mbps between t4 and t6 over A → C → D.
We can allocate 300Mbps with start time t4 and end time
t6 over A → C → B → D. There is a possibility to
send 300Mbps over A → C in [t1, t4] and 300Mbps over
C → B → D in [t4, t6]. However, we cannot split the
allocation among separate time periods. Therefore, the
maximum available between t1 and t6 from A to D is
100Mbps because the maximum amount of bandwidth we
can get during the entire period of [t1, t6] is 100Mbps.
Additionally, we cannot split the bandwidth among
separate paths. For example, there is an opportunity to
send 500Mbps from A to C. The maximum flow from A to
C is 500Mbps in [t4, t6], 100Mbps over A → B → C and
400Mbps over A → C. However, we make a reservation

for a specific path. Therefore, the maximum amount of
bandwidth we can allocate for a single reservation from A
to C is 400Mbps in time period [t4, t6].

A service request is defined as Si =
(vsi , v

d
i , M

max
i , Di, t

E
i , t

L
i); with total size of data Di to be

sent from vsi to vdi , and a period of time between earliest
start time tEi and latest end time tL such that, this data
transfer need to be accomplished in this given time inter-
val. Mmax

i is the maximum bandwidth provided by the user
based on constraints of storage systems at both ends. If
there exists bandwidth between vsi and vdi within the time
constraints in GT , a new reservation Rearliest for earliest
completion time or Rshortest for shortest transfer duration
is generated. Consequently, we create a reservation Rj =
(vsi , v

d
i , Mj , t

s
j , t

e
j) where Mj ≤ Mmax

i and tEi ≤ tsj < tej ≤ tLi .
We also compute a path δj satisfying reservation Rj .

In order to satisfy the given criteria, the amount of
bandwidth allocation Mj and the time interval [tsj , t

e
j] need

to be sufficient to transmit the data volume Di using the
path δj allocated for reservation Rj . We can simply say
Di = Mj × d where d is the duration between start time
tsj and end time tej . Note that our focus is to find possible
reservation options according to given user criteria.

Rshortest has the minimum duration d = |ts, te| among
all other possible reservations satisfying Si. The objective
for earliest completion time is to select a reservation Rj

satisfying the criteria given in Si which has the earliest
end time te. We would favor a reservation with a shorter
duration if there are more than one possible reservations
completing at the same earliest time. For reservation
Rearliest, ∀Rj satisfying Si : teearliest ≤ tej , and ∀Rj with
tej = teearliest : tsearliest ≥ tsj .

5.1 Search Interval between Earliest-Start and
Latest-End times

The outline of our approach is as follows. We divide
the given search interval into time steps. The search
interval [tEi , t

L
i] is the time period between earliest start

time tEi and latest end time tLi in which the data needs
to be transmitted. A time step represents the longest
duration of time in which we have a stable discrete status
in terms of available bandwidth over the links. A time
period [ti, tj] is considered as a time step if ∀ek ∈ GT

: xek(t) = ck where ti ≤ t ≤ tj , and ck is a constant.
We obtain a static directed graph that keeps information
about the available bandwidth status for every link. This
information is updated on-the-fly every time a reservation
request is committed and stored for further processing
during the path calculation phase. A snapshot graph
of GT in time step ts(ti, tj) is defined as G(tsi), with
the same vertex set and same edge set. For every edge
ek : (vi, vj) in ts(ti, tj), the available bandwidth xek = ck
stands for the value of xek(t) in GT between ti and tj in
time step ts(ti, tj). This help us discretize the dynamic
graph and apply known graph algorithms efficiently.

Figure 4: Time steps between t1 and t13

Figure 4 shows time steps between t1 and t13, for
the example given in Figure 1 with four committed
reservations. We have six time steps: ts1(t1, t4),
ts2(t4, t6), ts3(t6, t7), ts4(t7, t9), ts5(t9, t12), ts6(t12, t13).
Every time step corresponds to a static snapshot of the
network topology. Figure 5 shows G(ts1), G(ts2), G(ts3),
G(ts4), G(ts5), and G(ts6), where every link is labeled
with the available bandwidth.

We analyze the search interval [tE , tL] with a set of
consecutive time steps covering the entire period. The set
of confirmed reservations in the system characterize time
steps since they change the available bandwidth values
in the network topology. If two reservations partially
overlap in terms of time period, they split the total period
of time into either two or three time steps. If they do not
overlap, they split into three time steps. In other words,
the number of time steps in the search interval is bounded
by the number of committed reservations within the given
period [tE , tL]. If there are r committed reservations
falling into the period, there can be a maximum of 2r+ 1
different time steps in the worst-case. Figure 4 shows the
general idea behind time steps and reservations.

The next step is to traverse these time steps to check
whether we can find a reservation satisfying the given
criteria. For the example given in Figures 4 and 5, first
ts1, and then ts2 will be examined; then, if both cannot
satisfy the request, time window tw(t1, t6), a combination
of ts1 and ts2, will be examined. A time window
consists of subsequent time steps. twk is a time window
which corresponds to the time period in tsk. twk1−k2 is
a time window including all time steps between tsk1

and
tsk2

. If there are s time steps in a given search interval,
there are (s× (s+1))/2 time windows since time windows
are subsequent combinations of time steps.

We search through these time windows in a sequential
order to check whether we can satisfy the requested
allocation in that time window. For a bandwidth
allocation with the shortest duration, we can sort time
windows according to their length, and start checking
with the smallest one. For a bandwidth allocation with
the earliest completion time, we can benefit from a
specific search pattern. The search pattern for earliest
completion time in the given example will be as follows:
tw1, tw2, tw1−2, tw3, tw2−3, tw1−3, tw4, tw3−4,tw2−4,
tw1−4,. . .. The algorithm will stop searching when it finds

a time window satisfying the given criteria. In most cases,
we do not need to check all possible time windows. In the
worst-case, we may require to search all time windows,
which consists of (s × (s + 1))/2 searches, where s is the
number of time steps.

5.2 Examining Time Windows to Find Possible
Reservations

While checking a time window to verify whether it can
satisfy the request, we first look at the total duration of
the time window. We know the max bandwidth Mmax

user can support, and the total size of data D. Therefore,
we first determine the duration of a time window and
simply ensure whether this time window is large enough
to satisfy the user request. The length of a time window
dtw = |twk1−k2| should be larger than the minimum
amount of time, D/Mmax, required to transmit data if
Mmax bandwidth can be allocated.

Then, we calculate the maximum bandwidth available
from source vs to destination vd in time window tw.
We use max-bandwidth path algorithm over static
snapshot graph G(tw). G(tw) can easily be computed
using snapshots of time steps that form this time window.
G(twk) = G(tsk), and G(twk1−k2

) = G(tsk1
)◦ G(tsk1+1)◦

G(tsk1+2) . . .◦G(tsk2
), where ◦ is a newly defined operator

that intersects static snapshot graphs. G1 ◦ G2 forms a
new graph with the same vertex and edge set as in G1

and G2. For each edge ek, the available bandwidth is the
minimum of xek both in G1 and G2. Thus, ∀ek ∈ G1◦G2 :
xek = min{xek1 , x

ek
2 }, where xek1 is the available bandwidth

of ek in G1 and xek2 is the available bandwidth of ek in
G2. This property makes the process easy, since we only
need to store one graph snapshot for each starting time
window; for example, to obtain G(tw1−3), we only need
G(tw1−2) and G(tw3), G(tw1−3) = G(tw1−2) ◦G(tw3).

Figure 6 shows static snapshot graphs for time windows
tw1−2, tw3−4, tw5−6, and tw1−6. G(tw1−2) = G(ts1) ◦
G(ts2), G(tw3−4) = G(ts3) ◦G(ts4), G(tw5−6) = G(ts5) ◦
G(ts6), and G(tw1−6) = G(tw1−2) ◦G(tw3−4) ◦G(tw5−6).
R1 and R2 are active in time interval [t1, t6], so
links associated with both R1 and R2 are updated in
G(tw1−2). Only R2 is active in time interval [t6, t9], so
links associated with R2 are updated in G(tw3−4).

While exploring a time window, a max-bandwidth
path δ is calculated in G(tw) in which µtw(vs, vd) is
the maximum amount of bandwidth we can allocate in
time window tw. dtw × µtw simply gives the amount of
data that can be transmitted if a reservation is made
in time window tw, where dtw is the length of the time
window. A time window tw(ti, tj) is selected if it can
provide enough resources to satisfy the user criteria.
For such a time window, we consider the length of
usable period of time overlapping with [tE , tL], time
period between earliest start time and latest end time;
d′tw = |max{ti, tE},min{tj , tL}| is the maximum duration

Figure 5: Static Graphs for time steps ts1, ts2, ts3, ts4, ts5, ts6

Figure 6: Static Graphs for time windows tw1−2, tw3−4,
tw5−6, and tw1−6

we can use to make a reservation. µtw = µtw(vs, vd) is
the maximum amount of bandwidth we can allocate from
source to destination. Note that we need to consider the
amount of bandwidth we can use which is also limited
by the maximum set by the user, µ′tw = min{µtw, M

max}.
Therefore, the product µ′tw × d′tw should be greater than
the requested volume size D.

When a satisfactory window is found, we generate a
reservation R = (vs, vd, M, ts, te) and a path from source
to destination to be used for this reservation in the
network. The start/end times and M are calculated based
on the given user criteria and available resources in the
time window. A straightforward strategy to generate
a reservation when a time window tw is selected to
satisfy the user criteria is as follow: ts = max{ti, tE},
M = min{µtw, M

max}, and te = ts + |D/M|.
Figure 7 shows the search pattern to find a reservation

for the earliest completion time, for the example given
in Figure 1. Assume that we have a service request
S = (A,D, 200Mbps, 200×4t, t1, t13), and we want to find
a reservation satisfying the given criteria. Time window
tw(t1, t4) with length 3t, and time window tw(t4, t6)
with length 2t, are short in duration to conform to the
requirements of this request. The maximum bandwidth
allowed is 200Mbps, so we need at least a time window
with length 4t. tw(t1, t6) satisfies the time requirement,

so we proceed and calculate the maximum bandwidth
available in G(tw(t1, t6)). The maximum bandwidth we
can reserve from A to D between t1 and t6 is 100Mbps.
Total size of data we can transfer is 100 × 5t. Therefore,
tw(t1, t6) can not satisfy the bandwidth requirement.
We keep searching through time windows until we
find tw(t1, t9) which satisfies both time and bandwidth
requirements. Time window tw(t1, t9) is selected for
the earliest completion time. We generate Rearliest =
(A,D, 100Mbps, t1, t9) with start time t1 and end time t9.

Figure 7: Example for earliest completion

If we want to find a reservation for the shortest transfer
duration, we need to continue searching until we cover the
entire interval between t1 and t13. As shown in Figure 8,
tw(t9, t12), tw(t7, t12), tw(t6, t12), tw(t4, t12), tw(t1, t12),
tw(t12, t13), and tw(t9, t13) . . . are searched next. Time
window tw(t9, t13) satisfies the given bandwidth and time
requirements. All other time windows coming after this
in the search pattern, are longer in terms of duration.
Therefore, tw(t9, t13) gives the reservation Rshortest =
(A,D, 200Mbps, t9, t13) with shortest duration.

If the total volume of data was 175 × 4t, S =
(A,D, 200Mbps, 175 × 4t, t1, t13), then we would obtain
reservation Rshortest = (A,D, 200Mbps, t9, t12.5) for
shortest duration and Rearliest = (A,D, 100Mbps, t1, t8)
for earliest completion, as also shown in Figure 8.

The pseudo-code for finding the desired reservation is

Figure 8: Example for shortest transfer duration and
earliest completion

given in Algorithm 1.

Algorithm 1: A sample search pattern to find
a network reservation with earliest completion or
shortest duration
Input: A request

with user constraints, S = (vs, vd, Mmax, D, tE , tL)
Output: A reservation

R for earliest completion or shortest duration

Get
the set of time steps in the search interval {ts1, ts2, . . . , tsn} ;
for i = 1 to n do

for j = i to 1 do
Get time window tw = twj−i

which contains all time steps between tsj and tsi;
if the given criteria
can fit into the time window tw = tsj . . . tsi then

Obtain
static snapshot graph G(tw) for time window tw;
Calculate
max-bandwidth µtw from source to destination;
if we can satisfy
request in time window tw (Examine µtw) then

select tw ;

if goal
is to find a reservation with Earliest completion then

if there is any selected time window tw then
Get tw with
shortest duration to satisfy the given request;
Generate a Reservation
and a Path, Return for earliest completion;

if goal is to find a reservation with Shortest duration then
if there is any selected time window tw then

Get
tw with shortest duration to satisfy the given request;
Generate a
Reservation and a Path, Return for shortest duration;

Return: No reservation found (no
possible option available satisfying the given user constraints);

5.3 Evaluation of the Proposed Algorithm

The max-bandwidth path algorithm is bounded by O(n2),
where n is the number of nodes in the topology graph. In
the worst-case, we may require to search all time windows,
(s × (s + 1))/2, where s is the number of time steps. If

there are r committed reservations in that period, there
can be a maximum of 2r + 1 different time steps in the
worst-case. Overall, the worst-case complexity is bounded
by O(r2n2). However, r is relatively very small compared
to the number of nodes n, in the topology. Bandwidth
reservation is used for large-scale data transfers and it is
very unlikely to have thousands of committed reservations
in a given time period. Also, the path calculation from
two end-points does not span to all nodes in a real
network; therefore, we can trim the topology graph
and perform calculation on a reduced data set while
calculating path from source to destination. Moreover,
time windows that are too short in duration to transmit
the requested amount of data are eliminated from
consideration beforehand. Max bandwidth and shortest
path algorithms are quite efficient and the search process
over time windows is scalable and practical, considering
that the number of reservations in practice is limited.
Furthermore, there are usually less than a hundred node
in a typical network topology like ESnet. We have tested
the performance of the algorithm by simulating very
large graphs (with 10K nodes) and have observed that
the computation time is usually in the order of seconds.

6 Implementation Details

The network topology graph in OSCARS includes
routers, ports, and unidirectional links between two
ports, G =< nrouter, vport, elink >. Each router has a list
of attached ports, nrouter =< v1port, v

2
port, .. >, and each

port has a maximum available bandwidth for advance
allocation. A link connects two ports in one direction,
e1link =< v1port, v

2
port > , e2link =< v2port, v

1
port >; such

that, a separate reservation request is established for
each direction. Every port in a router has a maximum
bandwidth value available for reservation. Furthermore,
engineering metric is assigned to each port by network
system administrators. A link provides communication
from one router towards another one over two in/out
ports in each. In general, the engineering metric
represents the preferred routing pattern; it is related to
the latency of the link. The link with the smaller value is
favored over another with a higher value. Based on this
information, each link has an absolute value of maximum
bandwidth available for reservation and an absolute
engineering metric which is used later to establish a path
and compute the routing pattern from two end-points,
elink(v1port, v

2
port) =< MlinkBandwidth,mengMetric >.

The current web service interface in OSCARS enables
users to request a fixed amount of bandwidth for a time
period between two end-points in the network. The
source and destination end-points are usually the host/IP
names of the client machines; they are converted to the
corresponding router addresses in the network topology.
The reservation system needs to ensure availability of the
requested bandwidth from the source to the destination

for the requested time interval. Therefore, it needs
to have the topology information and current active
reservations in the system. In other words, we need
to have knowledge about the network structure and
the committed bandwidth guaranteed paths in order to
examine whether a reservation request can be satisfied.

We have applied our algorithm as a new service,
called Flexible Network Reservation Service, in which
we find out and return alternative reservation options
to the user. In the rest of this section, we state some
crucial implementation issues that we came across during
designing and developing the libraries for this new service.
We provide practical methods to traverse time windows in
the given search space. We have also developed a modular
organization in terms of software components to evaluate
bandwidth availability and possible reservations options in
an effective manner. We need well-organized and re-usable
data structures in order to minimize the computation
time and eliminate unnecessary data duplication during
the retrieval of snapshot network structures, which are
used to compute resource availability between source and
destination end-points in every time window. We present
effective methodologies since we might need to search all
time windows that fall into the given search interval in the
worst-case. For each time window, we need to evaluate
resource availability. In order to eliminate duplicate
information, we only store available bandwidth values in
each step. The rest of the network topology does not vary
over time, but time dependent bandwidth availability
needs to be queried to calculate a reservation path.

6.1 Deployment and Integration

OSCARS’s reservation system enables users to make
reservations and to query their currently active and
committed reservation requests. For administrative
and security purposes, we provide minimum amount
of information to the user about the current load and
future allocations in the system. The new service, called
Flexible Network Reservation Service, enables us to return
alternative reservation options to the users. We require
topology information and committed reservations in the
search interval, between earliest start time and latest
completion time, in order to calculate time steps, examine
time windows, and find out possible reservation options.
These include current load in links, active advance
reservations, capacity of links and available bandwidth
in each link. It is impractical to expose the topology
information and the state of network and reservations
to users for administrative and security concerns. Since
we need administrative interface to query topology and
reservation information, we have implemented this new
service, Flexible Reservation Service, inside OSCARS.

The Flexible Reservation Service acts as a suggestion
agent and generates a reservation request based on user
constraints. We have developed a new interface where

users submit their constraints and the system suggests a
reservation option if it can find one in the given search
interval. As has been described in the previous section, the
algorithm is able to locate all possible reservation options.
However, we limit the choices provided to the user, and in-
stead require users to specify whether they desire to make
a reservation based on earliest completion time or shortest
transfer duration. If the system can find a reservation
according to the given user criteria, it notifies the user;
and, if confirmed by the user, it makes the reservation by
allocating resources over the path found. Figure 9 shows
a diagram of the user interfaces and the overall structure
for integration and deployment in OSCARS.

6.2 Examining Time Windows

An important difficulty in designing an advance
reservation system is to find an appropriate data structure
to keep bandwidth availability in a time-dependent
network. The common approach presented in the litera-
ture is to divide the entire time period into time slots and
store available bandwidth over a link for each time slot.
When a new reservation is committed and added to the
system, we proceed and update the bandwidth availability
and time slot information for every link on the allocated
path. Using such a technique, in which we accumulate
resource availability for time slots for every link in
a network, enables straightforward evaluation since all
resource availability has been pre-computed. On the other
hand, the total data size increases dramatically especially
for a large network with many reservations committed.
There have been several studies analyzing data structures
for network routing with advance reservation [5, 23, 22].
Further, we need an effective methodology which we can
also benefit in calculating static snapshot graphs G(tw),
during maximum bandwidth calculation and time window
evaluation. Since we already have reservation information,
which includes path information and allocated bandwidth
value, we can automatically generate the bandwidth
availability for all links for a specific time period if we
know the reservations that are active in the time window
we are evaluating. Simply, we deduct allocated bandwidth

Figure 9: Integration and deployment in OSCARS

of a reservation from the available bandwidth of a link if
the path for this reservation uses the link we consider.

We present a specialized linked-list data structure that
holds time steps and a set of active reservation identifiers
associated for each time step. This information is updated
on the fly. When a new reservation is committed, the
data structure is updated and new time steps are added
automatically if necessary. If a reservation is canceled,
its identifier is removed from the set of reservations that
belongs to time steps the canceled reservation spans over.
The main purpose of this data structure is to query time
windows quickly and retrieve a list of active reservations
in time windows. We only need time steps that fall into
the given search interval. Time steps are indexed for
faster operations and a set of reservations is returned for
each time window. Figure 10 gives a brief overview of
this data structure and shows how it is updated when
reservations are added.

Figure 10: List of time steps and associated reservations

6.3 Maximum Hop Count

Next, we discuss another important parameter, hop count.
Although we might find a path satisfying a given user
criteria, we do not want to reserve a path passing through
too many routers in the network. Hop count is crucial
in terms of network engineering, especially in network
reservations where we need to configure every router
over the path to setup a secure circuit for guaranteed
bandwidth. It is more costly and less desirable to arrange
a path along many routers. The maximum allowed hop
count is usually set by the system. For our case in
OSCARS, we configure the system to allow a maximum
of 10 hops for a network reservation path. In addition
to this default value, we also permit users to specify a
maximum hop count value for the path they would like
to reserve between source and destination nodes.

The maximum hop count parameter enables us to
optimize maximum bandwidth calculation. We can
eliminate network nodes which are not accessible with the

given maximum hop count. In other words, we should
not consider a path which would be discarded due to the
maximum hop count parameter. We take advantage of
using the maximum hop count parameter, and we prepare
a reachable set at first, before traversing time windows.
We examine bandwidth availability and compute a path
by considering nodes in this reachable set. Calculating a
reachable set based on a maximum hop count parameter
has the same asymptotic complexity with maximum
bandwidth and shortest path algorithms. The QoS con-
straint in finding a reachable set with maximum number
of hops from a source node is additive; and, the algorithm
stops traversing over nodes if the hop count is more than
the maximum. The main difference is that we return a set
of nodes which are selected and traversed, instead of find-
ing a path. Applying the maximum bandwidth algorithm
to the reachable set is significantly more efficient, espe-
cially in a sparse graph structure since many of the nodes
will not be in the reachable set, so will not be considered.

Another improvement is a modification of the maximum
bandwidth algorithm that takes advantage of the fact
that the number of ports is usually much larger than the
number of routers/nodes. For example, ESnet’s basic
network has 75 routers and 587 ports. Therefore, we use a
specialized maximum bandwidth path algorithm in which
we pass through a node (router) in each iteration instead
of iterating over ports. While visiting a node, we select
an unvisited node that is connected over a port which
provides maximum available bandwidth. A visited node
will not be visited again while traversing the network
graph for maximum bandwidth calculation from source
node to destination node.

6.4 Experiments

We have developed a simulator to experiment our
approach by generating large random graphs. The
performance of the proposed algorithm depends not only
on the number of nodes in the network, but the number
of currently active reservations in the given search interval
directly affects the number of time windows we might need
to evaluate in order to find a reservation. In order to
test the performance, we have generated random requests
asking for a reservation within a 200hrs time interval. User
parameters such as data volume, earliest start time and
latest end time are all set randomly. Those requests ask for
a reservation for earliest completion time. If a reservation
is found, we allocate the path and admit the reservation. If
there are no resources available for the current request, we
continue and generate a new random request. We test the
Flexible Network Reservation Service by gradually iterat-
ing until 1000 reservations are committed. Note that it is
very unlikely in real life to have thousands of committed
reservations in a short period. We ignored the maximum
hop count parameter and set it to infinite in order to
evaluate performance in large and complex system. As can

Figure 11: Histogram for execution time (milliseconds): search performance to find a reservation in a network with
1000 reservations applied

be seen in Figure 11, most of the reservation requests are
completed by finding a reservation in less than a second.
These test are conducted on a workstation with 2.4GHz
Intel CPU and 8G RAM. Our software is implemented in
JAVA and tests are performed with JVM version 1.6.0 11.
Even for very large graphs with many reservations
committed, we were able to process and search all related
time windows to find a reservation in a timely manner.

7 Summary and Future Work

In this paper, we have studied advance network
reservation and provisioning for on-demand high
performance data transfers. Advance reservation systems
enables users to allocate a fixed amount of bandwidth for
a time period between two end-points in a network. If
the requested reservation cannot be granted, no further
suggestion is returned back to the user. In order to
enhance advance network reservation systems, we have
developed a new methodology in which users submit
constraints and the system suggests possible reservation
options satisfying requirements. We have reported a
polynomial-time algorithm, where the user specifies the
total volume that needs to be transferred, a maximum
bandwidth that he/she can use, and a desired time period
within which the transfer should be done. The proposed
algorithm can find alternate allocation possibilities,
including earliest time for completion, or shortest transfer
duration - leaving the choice to the user. The proposed
algorithm is quite practical when applied to large

networks with thousands of routers and links. We have
implemented our algorithm as a new service extending
the current underlying mechanisms. In order to take
advantage of the available network bandwidth, clients
need to provision other resources such as storage capacity
and bandwidth from/to the storage system. According
to the storage allocation policy and available storage
bandwidth in the source and destination ends, users may
need to adjust the network reservation requests. Our
future work includes integration of the algorithm into the
future version of ESnet OSCARS, and the coordination
of storage and network resource provisioning.

Acknowledgments

We would like to thank David Robertson and Mary
Thompson from ESnet for their generous help in
OSCARS client interface during the development and
testing of the Flexible Network Reservation Service.

This work was funded by the Office of Advanced Scien-
tific Computing Research, Office of Science, U.S. Depart-
ment of Energy, under contract no. DE-AC02-05CH11231.

References

[1] Energy Sciences Network. http://www.es.net.

[2] ESG: Earth System Grid. www.earthsystemgrid.org.

[3] OSCARS: On-demand secure circuits and advance
reservation system. www.es.net/oscars.

[4] TeraPaths: Configuring end-to-end virtual
network paths with QoS guarantees.
https://www.racf.bnl.gov/terapaths.

[5] Lars-Olof Burchard. Analysis of data structures for
admission control of advance reservation requests. IEEE
Trans. on Knowl. and Data Eng., 17(3):413–424, 2005.

[6] Lars-Olof Burchard. Networks with advance reservations:
Applications, architecture, and performance. J. Netw.
Syst. Manage., 13(4):429–449, 2005.

[7] Ismail Chabini. Discrete dynamic shortest path
problems in transportation applications: Complexity
and algorithms with optimal run time. Transportation
Research Records, 1645:170–175, 1998.

[8] William C. Cheng, Cheng fu Chou, Leana Golubchik,
Samir Khuller, and Yung-Chun (Justin) Wan. Large-scale
data collection: a coordinated approach. In in Proceedings
of IEEE INFOCOM, pages 218–228, 2003.

[9] Bolin Ding, Jeffrey Xu Yu, and Lu Qin. Finding time-
dependent shortest paths over large graphs. In EDBT
’08: Proceedings of the 11th international conference on
Extending database technology, pages 205–216, New York,
NY, USA, 2008. ACM.

[10] S. Ganguly, A. Sen, G. Xue, B. Hao, and B. Shen. Optimal
routing for fast transfer of bulk data files in time-varying
networks. IEEE Int. Conf. on Communications, 2008.

[11] R. Guerin and A. Orda. Networks with advance reserva-
tions: the routing perspective. IEEE INFOCOMM, 2000.

[12] Chin Guok, D. Robertson, M. Thompson, J. Lee,
B. Tierney, and W. Johnston. Intra and interdomain
circuit provisioning using the oscars reservation system.
In Broadband Communications, Networks and Systems,
2006. BROADNETS 2006. 3rd International Conference
on, pages 1–8, Oct. 2006.

[13] Eun-Sung Jung, Yan Li, Sanjay Ranka, and Sartaj
Sahni. An evaluation of in-advance bandwidth scheduling
algorithms for connection-oriented networks. In ISPAN
’08: Proceedings of the The International Symposium on
Parallel Architectures, Algorithms, and Networks, pages
133–138, Washington, DC, USA, 2008. IEEE Computer
Society.

[14] Zhaoming Li, Qiang Song, and Ibrahim Habib. Cheetah
virtual label switching router for dynamic provisioning in
ip optical networks. Optical Switching and Networking,
5(2-3):139–149, 2008. Advances in IP-Optical Networking
for IP Quad-play Traffic and Services.

[15] Yunyue Lin and Qishi Wu. On design of bandwidth
scheduling algorithms for multiple data transfers in
dedicated networks. In ANCS ’08: Proceedings of the 4th
ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, pages 151–160, New York,
NY, USA, 2008. ACM.

[16] Ariel Orda and Raphael Rom. Shortest-path and
minimum-delay algorithms in networks with time-
dependent edge-length. J. ACM, 37(3):607–625, 1990.

[17] Marek Piotrów. A note on constructing binary heaps
with periodic networks. Inf. Process. Lett., 83(3):129–134,
2002.

[18] N. S. V. Rao, W. R. Wing, S. M. Carter, and Q. Wu.
Ultrascience net: network testbed for large-scale
science applications. Communications Magazine, IEEE,
43(11):S12–S17, 2005.

[19] N.S.V. Rao, Qishi Wu, Song Ding, S.M. Carter, W.R.
Wing, A. Banerjee, D. Ghosal, and B. Mukherjee.
Control plane for advance bandwidth scheduling in ultra
high-speed networks. In INFOCOM 2006. 25th IEEE
International Conference on Computer Communications.
Proceedings, pages 1–5, April 2006.

[20] Sartaj Sahni, Nageshwara Rao, Sanjay Ranka, Yan Li,
Eun-Sung Jung, and Nara Kamath. Bandwidth schedul-
ing and path computation algorithms for connection-
oriented networks. In ICN ’07: Proceedings of the
Sixth International Conference on Networking, page 47,
Washington, DC, USA, 2007. IEEE Computer Society.

[21] M. Veeraraghavan, H. Lee, E.K.P. Chong, and H. Li. A
varying-bandwidth list scheduling heuristic for file trans-
fers. In Communications, 2004 IEEE International Con-
ference on, volume 2, pages 1050–1054 Vol.2, June 2004.

[22] Tao Wang and Jianer Chen. Bandwidth tree - a
data structure for routing in networks with advanced
reservations. In PCC ’02: Proceedings of the Performance,
Computing, and Communications Conference, 2002. on
21st IEEE International, pages 37–44, Washington, DC,
USA, 2002. IEEE Computer Society.

[23] Qing Xiong, Chanle Wu, Jianbing Xing, Libing Wu, and
Huyin Zhang. A linked-list data structure for advance
reservation admission control. Networking and Mobile
Computing, 2005.

