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Abstract—Opportunistic routing is studied as a representative
example of location-aware greedy routing schemes. The routing
process between an arbitrary source-destination pair is modeled
as a directed random walk between the two ends in the underlying
graph. The mean number of transmissions as well as the average
multi-hop distance between arbitrary nodes are unified under a
conceptual measure called expected length of the opportunistic
walk in the induced network graph. We model this quantity as
the mean time to absorption in a finite-state Markov chain. An
explicit closed-form expression is presented to approximate the
results and tight bounds are given. The accuracy of the results
predicted by the analytical model is verified through simulation
experiments. We also demonstrate an application of the foregoing
model in defining proximity-based social models and identifying
classes of social networks that are scalable.

I. INTRODUCTION

Originated by Gupta and Kumar’s seminal analysis [1], it
came to be believed that wireless networks are not fundamen-
tally scalable in size due to mutual interference, concurrent
transmissions and increased accumulation of the relaying traf-
fic load throughout the network. Although various commu-
nication models were examined in that work, one important
aspect being neglected was a realistic interaction paradigm
between nodes. In particular, it was assumed that sources and
destinations are chosen uniformly and randomly within the net-
work. This assumption disregards the natural drivers ruling the
quality of social relationships in real-world networks of people.
One such important element is the geographical dispersion
between nodes. Numerous studies have shown that the physical
distance plays a crucial role in initiating social interactions
among people in both online and offline worlds [2]-[5].

Despite the tight dependency and extensive overlap be-
tween the social networks and their underlying communication
networks, due to the involved complexities, the mainstream
literature has only studied the performance of such networks
separately. Examples of studies on communication networks
neglecting the latent social relationships are [1], [6], [7]. In
contrast, several interaction patterns and social paradigms [8]—
[10] are independently studied while the restrictions imposed
by realistic underlying communication networks are over-
looked.

In this work, we present an analytical model that uses
the geographical distance between nodes to capture the in-
terplay between realistic communication algorithms and social
relationships in composite networks. In the past few years,
extensive research have been conducted on hop count statistics

of wireless networks with geographic routing [11]-[13]. We
revisit this problem and provide a Markov-chain formulation
for it. For the routing algorithm, we study Opportunistic
Routing [14] (OR) as a generic example for the broad class
of location-aware greedy forwarding schemes. We model this
routing algorithm as a directed random walk on the physical
graph of the network. We call such a process an opportunistic
walk and using that, we show how the notions of hop count
(HC) and transmission count (TX) can be unified under a
conceptual measure we call length of the opportunistic walk.

By means of this analysis, we demonstrate that the per-
hop progress towards destination can be approximated by an
iid process. Such a process is described by a probability distri-
bution that incorporates the collective impact of all important
physical and geometrical properties of the network, e.g., link
quality, node density, radio coverage, etc. The ultimate deriva-
tion, presented by Theorem 1, bounds the expected length of
the walk for all nodes within a certain but arbitrary maximum
physical distance in a form expressed by the characteristic
function of the foregoing distribution.

For the social aspect, we use a power-law distribution on
geographical distance to specify the frequency and quality of
inter-node interactions. We finally demonstrate that how the
combination of two models can be used to identify classes of
composite networks that exhibit scalability. In short, the major
contributions of this work can be summarized as follows:

e  Presenting a fast, efficient and highly accurate method
to calculate the expected hop count (EHC) and
expected number of transmissions (ETX) between
source-destination pairs at arbitrary distances under a
greedy forwarding scheme.

e  Using the geographical distance as the key ingredi-
ent to interrelate the concepts of communication and
social networks under realistic settings.

e Identifying classes of proximity-based social networks
that result in scalable structures.

The remainder is organized as follows. Section II provides
a formal description of the problem. Section III describes
a general framework for solving the problem using Markov
chains and Section IV provides convenient tools for an effi-
cient solution. Section V validates the analytical model using
simulation results. Section VI discusses an application of the
foregoing model in analysis of scalability in wireless social
networks. Finally, Section VII concludes the paper.



II. PROBLEM DEFINITION AND ASSUMPTIONS

Consider a multi-hop wireless network, N (X;r), in which
X C R is an arbitrary point process specifying nodes posi-
tions in d-dimensional space and r € R their common radio
range. In this network, Vz;,z; € X, we assume an undirected
edge (link) between ¢ and j wherever ||z; — x;|| < r, where
|| - || is the norm of choice on R?, e.g., Euclidean norm. For
simplicity of notation, we shall use ¢ to refer to the node placed
at z; € X. Since in most applications, the exact configuration
of points in X may not be known a priori, we assume that
x;’s are independent and identically distributed as per some
common probability density function in R?. We call such a
construction a Random Geometric Network (RGN) [15].

In a RGN, we shall assume that nodes communicate based
on an OR paradigm. As such, no static route is constructed
proactively between any source-destination pair. Instead, nodes
dynamically defer the choice of next relaying hop upon the
reception of the packet by one of the neighbors of the current
relay which is geographically closer to the destination. The
closest recipient neighbor is then selected to act as the next
relaying hop and the process repeats until the packet is deliv-
ered to the destination. Definition 1 provides a more formal
description of what we shall refer to as an opportunistic walk,
hereinafter.

Definition 1. Ler W(s,t) = (s,...,t) be a walk on N'(X;r).
We say W (s, t) is an opportunistic walk from s to t and denote
it with s 2% t if ||xy — x¢|| > [|xy — 24| for all ordered pairs
(u,v) on W(s,1).

Definition 1 suggests that an opportunistic walk is indeed
a directed random walk in which an intermediate node cannot
be any farther from the destination than any of its precedents
along the walk. In this sense, what OR does in a RGN is to find
an opportunistic walk between the two ends of the route. The
hop count along the opportunistic route can thus be seen as the
length of the opportunistic walk in the underlying graph. Also,
taking the effect of retransmissions into account, the latter can
also reflect the required number of packet transmissions to
reach the destination. This briefly explains the reason why we
are interested in the expected length of opportunistic walks
in this paper. The following proposition highlights a useful
property of opportunistic walks.

Proposition 1. If W(s,t) = (s,...,t) is an arbitrary oppor-
tunistic walk from s to t on N(X;r), then Vu ¢ {s,t} on

W(s,t), the walk segment W(u,t) (u,...,t) is also an
opportunistic walk on N'(X; ).
Proof: Follows recursively from Definition 1. ]

We introduce definitions required for a formal description
of the problem. Notation B(x;r) denotes a ball centered at x
with radius r.

Definition 2. For any nodes s and t in N(X;r) with
xs, 2t € X and D(s,t) == ||xs — x¢|| denoting their distance,
O(s,t) = B(ay; D(s,t)) defines the relaying region for all

oW
S ~ns L.

Definition 3. For any nodes s and t in N(X;r), we define
d(s,t) = X N ®(s,t) to be the set of potential relays for
s 2% t. In fact, we say u is a potential relay for s %% t in

N(X;7) if wu € ¢(s,1).
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Fig. 1: An illustration of a RGN in 2-D space

Definition 4. For any nodes s and t in N (X;r), we call
U(s,t) = ®(s,t) N B(xs;r) the hand-off region for s on all

s 2t

Definition 5. For any nodes s and t in N (X;r), a potential
relay v in N (X;r) is a potential next hop for s on s 2% t if
Xy € P(s,t) = XNU(s,t). We call (s, t) the set of potential
next hops for s on s 2% t.

From Definitions 1 and 2, it is easy to see that for any
node s and a fixed destination ¢, the relaying region on s 2%
shrinks as ||zs — 2¢|]| — 0. Similar implication comes from
Definition 4 for the hand-off region. For better illustration,
Fig. 1 provides a graphical display of a RGN in 2-D space
where node ¢ is the destination. The dashed lines specify the
boundaries of relaying regions and the shaded areas illustrate
the hand-off regions for corresponding relays. In this example,
nodes v and w are potential relays for both s &% ¢ and z 2% ¢,
while node w is a potential relay only for s & t.

III. THE MARKOV CHAIN FORMULATION

The routing criterion in OR is to progressively reduce the
remaining distance to the destination. Hence, at any intermedi-
ate stage and from the routing protocol’s perspective, all nodes
that are at the same distance from the destination are equally
good to act as a potential next hop. In this sense, each stage
of the walk can uniquely be described by a single measure,
that is the remaining physical distance to the destination. Due
to the greedy nature of OR, the remaining distance turns out
to be a non-increasing quantity over time. To avoid confusion,
we choose to use the complementary measure instead, i.e., the
total progress towards destination, to specify the states of the
walk. By this convention, we shall obtain a more descriptive
formulation.

According to Proposition 1, once a message comes at
a certain distance to the destination along an opportunistic
walk, the remaining section can be seen as another instance of
opportunistic walk. Such intermediate stage is not, however,
necessarily independent of the past history of the walk. For
instance, consider the scenario depicted in Fig. 1, where node
v is a potential next hop for v on w &Y% ¢. Assume that there
is no other potential next hop for w in the dotted area. Part of
the dotted area overlaps the hand-off region for v; therefore, v
cannot have a potential next hop in the dotted subregion of its



hand-off region. Hence, the history from the previous stages
might influence the future.

For simplicity of analysis, we shall neglect such interde-
pendence between stages of the walk by characterizing the
opportunistic walk as a memory-less stochastic process that
exhibits Markov property. This assumption, of course, limits
the accuracy of the results; however, we show later that this
approximation imposes almost no adverse impact on networks
with moderate to high density.

Due to its continuous nature, physical distance cannot
directly be used to define the state space of a finite-state
Markov chain. As a result, we first quantize the distance with
a fixed step size of A < r to obtain the discretized progress
towards destination. This treatment can be used in fact to
describe a finite-state Markov chain. Indeed, if D = ||zs — x|
denotes the physical distance between source and destination,
then S(s,t) = {0,1,...,Da} specifies the state space of the
Markov chain, where Da = [D/A] and |S| = m. In such
a chain, state o, € S corresponds to the set of all potential
relays u for which x,, € B(z;0,A) — B(zy; (0, + 1)A) and
Y(u,t) # &. Note that the latter assumption is required to
ensure the convergence of the expected length of the walk.

A. Specifying the State Transition Probability Distribution

Since packet forwarding is progressive in OR, a state
p € S can transit to any state ¢ € S with positive prob-
ability only if 0 < ¢ —p < ra = [r/A]. In order to
quantify the transition probabilities for some potential relay
u for s &% ¢ where ||z, — x| > r, we partition the hand-
off region ¥(u,t) into kK = ra + 1 mutually exclusive
subregions {W!o, Wt ..., ! |} (see Fig. 1) such that
UMWt = W(u,t). If o, denotes the state of the Markov
chain to which node w belongs, then a potential next hop in
subregion W', := B(x; (0y + 1+ 1)A) — B(xy; (0 + 0)A)
corresponds to state o, + ¢ of the Markov chain, for any
0 < i < k. The Markov chain transits from state o, to o, + 1
if the following conditions are fulfilled by the end of next
transmission trial:

e  Some potential next hop for u in !, has successfully
received the packet from u; and

e for all i < j < k, either
o there exists no potential next hop for u in !, j5
or
o no successful transmission is made to any
potential next hop for w in \Ilzj.

Define ¢}, := X NW!, to be the set of potential next hops
for u in the ™ subregion, and let &', C . denote the set
of potential next hops for w in !, which successfully receive
the packet from u. Then,

Pr{€,; # @ |y(ut) # 2} =
Pr {EI node v s.t. ¥, € ¥, ! Y(u,t) # @} X
Pr {successful transmission from u to v} . (1)

In the following, we provide some insights as to how the
terms on the right-hand-side of Equation (1) can be evaluated.

1) The Existence of a Potential Next Hop: Depending on
type of the underlying point process according to which nodes
are distributed in the RGN, the probability of existence of a
potential next hop in each subregion of W(u, ¢) can accordingly
be quantified. Without loss of generality, in the following, we
focus on a stationary Poisson point process with intensity p.
In this case,

1 —exp(—p|¥!])
—exp (=p|¥iun|)

Pr{vy; # @|y(ut) # 2} = 1 )

where |U(.)| denotes the Lebesgue measure of the (sub)region.

The explicit evaluation of (sub)regions is not straightfor-
ward. Fig. 2a belongs to a 2-D example in which the areas
of subregions are numerically calculated. As clearly seen, the
probability of finding a potential next hop in farther subregions
grows with the relay’s distance to the destination (lower
curves). In contrast, it becomes less likely to find a potential
next hop in closer subregions as the relay goes farther from
the destination (upper curves). Such a monotonic behavior
indicates that it gradually becomes harder to find a potential
next hop along an opportunistic walk closer to the destination.
In other words, the walk’s tendency to remain in its existing
state increases when it comes closer to the destination. From
Fig. 2a, it is perceived that for a fixed destination ¢, a relay u
has the lowest chance to find a potential next hop in its farmost
hand-off subregion when ||z, — x| — rT. As ||z, —x4|| — oo,
however, this probability monotonically increases while being
upper-bounded by a horizontal asymptote. We will refer to
these limiting cases as r-distance and oo-distance, respectively.
Fig. 2b illustrates the r-distance and oco-distance probabilities
of finding a potential next hop in each of the 400 hand-off
subregions for a relay with r = 40.

In the light of these observations, henceforth, we shall
confine our attention to the behavior of the system exclusively
for the two limiting cases. In the following, we briefly review
a well-established model for assessing link quality.

2) The Packet Reception Model: Aside from the existence
of a potential next hop v for a relay w, it is also important
to see how reliably u is be able to pass the packet to v. The
successful transmission from u to v relies on many physical
and environmental factors. Contrary to the common assump-
tion of idealized perfect-reception-within-range in wireless
networks, it is widely known that the packet reception rate
largely depends on the ambient noise and the distance to the
transmitter. A realistic framework for modeling the probability
of successful packet reception is presented by Zuniga and
Krishnamachari [16] in which the collective impact of the
important radio and environmental parameters are considered.
The model suggests the following formula for the probability
of packet reception over distance d:

fo(d) = <1—;exp <—Z§2>)8€7 @

where /¢ is the size of the transmitted packet in bytes and
~(d) is the SNR measured in dB at distance d from the
transmitter which can be evaluated independently knowing the
transmitting power, noise floor and path-loss exponent. Based
on this model, Fig. 2c depicts the probabilities of successful
reception for 40 packet transmissions (each bubble represents
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Fig. 2: The behavior of model components with respect to distance

an individual transmission at the given distance) where the
distance between the transmitter and receiver changes from 0
to 40 m. The packets size is 400 bits and the noise standard
deviation is 4.0. Denoting the average distance of points on
Ut to x, by d(u,t; i), Fig. 2d shows a Monte Carlo simulation
of the limiting probabilities of successful transmission to

imaginary potential next hops in 400 hand-off subregions.

Adopting the foregoing model for packet reception, Equa-
tion (1) can be approximated as follows:
Pr{¢,; # @ |v(u,t) # o} ~
Pr{yl; # @|v(u,t) # @} x fp (d(u,t;4)) . ()

Fig. 2e clearly shows that this probability is higher for all
subregions at co-distance than in r-distance.

B. The Limiting Transition Distributions

Putting all together, the probability of transition into state
oy + ¢ from state o, provided that relay w has at least one
potential next hop, can be evaluated as follows:

Pr {Sn+1 =0y +1 ’ Sy = Ou, w(u,t) 7é @} =
(1= Agiy) Aigrp—1) + Lmg Ao -1y » (5)
where Agpy = Hf:j Pr {ff” =9 | Vi) # @}. The last

term on the right-hand-side of Equation (5) reflects the case
where no potential next hop for u successfully receives the

packet by the end of last transmission trial, and a retrans-
mission has to be made from u. This contributes towards
augmenting the probability of self-transition into state o,.

Note that the latter term could be neglected if EHC is the
quantity of interest (instead of ETX). In fact, the difference
between TX and HC arises from the impact of retransmissions.
Such an effect can be omitted from our model assuming that
by the end of each transmission trial, at least one potential
next hop successfully receives the packet. Note that in such
a case, A¢;p—1) = 0. However, in order for Equation (5)
to remain a valid probability distribution, Equation (4) needs
to accordingly be adjusted to disregard the case when the
given probability is set to zero for all hand-off subregions
at the same time. In that case, the probability of that event
would proportionally contribute towards the probability of
other events, as follows:

(1= Agay) X Agg1 -1 .

Prigun =outil} = (1= Awk-1)

(6)

Computing the exact transition probabilities for all po-
tential relays at distances from 7 to oco takes substantial
effort. Fig. 2f illustrates the transition distributions for states
corresponding to the two limiting distances (denoted by p,- and
Hoo). As clearly evident from this figure, although the pace of
approaching the destination state is faster with p, than with
.-, the difference between the two transition distributions is
insignificant. With this remark in mind, we can approximate



(a) Markov chain demonstrating the progress towards an arbitrary destination along an opportunistic walk
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(b) The block structure of the transi-
tion matrix [P]

Fig. 3: The induced finite-state Markov chain and its corresponding transition matrix for an arbitrary random geometric network

the transition matrix of the Markov chain by assuming r-
distance and oco-distance transition distributions for all states
on the chain. In the following subsection, we discuss this
process in more details.

C. Constructing the Approximate Transition Matrix

Before getting to analyze the limiting transition scenarios,
we first need to present a formal definition for a potential last
relay on an opportunistic walk.

Definition 6. We say a potential relay w for s & t is a
potential last relay for s 2 t if x,, € B(xy;r).

In Fig. 1, node w is a potential last relay for any node
y on y X% t where ||z, — z4]| > ||zyw — x¢||. Naturally, a
potential last relay w is able to reach destination ¢ in finite
time even if there is no additional potential relay y for which
lzy — x¢|| < ||zw — x¢|. Among all potential relays for a
certain opportunistic walk, only those that are not potential
last relays (potential non-last relays) can have hand-off regions
with exactly k subregions

In order to obtain an upper-bound and a lower-bound on the
expected length of walk, we respectively use the r-distance and
oo-distance transition distributions for all states corresponding
to non-last-relays, i.e., the first m — k states of the Markov
chain. The transition distribution over the last %k states, how-
ever, is entirely different due the fact that relays corresponding
to those states have less than k subregions in their hand-off
region. For simplicity of analysis, we assume that a potential
last relay is always able to reach the destination using O(1)
transmissions. This simple assumption help eliminate some
computational difficulties of the problem. Note that we can
later relax this assumption by calculating the mean number
of trials a potential last relay incurs (using Equation (3)),
and adjusting the results accordingly. For the sake of brevity,
however, we shall omit this part from our analysis.

With an identical transition distribution for the first m — k
states, if 7,7 € S denote the states of two potential non-last-
relays, then the probability of transition from ¢ to j, denoted
by P; ;, depends only on j — 4. In fact, we can write:

Hj—i Oéj_i<k7 J#mv
Pj;=4q1 m—k<i<m, j=m, @)
0 Otherwise .

Using Equation (7), a finite-state Markov chain as depicted
in Fig. 3a can be constructed for demonstrating the steps
taken along an opportunistic walk on a RGN. The transition
matrix, [P], for such a Markov chain demonstrates a structure
as depicted by Fig. 3b. From this figure, it is evident that
the upper part of [P] comprises a Toeplitz-like structure. As
we shall shortly see in the following section, this particular
structure exhibits many useful properties that can be used for
simplifying our solution to the problem at hand.

IV. THE EXPECTED LENGTH OF OPPORTUNISTIC WALKS

The Markov chain illustrated in Fig. 3a contains m states
among which state m — 1 is absorbing and the rest are all
transient states. The source and destination correspond to states
0 and m — 1, respectively. It is clear that, for any finite value
of m, the chain would eventually be trapped in state m — 1 in
finite time. The performance measures ETX and EHC can be
regarded as the expected length of opportunistic walk between
ending states (assuming Equations (5) and (6), respectively
for transition distributions), which is, in fact, the mean time to
absorption for the induced finite-state Markov chain. Letting
Tp—1:=inf{t > 1: X; = m — 1} be a stopping time, the
mean time to absorption can be computed recursively as:

TQZE[Tmfl}XOZO} :1+me,1)j7'j. (8)
jE€S

Following similar logic for all other intermediate states,
we can construct the following system of linear equations:
T = €&y + [P] X T, in which &, = (1,1,...,1,0)" € R™.
Note that the last equation of this system has the vacuous form
of 7,1 =0+ Tsp—1, wWith 7,,,_1 = 0. In order to solve this
system, we let [Q] be the same matrix as [P] with its m™ row
and column removed. Thus, we obtain:

r=(I-1@)  xemt, ©

where [I] is the identity matrix and e,,_1 € R™~! is a vector
of all ones. Direct calculation of the given inverse matrix is
inefficient, especially where [@)] is large when it might become
numerically singular. Nonetheless, we next present a series of
useful insights that make these computations much faster and
easier.

Lemma 1. Let [P] be an upper-triangular row-stochastic
matrix as depicted in Fig. 3b, and Q] be the same matrix



as [P] with its last row and column removed. Then, matrix
[1]—[Q) is invertible, and ([T|=[Q]) " = lim, o0 Y7 [Q7] .

Proof: [Q)] is upper-triangular and thus, all its eigenvalues
are on the main diagonal. The elements on the main diagonal
of [Q] are inherited from the main diagonal of [P]. Thus,
the eigenvalues of [Q)] are, in fact, the probabilities of self-
transition into the transient states of the induced Markov chain
and thus, are strictly less than one. Hence, [I] — [Q] is upper
triangular with nonzero elements along its main diagonal. This
implies that [I] — [@Q] has a nonzero determinant and thus, is
invertible. On the other hand, the spectral radius of [Q] is less
than one, guaranteeing the convergence lim,, . [Q"] = [0].
The rest of the proof easily follows by multiplying both sides
of the given equation by ([Z]—[Q]) # [0] and simple algebraic
cancellations. ]

Lemma 2. The mean time to absorption for the finite-state
Markov chain with transition matrix [P] specified according
to Fig. 3b is obtained as: T = lim;_,o j - € — f;& [P s
where [P?]. ,,, denotes the m™ (last) column of [P'].

Proof: [P] is a row-stochastic matrix and thus,
[P] X e,, = ey,. By induction on 3, it is easy to observe that
[P'] X e,, = e,, for all i > 0. Therefore, powers of [P] are
also row-stochastic matrices. Using Lemma 1, we can rewrite
Equation (9) in the following form: 7 = 7~ [Q°] X €,—1 .

Note that [Q'] X e,,_1 is a vector derived by summing
up [Q'] along its rows. We know that [Q] is formed by
eliminating the last row and column from the upper-triangular
row-stochastic matrix [P] whose last row consists of only zero
entries, except for [P],, ,,,. Therefore, [P'] = [Q'] for all i > 0,
where = signifies a one-to-one equivalence between corre-
sponding elements of the two matrices. Thus, for every row
1<n<m, Z;n:ﬂpzl]n,q = ZZL:? [Ql]n,q + [Pz]n,m =1,
which implies that [Q'] x e,,—1 = e, — [P’].m. That is
to say, the first m — 1 elements from the two sides are
equal. Also, since state m — 1 is absorbing, [Pi]mym =1,
for all ¢ > 0. This gives 7,1 = 1 — [P,m = O,
which is obviously true. Consequently, it is obtained that
T = Zzo (em - [Pl]:,m) - 11m]~>oo] *€m — 5;01 [PZ}:,ma
which completes the proof.

Using Lemma 2, finding the mean time to absorption in the
induced Markov chain is reduced to calculating the sum of last
columns of [P?]. However, thanks to the special structure of
[P], we are able to further simplify the process of calculating
these columns using the following lemma.

Lemma 3. Given an upper-triangular row-stochastic matrix
[P] described according to Fig. 3b with vectors p and X, for
every ¢ > 0 we have:

) — %1 A - )
[PZ+1}n,m = <N * A 9i+n
1 m—k<n<m,

1<n<m-k,

where ,H*i is the flipped version of the i"-fold self-convolution
of p, and A(p,.1y is vector A right-padded with ¥; := i(k—1)

— %1

one-entries to comply with the length of p”™".

Proof: We consider two cases separately.

Case 1: 1 < n < m — k: The proof is by induction on %.
If i = 0, then [P],m = (p*° */\{0;1})0+n = A\, , which is
true. Also, if 1 = 1:

[Pz]n,m = Z;nzl[P]n,q : [P]qﬁm
= Z;nzl Hq—n - Aq
= Z;nzl :D’nfq : )‘q
= Z;nzl Fin—q - ()‘{191;1})191+q
= (/3, * A{ﬁl;l})ﬂﬁ-n .

Let us assume that the given statement holds for 7 = j > 1.
Then, for ¢ = j + 1 we have:

[Pj—H}n,m = Z;nzl[P]n,q ) [Pk]qym
= (ﬁ* ("= *’\{0171;1}))
- (ﬁ ’ *)\{ﬂj;l}>ﬁj+n
Note that ﬁ*j can be arbitrarily longer than A. This is why A

has to be one-padded at the end at least to the length of ﬁ*j
to ensure that no information is lost.

j—11+q

9j+n

Case 2: m—k < n < m: The proof easily follows noting
the fact that [P] comprises only zero entries on its lower part;
except for the ones along its last column. Thus, the lower part
of [P?] remains unchanged for all i > 0. [ |

There are some subtleties involved in selecting appropriate
vector indices in Lemma 3. Such complications arise from
the fact that convolution does not preserve the length of

input vectors. In particular, the convolution (,D*i * Afg;:1}

produces a vector in which indices 1 + i(k — 1) through
m — k +i(k — 1) correspond to the first m — k elements
on [P']. m.

According to Lemma 3, for all powers of ¢ > 0, the
last k elements on [P?].,, are always one. Consequently,
by Lemma 2, it is entailed that the expected length of an
opportunistic walk is always 1 from a potential last hop to
destination and O from destination to itself, which are intuitive
based on our assumptions. In the following, we shall exclude
these quantities from our computations, merely focusing on
the expected length of walks from potential non-last relays
to destination, i.e., the mean times to absorption for the first
7 = m— k states which we denote with vector 71, henceforth.

Theorem 1. The expected length of opportunistic walks from
potential non-last relays to an arbitrary but fixed destination
in a RGN is bounded by the mean time to absorption for
the induced finite-state Markov chain with limiting transition
probability vector u, that can be computed as:

Ty = Jim j-en =707 (x;) - (10)
(j_l)'y[l](k{gjﬂ}) 1=1,
an

'9[1’] ()\{5],;1}) 1> 1.

where,

Xj[l] = < 1 _y[z}_l(ﬂ{ﬁj;o}) )*

1 — (b, 0)




Proof: Using Lemmas 2 and 3, we are able to express
the mean time to absorption for the potential non-last-relays
as an infinite series of serial convolutions. However, evaluating
such a series is somewhat tricky, because different ranges
of indices from each convolution term are useful in our
computations. Nonetheless, with sufficient padding, we are
able to appropriately align the variable-sized vectors so as to
be able to meaningfully add them together, and then select
the desired range from the sum at the end. For this, we first
note that the desired range of indices for the i convolution
term starts at 1%;; a quantity that grows with i. Also, the i
term is longer in length than all the previous ones. Therefore,
if we want to choose the appropriate range of indices after
performing the summation, we must right-align all convolution
terms before adding them together. Alternatively, instead of
using a flipped version of p in our computations, we are able
to use the original version of p with sufficient zero-padding
on the right-side in self-convolutions and then do a regular
summation on them. The resulting vector, however, would be
the flipped version of what we are looking for. To obtain
appropriately aligned vectors, we make sure to zero-pad each
term to the length of the longest convolution term'. Therefore,

j—2
(D mh,01) * Mgy (12)
i=1 9;+1:9,4n

=1 T . _
T(w = im J-en

Using a discrete Fourier transform, we can convert the big
convolution term inside the brackets into product to further
simplify Equation (12). From harmonic analysis, note that
the time-reversal of a given vector produces the conjugate of
the corresponding version in the frequency domain. With this
remark in mind, we construct vector x; as follows:

. *

Xig = ]iyfé] (o)) *Za (M) 13)
i=1

whereby we shall be able to have vector ol backflipped to its
right order after taking the inverse transform later on. Since
p is a probability vector, u; < 1 for all 1 < ¢ < k and
> mi = 1. Also, we have |.Zj(n)| = 1 and |Z;(p)| < 1
for all ¢ > 1. Therefore, Equation (13) is a geometric series
whose elements converge to the form given by Equation (11).
From Equations (12) and (13) together, we obtain:

F(rl,) = lim F(j-en) =X, - (14)
Finally, taking the inverse transform yields Equation (10). W

The transition probability vector g is, in fact, a mass
function. In statistics, the Fourier transform of a PMF is often
referred to as characteristic function which exhibits many
useful properties. The power of Theorem 1 lies in its ability to
provide bounds on the expected length of opportunistic walks
using only the characteristic function of the limiting transition
distributions, i.e., p, and froo.

V. SIMULATION RESULTS AND VALIDATION

We present simulation experiments to verify the correctness
of our proposed model for the expected length of oppor-
tunistic walks in RGNs. To this end, a version of OR [14]

'We denote p (9;:0} when vector p is zero-padded to a final length of ¥¥;.
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is implemented in OMNeT++ [17], the discrete-event simula-
tor. To ensure closeness of simulation results to reality, we
have borrowed the simulation configuration from empirical
measurements on MICA2 motes reported in [16], [18]. Using
this setting, nodes are able to cover a radius of up to 40
meters with their radio. Nonetheless, for a lossy channel, as
demonstrated earlier in Fig. 2c, the chance of successful packet
reception is practically zero farther than 25 meters away from
the transmitter.

Fig. 4, depicts ETX as a function of distance between
source and destination, for two different node densities. The
upper and lower lines show the analytical bounds computed
from Theorem 1 in MATLAB™ , whereas the middle curves
show the simulation results in OMNeT++. In the simulation
setup, each experiment includes transfer of 1000 packets
between an arbitrary source-destination pair located at a certain
distance from each other varying from 40 m to 220 m at steps
of 10m. For a higher fidelity, each simulation is run 100
times with different random seeds and the average is reported.
Also, the error bars demonstrate the standard deviation for
each simulation experiment. As clearly seen from Fig. 4, there
is a perfect match between the simulation results and the
analytical model. For sparser networks, however, although the
simulation results demonstrate larger variations, the overall
trend is accurately captured by the proposed model.

For an analysis of EHC, we simply ignore the effect of



retransmissions due to poor channel quality. A reevaluation
of the limiting transition probability vectors w, and i
according to Equation (6) is needed to suppress the effect of
self-transitions due to packet loss. Fig. 5 depicts the expected
hop distance of nodes at physical distances given along the
x-axis. Similar to the previous experiment, the model again
exhibits a promising ability to capture the precise behavior of
HC in all scenarios.

As previously discussed, Theorem 1 expresses the expected
length of the walk as a limit to infinity. The limit variable (7)
indeed determines how many powers of the transition matrix
[P] are taken into account in order for approximating the
output vector 7. In our simulations, we verified that setting
j = 40 is sufficient to guarantee a relative error of less than
0.01% in most cases.

VI. SCALABILITY ANALYSIS OF PROXIMITY-BASED
SOCIAL NETWORKS

In this section, we briefly discuss a simple application of
the proposed model in examining the scalability of networks.
Before we proceed, let us present a formal description of the
proximity-based social networks.

Definition 7. A proximity-based social network is a RGN
N(X;r) in which all nodes v and v with x,,x, € X
communicate with probability proportional to D(u,v)~% for
some o > 0, where D(u,v) = ||y — 2y]|-

In Definition 7, we adopt a simple yet realistic model
for the frequency of pairwise interactions in RGNs. The in-
verse power model was first presented and verified by Latané
et al. [2] in 1995 and has been widely used in many analyses
ever since, e.g., [9]. The parameter a > 0 is the clustering
exponent that controls how restrictive the model is in limiting
the social relationships within a proximal neighborhood of
the source. For example, when o = 0, regardless of their
physical distance, all nodes are equally likely to communicate
(uniform communication model). On the other hand, as «
grows, nodes demonstrate higher tendency to communicate
with their proximate neighbors more often than with those at
the far end of the network.

In order to obtain a distribution for the probability of
having a social interaction at a given physical distance, we
continue with our 2-D network. In that case and with the
Poisson approximation, we note that the number of potential
neighbors at a certain physical distance linearly grows with
distance. Denoting the quantized distance & [n] = nA forn > 0,
we can obtain the following approximation for the probability
mass function in our proximity-based social model.

G
fom ® =p/a sl ND/A o (15)
t=0 9y =0

where D = max (D(u, v)) Vu,v is the network diameter.

One interesting aspect to investigate, given a proximity-
based social model, is the average number of hops (or trans-
missions) it takes for a typical packet to reach its destination.
We refer to such quantity as the expected social path length
which is defined as follows.
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Fig. 6: ESPL as a function of the network diameter

Definition 8. The expected social path length (ESPL) is the
expected length of the opportunistic walk to any other node
in a proximity-based social network identified with f,, that is
calculated as: E[.L] = ZSLOA Tin] X }a[n].

Excluding the one-hop neighbors from our analysis, we
can take advantage of Theorem 1 to derive a more detailed
expression for ESPL. Defining fl = fa{ﬁj;o} for dp,) > 1,
we can write:

9

BLZ = tim 3 (- £y = 7' 0) - £
=1

= lim j =Y 75 (1) %,

Jj—o0o

N

J

b |
=— = lim > A Xy (16)
: =2

r

In the following, we investigate to see how different values
of « affect the growth of ESPL with respect to the network size.
For that purpose, while maintaining a fixed node density, we
expand the network size by adding more nodes and calculate
EspL when different values of « are adopted in our social
model.

Fig. 6 illustrates ESPL as a function of the network
diameter when node density is 6.0 x 1072, The solid curves
represent the exact values of ESPL derived from Definition 8.
The dashed lines, however, are calculated from the proposed
model in Equation (16). Even though for this analysis only
the first five harmonic components have been used in the
summation (i.e., ¥; = 5), still, as clearly seen, there is a good
match between the model and the exact results.

From Fig. 6, it can be observed that as the network expands
in size, ESPL also increases accordingly. However, the growth
rate of ESPL diminishes as o increases. Essentially, ESPL
reflects the average amount of network resources utilized for
multi-hop packet forwarding and thus, is a useful measure
in the analysis of network performance. Evidently, ESPL is a
non-decreasing function of the network size; nevertheless, the
network cannot obviously sustain a continuously increasing
load forever as more nodes join in. Hence, we present the
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following definition for social networks that can appropriately
scale without significant loss in their performance.

Definition 9. We say a proximity-based social network is
scalable if E[.Z] < oo when D — oc.

Based on Definition 9, a scalable network is a type of
RGN in which the network, on average, incurs a finite number
of transmissions (or hops) for information dissemination, no
matter how large the network would grow.

A natural question arising here is for what values of o a
proximity-based social network would be scalable. To answer
this question, we note the growth of the expected length of
opportunistic walks with the network diameter from Figg. 4
and 5. Using basic regression techniques, it is easy to verify
the linear relationship between these quantities, at least for
the typical size of networks used in nowadays applications.
Approximating T(,,) &~ (3 d|,, for some constant 3 independent
of o and n, we have

D/A n2—a
ElZ]~ lim Y BA—p5x - (17)
n=0 t=0
which converges to the form
((ar=2)
EX]~pA>—-7+ (18)
AI=PR da)

for o > 3, where ((-) is the Riemann zeta function.

To better understand this result, Fig. 7 shows the conver-
gence speed of ESPL to the limiting value of 2 hops as the
clustering exponent increases. As stated earlier, note that we
only consider multi-hop communication in this analysis and
hence, the limiting value 2. According to Fig. 7, in social
networks with o > 5, regardless of the network size, nodes
barely get to communicate beyond their close neighborhood
of two hops. For a = 3, it is interesting to graphically observe
that while ESPL grows with the network size, the growth
rate is so small that even with an exponentially increasing
network size, the differences in average social path lengths
are insignificant.

VII. CONCLUSIONS AND OUTLOOK

A novel framework was presented for modeling of the
mean hop distance and average transmission count along geo-
graphic routes in wireless multi-hop networks. By introducing

the abstract concept of opportunistic walks, we were able to
unify notions of hop distance and packet transmission count.
We derived explicit tight bounds on the expected length of such
walks and used these results to identify classes of proximity-
based social networks that are scalable. The outlook for the
future includes extended applications of the proposed model
in performance and throughput analyses of wireless networks.
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