
PreP
rin

t
Revisiting Inter-Class Maintainability Indicators

1st Lena Gregor
Software and Systems Engineering

Technical University of Munich
Munich, Germany
lena.gregor@tum.de

2nd Markus Schnappinger
Software and Systems Engineering

Technical University of Munich
Munich, Germany

markus.schnappinger@tum.de

3rd Alexander Pretschner
Software and Systems Engineering

Technical University of Munich
Munich, Germany

alexander.pretschner@tum.de

Abstract—Over the last few decades, a variety of static code
metrics have been published and promoted to measure the
maintainability of software systems.

This study evaluates 12 common static code metrics for
their correlation with observed maintenance efforts. Leveraging
modern repository mining techniques, we examine the historical
data of three large open-source software systems with a combined
size of over 1M LOC and over 10k classes. We automatically
identify maintenance activities and measure the effort needed to
perform them through revised lines of code. Then, we investigate
if the state of the system as captured by these metrics is an
indicator for the required maintenance effort.

In contrast to earlier research, our results could not validate
a general correlation between any of the examined metrics and
maintainability. Instead, all evaluated metrics showed positive
and negative correlations with maintenance effort depending on
the considered time interval. Strong correlations only hold for
specific projects, and within these projects, only for limited time
spans. Across the project history, however, all metrics showed
moderate correlations at most.

As no metric was found to be a good indicator for high
maintenance efforts in all contexts, we advocate against using
any of the evaluated metrics without project-specific validation.
If metrics are to be used to monitor the maintainability of a
system, either directly or through models based on these metrics,
engineers have to validate their applicability not just for the
project at hand, but also for the current time span.

Index Terms—software maintainability, maintainability predic-
tion, static code metrics, repository mining

I. INTRODUCTION

Several static code metrics have been proposed and used
in the last decades to assess the maintainability of software
systems. Prominent examples are Halstead’s metrics [1] and
the Chidamber-Kemerer metric suite [2]. However, only a
few of these metrics have been sufficiently validated [3], [4].
As Sharma and Spinellis observe [5], several code metrics
fail to capture the quality attribute they aim to describe [5].
Furthermore, a study in the context of defect prediction has
shown that single static code metrics predict quality attributes
differently well for different systems [6].

One promising approach to finding a universal predictor
for maintainability may be through aggregating code metrics
based on machine learning as in [7]. However, their models

© 2023 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

predict the maintainability judgment of analysts that focuses
on the quality of individual code files. Thus, only metrics
quantifying properties within program classes (intra-class met-
rics) showed a correlation with their maintainability label.

There are indicators in the literature that metrics about
the relationships between program classes (inter-class metrics)
can also be good predictors [8]–[11] for maintainability. For
single inter-class metrics to be good predictors, they need to
highly correlate with maintainability. When multiple metrics
are aggregated e.g. through machine learning approaches, they
must at least offer some correlation with maintainability. That
influence does not necessarily have to be large, but should at
least be reasonably constant within a project. Otherwise, the
applicability of the metrics is limited.

However, the results reported in related work are equivocal.
For instance, Dagpinar and Jahnke [8] found a high positive
correlation between efferent coupling metrics and maintain-
ability measures. Whereas Sjøberg et al. [9] found a high
negative correlation between coupling and maintainability.
Considering the influence of inheritance on maintainability,
Daly et al. [10] found maintenance tasks were performed
faster in a system with an inheritance depth of three compared
to a system with a depth of zero. Contrarily, Cartwright
and Shepperd [11] found that changes in a system with an
inheritance depth of zero were performed faster than in a
system with a depth of three. The results of Prechelt et al. [12]
and Dagpinar and Jahnke [8], however, suggest that inheritance
depth has no significant influence on the maintenance effort.

Additionally, the studies have the following limitations:
First, most of them were conducted on relatively small sys-
tems, the largest consisting of 430 program classes, and often
referred to maintenance activities specifically designed for the
study, which could have influenced their results. Second, soft-
ware systems have evolved significantly over the past decades.
Therefore, it is unclear whether findings from the early stages
of object-oriented programming still apply to contemporary
systems. Hence, as of now, it remains speculative if inter-class
metrics are suitable predictors for the software maintainability
of contemporary software systems.

Solution: We investigate the relationship between mainte-
nance effort and various single inter-class metrics in depth.
We analyze three large open-source software systems which
total over 1M LOC. Leveraging modern repository mining
techniques, we automatically identify and classify past main-



PreP
rin

t
tenance activities and measure the associated effort via the
Revised Lines of Code (RLOC). In particular, we want to
answer the following question: Do inter-class metrics reliably
correlate with maintainability? A metric that reliably correlates
with maintainability ideally shows correlations . . .

1) consistently across different projects for the same main-
tenance activity

2) consistently within one project for different maintenance
activities

3) consistently over time within a project
Hence, our analysis covers several dimensions: We analyze

the metrics on multiple projects. Per project, we analyze
the relationship across the whole development history and
investigate if relationships manifest only during specific time
intervals. Additionally, we collect data on two granularity
levels: commit-level and task-level.

Contribution: Our results indicate there is no general
correlation between any of the examined code metrics and the
observed maintainability effort. None of the metrics showed
consistent results for each of the software projects. Therefore,
a metric that is a good measure of maintainability in one
project is not necessarily a good measure in another project.

However, the strength and direction of the correlation not
only varied between different projects but also between dif-
ferent time intervals and maintenance activities within the
projects. Our results show that even if a metric strongly
correlates with maintenance effort within one project at a
specific point in time, the correlation can change drastically
over time. Additionally, the type of maintenance activity
also influences the correlation. This means that a metric that
reliably predicts the effort for one type of maintenance activity
does not necessarily predict the effort for another type of
maintenance. We, therefore, conclude that single inter-class
metrics should not be used as surrogates for maintainability
without frequent context-specific validation.

II. EXTRACTING MAINTENANCE EFFORT

The goal of this study is to investigate the relationship
between internal software attributes and the maintainability
of a system. Thus, a qualitative or quantitative maintain-
ability assessment is necessary. Maintainability describes the
expected or observed effort needed to perform maintenance
activities. In this study, we refer to historical data available
in the repositories of the analyzed systems. First, we identify
maintenance activities that have been performed on the system.
Second, we classify these maintenance tasks according to
Swanson’s dimensions of maintenance, i.e. adaptive, correc-
tive, and perfective maintenance [13]. Third, we associate the
tasks with the effort required to perform them, which we
extract from the repositories as well.

A. Identifying Maintenance Activities

For this study, it is essential to distinguish between different
development activities. In all analyzed projects, issue trackers
are used to plan and coordinate all implementation tasks.
This allows us to leverage project-specific tags to identify

TABLE I
TAGS INDICATING MAINTENANCE WORK FOR EACH OF THE PROJECTS.

Project Adaptive/ Perfective Corrective #Issues
with Tag

#Issues
without Tag

Artemisa enhancement, code qual-
ity, performance, refactor-
ing

bug, bug-
fix

2,692 397

RxJavaa Enhancement,
Cleanup, Performance,
Performance allocation

Bug 2,220 1,436

Spring-
Frame-
workb

type: enhancement type:bug 1,444 1,984

aValues retrieved on 25.11.2021.
bValues retrieved on 06.01.2022.

and categorize maintenance activities. For each of the chosen
projects, we manually evaluated each of the provided tags and
their descriptions and mapped them to the maintenance types
by Swanson [13]. Issues with tags such as ‘bug’ or ‘bugfix’ are
considered corrective maintenance tasks, while tags including
‘performance’, ‘cleanup’, and ‘refactoring’ hint towards per-
fective maintenance. Issues tagged with ‘enhancement’ either
match adaptive or perfective maintenance work. As we cannot
discriminate the two types based on this tag, we combine
them into one category. Thus, our analysis distinguishes only
two maintenance types: adaptive/perfective and corrective
maintenance. Table I summarizes which tags we used for
each project to identify the maintenance types as well as the
number of issues with and without tags.

B. Quantifying Maintenance Effort

The nature of this study requires an objective way to capture
maintenance effort, which also allows for collecting a large
number of data points automatically. Expert assessments and
manually-labeled maintainability datasets as proposed in [14]
and [15] are inapplicable in this study, as the manual labeling
process does not scale to our use case. Some studies measure
the time needed to perform a given task on the software
system [9], [10]. This metric is objective and can be measured
with little overhead, but is usually not publicly available.
In [16], the maintenance effort is measured by the number
of revisions a class went through in a specific period of
time, which can be retrieved through public commit histories.
However, we follow the approach of measuring the number
of RLOC [9], [11], [16] as this is more fine granular. One
limitation of this measure is the underlying assumption of
approximately equal implementation effort for each line of
code. However, RLOC is found to be correlated to the time
needed to perform maintenance work [17]. Furthermore, it can
be retrieved easily and fully automated and is widely accepted
in this area of research.

III. ANALYZED INTER-CLASS ATTRIBUTES

A. Inheritance

Inheritance is a concept in object-oriented programming
where classes can have superclasses from which they inherit



PreP
rin

t
certain characteristics. The results in [9]–[11], [15] indicate
there is an influence of inheritance depth on the maintainability
of software systems. However, it is unclear what this influence
looks like, e.g., Daly et al. [10] found that maintenance
tasks were performed faster in a system with an inheritance
depth of three versus a system with a depth of zero, while
Cartwright and Shepperd [11] found that changes in a system
with inheritance depth of zero were performed faster than in
a system with a depth of three.

The most commonly applied metrics to measure the inher-
itance structure of classes in a software system are Depth
of Inheritance Tree (DIT) and Number of Children (NOC)
proposed by Chidamber and Kemerer [2]. However, the DIT
metric is criticized for holding ambiguities when multiple
inheritances and multiple root classes are combined [18]. Fur-
thermore, the NOC metric is criticized for not fully fulfilling
its theoretical basis [18]. Thus, Li [18] proposed improved
versions of these measurements: The Number of Ancestor
Classes (NAC), which is the total number of classes from
which a class inherits, and the Number of Descendent Classes
(NDC), which describes the total number of sub-classes of
a class. We use these two metrics to capture the inheritance
relationships of a program class in this study.

B. Coupling

Coupling is the manner and degree of dependencies between
software classes [19]. There are many different variations
of metrics that consider various forms of coupling between
classes in the literature. Briand et al. [20], identified three
different types of coupling: Class-Attribute, Class-Method,
and Method-Method. The Coupling between Object Classes
(CBO) metric proposed by Chidamber and Kemerer [2] only
considers coupling through the use of a method or instance
variable from another class. Li [18] distinguishes between
Coupling Through Abstract Data Type (CTA) and Coupling
Through Message Passing (CTM). Martin [21] furthermore
considers the direction of a coupling with afferent and efferent
coupling. For afferent coupling, all classes that use and depend
on the class are considered, whereas for efferent coupling,
all classes that the class uses and, therefore, depends on
are considered. In 2013, Yamashita and Moonen [22] found
an association between afferent and efferent coupling and
difficulties when performing maintenance tasks. A study by
Dagpinar and Jahnke [8] in 2003 found a strong correlation
between efferent coupling and maintenance effort. However,
no significant correlation was found for afferent coupling [8].
In this study, we consider the following types of dependencies:

1) Coupling through Variable: If class A has an attribute or
a variable of type B, then classes A and B are coupled
through this variable.

2) Coupling through Parameter: If a method in class A has
a parameter of type B or returns a value of type B,
classes A and B are coupled through this parameter.

3) Coupling through Method: If class A uses a method
of class B, classes A and B are coupled through this
method.

Each of these three relations is once considered from the effer-
ent and afferent perspective. This leaves us with six coupling
metrics in total: Afferent Coupling through Variable (ACV),
Afferent Coupling through Parameter (ACP), Afferent Cou-
pling through Method (ACM), as well as Efferent Coupling
through Variable (ECV), Efferent Coupling through Parameter
(ECP), and Efferent Coupling through Method (ECM).

C. Code Duplication

Code duplicates, often called code clones, are pieces of code
that are similar with respect to a definition of similarity [23]:
”[...] [Similarity] can be based on text, lexical or syntactic
structure, or semantics” [23, p. 2]. Intuitively, code duplication
increases the chances that, if one instance of the clone is
changed, developers need to also apply the change in all of
its siblings. This increases the maintenance effort for program
classes containing clones. Every code snippet with a duplicate
at a different location is considered a code clone. The ratio
of duplicated code in a software system or class is commonly
referred to as its clone coverage. All instances of code that
are duplicates of each other form a clone class.

Juergens et al. [24] showed that inconsistent changes to
clones are very frequent and that a significant number of faults
are induced by these changes, which impedes bug fixing and,
therefore, increases the maintenance effort even more. Monden
et al. [25] found that code with code clones is subject to
more changes than files without clones. This indicates lower
maintainability for files with code clones compared to files
without code clones. More instances of code clones could
further increase the need for more revisions compared to
fewer code clone instances. Kapser and Godfrey [26], however,
analyzed two systems and found that up to 71% of code clones
are considered to have a benign impact on the maintainability
of the systems. In their study, clones were deliberately used to
flatten the inheritance hierarchy and facilitate testing activities.

There are multiple different definitions for code clones and
approaches for clone detection. We use Teamscale1, which
implements statement-based clone detection [27]. Thus, com-
ments, white spaces, and variable names are allowed to differ
between duplicates. We used the default option that regards
clones with at least 10 common consecutive statements.

In total, we consider four cloning-related code metrics in
our analysis: (1) Number of Clones (NC), the total number
of clone instances in a program class. (2) Number of Clone
Classes (NCC), the number of different clone classes in a
program class. (3) Number of Cloned Lines (NCL), the total
number of lines in a program class that are cloned code. (4)
Clone coverage (CC), the ratio of lines of code in a program
class, which are part of a clone.

1Teamscale is a commercial static analysis tool provided by CQSE
GmbH. More information can be found on the company’s website:
https://www.cqse.eu/en/teamscale/overview/



PreP
rin

t
TABLE II

STUDY OBJECTS DESCRIPTION (JAVA FILES ONLY)

Project Created on # Developers # Files # LOC

Artemis 29.09.2016 122a 1,095a 177,184a

RxJava 08.01.2013 283a 1,870a 468,957a

Spring-Framework 08.12.2010 578b 7,217b 420,156b
aValue retrieved on 25.11.2021.
bValue retrieved on 06.01.2022.

IV. STUDY DESIGN

A. Study Objects

Our study objects comprise three large open-source projects:
Artemis2, RxJava3, and Spring-Framework4. Our selection
criteria respect several aspects: (1) We only include projects
mainly written in Java. As different programming languages
offer different syntactical features, an analysis of the structural
metrics across languages might distort the results. (2) Our
study requires access to the commit histories and the issue
trackers of the study projects. To foster the reproducibility of
our study, we considered only open-source projects with pub-
licly available issues and development history. (3) All projects
are hosted on GitHub. This allows automated querying and
extracting of data via an advanced API. (4) The projects need
to allow the automatic identification of maintenance tasks. The
chosen projects use tags to differentiate various maintenance
and development activities. (5) To provide a large data corpus,
the systems should be large in size and actively maintained
over several years. The study objects contain between 177k
and 469k LOC in 1.1k to 7.2k Java classes. In contrast, the
largest system used by related work contains only 430 Java
classes [28]. A summary of the projects and their metadata
is provided in Table II. To avoid data from large projects
overshadowing data from smaller projects [29], we analyze
each of the systems individually.

B. Study Setup

With this study, we investigate the relationship of inheri-
tance, coupling, and cloning metrics with the maintainability
of three large software systems. For all systems, we extract
issues from their issue trackers that are associated with main-
tenance work. A summary of the tags we used to identify and
categorize maintenance tasks for the different projects of our
study is provided in Table I in Section II-A.

For each issue, we analyzed all commits associated with
the issue and computed the maintenance effort, i.e. the RLOC
of each commit. Then, we calculated the code metrics based
on the parent of this commit. This captures the state of the
system at the time the maintenance activities started.

Unfortunately, there is no static code analyzer offering im-
plementations for all considered metrics. Therefore, we utilize

2https://github.com/ls1intum/Artemis
3https://github.com/ReactiveX/RxJava
4https://github.com/spring-projects/spring-framework

different tools for different measurements. For calculating the
cloning metrics, we used the clone detection of Teamscale5,
which provides a history of all added and removed clones for
the full lifecycle of a project. Based on that we determined
the clones present at the respective commit and calculated the
metrics with our own implementation. Although Teamscale
is a commercial tool, free licenses are available for research
purposes, thus ensuring the reproducibility of our results. All
other considered metrics were implemented based on the CK
project6, an open-source tool with implementations for many
software attribute metrics, publicly available on GitHub. We
followed the descriptions of the original authors [18], [20],
[21].

To measure the correlation between the code metrics and the
maintenance effort, we refer to Spearman’s rank correlation
coefficient [30]. It is a non-parametric correlation measure-
ment used to describe the monotonic dependency between
two random variables. In contrast to Pearson’s correlation
coefficient, it does not assume a normal distribution of the
analyzed data. The Spearman coefficient is defined within
[-1; 1], with larger values indicating stronger correlations and
negative values indicating negative correlations.

C. Analysis Granularities

1) Granularity of Maintenance Work: Related work often
considers software system versions that are not further devel-
oped but only maintained to facilitate identifying maintenance
work. As systems in industry are often simultaneously main-
tained and further developed, we think it is crucial to also
evaluate metrics in such a setting. As we can automatically
distinguish between development activities and maintenance
activities (cf. Section II-A), we can extract maintenance activ-
ities from the development histories of such systems.

Related work furthermore often aggregates maintenance
activities across multiple months [8] or years [28], [31] into
one data point. Thus, they calculate the code metrics at the
beginning of each interval and merge all performed changes.
This means, all activities during this time are combined and
collectively related to the state of the system before the
first change. We advocate this aggregation as problematic
since maintenance activities are likely to be influenced by the
changes made to the system during this time span. Thus, we
prefer a task-oriented approach similar to Sjøberg et al. [9]:
For each task, we consider the immediately preceding system
state and only changes directly related to that task.

We utilize issues in the used issue tracker system to identify
maintenance-related tasks (cf. Section II-A). This allows two
possible interpretations of which code changes to consider.
First, every commit linked to this issue represents a mainte-
nance activity performed on the system. Therefore, we analyze
the correlations between code attributes and the effort of each
maintenance-related commit. Second, we can refer to the pull
request that closed the issue in the issue tracking system. All

5https://www.cqse.eu/en/teamscale/overview/
6https://github.com/mauricioaniche/ck/



PreP
rin

t
commits related to this pull request are aggregated into a single
data point by summing up the RLOC values for duplicated
files. We then calculate the inter-class metrics on the system
state prior to the first commit of the respective issue, precisely
the parent state of its first commit. This results in fewer data
points for the analysis, but arguably represents the concept of
a maintainability task best.

2) Time Granularity: For the commit-based and the issue-
based analysis, we perform analysis over all data points per
project. Additionally, we investigate whether the correlation
between attribute metrics and maintenance effort is consistent
for different time intervals throughout the maintenance pro-
cess. The latter is motivated by the long period over which
our data was collected. As we consider the complete life span
of the study systems, the context is not constant and evolving
over time. As a consequence, data drift is possible and may
block the detection of important relations if all available data
is considered. To account for this phenomenon, we split the
available data into disjoint time intervals based on their date
and ran an analysis separately for each interval. A good
method to test all possible time intervals would be a sliding
window algorithm with different window sizes to group data
commits or issues based on their creation date for further
analysis. However, as this kind of analysis would be very
expensive in time and resources, we grouped the commits and
issues based on their date per quarter of the year and analyzed
the resulting groups independently. This allows to detect
whether relationships are relatively consistent over time. In
summary, we perform 2×2×2 analyses for each study project,
i.e. {commit; issue} × {unrestricted; time-restricted} ×
{corrective; adaptive/perfective}.

V. COMMIT-BASED ANALYSIS

In this section, we report the results of the analyses over
all maintenance-related commits, separately for each of the
software systems and maintenance types. Our supplemental
material [32] reports the results in detail.

A. Complete Project History

The results for the three projects Artemis, RxJava, and
Spring-Framework are shown from top to bottom, in Figure 1.
Scatter plots show the magnitude of the Spearman correlation
coefficient from -0.5 to +0.3 on the Y axis against each of
the static code metrics on the X axis. For each metric, a
dot represents the coefficient for the corrective maintenance
type and a cross the coefficient for the adaptive/perfective
maintenance type.

For Artemis, the highest observed correlation coefficients
were found for the coupling metric ECM, with ≈0.13 for
the corrective maintenance type and even lower with ≈0.08
for the coupling metric ECV for the adaptive/perfective type.
The highest observed correlation coefficients for RxJava were
found for the corrective maintenance type for the coupling
metric ECV with ≈0.23 and for the adaptive/perfective type
with ≈0.12. All cloning metrics show lower correlation
coefficients than the coupling and inheritance metrics and

Fig. 1. Results for the commit-based analysis over the whole project history.
From top to bottom for the projects Artemis, RxJava, and Spring-Framework.

show hardly any difference between the corrective and the
adaptive/perfective maintenance type. For Spring-Framework,
the highest observed correlation coefficient for the corrective
maintenance type is higher than for Artemis and RxJava: the
coupling metric ACM with ≈-0.45. For the adaptive/perfective
maintenance type, the highest value is ≈-0.12 for the inheri-
tance metric NAC.

B. Time-Restricted Analysis

In addition to the analysis over all commits, we investigated
correlations between maintenance effort and code attributes in
limited time intervals of three months. The results for the three
projects Artemis, RxJava, and Spring-Framework are shown
from top to bottom for the inheritance and coupling metrics
in Figure 2 and from left to right for the cloning metrics in
Figure 3. The box plots show the correlation coefficients on
the Y axis from -1.2 to +1.2 for each of the inheritance and
cloning metrics and from -0.6 to +0.8 for the cloning metrics.
In all diagrams, for each metric, the box on the left represents
the data for the corrective maintenance type, and the box on the
right the data for the adaptive/corrective maintenance type. The



PreP
rin

t
variances between the correlation coefficients of the different
time intervals are reported for each of the systems in Table III.

Fig. 2. Results for the time-restricted commit-based analysis of the inheritance
and coupling metrics. From top to bottom for the projects Artemis, RxJava,
and Spring-Framework.

The box plots for Artemis show that the correlation values
for all inheritance and coupling metrics were less than 0.4
and greater than -0.4 for each of the time intervals and main-
tenance types apart from a few outliers which show correlation
coefficients up to ±0.8. However, the median values for the
coupling and inheritance metrics only lie between -0.13 and
0.13. For all cloning metrics, the results range between -0.2
and 0.3 and have no outliers. The results show positive as
well as negative correlation values for each of the metrics and
maintenance types. However, for both types, the median values
are always either positive or negative for each of the metrics.

For RxJava, apart from a few outliers, the correlation
coefficients for the inheritance and coupling metrics range
from ≈-0.75 to ≈0.61 for the corrective and from ≈-0.29 to
≈0.4 for the adaptive/perfective maintenance type. However,
the median values only lie between -0.25 and 0.25 for the
corrective and ≈-0.15 and 0.2 for the adaptive/perfective
maintenance type. The coefficients for the cloning metrics
range between -0.4 and 0.6 including outliers. However, their
median values only range from -0.05 to 0.12. Multiple metrics
show a positive median for the adaptive/perfective and a
negative median for the corrective maintenance type, namely
NDC, ACM, ECP, ACP, and ACV.

For Spring-Framework, the results of the inheritance and
coupling metrics range from -1.0 to 1.0 for the corrective
maintenance type. Here, all metrics either have a minimum
value of -1.0 or a maximum value of 1.0. Three coupling
metrics show significantly higher medians for the corrective
maintenance type than the other metrics, namely ACM with
≈-0.62, ACP with ≈-0.41, and ACV with ≈-0.55. The median
values range for the adaptive/perfective maintenance type
from ≈-0.2 to ≈0.1. For the cloning metrics, the results for
the corrective maintenance type range from ≈-0.55 to ≈0.8.
However, for the adaptive/perfective maintenance type, the
results only range from ≈-0.35 to ≈0.2. The median values
only range from 0 to ≈0.25 for both types.

VI. ISSUE-BASED ANALYSIS

As explained in Section IV-C1, we also investigate the
relationship between software maintainability and metrics on
the granularity of issues. Hence, we aggregate all commits
associated with a specific issue into one data point. As the
coupling and inheritance metrics consistently showed more
promising results in the commit-based analysis than the
cloning metrics, we concentrate on them for this analysis
phase. See the supplemental material [32] for detailed results.

A. Complete Project History

For the analysis over the complete project history, we
performed correlation analysis collectively over all issue-based
data points for each of the maintenance types. The results for
the three projects Artemis, RxJava, and Spring-Framework are
displayed in the three diagrams of Figure 4. Scatter plots show
the magnitude of the Spearman correlation coefficient from
-0.4 to +0.2 on the Y axis against each of the inheritance
and coupling metrics on the X axis. For each metric, a dot
represents the coefficient for the corrective maintenance type
and a cross for the coefficient for the adaptive/perfective
maintenance type.

For Artemis, the correlation coefficients for both mainte-
nance types range from ≈-0.14 to ≈0.03. The resulting values
for corrective and adaptive/perfective maintenance are always
very similar for each of the metrics with a discrepancy of
at most 0.05. For RxJava, the correlation coefficients are
more spread between the corrective and the adaptive/perfective
maintenance type than for the Artemis project. They range
from ≈-0.33 to ≈-0.02 for the corrective and from ≈-0.18



PreP
rin

t
Fig. 3. Results for the time-restricted commit-based analysis of the cloning metrics. From left to right, the diagrams are for the projects Artemis, RxJava,
and Spring-Framework

TABLE III
ROUNDED VARIANCE OF THE CORRELATION COEFFICIENTS OF BOTH TIME-RESTRICTED ANALYSES, FOR THE PROJECTS Artemis, RxJava, AND

Spring-Framework IN NUMERICAL ORDER.

Project

Commit-Based Issue-Based

Inheritance Coupling Cloning Inheritance Coupling

NAC NDC ECM ACM ECP ACP ECV ACV NDC NCL NCC CC NAC NDC ECM ACM ECP ACP ECV ACV

1: corr 0.05 0.01 0.04 0.01 0.07 0.00 0.04 0.00 0.14 0.14 0.14 0.14 0.05 0.02 0.06 0.02 0.07 0.00 0.07 0.00

1: a/p 0.01 0.02 0.02 0.00 0.02 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.00 0.02 0.01 0.02 0.00

2: corr 0.12 0.02 0.06 0.07 0.09 0.03 0.06 0.06 0.05 0.05 0.05 0.05 0.07 0.02 0.09 0.07 0.06 0.03 0.08 0.06

2: a/p 0.02 0.03 0.03 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.04 0.02 0.03 0.04 0.04 0.03 0.03 0.04

3: corr 0.30 0.18 0.22 0.07 0.26 0.13 0.31 0.08 0.19 0.20 0.19 0.20 0.16 0.25 0.27 0.26 0.09 0.38 0.09 0.20

3: a/p 0.07 0.02 0.18 0.16 0.07 0.08 0.12 0.05 0.16 0.16 0.16 0.16 0.04 0.03 0.07 0.12 0.05 0.08 0.10 0.05

Fig. 4. Results for the issue-based analysis over the whole project history, for the inheritance and coupling metrics. From left to right, the diagrams are for
the projects Artemis, RxJava, and Spring-Framework.

to ≈0.04 for the adaptive/perfective maintenance type. For
Spring-Framework, the correlation coefficients range from
≈-0.34 to ≈-0.04 for the corrective and from ≈-0.15 to ≈0.03
for the adaptive/perfective maintenance type. The correlation
coefficients for both maintenance types are close together for
the NAC, NDC, and ECM metric with a discrepancy of at
most 0.06. However, for the other metrics, the correlation co-
efficients for the corrective maintenance type are significantly
higher than for the adaptive/perfective.

B. Time-Restricted Analysis
As explained in Section IV-C2, we examined whether there

are correlations between maintenance effort and software
metrics when analyzing specific periods of time separately,
i.e. per quarter of the year. The results for the three projects
Artemis, RxJava, and Spring-Framework are shown through

box plots in the three diagrams in Figure 5. The box plots
show the correlation coefficients on the Y axis from -1.2 to
+1.2 for each of the code metrics on the X axis. For each
metric, the box on the left represents the data for the corrective
maintenance type and the box on the right the data for the
adaptive/corrective maintenance type. The variances between
the correlation coefficients of the different time intervals are
reported for each of the systems in Table III.

For Artemis, the box plots show that the correlation values
were less than 0.5 and greater than -0.5 for each of the time
intervals and the maintenance types apart from a few outliers.
The medians of all metrics range from ≈-0.17 to ≈0.07.

For RxJava, the correlation coefficients for the corrective
maintenance type range from -0.7 to 0.6. For the adap-
tive/perfective type, the correlation coefficients range from



PreP
rin

t

Fig. 5. Results for the time-restricted issue-based analysis of the coupling
metrics. From top to bottom, the diagrams are for the projects Artemis, RxJava,
and Spring-Framework.

≈-0.5 to ≈0.48 apart from one outlier. The median values
for the corrective type range from -0.38 to 0.26. However,
for the adaptive/perfective maintenance type, they only range
from ≈-0.2 to ≈0.02 for all coupling and inheritance metrics.

For Spring-Framework, the correlation coefficients for the
corrective maintenance type range from ≈-1 to ≈0.75. How-
ever, for the adaptive/perfective type, the correlation coeffi-
cients only range from ≈-0.45 to ≈0.37. The median values
range for most coupling and inheritance metrics from ≈-0.38
to ≈0.2. However, for the ACV metric and the corrective
maintenance type, the median value is ≈0.5.

VII. DISCUSSION

A. Interpretation of Results

a) Consistent correlation for different projects: The anal-
yses reveal differences in the correlation coefficients between
the three projects for each of the metrics. For instance, the
coupling metric ACM shows a correlation coefficient of -0.45
for the corrective maintenance type for Spring-Framework in
the commit-based analysis over the complete project history.
However, for RxJava, it only shows a correlation coefficient
of -0.12 and for Artemis even less with a coefficient of
-0.08. Although we interpret none of these coefficients as high
correlation, the results still reveal an interesting aspect: If a
metric shows a high correlation with maintenance effort in one
project, and therefore has the capability to be a good measure
for maintainability, this cannot be transferred to all other
projects. Instead, the metrics need to be evaluated individually
for each project they are used in.

b) Consistent correlation for different maintenance ac-
tivities: In all analysis steps, for most projects, the metrics
show higher correlations for the corrective maintenance type
than for the adaptive/perfective. However, for Artemis, both
maintenance types showed similar correlation coefficients for
each of the metrics whereas RxJava and Spring-Framework
showed larger differences between the two maintenance types.
Additionally, for Artemis, the correlation coefficients for the
two maintenance types are consistently either both positive
or both negative except for one outlier, the cloning metric
CC. Whereas for RxJava and Spring-Framework, multiple
metrics show a positive correlation for one maintenance type
and a negative correlation for the other. E.g., for RxJava,
the inheritance metric NDC has a correlation coefficient of
-0.07 for the corrective maintenance type and of +0.06 for
the adaptive/perfective maintenance type in the commit-based
analysis over the complete project history. Based on these
results, broad inheritance, high coupling, or high cloning
can either have a similar effect on maintainability for both
maintenance types or reduce the effort for one maintenance
type and increase the effort for the other.

c) Consistent correlation over time: Surprisingly, in all
projects, most metrics show positive as well as negative
correlations with maintenance effort in different time intervals.
For instance, the coupling metric ECV shows correlation
coefficients from -1.00 to +1.00 within the time-restricted
commit-based analysis for Spring-Framework. Hence, based
on these results, not only the strength in the correlation
changes between time intervals but also whether high cou-
pling, inheritance width, or cloning has a positive or negative
impact on the effort of maintenance activities.

d) Notable Observations: The metrics show inconsisten-
cies between the three projects, the two maintenance activity
types, and time intervals. Most metrics show weak general
correlations with maintenance effort with coefficients up to
±0.3 for most projects. Throughout the commit- and issue-
based aggregation, we observe some consistencies within
projects. However, the strength of the correlations varies.



PreP
rin

t
E.g., for Spring-Framework, the coupling metric ACM has a
correlation coefficient of -0.45 for the corrective maintenance
type in the commit-based analysis over the complete project
history, but a coefficient of -0.34 in the issue-based analysis.

As we did not expect this high variation between time
intervals and maintenance types, we also investigated the LOC
metric for comparison. This metric is considered the most
promising measure for maintainability in related work [9].
However, the results for the LOC metric corroborate the
results for the inter-class metrics: We cannot validate a general
correlation. Instead, strong correlations only hold for specific
projects and, within these projects, only for specific time
intervals. Over the whole project history, however, the metric
only shows weak correlations with maintenance effort.

B. Threats to Validity

1) Conclusion Validity: Although Spearman’s rank corre-
lation coefficient is a common correlation measurement in
this research domain [6], [9], [33], it only detects monotonic
relations. We acknowledge that other techniques might reveal
different results. Saarimäki et al. [29] state that such analyses,
in general, should consider the temporal context of the data.
Unfortunately, their approach is not yet operationalized. So
far, we did not investigate combinations of metrics, e.g. using
machine learning [7], [31]. One of the first steps in build-
ing machine-learned models is to identify adequate feature
candidates. In our study, we found only inconsistent corre-
lations with the given maintainability label, with correlation
coefficients oscillating between positive and negative values.
Based on these observations, we question the usefulness of the
studied inter-class metrics as input for machine learning.

2) Internal Validity: Though widely used and accepted in
this area of research [9], [16], [28], RLOC only provides
an approximation of maintenance effort. Although it is found
to correlate with the time needed to perform maintenance
work [17], it is used under the assumption that every changed
line approximately needs the same effort. Still, we chose this
surrogate measurement, as it is automatically extractable and
allows analyzing systems with multiple years of maintenance.
However, a different variable could have shown different
correlation results. Furthermore, we referred to tags of the
issues to classify and identify maintenance work. We verified
for a randomly selected subset that the assigned tag matches
the issue description. Still, we cannot guarantee the correctness
and completeness of the assigned tags.

3) External Validity: First, the collected maintenance and
metric data greatly depend on the chosen software systems.
Therefore, other study projects might have shown different
results and it is unclear, whether our results generalize. How-
ever, it is the very point of this work to show, that insights
from one project and time interval hardly translate to other
contexts. Second, we have not covered all possibilities in
software systems or programming languages, as all systems are
open-source and mainly written in Java. Therefore, our results
are not generalizable to all types of software projects. Third,
we have not exhausted all possible system sizes. However,

our software systems were significantly larger than in related
work [8], [9], [28]. Fourth, since we used the tags of issues
to identify maintenance work, we had to limit our selection
of systems to systems where such tags are used. Therefore,
there could exist a bias in our data as these systems might
be developed and maintained in a better, more structured way
than average systems.

VIII. RELATED WORK

Several studies investigated the relationship between soft-
ware attribute metrics and maintainability. One discriminating
factor is their measurement of maintainability. Sjøberg et
al. [9] examined the Maintainability Index, a class cohesion
metric, two size metrics, one coupling metric, and the Depth
of Inheritance Tree (DIT) metric on their abilities to mea-
sure maintainability. To quantify the maintenance effort, they
recorded the time developers spent on each file while perform-
ing dedicated maintenance tasks and calculated the number of
changed lines. Apart from size and class cohesion, the metrics
are very inconsistent between different software systems. Only
LOC showed a perfect correlation with maintenance effort in
hours, but only a correlation coefficient of 0.4 with RLOC.
Dagpinar and Jahnke [8] used the frequency of maintenance
activities to quantify maintenance effort and distinguished
between different types of maintenance tasks. However, they
categorized the maintenance tasks manually based on commit
messages. Their results indicate that size and efferent coupling
metrics are good measures for the maintainability of software
classes, while inheritance, cohesion, and indirect and afferent
coupling metrics are not. Al Dallal [28] examined 19 metrics
for size, cohesion, and coupling. He used the number of RLOC
and the number of revisions to quantify the maintenance
effort. The results indicate that classes with smaller size, lower
coupling, and higher cohesion have higher maintainability.

Several studies focused explicitly on the influence of in-
heritance depth on maintainability [10], [11], [15]. These
studies share several characteristics: they perform controlled
experiments with students, use dedicated systems and specif-
ically designed maintenance tasks, and use the DIT metric to
express inheritance relationships. In contrast to these studies,
we considered real software systems, actual past maintenance
activities, and two improved inheritance metrics.

Furthermore, there are several approaches for predicting
maintainability using machine learning. Most approaches are
based on a data set created by Li and Henry [31] in 1993,
which contains a small number of code files written in Classic-
Ada. It is questionable whether the results obtained on this data
hold for systems in modern programming languages. Other
works refer to manually-labeled data [14]. Using this data,
size metrics and the cognitive complexity metric were found
to offer the highest predictive power [7].

In contrast to related work, we compare the measuring capa-
bilities of metrics on two different aggregation levels: single
commits and complete maintenance tasks. Furthermore, the
considered systems are significantly larger than those analyzed



PreP
rin

t
by related work. Additionally, we distinguish maintenance
types, which is rarely done in related work.

IX. CONCLUSION

With this study, we evaluate 11 inter-class metrics and the
LOC metric for their capabilities of assessing the maintain-
ability of software systems. We leverage modern repository
mining techniques and analyze the maintenance history of
three large open-source software systems with 1,095 to 7,217
Java files. Unlike most related work, we automatically identify
maintenance activities and distinguish between different types
of maintenance. Furthermore, we perform a more in-depth
analysis than related work to examine the influence of the
considered time interval, maintenance type, different aggrega-
tion levels of maintenance work, and the project specificity of
the results.

Our study reveals that none of the metrics consistently
correlates with maintenance effort. Instead, the relationship
varies between the project, granularity of the maintenance
activity, type of maintenance, and considered time interval.
The variation between different projects has the consequence
that metrics that predict maintainability well in one project
do not necessarily predict maintainability in other projects.
However, the variation over time has more severe impacts.
Some metrics show high correlations with maintenance effort
with correlation values up to ±1.00. However, these high
correlation coefficients only hold for specific projects, and
within these projects, only for limited time spans. Each
metric shows positive as well as negative correlations with
maintenance effort for different time intervals and most of
the systems. Based on these results, not only the strength
in the correlation changes between time intervals but also
whether high coupling, inheritance width, cloning, or size has
a positive or negative impact on the effort of maintenance
activities. This means that metrics that are good predictors
of maintainability within one project at one point in time,
do not necessarily stay good predictors. One implication of
these findings is that machine learning models trained on these
metrics or other metric aggregations also need project-specific
and time-specific validation.

Additionally, our results suggest that high coupling, inher-
itance width, cloning, and size can influence the effort for
different maintenance activities differently. For two of the three
projects, multiple metrics even show a positive correlation for
one maintenance type and a negative correlation for the other.

We, therefore, conclude that the evaluated code metrics
should not be used to assess the maintainability of software
systems without context-specific validation. If metrics are to be
used, it is necessary to regularly verify that they still correlate
with maintenance effort in that project.

REFERENCES

[1] M. H. Halstead, Elements of Software Science (Operating and program-
ming systems series). Elsevier Science Inc., 1977.

[2] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6,
pp. 476–493, 1994.

[3] M. Muñoz Barón, M. Wyrich, and S. Wagner, “An empirical validation
of cognitive complexity as a measure of source code understandability,”
in Proceedings of the 14th ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), ACM, 2020.

[4] M. Nilson, V. Antinyan, and L. Gren, “Do internal software qual-
ity tools measure validated metrics?,” in International Conference on
Product-Focused Software Process Improvement (PROFES), pp. 637–
648, Springer, 2019.

[5] T. Sharma and D. Spinellis, “Do We Need Improved Code Quality
Metrics?,” arXiv:2012.12324 [cs], Dec. 2020. arXiv: 2012.12324.

[6] T. Zimmermann, N. Nagappan, and A. Zeller, “Predicting bugs from
history,” in Software evolution, pp. 69–88, Springer, 2008.

[7] M. Schnappinger, A. Fietzke, and A. Pretschner, “Human-level ordinal
maintainability prediction based on static code metrics,” in Evaluation
and Assessment in Software Engineering, EASE 2021, (New York, NY,
USA), pp. 160–169, Association for Computing Machinery, 2021.

[8] M. Dagpinar and J. Jahnke, “Predicting maintainability with object-
oriented metrics -an empirical comparison,” in 10th Working Conference
on Reverse Engineering, 2003. WCRE 2003. Proceedings., (Victoria,
BC, Canada), pp. 155–164, IEEE, 2003.

[9] D. I. K. Sjoberg, B. Anda, and A. Mockus, “Questioning software
maintenance metrics: A comparative case study,” in Proceedings of
the 2012 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 107–110, Sept. 2012.

[10] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood, “Evaluating
inheritance depth on the maintainability of object-oriented software,”
Empirical Software Engineering, vol. 1, pp. 109–132, Jan. 1996.

[11] M. Cartwright and M. Shepperd, “An empirical view of inheritance,”
Information and Software Technology, vol. 40, pp. 795–799, Dec. 1998.

[12] L. Prechelt, B. Unger, M. Philippsen, and W. Tichy, “A controlled
experiment on inheritance depth as a cost factor for code maintenance,”
Journal of Systems and Software, vol. 65, pp. 115–126, Feb. 2003.

[13] E. B. Swanson, “The dimensions of maintenance,” in Proceedings of the
International Conference on Software Engineering, pp. 492–497, 1976.

[14] M. Schnappinger, A. Fietzke, and A. Pretschner, “Defining a Software
Maintainability Dataset: Collecting, Aggregating and Analysing Expert
Evaluations of Software Maintainability,” in IEEE International Confer-
ence on Software Maintenance and Evolution, pp. 278–289, 2020.

[15] R. Harrison, S. Counsell, and R. Nithi, “Experimental assessment of the
effect of inheritance on the maintainability of object-oriented systems,”
Journal of Systems and Software, vol. 52, pp. 173–179, June 2000.

[16] W. Albattah, “An Empirical Investigation of the Correlation between
Package-Level Cohesion and Maintenance Effort,” International Journal
of Advanced Computer Science and Applications, vol. 8, no. 3, 2017.

[17] J. Hayes, S. Patel, and L. Zhao, “A metrics-based software maintenance
effort model,” in Eighth European Conference on Software Maintenance
and Reengineering, CSMR 2004, pp. 254–258, Mar. 2004.

[18] W. Li, “Another metric suite for object-oriented programming,” Journal
of Systems and Software, vol. 44, pp. 155–162, Dec. 1998.

[19] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE
Std 610.12-1990, pp. 1–84, Dec. 1990.

[20] L. Briand, J. Daly, and J. Wust, “A unified framework for coupling mea-
surement in object-oriented systems,” IEEE Transactions on Software
Engineering, vol. 25, pp. 91–121, Jan. 1999.

[21] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[22] A. Yamashita and S. Counsell, “Code smells as system-level indicators
of maintainability: An empirical study,” Journal of Systems and Soft-
ware, vol. 86, pp. 2639–2653, Oct. 2013.

[23] R. Koschke, “Survey of research on software clones,” in Dagstuhl
Seminar Proceedings, Schloss Dagstuhl-Leibniz-Zentrum, 2007.

[24] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?,” in 2009 IEEE 31st International Conference on Soft-
ware Engineering, pp. 485–495, May 2009.

[25] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, “Software
quality analysis by code clones in industrial legacy software,” in IEEE
Symposium on Software Metrics, pp. 87–94, June 2002.

[26] C. J. Kapser and M. W. Godfrey, ““Cloning considered harmful”
considered harmful: patterns of cloning in software,” Empirical Software
Engineering, vol. 13, pp. 645–692, Dec. 2008.

[27] “How Maintainable is Your Code? | Teamscale Documentation.”
[28] J. Al Dallal, “Object-oriented class maintainability prediction using in-

ternal quality attributes,” Information and Software Technology, vol. 55,
pp. 2028–2048, Nov. 2013.



PreP
rin

t
[29] N. Saarimäki, S. Moreschini, F. Lomio, R. Penaloza, and V. Lenarduzzi,

“Towards a robust approach to analyze time-dependent data in software
engineering,” 2022.

[30] Spearman Rank Correlation Coefficient. Springer New York, 2008.
[31] W. Li and S. Henry, “Object-oriented metrics that predict maintainabil-

ity,” Journal of Systems and Software, vol. 23, pp. 111–122, Nov. 1993.
[32] L. Gregor, M. Schnappinger, and A. Pretschner, “Revisiting

Inter-Class Maintainability Indicators - Supplemental Material.”
https://doi.org/10.6084/m9.figshare.21571905.v1, Mar. 2023.

[33] R. Harrison, S. Counsell, and R. Nithi, “Coupling metrics for object-
oriented design,” in Proceedings Fifth International Software Metrics
Symposium. Metrics (Cat. No.98TB100262), pp. 150–157, Nov. 1998.


