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Abstract

This work addresses the automatic construction of geometric models of t'Cal scelles,

from multi-view three-dimensional' ~ensor data.
'\

'.',

We review range data acquisition,"ulUlti-view integration, and solid modeling. We

show that knowledge about the data acquisition procedure yields not only the coordi­

nates of the acquired points, but also additional geometrical information. We use that

information to draw a geodesic proximity graph with respect to tlJI;:surface the data

points lie on. Such a graph is useful because it provides the connectivity information

necessary for subsequent differential-geometric processing, and three-dimerisional sur­

face modeling. We say that the graph is a least-commitment bounci~.ry representation,

because it does not involve the use of higher level or cognitive process~s.

We specialize the concept to the common case of line-of-sight optical sensors. We give

formai definitions of graph validity using assumptions of object opacity and object

rigidity, and we demonstrate that Euclidean proximity graphs drawn on the data

points are not valid when the data is sparse with respect to surface concavities.

We describe a sub-quadratic incremental view integration algorithm that assumes the

data is highly-organized. It guarantees graph validity under restrictive conditiqlls.,

Therefore, we present another non-incremental algorithm with no~assumption on the

input data organization. It is based on an iterative carving of the graph faces~starting

iii .'
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with the convex hull of ail points as the initial mode!. It builds a hierarchy of models,

each of which is intemal to the previous one. We test the algorithm with real data

on an object homeomorphic to a sphere, and incorporate heuristics designed to yield

more geometrically pleasing rcsults .
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Résumé

Cette these a pour sujet la construction automatique de modèles géométriques de

scènes réelles à l'aide de capteurs télémétriques.

Nous faisons une étude bibliographique de l'acquisition de données ct de la modélisa­

tion tri-dimensionnelles, et de l'intégration de vues multiples. Nous montrons que la

connaissance des détails de la procédure d'acquisition offre non seulement les coor­

données des points de surface, mais aussi de l'information géométrique supplémentaire.

Nous utilisons cette information pour tracer un graphe de proximité géodésique par

rapport à la surface sur laquelle les données sont échantillonnées. Ce graphe est utile

car il offre la connexité nécessaire au traitement différentiel subséquent, ct enfin à

une représentation surfacique tri-dimensionnelle. Nous disons que le graphe est une

représentation de surface à engagement minimum, étant donné qu'il ne requiert pas

l'usage de processus cognitifs ou de haut niveau.

Nous spécialisons ce concept au cas courant des capteurs optiques. Nous offrons des

définitions formelles de la validité du graphe en postulant des objects opaques et

rigides, et nous prouvons que les graphes euclidiens de proximité ne sont pas valides

lorsque la résolution des données est faible par rapport aux concavités de la surface
~

à modéliser.
,

Nous décrivons un algorithme incréme~tal d'intégration de données qui présume que
~.
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les données sont organisées sous forme matricielie. L'algorithme peut garantir la

validité du graphe r';sultant sous certaines conditions restrictives. En conséquence,

nous présentons un autre algor;.~,hme, cette fois non incrémentai, qui ne présume

aucune organisation particulière des données. Cet algorithme sculpte les faces du

graphe de façon itérative, avec comme point de départ l'enveloppe convexe de tous

c, les points. r,l construit une hiérarchie de modèles, chaC,un étant strictement inclus dans
\;.
~~ le précédant. Nous testons l'algorithme sur un object homéomorphique à une sphère

et nous incorporons des heuristiques afin d'obtenir des résultats perceptueliement

meilleurs.
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Claim of Originality

We made the following original contributions:

• We reviewed the state-of-the-art in range data acquisition, ll1ulti-view integra>

tion, and solid modeling and showed the connections between these disciplines.

• We determined that a least-commitment representation that retains ail available

three-dimensional data is a desirable intermediate representation for multi-view

range data Integration. We proposed the graph as sJ;ch a representation.

• We developed a formalism for the validity of a mode! with respect to its scnsing

data.

• We derived a formula for the number of labeled 3-connected maximal planaI'

maps.

• We defined conditions for graph validity based on line-of-sight sensing of objects

homeomorphic to spheres.

• We developed a sub-quadratic incremental algorithm for highly-structured range

view Integration, and gave conditions for its validity.--·

• We developed a non-Incrementai algorithm for non:structured range view inte­

gration and tested it on real data.
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Chapter 1

Introduction

• 1.1 An Automated Scene Description Tool

Many technological applications such as robotics, CAD/CAM, computer graphics, or

virtual reality, require geometric descriptions of the surrounding three-dimensional

world. Such accurate descriptions are often assumed to be readily available, thus

overlooking the difficulty of obtaining them. This thesis is a step towards the goal of

automating the task of describing a three-dimensional environment or scene.

For example, imagine a robot manipulator having to reach a point of its workspace

through an environment cluttered with obstacles. Planning a collision-free path re­

quires a map of the environment. Data files such as CAO specifications or other

pre-existing prototypes may provide geometrical models of sorne of the environment's

features. Yet these existing models may be unusable by the path-planner. They

may be inaccurate or of a too low resoiution, or their actual pose and attitude in

the environment may be undetermined. Hence actual sensing of the physical scene is

necessary to create or complement these models.

1



• 1.1 An Automated Scene Description Tooi 2
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One solution is ta manually measure and enter the three-dimensional information into

a solid modeler. The task is painstaking, repetitive and prone ta error. There are also

instances when one cannat even afford the luxury of manual data acquisitiou. For

example, a nuclear reactor is an environment tao hazardous for an operator to enter.

A small or microscopic environment, or a cavity accessible only through a uarrow

opening, as in geological exploration, makes it outright impossible for a Itumau to

perform the task.

An Automated Scene Description Tooi (ASDT) is a tool whiclt performs the scene

description task automatically or semi-automaticallYi the latter term means that

sorne operator intervention and/or guidance is necessary. !ts pUl'pose is to facilitate,

speed up, and improve the reliability of the scene description task.

~-::

In the next section, we give examples where the availability of au ASDT IS very

valuable. We begin with robotics, as it was the driving impetus behind titis work.

1····--_·················_·..·,
! l

! !
i Operator i
i i, ....................................:

Realscene ASOT Modelled
(scenels) scene

Figure 1.1 Simple ASOT input/output Relationships. Hashed lines indicate
optional paths or blocks.



• 1.1 Ail Automated Scene Description Tooi

1.1.1 Robotics

1.1.1.1 From Off-line Programming ...

3

•

•

,'.
lndustrial robots have long been programmed with the help of a "teach pendant",

whereby an operator merely guides the robot through a series of moves which are

recorded as a history of joint positions. Although simple and effective, this method

of teaching-by-showing is increasingly being replaced by off-line programming.

ln off-line programming, the task the robot must execute is described in a specialized

programming language such as VAL, AML, or RAIL, or with robot-control primi­

tives, as in ReeL (Hayward, 1984). Off-line programming frees up equipment and

improves the operator's safety because it separates the robot and the surrounding

manufacturing facilities from the learning task. Off-line simulation runs help validate

the program and allow specification of optimal parameters. Further, the task can be

easily redefined by altering the program. The program it.self can be automatically

generated from a high level task description.

1.1.1.2 ... To Scene Description

While many techniques contribute ta the realization of off-line programming systems,

the task of planning the robot motions draws on recent results of artificial intelli­

gence (Whitesides, 1985; Latombe, 1991).

Accurate digital models of the geometry of both the robot and its environment must

be available in order ta plan the robot path. In particular, the robot must "know"

the shape and location of obstacles, in order to avoid colliding with them, and of the

parts and fixtures, in arder to perform its task.
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•

•

For a given manufacturing cell, the robot parameters are usually known from man­

ufacturer's data (or they are experimentally determined), and do not change with

time. In contrast, the environment may freqllent\y change with new production runs,

retooling or rejigging. Because the ASDT decreases the lead-time necessary 1.0 de­

scribe the newer environment, il. is even more beneficial if the environment changes

. frequently.

So far we avoided the issue of local vs. global planning. The planning t.ask wc refer

to is global. It answers the question: "What steps does the robot. have to follow in

order to accomplish the desired task?" Global planning is a geomet.rical t.ask and

requires a map of the environment. Local planning, in contrast, is used t.o close the

loop inside the global jlian, and uses on-line sensor-based feedback information, rat.hcr

than off-line geometrical models. We illustrate this with sorne examples.

In a welding application, the welding head is to follow a weld line while maint.aining

a critical distance. This constraint can be met through local feedback with the aid

of various process parameters. However, local on-line information does not address

the problem of locating the weld-line, and of maneuvering the robot through the

task without collisions. Such global planning tasks require a global model of the

environment.

Robotic painting is another important robotic application, particularly for the car

manufacturing industry. As in the welding application, fine-tuning the end-effector's

distance from the painted part can be donc with sensor feedback, but gross motion

still requires a map of the environment.

Assembly is also a prevalent robotic task. Much research goes on in the area of

fine motion planning for assembly tasks (Lozano-Perez et al., 1984; Mason, 1984; De

Schutter and Brussel, 1988). The prevalence of jigs and fixtures in the scene often



• 1.2 The Component. of an A5DT

makes the environment quite complex.

5

•

•

In ail of these applications, an ASDT is a very valuable tool for global motion plan­

ning.

1.1.2 Other Applications

An ASDT can also be used in a host of other fields unrelated to robotics, whenever

a three-dimensional description is to be obtained from a physical mode!.

The medical field offers many such applications. For example, an important task is

the modeling of the human body, or parts of the human body, as in tomography,

dentistry, or prosthesis design.

Other applications requiring the one-time automated acquisition of three-dimensional

models are as diverse as geological exploration, nuclear reactor maintenance, archiv­

ing, industrial process control, or baggage handling.

1.2 The Components of an A8DT

We cali scenels the component elements of the scene 1. The definition of a scenel is

very loose, the only restriction being that a scene be comprised of at least one scene!.

A scenel may be a physical object, such as a table, or a screwdriver. Alternately,

a scenel can be any easily identifiable part of an object, such as a tabletop, or a

screwdriver shaft. Yet still, a scenel can be a combination of objects, grouped by

virtue of their physical attachment, such as a motor and itsgear drive, by virtue of

lOther researchers have used the same term to refer to sets of differential and reflectance prop­
erties associated with local scene elements (Breton et al., 1992).
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their function, such as a computer terminal and its detached keyboard, or by virtne

of their visual appearance, snch as an object occluding another one.

As shown in Figure 1.2, the ASDT itself is split into three components: acquIsI­

tion, integration and representation. Ali three are interdependent when designing an

ASDT (Hayward and Aubry, 1987), but we decouple them hereunder to expose their

salient features.

~- ..
! :
! Operator !
: :

•

,·······T·······,

ASDT
rReal· scene 1 1 l~ Data 1 Madelled 1Data Representation ..

(seenels) 1 - 1Acquisition: and 1 seene 1t........J Intcl!t'3tion

......................
3-Dimcnsionnl !

Analysis :......................

•

Figure 1.2 The ASDT paradigm. Hashed lines indicate optional paths or blocks.

1.2.1 Data Acquisition

The data acquisition phase senses the scenels' surfaces and extracts the three-dimensional

coordinates of these surfaces. Methods used to gather surface three-dimensional data

can be classified under two main labels (Jarvis, 1983). Passive methods use the tech­

niques of computer vision (Ballard and Brown, 1982; Levine, 1985; Nevatia, 1982)

and recover the desired three-dimensional information by applying any .of the so­

called shape-from-X techniques. Active methods acquire te/emetric data; their output

is trivially mappable to spatial three-dimensional information. In Section 2.1, we give

a review of the different techniques, and show how the method of data acquisition
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influences the scene description paradigm. In the system we built as a result of this

work, real data is acquired with an active two-axis synchronized triangulation-based

laser range scanner (Rioux, 1984).

1.2.2 Data Integration and Representation

Because sensor data are always noisy, the first processing task is to filter them, gen­

erally at the cost of resolution. We consider filtering to be part of data acquisition

because it encompasses many mature techniques (Pratt, 1978; Gonzalez and Wintz,

1977), and because it is best tackled when knowledge about the sensing mechanism

is taken into account.

Instead, the data processing task we concern ourselves with is that of dat?., integration.
,,\

For a given scene, a data acquisition sequence generally yields sever;!J,jata sets,
'-".

with each set coming from a different data source. Each raw data set must then

be correlated to the others in order to arrive at a global description of the scene. We

distinguish two types of data integration:

Sensor fusion This term usually refers to the case where multiple sensor readings

reduce the uncertainty associated with each. It is common to treat each reading

as the value of a random variable and to deduce the most likely estima,te for

the underlying physical parameter using Kalmann filtering techniques (Durrant­

WhY~!l, 1987; Moutarlier and Chatila, 1989). When different sensing modalities
~\\-

are used, it is common to use prlldiction-verification paradigms (Aggarwal and

Magee, 1986; Krotkov and Kories, 1988).

"
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Multi-View Integration In general, it is necessary to position the sensing appara­

tus at severallocaticns in order to completely acquire the desired scene. For ex­

ample, opacity prevents optical sensors from "seeing" beyond occlusions. Bence,

several optical sensors "Iooking" at a given scene but from different locations

acquire different but complementary information. In this case, the data sets

must be put in mutual relation, or integrated. In particular, we must establish

data conneetivity. In Section 3.1, we give a full review·of existing techniques for

doing so.

A major contribution of this thesis is how to accomplish the integration task

by incorporating information about the data acquisition procedure.

Finally, data representation, or data storage, refers to the maintenance of the filtered

and integrated data into a digital computer. The main (and often conflicting) objec­

tives of the many forms of data representation are ease of input, compactness and

ease of use. Solid Modeling is the field that studies these issues and we review it in

Section 2.2. Because the data integration algorithm depends in a large part on which

representation one chooses, dataintegration and data representation are displayed

together in Figure 1.2.

1.2.3 Global vs. Incrementai Processing

Figure 1.2 features an optional feedback loop around the ASDT. When the loop is not

active, we say that the scene description process is global: Ali data sets are acquired

hefore the ASDT huilds the mode!. When the loop is active, the scene description

process is incremental: intermediate models are huilt after each data set acquisition.

The incremental property 2 is in general desirable because the evolution of the model

2Also called on-line property in the Computational Geometry literature.

..~
/)
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trough successive sets of data is better controlled. First, it allows the use of a stop­

ping criterion for the number of data sets to be acquired and integrated, based on

the quality of the current mode!. The fit can be purely empirical and based on the

judgment of the operator, or an analytic test for model convergence can be estab­

lished. Another advantage orthe incremental property is that the data may not ail

be available at once. In this case, it is preferable to build a model with only partial

information, and to complement the model whenever new information becomes avail­

able, without having to rebuild it from the ground up. As we see in this work, not

al! integration algorithms possess the incremental property.

1.2.4 Three-Dimensional Analysis

Figure 1.2 features an optional post-processing block labeled three-dimensional anal­

ysis. ft refers to the process of isolating and describing the subcomponent shapes,

notably by isolating the discontinuities in the surface data. Three-dimensional anal­

ysis is a large field (Ferrie, 1986; Besl and Jain, 1988; Leclerc, 1989; Ferrie et al.,

1990). It leads to a much more concise representation for the scenels, while still cap­

turing their major features. Object recognition (Besl and Jain, 1985; Lowe, 1987; Fan

et a!., 1989) is a typical example of an application requiring compaction into such a

terse mode!. For reasons of tractability, three-dimensional analysis is also generally

performed for most of the applications mentioned in Section 1.1.1.

We consider three-dimensional analysis to be outside the scope of the ASDT. The

ASDT's function is to output a faithful, rather than compact, model of the scenels. In

this sense, the ASDT paradigm embeds a least-commitment principle, whereas three­

dimensional analysis commits to choosing significant features and shape parameters

among a large set of possible ones. Obviously, the model the ASDT outputs must be
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amenable to further three-dimensional analysis. Depending on the model's ultimate

use, three-dimensional analysis may then be performed, as indicated by the post­

processing block.

White Figure 1.2 illustrated the ASDT's paradigm, Figure 1.3 illustrates the paradigm

for which the result of three-dimensional analysis is the goal. In the latter figure,

three-dimensional analysis is performed before the resulting mode! is output. Data

integration must still be performed if data is acquired from separate sources. In

Chapter 3, we further expose why the integration procedure differs in both paradigms,

as a resuIt of their different objectives. Finally, note that the optional incremental

loop is also featured in this paradigm.

Real scene I----+~~ Daia Data 3-Dimensional ~-+---+lModelled
(scenels) Acouisition Integration Analysis scene

t l
L••••••••••••••••••••••••••••••••••••••••••••~

Figure 1.3 The Three-dimensional Analysis Paradigm. lIashed lines indicate
optional paths or blocks.

This concludes the description of the ASDT's components. The next section addresses

the specifications of these components.
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1.3 The Specifications of an ASDT

1.3.1 Sources of Variation for Data Acquisition
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We first consider data acquisition. For each set of scenels that is to have its surface

scanned by one or more sensors, an infinity of different data sets can result. One

source of variation is sensor noise. Clearly, noise is undesirable and is directly related

to the type of sensor in use. Yet noise is always present, as no sensor reading is

perfectly repeatable, but rather is a random variable. In the following discussion, we

disregard noise to concentrate on the other sources of input data variation one has

control over, given a particular sensing device.

We assume that the data is in the form of discrete three-dimensional points that lie

on the surfaces of the scenels. In Chapter 2, we show that this assumption is con­

sistent with both direct and indirect methods of three-dimensional data acquisition.

The points are a spatial sampling of the surface under consideration. The finer the

sampling, the more faithful the output mode!. Sampling size is fully under control

of the operator, up to the resolution of the sensing device. Hence sampling size is a

controllable source of variation. Another controllable source of variation is the extent

of the scene acquisition. Namely, a choice exists as to which scenels and which scenel

parts are to be acquired. Other controllable sources of variations for sensing are where

to position the sensors, how many independent readings to take, etc...
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1.3.2 Consistency of Data Integration
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A given scene may give rise 1.0 many different data sets, because of the aboye­

mentioned sources of variation. Figure lA illustrates the ASDT processes more for­

mally. S is the set of possible wodd scenes, and D is the set of < v, IV > pairs

where:

• v is a three-dimensional vector expressing the position of a scene! surface point

in a wodd reference frame W,

• w is a composite structure containing information about the type of sensor used

1.0 acquire v, and the sensor's position and attitude with respect 1.0 W.

Each sensor-acquired surface point yields a < v, w > pair and constitutes a datum

for the purposes of this presentation. Thus, datum < v, w > is distinct from datum

< v, Wl > if w =f Wl. As this work illustrates, the sensor-related details w of how the

value v is derived contains invaluable information that can be used during the later

data integration stage. From the above discussion on the sources of variation of the

data acquisition procedure, we model data acquisition as a one-to-many relation :F

from S 1.0 P(D), where Sand D are defined as above, P(D) is the power set of D,

and (8 :F d) if and only if il. is physically possible 1.0 obtain the set d E P(D)

by sensing the surfaces of the scene 8 E S. We also model the data integration and

representation procedure as a mapping g from P(D) 1.0 M, where M is the sets of

models available with the chosen representation. d g m if and only if the integration
'j

algorithm outputs the model m E M given the data set dÉ P(D).

We also define the subset SI c S of ideal scenes. An ideal scene is a scene that can
\~' {~

be modeled exactly by a model of M. Since S is the set of real scenes, theprobability
p .

that a given scene belongs 1.0 S' is zero. Note that the larger the expressive power

;;:
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of the chosen representation is, the larger S' also is. Then we define the "natural"

bijection B from l'v! to S', which to each model m E M associates the ideal scene

s' E S' which m mode!s exactly.

We are now ready to define representation consistency. We say that the mode! m is

a consistent representation of the scene s given a particular data set d acquired on s

(hence s :F d) if and only if

• s pen)

b

•

Figure 1.4 Illustration of:
• The set-theoretic relations between the ASDT's components.c. The ASDT's consistency condition. If s' :r d (shown as a thick hashed arrow in

the figure) then m is not a consistent representation of s.

In other words, the consistency condition guarantees that if the real scene s was

replaced by an ideal instance B(m) of the model m output}y the A5DT, then the

same data acquisition procedure could still be performed on that instance and yield
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exactly the same results d, up to noise. Although consistency does not guarantee any

degree of "goodness" for the resulting model m, it is a predicate that partitions M

into acceptable and unacceptable models for s, based on physical characteristics of

the scene and of the acquisition procedure. An inconsistent model ni' is so because

the physical characteristics of data acquisition predude m from being an exact model

for th"sç"ne at hand. We also say that the data integration and representation step,

and by extension the ASDT itself, is consistent if and only if

Vs E 5, 'Id E P(D) ,

s:Fd

1\ =- B(m):F d,

Q(d) = m

•

•

meaning that a consistent integration and representation stage outputs consistent

models for ail scenes and for ail data acquisition procedures. ASDT consistency

places a limit on the amount of distortion the model can ever introducc. The limit

is that if the real scene was to be replaced by its model, and measurements were to

be made on the model, while following the same acquisition procedures as for the

original data, then the same numerical data should be obtained, up to measurement

errors.

This formai definition of consistency is the basis for the data integration methods

we develop in this work for the case of telemetric range finders. These set-theorctic

concepts are illustrated in Figure lA.

1.3.3 A8DT Efliciency

, The ASDT must acquire and model scenes in a "reasonable" amount of dock time,

as hours or even days taken on building a single ,scene seriously restricts its use.
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Yet, unless one is modelling time-varying objects, such as people milling about in a

room, "real-time" is a clearly desirable but not generally essential specification for

an ASDT. Hence a good compromise is that the ASDT be able to model a scene in

minutes, or tens of minutes at most. This is the assumption we base our discussion

on in Chapter 2, when debating the practicability of different techniques. The speed

of the first step, data acquisition, depends almost entirely on the sensing device and

will not be addressed beyond the review given in Chapter 2.

The speed of the data integration step, in contrast, depends on the integration algo­

rithm used. We measure it both in terms of actual dock time used on a particular

platform and in terms of the number of necessary symbolic operations with respect to

the size of the input data. In this thesis, we develop worst case asymptotic complexity

relationships (the "big 0" notation), as weil as empirical expected performance for

the algorithms we describe.

1.4 Methodology

ln the previous sections, we exposed the need for an ASDT, and we described its

components. Then we argued that the ASDT must:

1. Output a least-commitment representation. Such a representation retains

all available information and delays choosing between competing compacted

models until a later three-dimensional processing phase. This is in part because

the choice of optimal compacted representation depends on the model's ultimate

use, which in turn depends on the particular application (Requicha, 1983).

The least-commitment representation provides an intermediate representation,

amenable to further compaction into a more structured one. In Section 2.2, we
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introduce representational issues, and further discuss this point.
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Another aspect of the least-commitment principle concerns the representation

of uncertainty. Unless the representation's language allows for the explicit en­

coding of uncertainty, arbitrary choices must sometimes be made between COIll­

peting equally-plausible models. In this case, we favor maximal-volnme modcls.

The reason stems from the model's likely uitimate use. Most of the applications

we detailed in Section 1.1 require sorne degree of collision-avoidance bet.wecn

objects. Models which contain the objects they represent arc said to be conscl'­

vative and are therefore preferred for obvious safety l'casons.

2. Perform multi-view integration. Because acquiring the thrce-dimcnsional

surface data of a given scene requires several views, an essential component of

the ASDT is the integration of these views into a view·independent mode!. The

integrated model is expressed in a world-reference frame, and includes the data

from ail views.

3. Incorporate knowledge about the sensing modality at the data inte­

gration stage. Three-dimensional data acquisition is still an elllcrging tecllnol­

ogy (See Section 2.1). Many techniques exist,and use differcnt working princi­

pies. Although these technologies are constantly improving, three-dimcnsionul

data acquisition is overall a rather slow and imprecise process. IL follows that

in an unstructured environment where little a p7'iol'i information is available,

one is often limited to acquiring spal'se surface information.

With such data, surface connectivity is difficult to establish: this is known

as the "connect-the-dots" problem and is illustrated in Figure l,.5 for u two­

dimensional contour. In the figure, the contour forms the boundary between

the object and the free space, and a line-of-sight sensor samples 'the contour

with discrete points. The underlying contour connectivity between the sampled



• 1.4 Mcthodology li

•

•

points cannot be established on the basis of their coordinates alonc.. However,
-

it can be approximated if the geometry of the line-of-sight segments is taken

into account, as we show in this work.

In Section 3.1.2.3, we review existing methods for determining connectivity

between surÎace points, in both the two- and three-dimensional cases. In later

chapters, we propose a general paradigm to determine point connectivity, which

considers not only the raw data, but also the way in which that data was

acquired. Namely, we use the additional information offered by the knowledge

about the data acquisition procedure, in order to infer point connectivity. For

this reason, we say that we use the knowledge about the sensing modality at

the integration stage. The next paragraphs expound on the point.

"'.
Pl·

P2

Figure 1.5 A two-dimensional connect-the~dots problem. Pl, P2 and P3 are three
camera positions. The connectivity between the sampled contour points cannot be
determined from the points' coordinates alone.

As explained in Section 1.3.2, we assume each datum is a < v, w > pair. The crucial

information contained in the structure w is a (possibly implicitly encoded) region of

)i
~
'.
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the three-dimensional space that is known to be free of any obstacle or scene! by

vil'tue of the physical data acquisition procedure. This region naturally includes the

physical location of the sensor itself, as weil as a visibili/.y l'egion 3 E, where E lies

"between" the sensor and the scenel being sensed.

In the case of contact sensing, for example, E is empty, so the frcc-space region

encoded in w is simply the physical space taken by the sensor. ln the case of optical

sensing, which is of particula('nterest for this work, E includes one or more directed

line-of-sight segments joining the imaging system's optical center(s) to the surface

point v. Obviously, these segments cannot cross the scene!s' surfaces, fOI' if they did,

the scenel would not be opaque. But the acquired surfaces mnst be opaque in order

to reflect light and to allow acquisition with such a system. ln other words, either

the surfaces are opaque, vindicating the assumption that they cannot be intersected

by the segments, or they are not, and the acquisition process itse!f yields spurious

information. Therefore, we assume that ail scenels of interest are opaque.

The integration procedure is then as follows: the information provided by the sensor

isolates areas that are known to lie entirely in free space. Then the loci of these

areas are refined by performing sets of geometrical tests on the data. Additionally,

the refinement process determines data connectivity, from which a representation for

the scenels is inferred in turn.

The geometrical tests use both the surface coordinates (v) and the acquisition details

(w). They are designed to guarantee that no part of the resulting mode! intersect

any of the E regions.

The output of the integration procedure is a graph whose vertex set is the the set

of surface points v, and the edge set represents the connectivity between the points.

3We employ the term visibility very loosely in this general introduction.
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Every edge of the graph must belong to at least two cycles, or faces, so that the

resulting graph is a lesselalion of a surface.

The faces of the tesselation can be modeled as patches. When the tesselation is a

triangulation, the simplest such patch is the first order approximation, namely the

planar patch. For lack of better knowledge of the differential-geometric properties of

the underlying surface, this is the representation we choose by default.

Figure l.6 iJlustrates an example on which the algorithm was run. The resulting

model is shown in Figure l.i.

~..

•
~ -::;.
~

..... ..:;:- .. '

--

•

Figure 1.6 Photograph of a pendl holder. The small pyramids are not modeled,
but are used as fidudal marks, as explained on Page 123.

1.5 How to Read this Thesis

This chapter introduced the ASDT, and described sorne of its uses. In particular,

we argued that off-line programming requires being able ta plan the robot motions,
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Figure 1.7 The resulting conneétivity graph on a set of sparse three-dimensional
surface points, as computed by the algorithm described in Chapter 5.

that planning required the existence of a model of the environment, and that such

a model is very difficult to obtain without an ASDT. Then we gave requirements

for the ASDT, and we used them to daim that the ASDT must perform multi-view

integration, must use a least-commitment representation, and ITIust make full use of

the available knowledge about the data acquisition procedure.

In the next two chapters, we do a literature review of the state·of·the·art for these

issues, namely data acquisition, data integration, and data storage. Most readers can

skip the surveys of range data acquisition and solid modelling given in Chapter 2.

Chapter 3 reviews the state-of-the-art for the multi-view integration problem and

introduces the problem this work addresses. It should be read to put the later chapters

in perspective with previous work.

Chapter 4 describes a data integration algorithm that uses an incrementa! paradigm.

We did not implement that algorithm because we believed it did not represent a good
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balance between efficiency, simplicity, and the generality of the problem it can suc­

cessfully solve. For this reason, the reader may skip C;hêpter 4 without compromising

the understanding of the later chapters.

In Chapter 5, we describe an alternate more general algorithm, which does not how­

ever possess the incremental property. We implemented this algorithm and tested it

on real data. Finally, Chapter 6 discusses the results, ànd describes further work.
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Chapter 2

Literature Review

In Chapter 1, we described the ASDT's three main issues: data acquisition, data

representation and data integration. We also argued that the relationshipcbetween

these components must be kept in mind while designing an ASDT. In this chapter

and the next, we review existing techniques to accomplish that goal.

'>~J

2.1 Data Acquisition

Sensing the scene with an apparatus capable of effecting dimensional measurements

is obviously the first step of the description process, and a host of methods exists

for performing such measurements (Beckwith et al., 1981, Chapter 11). This section

investigates and identifies candidates for use by an ASDT.

22
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2.1.1 Data Acquisition Specifications

23

•

•

A data acquisition technique must combine speed and precision, while being practical

and providing a fair level of robustness. Below, we give rule-of-thumb numerical values

for these specifications.

ln Chapter 1, we mentioned that the ASDT must complete its task in no more than

tens of minutes of dock time. This upper bound on total scene building time implies

a time bound at least as stringent on the data acquisition phase. The requirement

can e~ily he metwith current technology.

We also saw in Chapter 1 that a consistent ASDT builds models which are as accurate

as its data acquisition system allows. Hence, the latter determines the accuracy of

the final mode!. Since robotics is one of the major motivations for this work, the

accuracy of the model, and by extension of the data acquisition system, should be

at least as good as that of the robotic workstation. Most industrial robots achieve

a resolution accuracy in the order of the millimeter. This is the yardstick we use

to select viable data acquisition systems. These requirements (acquisition time and

accuracy) are roughly in line with those given in (Jain and Jain, 1989, Table 1).

Finally, an ASDT'must achieve the above requirements with a range of depth and a

field of view in the order of the meter. This measure grossly corresponds to the size

of industrial robots and of their work envelope.

.J' From these specifications, we can eliminate near-contact or contact methods.

Near-contact methods use proximity sensors, whose output depends on the sensed

material's electrical or light-reflective properties. For example, pneumatic compara-
I .>

tors, and optical flats measure dimensions with great precision and without assuming

particular properties about the objects.
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Contact methods record the displacements induced by the object' surface on a mea­

suring device. Such a device is the CMM (Menq et al., 1992; Choi et al., 1990) which

is mainly used as a manufacturing inspection tool. Recently developed miniature

touch sensors can also be mounted on robot manipulators and used to model the

environment by \Vay of groping (Allen and Michelman, 1990).

Oespite their very high resolution capabilities, both contact and near-contact devices

are too unwieldy and impractical for the purposes of the ASOT, because of the large

number of measurements (usually several thousand data) needed to model an entire

scene. As a result, the time constraints given above appear difficult to mcct, because

of the considerable set-up time involved.

Long-range optical methods, such as photometry and optieu/ te/emetl'Y, do not suffer

from these restrictions, as they permit the acquisition of a large number of data

in a short amount of time. Namely, each datum can be' acquired in the order of

microseconds to milliseconds, while overall setup time is in the order of minutes. This

is a satisfactory speed for our application. These techniques are orten called mnge

finding techniques, since they determine the distance between the sensing clement and

the points on the scenel surfaces. We review them using the classification given in

Chapter l, separating active from passive methods. We will see that active methods

are more suited to the purposes of the ASOT, but for completeness and because

of the close relation between passive and active methods, we first give a detailed

introduction to the latter.

2.1.2 Passive Methods

Passive methods are characterized by the prior acquisition of photometric or intensity

images. An image is simply a two-dimensional array of light intensity values. The
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passive methods are so called because no light is shone onto the scene. The light that

reaches the array receptors is therefore due to ambient lighting only.

Such intensity images are difficult to analyze in general because they lead to am­

biguous interpretations. They map intensity, an extrinsic characteristic of the three­

dimensional world, onto the two-dimensional image plane along the lines of a perspec­

tive projection. The task of recovering the correct interpretation for a given image

is then a formidable one since it requires that the perspective ambiguity be resolved

from the intensity cue alone.

A simplified image formation model can be written

IM(a,b) = I(x,y,z),

l'
~

where l is the illumination-refiectance operator whose range is the set of scene surface
)!

points visible to the sensing elements, and I}A(a, b) is the intensity value associated

with the (a, b)-element of the image.

Inverting the operator l then recovers the three-dimensional coordinates of the surface

points of the scene. It can be proven that this process is an ill-posed problem (Ter­

zopoulos, 1988). Nevertheless, the various shape-from-X techniques that we quickly

describe below are attempts to perform that difficult inversion.

2.1.2.1 Shape Crom Shading

These approaches compute the normal vector for the surface points that l map into

the image. Knowledge of the depth of just one point then theoretically suffices to

determine a depth map for al! connected points, by successive integration.

Horn (Horn, 1975) proved that the perceived intensity is a function of the gradient
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of the surface orientation, except at what he calls singular points, where the surface

orientation can be locally determined from the intensity. Knowledge of the reflectance

map and of the illumination model is necessary to reconstruct an approximation to

the surface map. The solution involves solving a first-order non-linear partial dif­

ferential equation and is essential1y imprecise. It also requires establishing certain

constraints, such as the sign of the second derivative at singularJpoints. However

it breaks down for sorne classes of discontinuities, such as those created by occlu­

sions. Pentland (Pentland, 1986) arrived at a more robust solution by constraining

surfaces to be locally spherical and by assuming Lambertian reflectance only, whereas

Ikeuchi and Horn (Ikeuchi and Horn, 1981) dealt with surfaces with a high speculaI'

component. Smith (Smith, 1983) proved that surfaces cannot in generiJ he cxactly

recovered from shading alone, while Ferrie (Ferrie, 1986) placed quantitative bounds

on the limitations of shading analysis .

2.1.2.2 Shape from Texture

Here, surface texture is used as a clue to derive depth. For example, so-called gradient

methods derive surface orientation from the tilt and slant parameters of the underlying

surface. The parameters are estimated from the direction of maximum rate of change

of the projection of a set of surface primitives. These methods assume that primitives

of a known shape dot the surface, and that the surface is made up of planaI' patches

of a sufficient size (Stevens, 1979; Kender, 1978). We note that the first condition

can be reliably enforced by projecting the desired patterns of light onto the surface,

lls.is done with structured lighting techniques (Will and Pennington, 1972; Potmesil,

1979; Wang and Aggarwal, 1989).
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2.1.2.3 Shape from Focus (Horn, 1968; Jarvis, 1976; Krotkov and Martin,

1986)

This method is based on a very basic optical principle: any point of the scene is in

focus for only one lens-to-image distance, and this distance is a unary function of

the distance between the point and the lens (i.e. the range.) Therefore the absolute

distance can be found by determining at which lens aperture a computed measure of

focus quality is maximized. Since a well-focused image is synonymous to a sharp one,

the existence of high spatial frequencies in the window of interest indicates a high

quality focus and hence yields the range. The range at which the focus is optimal is

found by dichotomic trial and error. Despite its simplicity, this method is slow since

the image plane must be sequentially physically displaced and the focus quality com­

puted for many possible range values in order to determine the sets of points in focus

at each position (luckily focus quality is a unimodal concave function of aperture).

Moreover, the method breaks down in the face of homogeneous regions since they are

devoid of high frequency features. This technique was found useful for special-purpose

applications, such as automated focusing for commercial cameras (Goldberg, 1982).

2.1.2.4 Shape from Occlusion Cues (Rosenberg et al., 1978)

This method infers depth relationships by building a depth graph based on the oc­

clusion evidences appearing in a segmented image. Probabilistic relaxation label­

ing (Hummel and Zucker, 1983) is used to resolve contradictions in the partially

constructed graph. Despite its elegan~e, this method suffers several drawbacks: it

is fairly complex, it only yields relative distances and it depends on the existence of

reliable occlusion clues as weil as of prior reliable segmentation of the scene.
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2.1.2.5 Shape from Stereo Disparity (Yakimovski and Cunningham, 1978;

Levine et al., 1973)

Suppose a scene surface point projects on two different image planes. The stereo

disparity, or distance between the two projections in image coordinates, is inversely

proportional to the point's distance to the image planes, or range.

This simple principle forms the basis for stereo methods. Ali such methods rely on

finding sets of feature points in the scene and matching them in the two (or more)

images. This diflicult process solves the correspondence problem. lt is usually carried

out by computing a correlation function over window pairs, with one window coming

from each of the images. Once the correspondence is established, it is a rclatively

easy task to compute the depth of various points of the scene from simple geometric

relations, since we assume that inter-camera distances are known.

As with the focusing approaches, the windows being analyzed must contain enough

high frequency components for the correlation measures to be meaningful. If large

c, areas of the scene are featureless, or if the scene's features are repeated (imagine

the case of a macro-texture), window matching may turn out to be ambiguous and

unreliable. This diflicult problem is sometimes tackled by exploiting one or more of

the following ideas:

• Not attempting to establish correspondence over windows but over chosen image

features only, such as oriented edges (Baker and Binford, 1981), zero-crossing of

the second derivative (Marr and Poggio, 1979), or surface differential-geometric

properties (Ferrie, 1986). This allows us to compute the depth of all "inter­

esting" points, whereas that of the other areas of the scene can be found by

interpolation.
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• Improving the reliability of the correlation match by using a hierarchical search

stl'ategy similar to that of Tanimoto's pyramid (Tanimoto and Pavlidis, 1975).

The idea is to perform the matching starting at a low resolution, to isolate

the matched image areas, and to repeat the process on those very areas after

expanding them to the next higher resolution (Moravec, 1979).

• Making use of cooperative algorithms which first perform matching at a lo­

cal level and then "correct" the correspondence results on the basis of global

continuity constraints (Baker and Binford, 19S1; IVIarr and Poggio, 1979).

• Bypassing the correspondence problem by the use of structured lightning tech­

niques (See Section 2.1.3.1).

2.1.2.6 Passive Methods: Conclusions

Many other meth6ds were left out from the above survey, including for example

shape from contour (Stevens, 1979; Witkin, 19S0), shape from motion (Ullman, 1979;

Skifstad and Jain, 19S9), shape from parallax (Soneira, 19S5), or shape from shad­

ows (Raviv et al., 19S9). The reader interested in a more complete presentation of

passive ranging methods can refer to the authoritative survey of Jarvis (Jarvis, 1976).

The problem with passive methods is that non-geometric clues (occlusions, texture,

blurring, etc... ), or underdetermined geometric clues (epipolar disparities, apparent

motion), are used to infer geometrical reality. As a result, ail suchmethods require

extensive and complex processing. In practice, computing shape descriptions on a

few hundred or a few thousand points (pixels) on modern computers fail to meet the

speed requirements laid out above by several orders of magnitude.

More importantly, they make serious restrictive assumptions about the observed
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world. For this reason, no such method taken in isolation can achieve a high de­

gree of robustness.

Biological vision systems provide a proof by existence that passive depth reconstruc­

tion is possible, and this has greatly motivated computer vision researchel's t.o pllrSlle

such methods. However, they have long conjectured that deriving depth maps from

intensity-based images necessitates the introduction of high-level cognit.ive processes.

if robustness is to be achieved. Not surprisingly therefore, the above-mentiolleu com.­

putational techniques fail to adequately reconstruct the three-dimensional world. 1n­

tercstingly, the numerous visual illusions we humans experiellce arc a cille t.hat wc

use imperfect, though powerful. methods to t.reat visual data, and t.he sl.lldy of nell­

rophysiology and psychophysics has greatly contributed to comput.er vision (Levine,

1985; Marr, 1982). For example, it has been shown that humans make errors in

orientation estimates based solelyon shading eues (Horn, 1975).

2.1.3 Active Methods

In opposition to photometrie images, range or telemetric images embouy an expiicit.

representation of the geometry of the scene and therefore aliow Ils to bypass the

computational1y difficult inversion of the iliumination-refiectance operator J. The

accuracy of the range information is then solely limited by the that of the sensor

since telemetric images are an intrinsic representation of the scene's geometry. In

what fol1ows we will use the terms telemetric images and range views interchangeably.

Range views are obtained through active vision. Instead of relying on ambient illumi­

nation, an active vision system shines light onto the scene at regular spatial intervals,

thus artificial1y creatirig unambiguous features that greatly simplify the processing:

the monitoring of the directed light yields two-dimensional geometrical information
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whose processing is straightforward. By placing a receiver at a known position with

respect to the emitter, the third dimension (the range) can be resolved from purely

geometric methods.

In other l'lords, the interpretation of the returned visual data is made considerably

easier by the disambiguation the added degree of control provides. The price to be

paid is the additional hardware requirement.

Methods of obtaining range data vary, both in their principle and in their implemen­

tation. Range imaging is still relatively new and for this reason it may well be that

future technological evolutions improve the feasibility of sorne of the less promising

methods described hereunder. A good survey of existing active range imaging sys­

tems can be found in (Besl, 1988). We give a brief review of these techniques beIow,

starting with the most-widely used of them, triangulation.

2.1.3.1 Range from Triangulation

Figure 2.1 illustrates the triangulation principle. A light source 0, usually a laser,

beams a ray towards a scene point P, which then refiects it back. If the surface is

Lambertian or nearly so, all directions will pick up a significant return signal. By

placing a receiver, usually a eeD camera, at Q such that the emitted and refiected

rays form a non-null angle, one can determine the distance, or range, of P from

simple trigonometry arguments: Since both the origin and the angle of the emitted

ray are known, the equation of the emitted ray is fully determined. Similarly, the

refiected ray is constrained to pass through both the center of the lens Q and the lit

camera element 1Mx, thus determining its equation. Both rays intersect at P, thus

determining its coordinates.

By choosing a coordinate system positioned at Q and whose z-axis is orthogonal to

Ir
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the image plane, we can write:

dl = z cot 0

_/ zIJ'vlz
t2=--

f
D = dl + d2 ,
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(2.1)

(2.2)

(2.3)

where D is the epipolar distance, f is the focal distance, Iiv[z is the offset of the lit

element in the camera image plane. The "range", or z-coordinate of P is thus

Triangulation range finding offers several advantages', First, it it based on a robust

principle, and avoids many of the restrictive assumptions of the shape-from-X meth­

ods. Second, it offers a fairly good accuracy, usually considerably better than 1% of

measured range. This means that accuracies in the order of the mil1imeter can be

-obtained by limiting the range to under 1 meter. Finally, because it only rcquires

geometrical computations rather than knowledge-based processing, three-dimensional

data acquisition is greatly sped up, as hardware becomes the factor limiting acquisi-

•
D

z= IM'+coto.
f

(2.4)

•

.
tion speed. Although not as fast as intensity imaging, acquisition of severa! thousand

three-dimensionaldata can usually be done in seconds or less. This point is further

discussed below.

For these reasons, we propose triangulation as the method of choice for automating

the process of scene description.

The recurrent problem encountered when using triangulation for range determination

is the missing part prob/em. Since the emitter and the receiver are not coaxial, the
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Figure 2.1 The triangulation principle.
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image perceived at the receiver does not register with the set of points illuminated

by the active lighting system. Consequently, missing parts, or shadows appear at

locations of the range image where no z component can be computed.

Shadows are illustrated in Figure 2.2 and are of two types. Type 1 shadows arise

when the illuminating ray does not refiect back to the receiver (because of object

self-occlusions.) Type II shadows arise when the illuminating ray cannot reach a

point of the object which is visible from the receiver. The smaller the angle between

the emitter and the receiver, the smaller the shadows, but also the less accurate the

measurements.

Type 1 shadows can be reduced by introducing an additional receiver (Shanu, 1984)
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Figure 2.2 The missing data problem.

whereas type II shadows can be reduced by the introduction of an additional ray

emitter (Sato et al., 1982). ln principle, there is no limitation to the number of

extra emitters or receivers that can be introduced in order to reduce the shadows to

a minimum, although total shadow elimination can never be guaranteed. Because

of the additional hardware involved, the preferred setup remains the single emitter­

receiver combination. Further, missing data are just as easily recovered by displacing

the range finder to other locations and acquiring new views.

We now turn our attention to the scene illumination method. The illuminating ray

is deflected onto selected areas of the scene with a combination of opto-electronic

shutters or of rotating mirrors. Sorne popular configurations include:

Point Triangulation (Ishii and Nagata, 1976) The original and simplestmethod.

A light spot is sequentially directed towards all sampied points. The mechanical

movements involved in directing the spot slow down the acquisition process. In

their original paper, Ishii and Nagata reported a time of almost one minute for

:.:..:-:
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acquiring a 128 x 128 image. Fortunately, recent advances in hardware have

considerably sped up the acquisition process. For example, Rioux (Rioux, 1984)

built a sensor that can acquire a similar image in less than a second.

Slit triangulation (Agin and Binford, 1976; Oshima and Shirai, 1983) This

method reduces the number of necessary mechanical movements by scanning

light slits, instead of spots, across the scene. A peak detector attached to the

camera allows to rapidly detect the set of pixels illuminated by the projected

slit. In (Oshima and Shirai, 1983), the total time for obtaining the range image

was reduced to a few seconds for a 128 x 128 image. A more recent paper by

Ozeki et al. (Ozeki et al., 1986) in which range computations are done in hard­

ware daims a processing time of half a second for a 50 x 50 image, or 3 seconds

for a 128 x 128 image.

Space Encoding Whereas point triangulation and slit triangulation require n 2 and

n distinct samples respectively for an n *n range image, structured lightning

methods cut the number of necessary samples further. Judicious encoding of the

projected patterns must be used to ensure that the correspondence between the

projected illuminant and its position on the receiver's image plane is maintained.

Altschuler et al. (Altschuler et al., 1981) describe a system that projects a set of

binary coded masks on the scene with the help of an electro-optic encoder. 10g2 n

masks are sufficient to entirely recover an n *n image. Sato and Inokuchi (Sato

and Inokuchi, 1985) use a Gray code rather than a plain binary one, thereby

making the method less error-sensitive. The bottleneck of this method resides

in the large number of digital memory accesses."necessary to store and retrieve

the patterns.

'Space encoding approaches culminate with methods that encode the scene with

a single lighting pattern. In (Carrihill and Hummel, 1985; Tajima, 1987), the
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single patterncontains varying intensity lightning subpatterns. In a general en­

vironment, however, the more robust patterns are those with only two intensity

levels, "bright" and "dark", such as the color-coded stripe patterns of Boyer and

Kak (Boyer and Kak, 1987), or the overlapping binary patterns of Vuylsteke

and Oosterlinck (Vuylsteke and Oosterlinck, 1990).

2.1.3.1.1 Other Triangulation Scanners Various techniques have been devel­

oped to improve the accuracy (Harding' and Goodson, 1986), to expand the range of

depth (Bickel et al., 1985) or the field of view (Rioux, 1984), or to realize a compact

design (Rioux and Blais, 1986). We describe the !ast two techniques below.

The Synchronized Scanner increases the field of view with a variant of the point by

point triangulation. It comprises three rotating mirrors, two of which rapidly move

in unison while the third one rotates at a much slower pace. The faster mirrors sweep

the light spot along a line, whereas the slower one increments the sweep line in an

orthogonal direction, as in the slit triangulation method described above.

The originality of this scanner resides in the addition of the second fast mirror which

moves synchronously with the first one and deflects the ray. A geometricai analysis

reveals the advantages of the setup:

• Ali light rays are returned to a single line segment and a linear sensor is then

sufficient to collect them. By comparison, a full two-dimensional camera is

needed in most other setups. The bulkiness of the ranging head is reduced.

• The light rays hit the sensor over a shorter range than they wouid using other

geometries. This permits the use of a lens with a longer focaliength, and hence

a better resolution, without sacrificing on the field of view. Alternatively, the

same resolution can be kept but with a smaller emitter-to-receiver angle. As 0
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• The short range over which the light hits the position sensor permits the use o.f

a small analog sensor, such as a lateral effect photodiode, instead of a slower

CCD array coupied to a peak detection circuit. The high dynamic range of

the former device allows capture and analysis of a 128 x 128 image in less than

half a second. In addition, such a sensor also outputs the amount of light

received, hence "automatically" yields a registered intensity image. However,

the advantages of such a sensor have to be weighed against the higher sensitivity,

the highe~ resolution and the absence of electronic drift of CCD's.

In the compact 3-D camera of Rioux and Blais, a small mask pierced with two holes

is placed in front of a CCD camera. Planes of light are shone on the scene, hit the

object, pass through the mask, and hit exactly two camera elements. The separation

of these elements is inversely proportional to the degree of focus of the object and this

automatically yields the z-coordinate of the point (the range); the absolute position

of the elements yields the x- and y- coordinates. Because of its extreme simplicity,

this camera is very light and inexpensive.

This concludes the presentation of triangulation techniques. For completeness, the

next subsections review other active methods of obtaining range information.

2.1.3.2 Range from Time-of-Flight (Lewis and Johnston, 1977; Nitzan

et al., 1981; Moring et al., 1987; Svetkoff et al., 1984)

The idea of time-of-f1ight ranging is simple: one directs a ray of light onto the scene,

and measures the elapsed time until the signal returns. Since the emitter and the re­

ceiver are coaxial, this method is immune to the missing part problem of triangulation­

based techniques. For the same reason, a registered intensity image can be obtained
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along with the range image (Nitzan et al., 1981). The availability of registered in­

tensity and depth images can prove a very valuable tool if one is to later pcrform

processing on the image, notably as a way to reinforce discontinuity clles (Cil et 11.1.,

1983).

Time-of-flight range finders meet the resolution, work envelope and specd specifica­

tions laid out in Section 2.1.1. For example, the most recent sensor designed at ERIM

offers a resolution of .25 mm over a distance of 1 meter, and can acquire 11.512 * 512

image in one second (Jain and Jain, 1989).

Time-of-flight however is hampered by the specialized hardware it requlres. The

speed of light demands electronics with picosecond discrimination. Powerful lasers,

which are expensive, bulky and unsafe, must be used in order to improve signal-to­

noise ratio. This method therefore appears to be diflicult to apply in an industrial

environment. However, should the required hardware become available at a non­

prohibitive cost, this method of obtaining range maps could become very popular,

especially if, for obvious safety reasons, the power of the laser can be kept low (below

10 mW).

A variation on the time-of-flight idea consists of using acoustical (ultrasound) rather

than light waves (Moravec and Elfes, 1985; Acampora and Winters, 1989; Audenaert

et 11.1., 1992). Even though sound waves travel considerably slower than light, thus

avoiding the drawbacks of theprevious method, they present other problems. First,

unlike light which can be made coherent, sound is hard to focus, olfering a pOOl'

resolution. For the same reason, reflections off surfaces other than the one being

gauged can easily confuse the sensor. Finally, frequent recalibration is needed as the

speed of sound is very sensitive to changes in both ambient temperature and humidity.

Yet ultrasound ranging is fast and inexpensive. Because of its higher reliability at

close range (even if still inaccurate), it has been found to be adequate for collision'. .
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2.1.3.3 Range from Moiré Gratings
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In this method, light is shone through a grating and the returned ray (after it hits the

object) passes through another grating with the same pitch. The laws of interferom­

etry (Idesawa and Yatagai, 1980) tell us that the output yields contour lines of equal

range whose spacing depends on the Moiré pitch. The method is simple and generally

offers a resolution at least as good as triangulation range finders. Unfortunately, it

only yields relative distances and cannot handie occlusions or range discontinuities.

Further, it requires a dark room and specialized optical equipment. Moiré methods

are reviewed in Reid (Reid, 19~6).

Many other specialized active methods have been described in the literature, for

example holographie methods (Tozer et al., 1985), which are used to detect very fine

surface variations. Okada (Okada, 1982) also describes a short-range active sensor

which detects range based on the quantity of reflected light.

2.1.4 Ranging Methods: Conclusions

We have reviewed the main current 3-D imaging techniques, and seen that the so­

called passive techniques are still a long way from performing with the kind of as­

surance that humans effortlessly display at the task. For this reason, we believe that

active techniques, and in particular triangulation methods are still the most promising

ones for scene acquisition. Their main drawbacks, mainly their relative slowness and

incomplete data acquisition (i.e. the missing part problem) are slowly being resolved

with the emergence of faster, more compact and more reliable hardware, as weil as

with numerous refinements of the basic operating principle.
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Finally, we note here that laser time-of-fiight is still impractical for an industrial

environment, but could turn out to be the most practical method in a decade or so,

with the emergence of faster hardware, more sensitive photo-receptors, and higher

discrimination timing devices.

2.2 Solid Modeling

We have so far seen how to obtain the raw data for the scene. However, the scene

description process does not stop there as we still have to:

1. Combine the data from the several views,

2. Convert that information to a form suitable for a computer representation.

It turns out that these two tasks are closely interrelated. For completeness, we present

in this section a review of Solid Modeling, the field of research which deals with item

2 above. Authoritative reviews on the subject can be found in (Requicha, 1980;

Requicha, 1983).

The issues involved in choosing a representation scheme are storage and computational

requirements, ease of input, and the versatility of the representation for executing var­

ious algorithms. Unfortunately, these issues are often confiicting, which is why many

schemes are in use today. Representations can be classifiedinto a hierarchy of mod­

els forming a continuum between structured (or compact ohes) and enumerative (or

redundant ones) (Hayward, 1986). The following survey prpceeds from enumerative

representations to structured ones.
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2.2.1 Volumetrie Oeeupaney Sehemes

2.2.1.1 Voxel Lists
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Each volume element is represented by one logical bit, indicating whether the element

is full or empty. This method is simple but very storage intensive since it makes no

use of object coherence. It is usually inadequate for scene modeling.

2.2.1.2 Octrees

Octrees are a compact form of voxellists which makes use of object coherence through

a recursive decomposition of space (Meagher, 1982aj Meagher, 1982b). Octree en­

coding imposes a sorting on the 3-D space in both space and size, speeding up many

operations. Since only one primitive, the cube, is used, most processing tasks bear

sorne uniformity. Finally, octree computations naturally lend themselves to parallel

processmg.

Still, the construction of octrees is computationally expensive, and much memory

is required to store the abundance of pointers. Alternate ways of encoding octrees

alleviate the latter problem but complicate the algorithms that operate on them.

Finally, the octree representation is extremely dependent on position and even more

so o~ ~dentation, making it highly non-unique.

The segment representation is an interesting volumetrie representation variant. It was

introduced by Martin and Aggarwal (Martin and Aggarwal, 1983) and corresponds to

a double discretization of the scene into equally-spaced segments. This representation

is about as space consuming as octrees are, but is much more intuitive and less

orientation dependent. It is easily constructed from a series of photometrie views

and is also easily converted to a surface representation. A major disadvantage of this
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scheme however is its poor graphical appearance on a display due to its lack of both

conciseness and structure.

2.2.1.3 Cell Decomposition

Cell decomposition comprises representations that decompose the space into instances

of a chosen primitive, such as tetrahedra (Faugeras et al., 1984), spheres (O'Rourke

and Badler, 1979), parallelepipeds (Kim and Aggarwal, 1986), or segments (Martin

and Aggarwal, 1983). Unlike octrees, these representations do not build a hierar­

chical description. They have been found to be useful for many applications. For

example, spheres are invariant under projections and this property is useful for fast

graphical display. A tetrahedral representation is easily built with a general-purpose

three-dimensional Delaunay Triangulation algorithm (Preparata, 1985, Chapter 5).

Parallelepipeds have found applications in robotic path planning (Lozano-Pérez and

Wesley, 1979).

2.2.2 Boundary Representations

Boundary representations (B-Rep's) are a family of representations where objects

are made up of faces which are bounded by edges, themselves bounded by vertices..

It is a well-behaved generalization of the wireframe representation (See next sub­

section). Several facial primitives can be used: triangles, general planar polygons,

quadtrees (Samet, 1984) or parametrie surfaces (Faux and Pratt, 1979).

B-Rep's make it possible to concisely represent arbitr~Fily complexshapes and they

are weil suited to computer graphies applications. Regrettably, it is difficult to inter­

actively edit a B-Rep model that contains a large number of faces, in part because

they encode local information which bears little relation with the global structure of

C.:,
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the mode!. The reader interested in a more detailed discussion of each primitive's

advantages and disadvantages should refer to (Requicha, 1980).

2.2.3 Wireframe

The wireframe representation is simple and compact. lt only encodes objects' vertices

and edges. Many application programs already exist for computer graphies and for

fast, interactive use. Unfortunately, it is ambiguous in three dimensions and can lead

to the creation of nonsense objects. For this reason, it is inadequate for the internaI

representation of an object in a solid modeler.

2.2.4 Constructive Solid Geometry

The difliculty that humans experience entering or editing a B-Rep model have led .

to the development of Constructive Solid Geometry (CSG). CSG represents a large

step in conciseness from B-Reps. It decomposes the scene into a set of simple global

primitives (usually cubes, wedges, fillets etc... ). It is thus a high level description.

Note that CSG is very different from the cell decomposition representation because

in the latter, the shape of the cells is arbitrarily chosen ahead of time and bears no

relation to the high-level.s.hape of the sub-objects.
·c·
J,I,

CSG is well-suited to being manipulated either by a human or by an algorithm,

whether for purposes of creation or of alteration. CSG can represent large classes

of objects and supports Boolean operators. However, free-form surfaces are hard to

represent with CSG, and conversion to other representations is diflicult. Finally, we

believe it is less suited to automatic scene description since global descriptions are

harder for machines to generate.
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There are many other representation schemes, including popular ones such 1lS Sweep

Representations (Agin and Binford, 19ï6) and Skeletons (Udupa and Murthy, 19ïï),

or more obscure ones such as Generalized Blobs (Mulgaonkar et al., 1982) or Prism

Trees (Faugeras and Ponce, 1983). We believe none of these ocrers much promise for

the task of scene description as they either lack generality or ease of manipulation.

2.2.6 Solid Modeling: Conclusions

We gave a brief survey of solid modeling techniques. The most common ones useu by

solid modelers are CSG, B-Rep's andto a lesser extent, octrees. We saw that B-Rep's

and octrees are more versatile and that CSG is weil suited to human input. Because

of the different advantages offered by each representation, solid modelers commonly

store several representations in parallel, picking the one that is most suited to the

particular operation to be performed.

2.3 Chapter Summary

We reviewed current methods of range data acquisition and solid modeling techniques.

for the purposes of building a description of a scene.

Based on these techniques, the ASDT must tackle the task of multi-view integration.

In the next chapter, we give a background review on that task anchet the stage for

the algorithms we describe in succeeding chapters.

We will.see that the assumptions about the data acquisition techniques play an im­

portant role on data integration, and that the applicable algorithms directly depend



•

•

•

2.:1 Chapter Summary

on the solid modeling technique one chooses.
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Chapter 3

Multi-View Integration: A review

• ,;',3.1 Data Integration,

•

3.1.1 Finding th.~ Inter-Frame Transform

As we saw in Chapter 1, the different views must be merged into a unified three·

dimensional model, a process which we called data integration, The first task ijf

·'multi·view integration is to find the geometric transform between the different views,

This.tep depends in part on the assumptions one is willing to make regarding the

environmental setup.
,.,1.".

The simples{case occurs when the range finder's coordinate frame is registered with

respect to the scene, and this is true regardless of the actual agent of movement.

For example, the range imaging device can be kept stationary while the object(s) of
~_ ., -'-\.'.c.;...;

the sceiiearè rotated on a monitored motor-driven turntable (Faugeras andPauchon,
,.

1983; Bhanu, 1984). If the scene is too large or bulky to be easily displaced, one can

equivalently elect to displace the imaging device instead.
. <."

li
:.-..:;:;:-;,-;;:.o=~'/
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An alternative strategy is to position fiducial marks around the scene. By identify­

ing the fiducials across the several views, the inter-view transformation parameters

are obtained through the solution of a least-squares problem (Potmesil, 1979). The

identification of the fiducials is itself an instance of the correspondence problem (See

Section 2.1.2.5), but the problem is normally easy to solve because of the highly­

structured nature of fiducials.

In sorne cases, one can also resort to operator-assisted feature identification. For

example, Hasegawa (Hasegawa, 1982) manually guides a laser spot through identical

feature points across a series of views, while a triangulation range finder determines

the coordinates of these features. Hence, correspondence is unambiguously estab­

lished. Operator feedback is in the form of a superimposition of the laser spot on a

video image of the scene.

Finally, one can'"estimate the inter-frame transform automatically by determining

which one minimizes feature differences between overlapping parts of the object. This

is done by evaluating a matching cost function for a set of chosen evaluation points,

subject to a number of constraints. The evaluation points are usually image features,

the cost function is based on local similarities of thosc features, while the constraints

are that adjacency relationships between features are respected and that the transform

be a rigid motion.

In (Ferrie, 1986), intensity image windows taken around distinguished surface points

are correlated and consistency is verified using a relaxation labeling procedure. In (Her­

man, 1985), trihedral polyhedral vertices are matched using geometrical and topologi­

cal constraints, the latter with a Waltz-like (Waltz, 1975) procedure. Potmesil (Potmesil,

1983) performed a heuristic search in the transformation parameter space, based on

positional, orientation and curvature differences between points.of maximal curvature.

Chen and Medioni (Chen'and Medioni, 1991) used a similar technique, minimizing
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distances from points to tangent planes. Parvin and Medioni (Parvin and Medioni,

1991) used a multi-layer neural network, which compute~ surface matching costs using

geometric and adjacency constraints between surfaces.

These computational approaches do not reJy on external artifacts for their solution.

They are thenmore generaJ, aJthough computationally expensive. Nevertheless, be­

cause they necessitate the early computation of useful featmes, their overall cost

is lessened in view of the savings they introduce for the (eventual) Jater processing

stages.

3.1.2 Merging the Several Scenes Together

After the camera position is precisely determined, we must merge the views together.

This consists in finding a description for the scene in a world-coordinate frame, start­

ing from a collection of views which are all expressed in their own viewer-coordinate

frame. The methods reviewed below show that the algorithm used to perform the

task depends in a large part on the representation scheme we adopt.

3.1.2.1 Shadow Intersection Merging

The most common method of merging the scenes is the "shadow intersection" method.

This method is based on the assumption that the various scenels in the scene can

be unambiguously separated from the background. This is often an artifice but it

leads to simple algorithms and it can be used with both intensity and range images.

The scenels then project into "blobs", or silhouettes, on the image plane. By back-.

projecting t~ese silhouettes into space, one creates semi-infinite conic sections (or

semi-infinite prisms if the orthographie projection is used) whose base is on the image

plane. This process is equivalent to assuming that every occluded area of the scene
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is "full", namely that the occluding scenel occupies that area. Similarly, it is as if
"

a "shadow" was !~xtencÎëd from the scenel to the image plane and from the scenel

infinitely far behind it.

As we obtain additional information from subsequent views, these shadows are "shrunk"

to their maximal plausible size, nam~ly thëir common intersection. Figure 3.1 shows

a simple shadow intersection example illustrating the principle. The process stops

when "enough" views are taken, presumably when the whittled-down shadow éxactly

matches the scenel being modeled. This can either be decided by the operator, or

,.; sorne measure of convergence can be defined. One such measure is to stop when the

volume reduction ratio introduced by additional views drops below a certain value.

Figure 3.1 The shadow intersection method. A two-dimensional scenel is ac­
quired from three viewpoints. Its tangents of visibility determine semi-infinite
shadow cones whose intersection determines the resulting modé!. ,~~

Octrees are often used in conjunction with the shadow intersection method. For ex-
<."";.

ample, Chien and Aggarwal (Chien and Aggarwal, 1986) built the octree of an objed,
seen from three orthogonal intensity views. Veenstra and Ahuja (Veenstra and Ahuji/c.
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1986) extended the method to up to 13 standard views. Hong and Schneier (Hong

and Shneier, 1985) presented a more general method that makes no assnmption on

the view positions. The already-built octree is projected cnte the image plane of each

new view, and is intersected with the seenel's projection for that view. Noborio ct

al. (Noborio et al., 1988) !ater sped up the method by performing intersections in

three-dimensional spaee instead. Similar techniques are presented in (Potmesil, 1987;

Srivastava and Ahuja, 1990).

Alternate representations can also be nsed with the shadow intersection method,

influencing the intersection algorithms. For example, Martin and Aggarwal (Martin

and Aggarwal, 1983) use the segment representation to merge shadows, nsing the

scan-iines of the last view as the arbitrary direction of orientation for the segments.

Srinivasan et al. (Srinivasan et al., 1989) discretized the blobs appearing in the image

plane along arbitrary stacked planes, such that the eventual intersection tésts be

between two-dimensional polygons.

The referenees given just above ail used intensity images. With such images, object

concavities (snch as the inside of a cup) cannot be recovered, sinee the method only

considersi'objeet projections, or silhouettes. When used with range images however,

the method'does not suffer from this defect and it also converges faster. In (Connolly,

1984), Connolly constructed a quadtree in each image plane of a set of synthetic range

views and used ray-tracing techniques to assimilate the quadtrees into a global'octree.
li

In (Stenstrom and Connolly, 1986), !ine segments are extracted from range images,

and are then swept arbitrarily .far from their respective image plane, thus constructing
, ','

a wireframe modeLfor each range view. The wireframe models arê::"fleshed out"

using the Markowsky and Wesley algorithm fMarkowski and,Wesley, 1980), and the

resulting polyhedra are intersected to yield a solid polyhedral mode!. In (Wang and
:0

Aggarwal, 1989), relative depth is obtaini~d by a structured iighting technique, and
::-"? \:.:...

"~"\\
li1.1
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is combined with passive sensing in yet another variation of the shadow intersection

mEiti;od. The authors daim that the construction process is thus made more accurate

for a fixed number of views.

In summary, the shadow intersection method is a general and simple image integra­

tion paradigm ~hich works with both intensity and range images, with the proviso

that concavities can only be acquired with the latter image type. It also requires a

volumetrie representation scheme since it encodes the inside of the object (or what is

presumed to be its inside) rather than its surface.

The need for an a priori separation of scene from background restricts its applicability.

This separation is often hard to establish automatically, since object-background

separation is an instance of the unsolved gene~al segmentati6n problem. Further,

the separation cannot be obtained nor can the sensor rotate around the scene in

sorne instances. Imagine the case where the sensor is limited to moving around and
" .

scanning the inside a cavity or a room. Such a scene has no "background" to speak

of and therefore does not admit a shadow intersection method.

We will in the next sections tifrn,",our attention to methods that encodes surface

rather than volume information. Since the acquired data is itself in the faim of

surface information, we believe that B-Rep's are a more natural representation for

the models built by the ADST. We distinguish two main methods, surface- and point­

based merging methods.

3.1.2.2 Sl1rface Merging

In surface merging, individual views are processed as sets of surface components and

are then merged together. This technique clearly uses a boundary representation.

For each new view, four processing steps are taken:
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2. Transformation of the surfaces into a common reference usilîg the ktlown inter­

frame transform.

3.. Surface overlap elimination.

4. Surface parameter update.

The first identification step may be done at a symbolic or at a data level. Symbolic

level merging is normally performed within the three-dimensional analysi~ paradigm
. .', "::'~\"

of Figure 1.3: one first detects features in the individual views, then these features

are matched across the views with a matching algorithm similar to those discussed in

Section 3.1.1.

For example, Ferrie (Ferrie, 1986) uses shape-from-shading techniques to identify and

to segment surfaces based on differential-geometric properties, Dane (Dane, 1982Hits

quadric patches using a region-growing approach, and Parvin (Parvin and Medioni,

1991) detects range data discontinuities using zero-crossings of the second derivative.

These approaches build a composite graph, whose?nodes,ar~ the identified surfaces
".,\...r.;:>::"::~./~:~':....."::-:..ê." .-_-.:/

and arcs indicate adjacency relationships.'·" •'""

Surface identification can also be done at a data level. In this case, individual views are

not "process,ed" and only a low-level description is arrived at. This is more attuned

to the ASDT least-commitment paradigm of Figtire).2, where we do not seek a

trimmed high-level representation from which it is ail but impossible to recover the

original data. ,Rather, the choice of the final structured representation is left up ;Jo

the application program that subsequently uses the ASDT's output.

For example, Potmesil (Potmesil, 1983) obtains range data by projecting grids of

orthogonal Hnes on the scene, and matching grid junctions across the views. He
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obtains a network of bicubic parametric patches which are used as the basic surface

elements. Using a triangulation range finder, Bhanu (Bhanu, 1984) simplyaggregates

range data into small planar facets.

The surface descriptions are then transformed to a common reference using the inter­

view transform, which is either known or estimated as described in Section 3.1.1. After

this step, the actual surface merging is performed. One of the difficulties consists in.

eliminating the over1apping sections, namely the scene parts which appear in more
,\

than one image. This process also depends on the surface representation employed.

In (Potmesil, 1983) over1apping surface segments are reparametrized by mapping a

new parametric grid on them. Soucy (Soucy, 1993) performs a similar reparametriza­

tion based on range images, except that the information coming from each view is

weighted by an estimate of its quality. In (Ferrie, 1986; Parvin and Medioni, 1991),

the composite graph is updated by recomputing the boundaries of the surfaces, while

in (Dane, 1982) the quadric parameters are modified based on the newly-acquired

information.

3.1.2.3 Point, Merging

In the last section\iwe saw that a boundary representation can be extracted from
--~.-_.... \\.:"1

'~"S~Tle at the data 'l~vel, and that this paradigm was>consistent with the ASDT's

description. In general however, range elements or range/s, are in the form of discrete

three-dimensioJ~l points, as seen in Ohapter 21 .

•

Many parametric methods exist for constructing smooth surfaces passingthrough or

near a collection of bo:indary points (Faux and Pratt, 1979). The simplest method
--;~ ---:__-:-:-__~; 4:.}

lThere are exceptions to this, as sorne techniques use the. close proximity of rangels to ,\~gregaté
them into lines for further processing (Oshima and Shirai, 1983). . ~;~",-,

cc r~ .,"cc~~~
~':'::~:: I..l
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however does away with the smoothness assumption and approximates the desired

surface with a collection of planar facets. For any triplet of adjacent points, we

approximate the surface by a face which passes through those three points. Proccssing

the point set is hence reformulated as defining adjacency relationships between the

data points. This is a three-dimensional connect-the-dots problem, as mentioned in

Chapter 1. The goal is to find the "most natural" triangulation of the data set, based

on a combination of contextual information and of heuristic measures. More l'ormally,

we wish to build a connectivity graph G spanning the set V of data points, such that

G embeds a kind of proximity graph in a Riemannian, or geodesic sense.

In the simplest case, suppose we acquire n points that areknown to lie on the surface

of a connected object that contains no hole: topologically, we say that the object

is homeomorphic to a sphere. We seek a triangulation, or a spanning, maximal, S­

connected, p/anar graph on V. The collection of faces of the triangulation forms the

surface of a simple po/yhedron. In Appendix A, wc derive a numerical formula for
"

4>(n), the number of admissible such graphs:
"

4>(n) = (4n -11)! (n).
(3n-6)! 2

(3.1)

•

Clearly, the enormous growth rate of the above formula precludes ail attempts at

enumeration2• Thus, clever algorithms must be designed to prune the candidate

graphs.
"

\'\, O'Rourke (O'Rourke, 1981) defines the polyhedron of minimal area as the most nat-
0-
~"':lra! mode! for the set V. He a!so gives a heuristic "greedy" algorithm to compute a

good approximation for such a polyhedron. The algorithm selects the convex hull of
~'

V as an initia! approximation to the desired shape. The shape is then incrementally
If

291(10) > 400 million and 91(120) > 10304 • Of course, the overwhelming majority of these graphs
represent non-simple polyhedra, namely polyhedra with self-intersections.
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"carved" by inserting its internai points into its boundary. The selection of the in­

ternai points and how to insert them into the current shape is based on local criteria

only, yielding an 0(n3 ) algorithm.

An alternative method uses the three-dimensional Delaunay triangulation' as a seed

structure (Boissonnat, 1984). Note that triangulation here is a misnomer, since the

structure is actually a tetrahedrization of the convex hull of V. The tetrahedra are

then eliminated based on a local geometrical criterion that measures how "internai"

to the current shape the tetrahedron is. As with O'Rourke's method, the process

stops after all the internai points are on the boundary of the shape. The final result

is a cell decomposition representation. Its boundary is a triangulation of the shape.

Hoppe (Hoppe et ai., 1991) reconstructs surfaces from very dense data by first con­

structing a Riemannian Gmph, a special type of proximity graph he derives from the

Euclidean Minimum Spanning Tree. Good results are given using synthetic data.

Despite its name, the Riemannian graph, like the Delaunay Triangulation, is a prox­

imity graph based on Euclidean distance considerations only. One problem with

such graphs is that near points in a Euçlidean distance sense may not be neighhors

in a Riemannian, or geodesic sense. In other words, two vertices may he near in

the three-dimensional space, and far from each other if one was to travel along the

two-dimensional surface on which they lie. Yet a Euclidean proximity graph will in­

correctly join such vertices. Of course, the geodesic distance cannot he computed, for

if it were, we would know the underlying surface.

The two-dimensional example of Figure 3.1 illustrates the ahove prohlem. The shape

shown in (a) is Delaunay-triangulated in (h). The two-dimensional analogue of Bois­

sonnat's algorithm will remove triangle B instead of triangle A from the initial trian-
'_~

gulation, thus ohtaining the result shown in (c). Since the convex hull is contained in

n
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the Delaunay Triangulation, the two-dimensional analogue of O'Rourkc's algorithm

also yields the same result: Because creating A increases external pcrimetcr by a

greater amount than creating B does, the shape of (c) is again favored. Yet, the

preferred perceptual connectiYity is shown in (d).

•

(a)

(c)

(b)

•

(d)

Figure 3.2 (a) A two-dimensional closed shape with a set of boundary points
on its contour.
(b) The Delaunay Triangulation on those points.
(c) The graph obtained by either of (O'Rourke, 1981; Boissonnat, 1984)
(d) The desired connectivity graph.

3.1.2.3.1 Constrained Point Merging Tht;.:;connectiYity problem we just out·

lined does not lie with the part\çlliar algorithms, but rather with the ill-posed nature
".1 -'-~r'

of the tohnect-the-dots problem. A "cloud" of points does not make a well-defined

object. Contextual information is needed to help find the desired shape.
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For example, Boissonnat (Boissonnat, 1982) developed an algorithm for triangulating

the surface of an objeCt provided that a label is available at ail surface points, indi­

cating whether or not the surface is locally convex. However, the convexity boolean

is derived from the signs of the principal curvatures, which are second derivative fea­

tures. Because derivative-taking implies the prior knowledge of connectivity, the label

assumption only points to the existence of a "chicken-and-egg" problem.

A more realistic case occurs when the data is organized into a set of stacked planars

sections, and each section contains one or more polygonal contours. This form of or­

ganization is typical of tomographic data, where each plane corresponds to an acqui­

sition scan-line. The contours are· then used as subgraphs of the desired connectivity

graph. Subsequent linking of adjacent contours yields a triangulation of aU points,

where each triangle is composed of two adjacent points from a given contour, and

one point from an adjacent contour. Still, linking adjacent contours is a constrained

conneCt-the-dots problem. Choosing the contour-to-contour connections was shown

in (Keppel, 19i5) to be reducible to finding a shortest-length path in a directed graph,

where the weights of the graph arcs optimize the heuristic criterion of choice. Kep­

pel chooses to minimize the volume of the polyhedra bounded by adjacent contours

and by the contour-to-contour triangles, thus minimizing the overall object volume.

At any stage of the triangulation, only two choices are present: either triangulate

"upwards" (with two vertices of tht/newly-created triangle on the upper scan-line)

or, triangu!ate "downwards"(with the two same vertices now on the lower scan-line).
'J

Fuchs (Fuchs et al., 1977) gives a similar, but more complete method which mini-

mizes the object's surface area. Wang and Aggarwal (Wang and Aggarwal, 1986)

sped up Fuchs' method by using the well-known graph search A' algorithm (Hart

et al., 1968). In (Boissonnat, 1988), a different method is used: contour-to-contour

triangular transitions are built with the three-dimensional Delaunay Triangulation.

This method naturally handles the case of disconneCted contours (i.e. more than one
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contour per planar section).

58

•

•

Another type of contextual information is the knowledge that a set of edges must

belong to t~e connectivity graph. This happens when the data consists of stereo

edges, rathe~ than stereo points, and the surface triangulation is then constrained to

include these edges (Boissonnat et al., 1988).

The last example supports our claim of Page 15 that much is to be gained using the

knowledge of the data acquisition procedure right at the data integration stage. ln

Section 1.4, we saw that the line-of-sight segments of triangulation range finding are

known to entirely lie in free-space, and that this knowledge can be used 1.0 discriminate

between shapes based on the consistency of physîcal observations.

For example, Faugeras and Pauchon (Faugeras and Pauchon, 1983) first built closed

planar contours using the line-of-sight information. As above, they assume the data

is partitioned into planar sets of points. However, the planar polygons are not known

a priori and must be built from the original point set before an algorithm such as

Keppel's is applied. By solving the connectivity problem along parallel contours

independently, the connect-the-dots problem is made two-dimensional. For every

plane, the goal is to build a simple polygon (a spanning cycle in graph terminology)

from the set of points associated with that plane.

This two-dimensional connect-the-dots problem has also been studied in isolation."

For example, O'Rourke et al. (O'Rourke et al., 1987) solved the problem by building

a minimal spanning Voronoi tree, while Edelsbrunner et al. (Edelsbrunner et al.,

1983) proposed an algorithm based on a generalization of the convex hull.

Rather, Faugeras and Pauchon's algorithm used contextual information as follows:

For each acquisition plane, the sensor incrementally rotates around the object. For a

given plane, two criteria are used to establish point connectivity. For points acquired
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from the same sensor position, or view, adjacency is established following the angular

adjacency of these points with respect to the sensor (Reîer to Figure 1.5). For points

acquired from different views, adjacency is established depending on whether the line­

of-sight of a'gjve~ ciata point intersects the edge joining the points of another view.

This last condition fulfin;~;.the opacity condition (See Section 1.4).
". ~-",

Alev.;'ws et al. (Alevizos etaJ., 1987) perfected the above idea and gave an algorithm

for building a simple polygon starting ·from a set of points, where each point lies at one

end of a fini te segment. They prove that the solution, when it exists, is unique, and

they obtain it in the optimal worst-case asymptotic complexity of O(n log n) time,

for an n-sized input. When the data cornes from a physical source, the existence of a

solution is guaranteed (up to sensor noise). The algorithm first builds the convex hull

of the data points. In that respect, it resembles both O'Rourke's and Boissonnat's

three-dimensional algorithms. Yet it differs in the way the subsequent "carving" of

the convex hull is performed. Here again, the intersection of acquisition segments with

edges of the polygonal contour is the decision criterion used in breaking adjacency

relations.

An attractive feature of both Faugeras and Pauchon's and Alevizos et al. 's algorithms

is that the graph construction does not cali for closeness measures in the Euclidean

metric sense, as the Delaunay triangulation does, nor does it require additional heuris­

tics or assumptions about the surface texture. The former method assumes that the

data is organized as a set of separate views, while the latter also does away with that

assumption.

In the next chapters, we wiII extend the ideas contained inthese algorithms to the

general three-dimensional connect-the-dots problem. Here, we give a simple graphical

example to iIlustrate the nature of the problem. Imagine an object with a deep. .

concavity is scanned with live acquisition segments.
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Equation 3.1 states that 10 different planar maximal triangulations can be drawn on

these vertices. The maximal triangulation on live verticcs has 3*5 - 6 = 9 cdges, bnt

there are only (;) = 4>(5) = 10 possible edges. Hencc, cach graph is differentiated

by which edge is "missing" from its edge set. We use this faet to label graphs in the

following discussion. For example, (A, 13) is the graph with no cdge joining A and 13,

but with an edge joining every other vertex pair.

Figure 3.3 A simple example with 5 vertices and their acquisition segments.
Imagine the graph shown in the figure is the most "perceptually-collsistent" graph
for the underlying object, with point D lying.at the bottom of the object 's concavity.

Figure 3.3 shows graph (D, E) superimposed on the set of verticcs and their segments.

The model based on graph (D, E) is consistent in the sense given in Chapter 1 sincc,

without any further information, the objeet could very weil be exactly represented

if each graph face was replaced by a planar facet. On the other hand, any graphe

with face (A, 13, C) in its face set is not consistent since the acquisition segment of D

intersects that face, thus violating the opacity assumption.

By enumerating ail ten possible graphs, we see that only four are consistent with the
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data acquisition, the other six containing face (A, E, C) in their face set. The four

consistent graphs are (A, E), (E, Cl, (A, Cl, and (D, E). figure 3.4 shows such an

alternate graph.

E

A

• c
Figure 3.4 (fi, B) is an alternate consistent graph, for the 5-vertex data set.

This simple example shows that contrary to the situation in the two-dimensional

case, graph reconstruction of three-dimensional objects based on vertex sets and their

acquisition segments does not admit a unique solution.
',:

As weil, note that the implicit visibility information provided by the acquisition seg­

ments is only that there exists an E-diameter cylinder of free-space around each seg­

ment. Nevertheless, the question arises as to whether, or when, such input data is

.snffièient to construct a consistent least-commitment connectivity graph using purely

geometrical tests.

•
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We have reviewed the state-of-the-art in merging several views of a threc-dimensiollal

scene. We saw that the first step, finding the inter-frame transform between the

views, is genera11y a semi-automated process. ,,'-

Several techniques exist to merge views once the geometric correspondence is knowlI.

The shadow intersection method is the most simple and works weil, but is restricted

to objects with a c1ear object-background separation. It 11.150 requires the use 'of

volumetric representations.

We also described sorne surface merging techniques, which are akill to the three­

dimensional analysis techniques used in Computer Vision (Refer to Figure 1.3).

Fina11y, wc reviewed point merging methods, which fo11ow the ASDT paradigm (See

Figure 1.2). Since point-merging methods do not perform three-dimensional analysis

as described in Chapter 1, they}mplement the least-commitment principle introduced

in that chapter.

These methods also use surface-based representation, but they first construct a graph

by merging the sensor information purely at a data level, namely by inferring point­

to-point connectivity. This connectivity is essential for further differential-geometric

processing, since the latter requires the kri0wledge of neighbor relatiollships between

points.

In most of the point-merging approaches, th~ graph is drawn from Euclidean proxim-
'.

ity considerations only. This assumption breaks down when the data is sparse with

respect to the surface concavities, which we illustrated with a simple example. Others

have introduced the idea of using the implicit additional knowledge given by the sen­

sor acquisition segments' paths. In (Alevizos et aL, 1987), this idea was proven to be

\.:
--=::.-

'.,.i
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powerful enough to unambiguously construct the graph of an object homeomorphic

to a (two-dimensional) disk.

In this work, we investigate whether the equivalent statementcan be made for three­

dimensional graph reconstruction in general. Namely, can three-dimensional surface

graphs of real objects be reconstructed solely from the geometry of surface-segment

intersections?

The next chapter presents an algorithm for incrementally merging sets of data, each of

whi~h has a common acquisition center. The following chapter preseilts an algorithm

for globally merging data without any assumptio.p.\vith respect to data organisation.

•,f
li

';1
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An IncrementaI Merging

Aigorithm

• 4.1 The Acquisition Frames
,)

l',' _ _

In this chàpter, we present a method to incrementally merge a series of 'r'!cnge ViClOS

into a graph embeddable on,.a sphere. We do not assume that the points coming from ,

different range views are organised along parallel or non-intersecting !ines, as was

Uone in most otthe data integration methods reviewed in CI{apter 3. The reasons for
/"

doing so are two-fold.

First, obtaining such scanlines may be an undesirable restriction in sorne el,),vironment

configuratiolfs. For examp1E.i we may wish to explore the environment using sensors

j>ositioned at arbitrary positions and orientations. This may help greatly for,exploring

certain types of conc~:v'ïties, and for the general problem of navigation in an uflknown

•
environment.

. 64
ri,.
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Second, although the scan-line approaches described in Section 3.1.2.3 (Keppel, 1975;

Fuchs et al., 1977; Wang and Aggarwal, 1986) adequately solve the two-dimensional

surface connectivity problem along one dimension, it does resort to using a Euclidean

metric in the orthogonal direction.

We will assume in the following that we have at our disposaI an arbitrary but bounded

number of range images, whose position, orientation, and resolution are also arbitrary.

Our ob}active is to merge those images in order to build a surface connectivity

graph((C. The vertex set 0\.0 is the set of data points (See figure 4.1).
""(

Notation: We will adopt the following notational conventions:
C_(.,

• VG s.t. Gis a graph, E(G) is the edge set of G.

• VG s.t. G is a graph, lI(G) is the vertex set of G.

• VG s.t. G is a graph, F(G) is the set of faces of G.

• VG s.t. Gis a graph, G~==c)(A, B) means that A = lI(G) and B = E(G).
~/

lI!
IF

• x, y denotes the edge'joining x and y.

• xl,.:. ,"a;,;- denotes the closure of the (n - 1)-dimensional simplêx whose vertices ---
.c, 1\

are {xl,~", ,xn }, minus thosevertices.
1\ -- ~

• \ is the usual set difference operation.

4.1.1 Definitions
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P'

Figure 4.1 a)The inferred surface graph for frame :F".
b)The inferred surface graph for frame :Ff3 •
c)The superposed graphs from both frames. The resulting graph remains to
be found.
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Definition 1 A surface connecÜvity graph for a set V of points assumed to lie

on a two-dimensional surface llIt, is a graph whose vertex set is V and whose faces

are embedded on llIt.

Definition 2 A frame F = (P, V, S) is a triplet consisting of the following geometric

entities:

• A point P in free space.

• A set V = {xJ, .. :,.1:N} of surface poi'l}-ts such that Vi,j E {l, ... ,N},;lÀ >
~ ---+ "~:::::.:::::::5

0, PXi = ÀPXj.

• A set S = {SI'" . , SN} of direeted line segments such that Vi E {l, ... , N}, Si =
--+ (r
PXi' with Si lying entirely in free space." '\

'\

A frame embeds the information about M that' can be ohtained fr6m a single view­

point. In the case of range imaging, P is the imaging system's fixed lens center, S

is the set of acquisition segments, no two of which are collinear, and V is the set of

data points exprèsed in world coordinates. Alternately, P could be the fixed end of

a thin mechanical se~sing link, S,'the set of successive lines of action of the links, and

V the sd of succ~ssive positions of its moving end. We will refer 1.0 P as the center,

or acquisition center, of the frame, 1.0 the elements of V as the data points of the

frame, and 1.0 the elements of S as the segments, or acquisitiol~,segments, of the

frame.

We assume in the following that there ar~,'v frames 1.0 be merged. For each frame,

the frame itself as weil as its attributes are superscript~d with Greek lctters: For a
. . ft

given frame a, we'llwrite Fa = (pa, Va, sa). Thesuperscript may be omittf:d when
. ;:;:::;/

there is no risk of confusion. Finally, the cardinality of each va is assumed 1.0 he na,

and L:~~r na =N. Hence N represents the total size of the input.
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Definition 3 A visibility graph of fmme:F° is Il gmph whose 'llertc:c sct is 11°.
,,' .

The gmph wil/ be denoted GO, anà 'its face set as embedded on A1 will bc deno/,cd Po.

The visibility graph of a frame corresponds to the partial conilectivity that can l'eliably

be inferred from a unique viewpoint. We will show in the next snbsection t.hat one

can easily construct a visibility graph for an isolated frame :F0
• To that end, we fil'st

formally define the notion of validity for a surface connectivity graph.

Definition 4 A visibility gmph GO wil/ he cal/ed 2 1/2-valid, or simply valid if Ilnd

only if it is:

• A triangulation.

• 2 1/2-Consistent. GO is said ta be 2 1/2-consistent, or consistent, if Ilnd only

if:

No acquisition segment interseets the closure of any face of GO, e.~cr!Jit lit

its vertices. Pormal/y,

(4.1)

•

Each face of GO can be linked ta the acquisition centel' po of the j1'llme,

such that the closure of the resulting visibility tetrahedron contains no

data point, except at its vertices. FormaI/y,

The first validity condition relates to the fact that the graph can be embedded on

a giveii: surface without(self-crossings, so the faces ofthégraph form a covering'of \\
\'

the surface. Formal1y, ~~L want G to be embedded on a compact, connectec!!1igd

'~.~ ...
"~~"":":"~:;::----
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orientablcctwo-dimensional surface JV{. It turns out that such a surface JV{ can always

be triangulated (Aleksandrov, 1956).

To enforce the planarity condition, we impose the additional restriction that the Euler

number of JV{ must be equal to 2. Hence the surface must either:

• Be ~losed and of genus 0 (a sphere) .

• Have one boundary curve (a disc).

Any such surface can be triangulated in such a way that the resulting graph is isomor­

phic to a planaI' triangulation (Giblin, 1981). In summary, the first validity condition

is that G be isomorphic to a planaI' triangulation.

The second validity condition, the consistency condition, ensures that the assumed

connectivity is consistent with the data points, their respective acquisition viewpoints,

and the assumption of object opacity.

The first consistency condition, (4.1), ensures that ail concavities are accounted for.

When it is fulfilled, no data point x can be visible from a given center P located in

free-space, while its segment 5, namely the line of visibility joining x to P, crosses a

face of G. In other \~ords, x cannot at the same time be both visible and invisible

(hidden by a face) from P.

The second consistency condition, (4.2), ensures that ail convexities (protuberances)

are accounted for. When it is fulfilled, no data point x can "stand" between a face J
of G and the acquisition cenJer P. In other words, J, as seen from P, cannot at the

same time be visible and obscured by x. ,.

\\ II <~, ,~

Hen2e, consistency ensures that the graph G uses ail the inf<irmation provided by
~I~ __ , ~. ~:~~

the"sensor segments, namely that they lie entirely in free spac.è and that they are. -
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terminated at the boundary of free space and solid space.

4.1.2 Building the Frame Visibility Graph

ïO

•

•

riiéthis section, we show that for a l'articulaI' frame F'" one can easily infer a "natn-

l'al", valid visibility graph.

Let E3 be the three-dimensional world space, with its origin at po and \Vith an

orthonormal basis B. Let 52 he a sphere centered at P". Vy E E3, let, (Oy, rP y) he the

polar coordinate pair of y around P" with respect to B. Let P he the polar angle

transformation around P"

Let P" he the restriction of P to V". Let V'" = {x'IVx E V",X' = P"(x)}. Let G'"

he the graph such that V (G"') = V'" and

VxVyE V",(x,yE E(G")) {=} (p"(:c),P"(Y) E E(C:")). (4.3)

We can now state the following theorems:

Theorem 1 Let G" be any graph whose vertex set is V". Let G'" be the gmph on

the image set"'of G" by the polar angle transformation P" such that (4.3) holds. If

G'" is a planar triangulation, then G" is valid.

Proof: See Appendix A.7.1.
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Theorem 2 Lei Q be a projeclion of E 3 onlo a plane II nol passing through pa and

whose cenler of projeclion is pa. Lei {3 be the solid angle around pa spanned by lhe

clemenls of Va. Let V all be the image sel of va through Q.

If {3 < 211" steradians, 3II such lhal II inlersecls ail lhe elemenls of sa. Further, any

triangulalion Gall in II of the mapped sel Vall is valid.

Proof: See Appendix A.7.2.

In g~neral, range images are acquired by sweeping the seene along two (sometimes

orthogonal) directions u and v, and by sampling at sorne, possibly regular, intervals

along those directions. Renee, the data points form a complete grid of parallelograms

on the projection (focal) plane II (See Figures 4.1a, '!.lb, and 4.9). From theorem 2,

any triangulation on II is valid. In particular, the following triangulation is straight­

forward to constnict: Let xi,j designate the datum point acquired at the ith position

along the u camera motion direction and at the jth position along the v camera mo­

tion direction. For all four-tuples xi,j, xi,HI, xi+t,j, xi+t,j+l, we let the following edges

belong to E(Ga):

Xi,i' Xi,j+l,

Xi,i+l, Xi+l,j+l,

Figure '1.9 on Pag~ 88 illustrates this process. In section 4.2, we shall use the special

properties of this arrangement to f~èilitate the process of merging the different frames

together.
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4.1.2.1 Graphs Drawn from the Trace of a Camera Path

-.)
1-

The previous example showed that for a particular arrangement of the ditta points

and an immobile camera, one can easily infer a "natural" connectivity graph without

any computations. An interesting question would be the determination of whether

other "easy" valid graphs can be obtained in cases where the camera moves about.

4.1.2.1.1 Sliding the Sensor along its Line of Support. Wc can make an

immediate observation regarding the interpretation of P in definition 2. Suppose the

camera lens center 0 moves to a location Pi along the segment Si in snch a way that

•
the following holds:

---+ -->
VXi EV", 3.\ > 0, PiXi = ,\P" Xi. (4.4)

•

Then the new frame F'" = (P"', V", 5"') is different l'rom F" only in the length (but

not in the sense) of the elements of 5" and 5"'. Since the lengths of the segments

Si are irrelevant to the derivation of theorems 1 and 2, the latter still hold fol' frame

F"'. In other words, the actuallocations of 0 are irrelevant to the graph constl'llction

process if the semi-infinite segments terminated at the data points ail intersect in a

common point P (See Figure 4.2). In the remainder of this Chapter, wc will continue

to refer to P" as the center of acquisition of the frame, but the reader m:~~. wish,y,
',":".... ""\,

keep in mind that P" could alternately be defined as any point in free spacê verifying

(4.4).

4.1.2.1.:<: Moving the Sensor along a Curve or Path. We now wish to in­

vestigate whether the definition of a frame can be relaxed even further, while still

offering us the possibility of inferring "natural" and valid visibility graphs. Suppose

"'"

"



•

•

4.1 The Acquisition Frames

.,
.2

X31-----~~~--D_

x4

Figure 4.2 The actua! camera locations are not important as long as ail semi­
infinite segments do intersect in a common point.

i3

•

the acquisition center 0 moves along a path C and acquires a datum at N positions

Fi(i E {l, ... , N}), where i is an index increasing with thé parameter of C, and whcrc

the acquisition segments are ail tangent to C. Our goal is to find whcthcr conditions

on C can be enunciated, such that the visibility graph obtained by joining adjacent

data points along C is valid.

Remark 1 Suppose 0 follows the trace of a three-dimensional cnrve C. Then the

elements of S have the trace ofC for an envelope.

Proof: The'elements of S are tangents to C and eonstitute a subset of the tangents

of C. Sinee a eurve is an envelope of its tangents (Pogorelov, 1965, p. 35), it is also

an envelope of a subsefC;f its tangents. 0
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Suppose now that for each acquisition point Pi, Xi is its datum point, Si is its acquisi·

tion segment, and ri is the semi·infinite segment terminated at Xi and whose support

IS Si-

We generalise (4.4) to the case where each rit i E {l, ... , N - I}) intersects its neigh·

bour ri+! at a point pi+!. Formally, we say that that there exists a relation -< on S,

such that

Vi E {l,.... , N - I}, (Si -< Si+!), (4.5)

. 3 ---:-+ ----+- ----;---+ ~

where (Si -< Sj) Ç} ((3Ài, Àj > 0), (3PI E E ), (Pixi = ÀiPiXi) Il (PIxj = ÀjPjXj)).

•
Obviously, every point p!(j = i +1) defines its own degenerate frame

..' ~---+

:FJ = (PI, {Xi, xj}, {Si = PiXi, Sj = PjXj}).

with the degenerate triangulation Gij = ({Xi,Xj}, {Xi,Xj}).

(4.6)

From (4.6) however, every .7:i(i E {l, ... , N - I}) belongs to exactly two frames, ~

namely to

and to

Renee,

FU-I)i = (Pi-li'{Xi-IlX;}, {Si-l,Si}).
li.
'~-,~;;:~,-:,

•

Vi E {l, ... , N - Il. Gi(HI) = ({Xi, xi+d, Xi, Xi+I)'

If we now set G" = Uf:ïl Gi(HI), G" becomes a connected chain (see figure 4.3).

A legitimate question is whether G" then is valid. Unfortunately, the chain structure

of G" does not constitute a very strong result since a valid connectivity graph should
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be a triangulation. The chain being a degenerate triangulation, its faces are edges

and the visibility tetrahedra defined in (4.2) are visibility triangles. If the segments

and data points are in "general position", no segment will intersect any graph edge

and no data point will lie in th,.. triangles defined just above. Hence the chain is

trivi<Jly valid whenever no set of three segments and no set of three data points are

coplanar.

"
Figure 4.3 Adjacent semi-infinite segments intersect in three-dimensional space.
When the data points and the segments are in general position, the chain
Xl, X2,. •• , Xs forms a degenerate valid graph. '''''""

We note however that we imposed the triangulation condition on our definition of

validity because we wanted to model a simple two-dimensional surface. If on the
",

other hand we wish to model a one-dimensional contour, then the chaiD. should be

the valid graph-theoretic structure. The chain is open if homeomorphic to â segment

and is closed if homeomorphic to a drcle.
ii
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Hence, we reformulate the definitions and theorems of the previous paragraph in a

setting for which the desired graph is a chain. This setting brings us back to the two­

dimensional case (Alevizos, Boissonnat, & Yiinec, 1987). Ifwe assume that the set V

of data points lies in a plane E2, and that we are to construct a contour connectivity
.,

graph G Jor which V(G) = V, then the fol1owing definitions and theorems apply:

\'
J)

Definition 5 The plane graph G whose edge set is the set of data points will be calied

2-valid if and only if it is:

• A chain.

• 2-consistent. We define G to be 2-consistent if and only if:

(a) No acquisition segT'flent intersects any edge of G, except at its vertices.

(b) Each edge ofG can be linked to the acquisition center of the frame, such

that the closure of the resulting triangle contains no data point, except at

its vertices.

In a manner similar to that of the previous paragraph, we define Si to be a circle

centered at P", for a given frame :F" embedded in E2. 'riXi E E2, let 1/;i be the polar

angle of Xi around P" with respect to an orthonormal basis B. Let
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Let n" be the restriction of n to V". Let V,,1tI = {xltllV'x E V",xltl = ·R."(x)}. Let

G,,1tI he the graph such that V(G""') = V"", and

V'xV'yE V",(x,y E E(G")) {;> (n"(x),n"(y) E E(G""')). ... (4.7)
--.... :'_ 'l~

Theorem 3 Let G"
..-Ji

/<~'

be any graph whose vertex set is V" for a fixed frame l'F'' em-
:-1'

•

'.

bedded in E2 • Let G,,1tI be the graph on the image set of G" by the Jlolar angle

transformation n" such that (4.7) holds. If G"'" IS a chain, then G" is 2-valid.

Proof: See Appendix A.7.3.

Theorem 4 Suppose that 0 follows a planaI', closed, convex CUl've C such that each

acquisition segment is tangent ta C. Then if i is an index increasing with the IJarametel'

ofC, the graph obtained by joining each Xi( i E {l, ... ,N - 1}) E V ta Xi+t is 2-valid.

Proof: See Appendix A.7.4.

Xl

Figure 4.4 0 follows the convex,closed curve C. The graph obtained by joining
adjacent elements of V is 2-valid.
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4.1.2.2 Summary

ï8

•

•

In summary, "Ne showed in this section that the definition of a frame and the conditions'

for validity can be somewhat relaxed in some special cases. In particular,

• The actual sensor locations are not important as long as (4.4) holds.

-
• Suppose the sensor follows a three-dimensional path such that (4.5) holds, that

it acquires data tangentially to the path, and that the data points and segments

are in general position. Then the graph drawn by joining adjacent data points

is degenerate but valid.

• Suppose the sensor follows a two-dimensional, closed, convex curve and acquires

data tangentially to its path. Then the graph drawn by joining adjacent data

points is 2-valid.

These observations link the process of data acquisition with that of guaranteeing the

validity of connectivity inferences. Hence one may wish to put them to practical use

by incorporating such knowledge right at the early data acquisition stage.

4.2 Merging the Frames

We showed in Section 4.1.2 how we could construct a valid visibility graph for an

isolated frame. The next challenge is to combine the valid visibility graphs obtained

from tge different views into a valid surface connectivity graph for the object M.
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4.2 Merging the Frames

4.2.1 Preliminaries

4.2.1.1 The TetrahedrRI Bundles

Notation:

• Va. E {l, ... , v}, Vf = (.Tl, X2, X3) E F", we define 1J to be the visibility tetra­

hedroÜ 'xl, X2, X3, P"'. We say that f is the cycle (or face) associated with

Definition 6 The planar polygons

are called the sheets of frame F" (See Figul'e 4.8).

The data subscripts in the above definition indicate their positions of acquisition
.

within F", with n angular increments along direction u, and m angular increments

along direction v.

By construction (see the discussion following Theorem 2), the vertices of the sbeets,

other than P", form a connected cbain which is a subset of G". Furtber, tbis cbain

is monotone in the direction of constant u (resp. v). Such a monotone planar cbain

can always be trivially triangulated with respect to P". We shall make use of tbis

fact later. !~

Definition 7 We cali Uf, U;:, 11;", V~ the bounding sheets of frame F".
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Definition 8 The tetrahedral bundle T" of frame:F" ;s defined as the set of ail

visibility tetrahedra t f, with f E F".

We also loosely refer to T" as the polyhedron whose set of faces is the union of F"

and of the bounding sheets of :F". The precise meaning is clear from the context.

We also introduce the following notation:

• !::J." is the set of triangles of the bounding sheets of :F".

m m n n

.6." = UUI,j U UUn,j U UVI,; U Uvn ,;.
j=l j=l i=l i=l

4.2.1.2 Orienting the Graph Faces

The object being modeled, Jvt, is embedded in the three-dimensional space E3
, or in.

a portion thereof. Since M is orientable, it is the boundary within E3 of two open

sets, one of which we cali the interior, and the other the exterior. One of these

two sets is the free space, in which the sensor evolves, while the other is solid space.

The free space may b,e the interior of M, such as when the boundary is the set of

connected walls of a r9om. Alternately, it can be the exterior of M, such as when

the bounda;r}' is that of a solid object isolated from the background on which it rests.
li .

For now, we define the notions of exterior and interior for the faces of the visibility

and connectivity graphs by assuming the center of acquisition P lies in M's exterior:
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Definition 9 Let:FC< be an isolated frame. V f E Fa, let rI1 be the plane in llIhich f

lies. Then we define the exterior of f as the semi-space of rI l in which pc< lies. The

interior of f is the other semi-space. We also define the normal vecto/" ii(.f) of.r as

the vector perpendiculnr io f, and which points towards the exl.e7·io/" of f.

Contrarily to the faces of the visibility graphs, the faces of the connectivity graph

ha.ve vertices which do not ail belong to the same frame. The acquisition point pc<

is not defined in that case. So we need a different procedure for determilling the

orientation of those faces.

In the next section, we describe how the frames are merged together and how Ilew

faces are built. Wedelay until then the description of how to determine the exterior

and the interior of ail faces uf the connectivity graph G.

---+
Definition 10 We say that a segment s = p13x back-crosses a face f E G =

G1,•..•(13-1) if and only if s intersects.r and P lies ta~the interior of f (see Figure 4.5).

Conversely, we say that s front-crosses f if and only if s intersects f and Plies to

the exterior of f.

---+
Definition 11 Let s = p13x. Let F be a set of oriented faces. Then we define

fF (s) be the first face of F, starting from P13, that s interseets, if such a face exists.

FormaI/y,

fF(s) = {fd (Vii E F, s.t. sn fj = {Yj = Àjs}, Ài = m}nÀj)}.

---+
Definition 12 We say that a segment s = p13 x back-crosses the graph G if and only

if fF(G)(s) exists and s back-crosses it. Converse/y, we say that s front-crosses the

graph G if and only if r<Gl(s) exists and s front-crosses it.
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Figure 4.5 The segment r back-crosses the face f E F O
•

4.2.2 Overview of Merging Aigorithm

82

••

Because segments do not in general intersecdn three-dimensional space, neither AlE);.

vizos et al.'s method nor the particular examples of section 4.1.2.1 generalise to the

solid model case. In the method we describe below, we start from the visibility graph

for frame :F0=l and we incrementaliy insert into its faces the data points from the

other frames :FfJ (/3 E {2, ... , /1 } ).

4.2.2.1 Inserting Points into Faces

Suppose we have constructed a graph G = Gl,...,(fJ-1) and that we acquire a new frame

:FfJ • In this section, we describe how to insert the data points of Vq;into a particular

face of the current graph G.

=
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Suppose we wish to insert only one point x" of Vil into f. We do it by simply

splitting f into three new graph faces fI, 12, and !J, ail with a common vertex at x"

(see Figure 4.6). After insertion of x,,, the set of faces of the graph is 1110dified such

that F(GI .....(Il-I).xn ) = F(G) U{fI,[2,!J} \ f·

Figure 4.6 Inserting x" E Vil into f E F(C).

Suppose now that we wish to insert more than one datum point of Vil into the same

given face f ;;" (Xl, X2, X3)' Let l' be that set of points and let l" = P U {Xl, X2, X3}'

Then l' is inserted into G by building a valid (with respect to l'11) triangulation T

on l". Then, F(QI·..·,(Il- I ).P) = F(G) UF(T) \ [:

<';

In practice, we may build T as follows. We first build a valid triangulation on l', as

clescribed in Section 4.1.2. Since the triangulation has a~ embed~ing, its boundary is

well-clefined. This boundary is the set of projections of the frame's bound-ing sheets.

The next step is then to build a valid triangulation between the vertices of the bouncl­

ary of l'and the vertices of f. We cali t~e resulting triangulation the triangulation
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of face J. This pl'Ocess is illustrated in Figure 4.7.~

84
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I\s mentioned in section 4.2.1.2, we need ta define the exterior and interiOi' of those

faces whose vertices come from different frames. This is done as follows. Suppose J
is a face of a visibility graph; its exterior and normal vector are well-defined. Then

supposc we are to insert a set of data points into J, so as to create new faces. Then

fol' cach snch face l', its (exterior painting) normal vector is defined as the vector

pcrpendicnlar to f' and which points in the same general direction as.f. In other

words, iï(J) is snch that iï(J) . iï(f') > O.

Figure 4.7 A set of points can be easily triangnlated within face f.

4.2.2.2 The Insertion Criteria

We now address the question of determining which points 1,0 insert into which faces

of the graph.

A necessary condition for a given datum point x E V J3 1,0 he inserted into a face of

the graph G = GI .....(J3-1) is that either:



• 4.2. Merging the Frames'. '. -,'

or that

----t

8 = piJ x front-crosses G.

30< E {1, ... ,,B -1},31 E T"',x El.

85

(4.8)
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•

In the first case, the first consistency condition is violatcd and wc say that the point

x corresponds to a concavity. We eliminate the consistcncy violation by inscrting ;1:

into the firsl face that s front-crosses.

Otherwise, we look for violations of the second consistency condition. Ir there cxists

a visibility tetrahedron 1 of a previons frame snch that :1: lies inside l, wc say that ;/:

corresponds to a convexity. vVe remove the consistency violation by inserting :1: into

the face that 1 is associated with.

Note that if a segment back-crosses the graph, we do not take any action, even thongh

it is a violation of condition (4.1).

4.2.2.3 Determining the Insertion Face

It remains to determine into which face of the graph the npdate is ta be made.

If (4.8) applies, we insert x into jF(Gl(s). Wc note that if f = jFCGl(.s), then the last

tetrahedron intersected by s prior to intersecting f is If.

Similarly, if (4.9) applies, x is inserted into the face associated owith the tetrahedron

in which x lies. This tetrahedron is also the last one intersected by s.

So in bath cases we can find the face f E G into which x E Vil is to he inserted
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hy finding, for ail previous frames :F"(0: < 13), the last tetrahedron of T" that the.

segment intersects.

Interestingly, J is found in the same way whether the datum point corresponds to a

concavity (violation of the first consistency condition) or to a convexity (violation of

the second consistency condition). In practice, f is found by performing intersection

checks between the segments of S{3 and the polygonal sheets formed by the tetrahedra

of T\, .. '.' T({3-') (See Figure 4.8).

,:;.

•
po

•

pa

Figure 4.8 Determination of where to insert the new da,tum point is made by
finding the last t E T" that the segment Si intersects. In the picture, Si crosses Uf'
but does not cross Ui+1 • A second search in the orthogonal direction would normally
be performed before t is actually determined.

Suppose that at a given stage of the algorithm, we determine in the manner explained
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above, that x E V" is to be inserted into a face J E FO. If J E F(G), we simply

insert x into J. If however, there exists one or more data points from one more

intermediate frames (say ;:13, with 7 > ;3 > a) that have already been inserted into

J, then JfF(G), as explained in section '1.2.2.1. In this case, we should insert x

into a face f' of the triangulation of f. We determine .f' in the same manner as we

did for determing J, namely by performing intersection checks between the segment

terminated at x and the sheets of bundle 7 13 •

Rence we see that each face J of the original graph Go becomes the root of a hierarchy

of triangulations. This hierarchy can be expressed in the form of a tree. Each noue

of the tree is a face of the partial graph, constructed after aggl'egation of some of the

frames. The children of each node are the faces of the triangulation of their parent

face. Only the leaves of the tree are faces of the final graph, while the noues are

3-cycles of that graph. For each such node J, we cali Gf the subgraph rooted at f.

In the next section, we see that concavity points are not inserted at the same time

as convexity points. A consequence is that the depth of the tree is at most 2v: each

frame may at most increase the depth of the tree by 2.

In the following, we give a more formai presentation of the algorithm, and we analyse

the validity of the resulting graph.

4.2.3 Partitioning a New Frame

Suppose we have already constructed a vaHd graph Gl,...,(Il-l) and we wish to aggregate

the data contained in a new frame Fil into the augmented graph G1,...,Il.
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We first construet a partition P of Vil; this subsection indicates how to perform the

partition. Following that, we insert the elements of Pinto œ·····(Il-l).

4.2.3.1 Partitioning a Frame with Respect to Another Frame

For a given previous frame:F", we partition Vil into live disjoint sets A~, B~, A~', B~',

and O~. These sets are illustrated in Figure 4.9 and are delined as follows:

A~ is the set of points of Vil whose acquisition segments front-cross G".

-;

A~ = {:c E Vil, s.t. pllx front-crosses G"}.

A~' is the set of points of Vil whos~. acquisition segments back-cross G".

...::.:--+
A~' = {x E Vil, s.t. pllx back-crosses G"}.

B~ is'the set of points of (Vil \ A~ \ A~') which lie in the tetrahedral bundle T".

B' is the set of points of (Vil \ A~ \ A~' \ B~) whose acquisition segments do interseet

T".
-;

B~' = {x E (Vil \ A~ \ A~' \ B~)I(x n T" = 0) Il (pllx n T" =P 0}.

o~ is the remaining set of points of frame {J. They lie outside T" and so do their

acquisition segments.

o~ = (Vil \ A~ \ A~' \ B~ \ B~').
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For c!arity in the fol!owing discussion, we drop the subscript and superscript of the

elements of the partition. Some of these elements are further partitioned into disjoint

subsets as fol!ows:

AI is the set of points of A whose acquisition segment front-crosses f of F~.

B t is the set of points of B which lie within tetrahedron t of T~.

B = U Bt where Bt = {x E Blx Et}.
tE'rQ

B~ is the set of points whose last triangle of !1~ their segment intersects is u.

B' = U~Q B~ where B~ = {x E BII'[(s = pil;) nu= {y = Às},

/\(VUj E !1~,s.t. SnUj = {Yj = Àjs},À = maXjÀj )]}.

Remark 2 The maximum number of triangles of!1~ a given segment s E Fil inter­

sects is 2.

Proof: The triangles of !1~ al! belong to the convex hull of T~ since they are ex­

treme in the directions {u, -u, v, -v}. Barring singularities, we know that a three­

dimensional segment intersects a convex figure in at most two places. So, s intersects

!1" in at most two faces. D
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l E .-1.,

r--...... IEB'. ,

po

Figure 4.9 Illustration of the graph for frame Fa as weil as cif the partitioning
of Ifl3 with respect to Fa.

In snmmary, we have:

90
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\113 = AI3 U AI3' U BI3 U BI3' U 0 13 = U A, U U Bt U U B' U AI3' U 0 13 = Upl3
Ct 0' 0' 0' . 0' U a 0' a'

JeFa tEra uEAQ

where ~ is one of {AJ,BhB~,O,A'}.

4.2.3.2 Partitioning with Respect to AIl Frames

The previons section ontlined the partitioning of V13 with respect to a given frame.

Here wedescribe how to obtain a global partitioning of V 13 with respect to ail previous
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We first partition Vil with respect to :Fa=1. Then we subpartition the resulting

subsets with respect to the other frames, in the order of frame acquisition. For a

given partition element ~ this subpartitioning stops when ail its data points are

definite. A datum point x E Vil is said to be definite when either of the following

can be unambiguously determined:

-+
3a E {1, ... ,(;3 -l)},s = pil.,!: back-crosses Ga.

s front-crosses G = G1.....(il-l).

3a E {1,oo.,(;3-I)},3if E Ta,x E if /\ f E F(G).

il il'Va E {l, 00" (;3 - l)}, (x E Da) V (x E Ba ).

If (4.2.3.2) holds for x, the partitioning procedure is complete for x. We then say

that x E A~lobal' Suppose now that (4.2.3.2) does not hold for x. Then we repeat

the partitioning procedure for all subsequent frames, until a frame :Fa is found, such

that either x E A~, or x E B~. In the first case, (4.2.3.2) holds, and let f he the face

of Fa that s front-crosses. In the second case, (4.2.3.2) holds, and let f he the face

associated with the tetrahedron of Ta that x lies in.

If f is a face of the graph G, then we say that x E A:'obal if x E A~,and that

x E B:'obal if x E B~. As explained in s~ction 4.2.2.2, x is then to he inserted intoI
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If f however is not a face of G, we need to find the face of G that x is to be inserted

into. This is done by searching the face J' of the subgraph Gf that x should be

inserted into. This process in turn determines if x E A:lobol or if x E B:lobol' If x

front-crosses face J', then x E A:IObol' If, on the other hand, x lies in the tetrahedron

associated with /" then x E B:lob• l'

We finally turn to the case of (4.2.3.2), where x cannot be inserted into any of the

faces of G. We then say that x E O:lob.l'

4.2.3.3 Summary of Partitioning Procedure

In summary, the partitioning proced~re is intimately linked to the process of deter­

mining which face of the current graph each new datum point is to be inserted into.

This process iterates over the graph induced by the previously inserted frames. The

graph is built in the form of a tree, which allows us to search it hierarchically.

The object of the search is to group the data points into subsets. The subsets such

that the acquisition segments of their elements back-cross a face of a visibility graph

are said to belong to A~lobol'

Otherwise, the subsets such that the acquisition segments of their elements front-cross

a face of the graph are said to belong to Aglob.l. They are further subpartitioned with

respect to the face of the graph that they front-cross.

Otherwise, the subsets such that their elements lie in a visibility tetrahedron tare

said to belong to Bglob.l. They are further subpartitioned with respect to the face of

the graph associated with t.

:'i
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The remaining subsets are said to belong to Oglobol. Both their e1ements and the

acquisition segments of their elements lie outside the tetrahedral bllndles.

In the following, the subscripts and sllperscripts are omitted for the elements of the

partition. It is then clear from the context that the element names refer to the global

partitioning.

4.2.4 Inserting into the Previous Frames

We now wish to insert the elements of the partition constructed above into Gl,...•(I1-t),

such that after insertion of every element~, the augmented graph G" ..·,(I1-t),p~ remain

valid. How to do this insertion depends on whether ~ c A, A', B, or O. Inserting a

new frame is a three-step procedure.

First, the subsets corresponding. to convexities are inserted into the graph. These

subsets are those of B. The net effect of that insertion is to "enlarge" the modeled

object.

Second, the subsets corresponding to concavities are inserted into the augmented

graph. These subsets are those of A. The net effect of that insertion is to "carve up"

the modeled object.

Third, the connected subsets made of data points outside the 'influence" of any of

the current tetrahedral bundles are triangulated and inserted into the augmented

graph. These subsets are those of O. The net effect of that insertion is to leave the

graph disconnected. The number of connected components is equal to the number of

connected components left after the insertion of the last frame, plus the number of

-.',
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connected components of OfJ.
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Finally, the elements of A' are not inserted into the graph, as no valid graph that

illcludes the back-crossing data points in its edge set can be constructed (See Fig­

ure 4.5). This corresponds to the case where not enough information is available, as

noted in Alevizos et al. for the two·dimensional case.

We give a precise algorithm that performs the above tasks in Appendix A.S. We cali

that algorithm merge-frames. We now turn to the analysis of the validity of the

l'esulting graph.

4.2.5 A New Definition of Validity

The previous definition of graph validity, namely 2 1/2-validity, turns out to be too

restrictive for the multi·frame three-dimensional graph connectivity problem.

=,
We have already seen that back.crossing of a face by a segment should not be con­

sidered a violation of consistency condition (4.1), and we ironed that difliculty out

by not inserting into the graph the datum point associated with ,the back-crossing

segment.

Another important difference is iIIustrated in Figure 4.10. There, a segment and

its datum poin~\;iolate both consistency conditions, although with respect to two

different faces: s crosses f and lies inside tJ'. If we insert x into J, consistency

condition (4.2) is stilJ~iolated, while if we insert x into l', consistency condition (4.1)

is still violatecl. In this case, we contend from visibility considerations that the datum

point should be inserted into the face being crossed by the segment, namely into
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f. In other words, maintaining consistency condition (4.1) takes precedence over

maintaining consistency condition (4.2) because (4.1) of the strong assllmption of

object opacity.

At times, a segment may front-cross more than one face of the graph, as;s also shown

in Figure 4.10. In this case also, we contend from visibility considerations that the

datum point should be inserted into the first face that the segment front-crosses.

Note that in the last two examples, sorne faces of the resulting graph G intersect

and hence cannot model a simple polyhedron. Although a self-intersecting model is

not geometrical1y correct, the conneetivity information that G conveys is nonetheless

correct.

Final1y, because the elements of 0 and their associated segments entirely lie outside

the tetrahedral bundles, there may not be any preferred portion of the existing graph

with whom to associate them. In this case, it is preferrable not to "artificially" insert

them into a particular face of the graph. Hence we obtain a disconnected graph

whenever 0 =F 0.

Algorithm merge-frames accounts for the above considerations. We now couch them

into the fol1owing validity definitions for connectivity graphs:

Definition 13 We say that a 3-cycle c = (x, y, z) of G is a bridge to face f E F(G)

for vertex Xl E V(G), if and onZy if every pathfrom Xl to a vertex of f passes through

either x, Y, or z (See Figure 4.11).

Definition 14 Let c he a 3-cycle of G. Then the pselldo-face of c (denoted fc) is

the face that passes through the vertices of c. ),1
ri,r
J!
'r

"
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p

Figure 4.10 A given segment may violate bath consistency conditions. Tt may
also front-cross more than one face of the graph.
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Definition 15 A sU/face connectivity graph G will be called 3-valid, if and only if

it is:

• A triangulation or a set of triangulations.

• 3-consistent. G is said to be 3-consistent if and only if, for each acquisition
->

segment s = pl3 x :

- If s front-crosses a set of faces Fe F(G), then there exists a 3~cycle c in
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Figure 4.11 Cycle (.7:, y, z) is a bridge to face f for vertex J: 1.

G SILCh that s front-c1"Osses the pseudo-face of c before it rloes IIny JiLce in

F, and c is a bl'idge for x to ail faces of F. FOl'mal/y,

vf E F( G), s.t. sES front-crosses f,3 a 3-c'ycle cEG, S.t.

(fF(G)U/,(s) = fe) Il (Je is a bridge to f for x). (4.10)

- If s does not front-cross G,then of al/ the pri07' visibility tetmherlra that :1:

lies in, at least one hasits associated face not in F(G). FormaI/y,

[(S = {III (II E U~;;;\T") Il (x E II)} =f 0) ==} (311 E S,s.t. f~F(G))].

(4.11)

As the fol1owing theorem shows, this new definition of validity is less restrictive than

the previous ones.

Theorem 5 If G is a 2 1/2-valid visibilily graph, il is 3-valid.
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Proof: Follows from the definitiolls. The triangulation condition is trivially satisfied.

Condition (4.10) above follows directly from consistency condition (4.1): Since no

segment intersects any face of Fa, any statement on the crossed faces is always true.

Finally, since x lies in none of the visibility tetrahedra of Ta, condition (4.11) is

trivially satisfied by condition (4.2). 0

The major differences between this new definition and the previous validity definitions

are that:

• G may be disconnected. An obvious example in which this is desirable is given

by the case ~hen tetrahedral bundles do not intersect. There is then no criterion

by which the data points of different frames can be joined.

• Back-crossing of a face by a segmênt is not considered to be a violation of the

first consistency condition.

-;

• A segment Px may front-cross a face f of G, but only if x is inserted into a 3-

cycle of the graph that s front-crosses before it does f. This seemingly-contrived

statement embeds the notion that s may originally front-cross more than one

face. In order to remain a triangulation, x can obviously be inserted into only

one of those faces. The crucial point is that x be inserted into the first face

f that s front-crosses. Once the insertion is made, f becomes a 3-cycle of the

graph rather than a face, but the order of face crossings remains.

• For any graph G, at least one of the two consistency conditions is always verified

for each segment sES. Which condition is necessarily verified depends on

whether s intersects a face of G. Cases where the two consistency conditions

are violated but where only one can be resolved are thus avoided.
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• A datum point x may lie inside one or more tetrahedra if. but only if .r~F(G)

for at least one of the tetrahedra. The second 3-consistency condition states

that the points corresponding to convexities should be inserted into the face

associated with one of the tetrahedra in which they lie. Sincc they may lie in

more than one such tetrahedron, but can only be inserted into one face, this

condition is deemed sufficient.

4.2.6 Muiti-frame Merging and 3-Validity

In section 4.2.2.3, we saw that data points could be incrementally inserted inl,o_tQe
'o.

graph, giving it a tree-like structure. This structure in turn allows us to efficienL!y

insert new data into the graph. Unfortunately, this efficient procedure makes the

algorithm fail to produce a 3-valid graph in some instances.

Figure 4.12 gives such an example. Suppose a datum point x 3 E V 3 is found to lie

in if E TI. Algorithm merge-frames will insert x3 into face .r of FI. In doing so,

new faces will be created. Let F be that set of faces. Because the segments of the

earlier frames other than FI (for example those of P) were not checked against the

faces of F, there is in general no guarantee that those earlier segments do not in faet

front-cross sorne of the faces in F. Thus, condition (4.10) may be violated in that

case and the 3-validity cannot be guaranteed.

A possible cure for that problem would be to check if any of the earlier segments

intersects any of the newly-created faces. Suppose such an intersection occurs between
->

a segment (8 = p2 X ) E 8 2 and a face .r E GI ,2,3. Then, x should be inserted into

f in order not to violate condition (4.10). This step implies that x should be first

remo\·.ed from its current position in the graph GI,2.
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Figure 4.12 The merge-frames algorithm may not always produce a 3-consistent
graph. Bere. merge-frame5 would not detect that the first face crossed by 52 is not
the one in which 52 is inserted.
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As a result, the problem of multi-frame graph construction using a modification of

merge-frames is at least polynomial in the order of the number of frames v. Although

this is feasible, this additional step greatly degrades the efficiency of the algorithm.

Worse still, it necessitates constructing a complex update mechanism which is not

compatible with incremental monotonic scene construction.

ln the next sections, we outline the cases under which merge-frames is guaranteed

to yicld a 3-valid graph.

4.2.6.1 The Case of Two Frames

Theorem 6 Algorithm merge-frames can be slightly modified ta yield a 3·valid graph
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when v = 2.

Proof: See Appendices A.9 and A.ID.

4.2.6.2 The Two-dimensional Case and Extensions
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The reason for the failure of the algorithm in the example given above is that segments
->

do not in general intersect in three-dimensional space. Even if a segment s = P:c

entirely traverses a given tetrahedron tf> i.e. crosses two of its sheets, it may be

that s front-crosses within tf a not-yet inserted face l'. Bence, l' is the first face

that s front-crosses, but merge-frames inserts x into f.

In two dimensions, the situation is quite different. If a segment s traverses a visibility

triangle formed by acquisition segments, opacity guarantees that s does not intersect

any graph edge inside that triangle. See figure 4.13.

Theorem 7 If any set of three acquisition segments interseci into a triangle, thel'e

exists no 2-valid graph on the data set if the triangle contains any data point. FOI'­

mal/y,
"

If{SIoS2,Sa} C Usa,
0=1

Proof: Since the data points ail lie at the termination of a segment, there exists at

least three data points which lie outside t, namely the three data points XIo X2, and

Xa which terminate SIo S2. and Sa.
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Figure 4.13 illustration of theorem 7.

Now suppose t contains a datum point x. Then sorne elements of V (for example

Xl) lie outside t while at least one, namely x, lies inside t. Since G is a chain, it is

connected. By the Jordan Curve Theorem, any path joining X to Xl must cross the

boundary of t. Hence at least one of the edges of G must cross either Sb S2, or S3.

This violates the first 2-consistency condition. So G cannot be 2-consistent if (4.12)

does not hold. 0

If we now project the data of figure 4.12 onto a plane, we can see that segments
---+ ---+ --->
p2X2 , pl X a , plXb intersect two-by-two, forming a triangle. By theorem 7, if datum

point X3 is in that triangle, there can be no 2-valid graph on the data. Rence, no

two-dimensional object homeomorphic to a circle may have generated such a data set

and the pathological situation of figure 4.12 cannot occur in two-dimensions.

A direct consequence of the validity of algorithm merge-frames in two-dimensions
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is that it also is valid in cases where the object being modeled is a "swept" two­

dimensional object or a surface of revolution.

4.2.7 Complexity Analysis

We assume i'n the following that there is a bounded and usually smail number /1 of

frames. Each frame is composed of a maximum of n points and we are to merge a

total of N data points. Hence, nv > N. We analyse the complexity of constructing

a graph on the merged data set.

As mentioned in section 4.2.2.1, the graph is built in the form of a tree, and this

structure reduces the number of computations needed to insert new points into the

graph. However, no guarantee can be given in the general case that the data points

will naturally equi-partition themselves among the tree branches. The following is

then a worst-case analysis, except when otherwise indicated.

The initial triangulation of a given frame or of any connected subset can obviously

be performed in a time that grows linearly with the number of data points involved:

thanks to the matrix-like indexing of the data, no check need be performed. The

analysis of complexity then centers on the amount of work needed to insert a new

point Xi E VI' into G1,...,(P-I).

4.2.7.1 Complexity of algorithm merge-frames

Since the graph G is planar, the mimber of its faces never exceeds O(N) throughout

its construction. For each datum point, the main loop of the algorithm checks whether
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its segment intersects each face of G. Hence, an obvious worst-case complexity result

is that the algorithm runs in O(N2
) time.

An interesting question is whether the expected behavior of the algorithm can be

made lower than the quadratic bound.

--->
We first note that for a given new datum point x and its segment s = Px, not all

faces of the graph need in general be checked. Because the segment travels in a

straight-line path, and because the frames form a matrix structure, the number of

visibility tetrahedra of a given frame that s traverses never exceeds the larger linear

size of each frame. Hence we can precompute the set of faces that the segment may
(,~<

cross. .~

"=

Let now suppose that the frames are approximately square. Since no frame contains

more than O(N) data points, the linear size of each frame is at worst O( ,fN). In the

worst-case, namely when s is checked with respect to each tetrahedral bundle, the

complexity does not exceed

o (NEvn) = O(Nvvn).

v is usually bounded downwards by 2 (the cones of support of the convex hull of the

object) but depends in practice on how we choose to position the sensor.

Table 4.1 illustrates how this complexity result varies as a function of v. As one wouId

expect, the greater the number of frames, the fewer the points in each frame, and the

smaller the efficiency gain due to the frame data organisation.
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O(v) O(n) Complexity
1 N N~

J(N) J(N) Nt
N 1 N2

Table 4.1 Worst-case complexity of graph construction process when the frames are
approximately square.

4.2.7.2 Complexity of the 3-valid algorithm
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As noted in Section 4.2.6, the algorithm merge-frames can be modified to guarantee

the 3-validity of the graph if, every time we insert a point corresponding to a con­

vexity, we verify that the newly-created faces do not intersect any earlier segment.

Since the number of newly-created faces is bounded by 3 for each new datum point

(the graph being planar), the complexity of this additional test then is proportional

to the number of earlier segments. Hence this algorithm is less efficient than algo­

rithm merge-frames by a factor of O(N). The overall worst-case complexity is then

O(N3
), and the expected complexity is O(N2v..jn), if one assumes that the frames

are approximately square.

4.2.7.3 Complexity in the Case of a Surface of Revolution

As mentioned above, the algorithm is guaranteed to be valid for an arbitrary number

of frames in the case of a surface of revolution. Here, we analyse the complexity in

that case.

We first must partition the set Vil into its subsets. For each x E Vil, we must test

if s = pll~ intersects a face of a,' and if 50 , which such face, or if x belongs to a «
tetrahedron of TC<, and if 50, to which tetrahedron.

i:
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These tests are done by testing for intersections between s and the sheets of the

frames. For a given frame Ga, the problem is equivalent to the point-location problem

in a planar graph subdivision. It can be resolved in O(log2na), while thanks to the

particular structure of G"', no initial preprocessing is needed (Preparata & Shamos,

1985, p. 23).

The U"'(V"') sheets define a completeordering around P"'. So we can logarithmically

determine which sheets are crossed by sand which are not, until we find a pair of

adjacent sheets, only one of which is crossed by s (see figure 4.8). Alternately, if s

either crosses no sheet or crosses two bounding sheets, then x belongs to B' or to 0

respectively, and no further search is needed.

We make use of the following feature: if a segment s traverses a visibility tetrahedron

t j, we are guaranteed that there exists no face of the graph inside t J that s may first

front-cross. Since the object is a three-dimensional extension of a two-dimensional

shape, by theorem 7 t J cannot at the same time contain data any data point and be

entirely traversed by segments.

The search is first performed in, say, the u direction. This allows us to locate x

between two polygonal sheets Uj'" and Uf+t. Since the sheets are sorted, this requires

O(logn"') *Q where Q is the complexity of determining, for a given sheet, on which

of its two sides x lies.

Because the number of vertices of each sheet may be at least a constant fraction of

n"', the number of such vertices is O(n"'). However, since the sheet has a trivial sorted

triangulation made up of the vj,j triangles, we can also perform this test logarithmi­

cally. Hence Q = logna
, and the complexity of partitioning a given point with respect

to a given frame is O(log2n"').
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Ory) O(n) Complexity
1 N Nlog·(N)

J(N) J(N) N~ log2(N)
N 1 N 2

Table 4.2 Worst-case complexity of graph construction process in the case of a surface
of revolution.

lOi

•

•

We noted above that we may need to perform the partition with respect to each pre­

viously inserted frame. Hence partitioning a given point with respect to ail previous

frames takes O(Y * loln) operations.

Finally, we need to estimate the work required to actually insert the point into the

graph. Bince these operations are strictly local however, they can be performed in

constant time.

In summary, since we have a total of N points and y frames, the WOl'st-time complexity

of the graph con8truction process in the case of a surface of revolution is

N * (2 * y * (logn * logn)) = y *N * (loln).

Table 4.2 illustrates how the complexity result varies as a function of y in this case.

4.3 Chapter Summary

In Chapter 3 we showed that surface connectivity of objects is a crucial consideration

for building solid models from discrete sensor data, and that connectivity cannotbe

based on metric considerations alone. In this chapter, we gave formai definitions

of validity for the surface ~onnectivity of objects homeomorphic to spheres. These

definitions allowed us to link the issue of object geometry and thatof object visibility.
\J_
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We then described a sub-quadratic on-line data acquisition algorithm that incremen­

tally constructs a surface representation from a set of three-dimensional data points

and sensor positions. We analysed the algorithmic's efficiency under different assump­

tions about the input data.

We analysed the conditions under which the algorithm maintains our formai validity

criteria. We were able to guarantee such validity in the most general case when the

number of sensor locations did not exceed two. 'vVe also obtained the same result when

the object was a surface of revolution, or a planar figure swept in space. In ail other

cases, the validity of the resulting graph could only be guaranteed by relinquishing

the algorithm's efficiency. For this reason, we conclude that algorithm merge-frames

cannot efficiently solve the the three-dimensional multi-frame on-line connectivity

reconstruction problem.



•

•

•

Chapter 5

A Global Aigorithm

In the last chapter, we saw that organizing data along separate views does not in

general guarantee an efficient merging algorithm for a large number of views. The

reason is that merge-frames must verify whether the segments of the later frames

intersect the protuberances created by the elements of BJ belonging to the earlier

frames.

In this chapter, we describe another algorithm that assumes no organization for the

data points. We do not require any longer that the data be partitioned into frames,

namely sets with a common acquisition center. It follows that the units of data with

which w~)deal are the data points themselves, and we gain in generality.

On the other hand, such a paradigm does not support incremental data acquisition

and incremental data merging.c:1f it did, every point would constitute its own "frame".

But we saw in Chapter 4 that the initial frame requires a minimum of three points

in order for a face to be constructed. Even if we were to guarantee the existence of

109
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such a three-point-frame, the frame merging algorithm would not perform efficiently

because the number of frames would still be of the same order as the number of

points.

Hence, a priee to be paid for the lack of data organization into frames is the loss of

the on-line, or incremental property (See Section 1.2.3). As a result, ail data must

be available before the reconstruction algorithm begins, and we thus say that the

algorithm is global.

5.1 Algorithm Overview

The global algorithm first constructs the convex hulJi of the set V of ail surface data

points as an initial approximation Go to the desired graph G. Then successive graphs

Gi are iteratively constructed by local modifications of Gi- l . The number of data

points spanned by the successive graphs is guaranteed to grow monotonically. The

process stops when the set of vertices spanned by the graph is equal to V.

The modification of G j is done on a face-by-face basis, where each face f of Gi is

locally modified into a new subgraph G{ by th~ adjunction of new vertices not yet

spanned by Gi. The vertex set of G{ is the union of the vertices of f and of the set

of verti~escwhose acquisition segment traverses f.

We can see that the algorithm borrows ideas from both (D'Rourke, 1981) and (Ale­

vizos et al., 1987). While both of the above use the convex hull as an initial shape,

D'Rourke carves the convex hull by locally modifying the faces of the graph with

1The convex hull of a set of points is the smallest convex set inc1uding these points. Equivalently,
it is the intersection of ail convex sets containing these points.
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points that are "near" these faces. As we noted in Chapter 3, nearness is in Lhis case

defined using Euclidean distance criteria only. Alevizos et al., on Lhe oLher hand,

use the information provided by the acquisition segments Lo obtain a tOLal angu­

lar sort on the two-dimensional data points. The total sorL represenLs the order of

the vertices along the boundary of the desired polygon. The sarL is obtained llsillg

segment-to-segment crossing arguments and is successful becallse lines in a plane in­

tersect in general. Since lines do not in general intersect in Lhree-dimensional space,

their algorithm does not generalize in three dimensions. Note thaL the siLuation is

similar to the one we encountered in Section 4.2.6.2, as their algorithm relies on Lhe

fact that the triangle formed by triplets of intersecting segments is provably empty

of data points.

• 5.2 Algorithm Description

•

5.2.1 Notation:

We use the following notational conventions. Also refer to the notation introduced in

Section 4.1.

• G is the resulting solution graph.

• V is the set of input data points (or vertices).

• S is the set of directed acquisition line segments associated to the elements of

V. If -cr c V, then S(V) is the set of segments associated with .the elements of

V.
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• F is the set of faces of G.

112
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• If v E V, s(v) is the element of S associated with v, and p(v) is the other

endpoint of s(v), namely the point of acquisition of the datum.

• Graph subscripts indicate iteration levels. For example, G j is the graph at

iteration i and Si is the set of acquisition segments of the vertices spanned by

Gi.

• Graph superscripts refer to the face of the preceding iteration's graph that a

given subgraph is 7'00ted at. For example, G{ is the subgraph of Gi rooted at

face f, where f is a face belonging to Fi_ l •

• We elide graph attributes as follows: V(Gj) = Vi, E(Gi ) = Ei and F(Gi ) = Fi.

• Vi = V \ Vi..

• M{ is the polyhedron drawn by the graph G{, and M is thë polyhedron drawn

by the final graph G.

5.2.2 Preliminary Assumptions

By definition, the elements of Va lie on the hull of V, whereas the elements of Va

lie in its interior. As mentioned above, we first construet the convex hull of V, thus

obtaining the graph Ga, and we then determine which face of Fa each element of

S(Va) intersects.

Proposition 1 Each eiement of Va is associated with a segment that strictly

intersects no face in Fa. Each eiement of Va is associated with a segment that

strictiy intersects exactly one face in Fa.
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5.2 Algorithm Description

Discussion:

For Proposition 1 to be true, we must make a few additional assllmptions. In the

fol1owing, intersections refer to strict intersections.

Because Go draws the graph of a convex polyhedron Jllto, any general segment has at

most two strict intersections with Jllto, while a segment terminated in the dosme of

Jllto has at most one intersection with Mo.

We first discuss the first part of the proposition. The clements of \la belong to the

boundary of Mo, therefore their associated segment has at most one intersection with

that boundary.

v'

,
GO

Figure 5.1 Illustration of the first part of Proposition 1: Creation of a
phantom datum when not enough data is available. v' is added to the data in
order to guarantee that the data points which belongs to the hull do not have an
associated segment which intersects the hull. Note the ensuing recomputation
of the initial shape.
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Suppose there exists v E lia with exactly one such intersection (See the two-dimen;ional

analogue in Figure 5.1). In this case, p(v) lies outside A1 0 , hence it lies outside ,v!

(M lies inside its convex hull). Because of the opacity assumption, s(v) must not
-->

intersect any face of M. Hence s(v) entirely lies outside ,V!, while v - fS( v) lies inside

Mo, for f infinitesimally small, since s(v) intersects Mo exactly once. On the other
-->

hand, v' = v+ fS(v) lies outside of ,V!o, since v is a boundary point and 'V!o is convex.

Hence v is an isolated point and M has no thickness at v. Hence ,v! cannot model a

simple polyhedron.

Yet the figure shows this situation can occur when insufficient data is available, as

when the solid angle spanned by the acquisition procedure is less than 211" steradians.

The situation is easily detectable from its very definition: If a point v belonging

to the convex hull ,V!o is acquired with a segment which intersects ,V!o, we add a
'<:.:.:::::..= ~.

phantom data point at v' = v +fS( v). The existence of 1/ guarantees the first part of

Proposi tion 1 is true.

We next deal with the second part of the proposition. The elements of Vo lie in the

interior of 'V!o. Therefore, they have at most one intersection with the boundary

of Mo.'. Suppose there does exist a data point v whose segment ha~ no intersection

with that boundary. Then s(v) entirely lies inside Mo. This means that v was

obtained while the sensor \Vas inside 'V!p. Because s(v) does not intersect the hull,

the global~~lbQfithm is unable to initialize the construction of GI for that data point

(remember that Gi+1 is constructed by first verifying which face of Gi the elements

of II; intersect).

In Section 1.4 we introduced the concept of a visibility region w associated with each

data point v. For simplicity, we later restricted w to be the segment of acquisition

s(v). Suppose instead that w(v) is the union of s(v) and of the path of travel of the

.'



• 5.2 Algorithm Description 115

•

•

sensing apparatus up to the taking of data v (See Figure 5.2). vVe distinguish two

cases depending on whether the sensor is known to have started its path from inside

or from outside of the convex object ,\lfo.

If the sensor starts its path outside ,\lfo, then it must have intersected one of the faces

of Go if there exists v E V such that s(v) lies entirely inside ,\lfo. So w(s) intersects

a face J E Fa. So the algorithm pr~'·,~eds as if s(v) had intersected f. ln the event

where the sensor intersects several faces of Fa, for example if the sensot" moves in

and out of Mo, then J is chosen to be either the last snch intersected face before

acquisition, or the fit"st intersected face after acquisition of that data. Wc assume

that the acquisition procedure makes this information available.

Finally, suppose the sensor starts its path inside ,\lfo. In this case, we are unable

to initiate the convex hull "carving" procedure. The global algorithm fails as it is

unable to make use of the additional information provided by w if the sensor does

not eventually leave the convex hull. However, if the sensor eventually leaves Mo by

crossing face J, all data points acquired before then are assigned as if their segment

had crossed J, and we then fall back into the previously-described situation for the

remaining data points.

In summary, if ail data is acquired while the sensor remains inside the convex hull

of Mo, the global algorithm cannot make use of the information provided by the

acquisition segments since no face of the hull gets ever crossed, neither by the segments

nor by the sensor itself. The algorithm then stops and fails. In general, such a

situation does not occur when one acquires an object by taking several views of it.

In such a case, it is clear that the sensor navigates outside of the hull Mo. But the

situation can nonetheless occur when acquiring data along the boundaries of say, the

inside of a room (See Section 4.2.1.2). It may then"'be that the sensor never leaves
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Lhe inside of the the convex hull of al! the acquired points. Such situations must thus

be avoided by careful design of the acquisition sequence.

o r~-...!P("'~):l--.-d.~-7

•
f

•

Figure 5.2 illustration of the second part of Proposition 1: Generalization of
the visibility region w for a two-dimensional analogue. The arrows on the trace
of the sensor path indicate its sense. The small squares on the trace indicate the
sensor position at the time of acquisition. °is an arbitrary point on the trace of the
sensor path that lies outside the hull, and between hull boundary crossings. In this
example, the trace intersects face f several times. One possible definition of the Wi

regions for VI, V2 and V3 is:
WI = Trace(p(vi),vI)UTrace(p(vd,O).
W2 = Trace(O,p(V2)) UTrace(p(v2), V2)

W3 = Trace(O,p(v3))UTrace(p(v3),V3)

5.2.3 Graph Construction Iteration

We have described above how to initialize the algorithm. In the following sections we

describe a full algorithm iteration i. We assume we have already "Constructed a graph
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We first construct a partition P of Vi-l, whose cardinality is that of Fi _ l . Each

element v of a given equivalence class l'lof P is such that f is the first face intersected

by s(v).

Let f = (vo, VI> V2)' If pl is empty, no element of Vi-l crosses f. In this case, wc

define G{ as the graph drawn by f (namely the complete graph on {vo, VI> vd). [[

pl is non-empty, we define G{ as a maximal three-connected planaI' graph whose

vertex set is V/ = ql U{Vo, VI> V2}, where qf is a non-cmpty snbset of 1'1, and whose

construction we explain in the next section.

Finally, we define Gi as the union2 of Gi_ 1 and of aU the C{ snbgraphs, t.hns com­

pleting the ith iteration:

feFi-l f
Gi = Gi-I U U Gi . (5.1)

• ,',
i)

If Gi now spans the set V, (i.e. if Vi = 0), the algorithm stops. Fignre 5.3 iIlnstrat.es

the process for one snbgraph.

Claim 1 At each iteration i, Gi is a three-connected maximal planar graph (3CMPC).

Proof: See Appendix B.1.

2The union of two graphs has for vertex set the union of the graphs' vertex sets and for edge set
the union of the graphs' edge sets(Harary, 1972, p 21) .

"
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Figure 5.3 A hull Go with one subgraph G{. The edges of Eo are shown in bold
face, those of El are shown in iighter face. Non-visible (i.e. obscured) edges are not
shown.

An obvious corollary of the daim is that the final graph is guaranteed to be a 3CMPG,

which is a proper model for the polyhedron M.

Claim 2 The volume enclosed by the final mode! is that drawn by the convex hull, less

that of the union of the polyhedra drawn by the individual subgraphs of ail iterations.

FOI'mally,

Proof: See Appendix B.2.

I(M) = M o\ UéJ I(M{). (5.2)

•
Claim 2 states that each successive model monotonically "carves" the volume endosed

by the preceding one.
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Claim 3 The segments associated with the vel·tices spanned by G{ do not intel'sect

any of the faces of G{ .

Proof: See Appendix B.3.

Claim 3 states that each subgraph draws a figure which is locally consistent with t,he

data acquisition procedure and the opacity assumption.

Proposition 2 At any stage i of the gmph construction, none of the segments as­

sociated with the vertices spanned by the current graph Gi intersects any face of Fi.

Proposition 2 extends Claim 3 to ail graph faces and ail acquisition segments. Since

the graph eventually spans ail the vertices of V, if Proposition 2 were true, then no

segment would int~rsect any face of G, and the graph would be fully compatible with

the opacity assumption. The next sections address the following questions:

1. How are the subgraphs constructed?

2. Can we ensure that Proposition 2 is satisfied?

5.2.4 Subgraph Construction

Recall that fis a graph face of the previous iteration, and that the segments associated

with the elements of pl intersect f. As in (Boissonnat, 1984), we prefer to link to the
,-. ,.,

vertices of f the points of pl which are "close" to f, or those whose "penetration" into

I~'
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fis shallow. In this manner, we first construct subgraphs whose faces are near the

original f face, and which are themselves intersected by the segments of the "deeper"

data points. Again we prefer to use the acquisition segments rather than Euclidean

distance measures in order to guide the carving process and to capture to notion of

"closeness". This requirement can be met by a special use of convex layers (Preparata,

1985).

Let VitO) = loi = pi U{vo, vI> V2}' We construct the zeroth layer by taking the

convex hull cil' VitO). The next layer consists of the convex hull of the points internai

to thathull, again augmented with the vertices of f. The process is repeated until a

hull ii> found which contains no internai point. The graph of that hull is the sought

subgraph Gi. The process is more formally described in the llext paragraph and is

illustrated in Figure 504.

Let Gi(i) be the graph drawn by the ith convex layer and let Vi(i) be its vertex set.

Let pi(i+l) be the subset of Vi (i) with degree zero in Gi (i). The elements of pi (i+ 1)
';,

are the data points which are internal to the ith convex layer. If pi (i+ 1) is empty, then

Gi = Gi (i). If pi (i +1)isnon-empty, we then let Vi (i +1) = pi(i +1) U{va, VI> V2},

and the (i +1)th convex layer is the convex hull of Vi (i+1), whose graph is Gi (i +1).

Claim 4 The convex layer algorithm always terminates.

,."";'
'-,..:

Proof: See Appendix BA.

5.2.5 Algorithm's Ef6.ciency

We now;analyze the theoretical worst-case asymptotic complexity of the algorithm.
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5.2 Aigorithm Description

~T-::T-------~xs

Figure 5.4 A convex layer at a given level i. XI and X2 have degree
zero in G/(i). Hence, we write pl(O) = pl = {XbX2,X3'X",XS}, 11/ (0) =
{XI,X2,X3,X",XS,VQ,VI,V2}' pl(l) = {XI,X2}, VI(I) = {XI,X2,VQ,V\,V2}. For clar­
ity, the only acquisition rays shown here are those of XI and X2 •
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The initialization phase requires the computation of the three-dimensional convex hull

of a set of N spatial points. Such a hull can be optimally computed in O(N log N)

operations (Preparata, 1985). Each graph iteration then requires:

1. The determination of which face f in'M i each segment of 8(V;) intersects.

,

2. For each face of Fi, the determination of the points of p{ which achieve maximum

depth, where the depth of a point is the number of convex layers that have to

be stripped from VI(O) before these points are removed.

In (Dobkin and Kirkpatrick, 1983), a data structure called the drum representation is

given for polyhedra. It can be constructed in O(n log n) for an n-vertex polyhedron.

Among other uses, the representation can detect the intersection of.a polygon with
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that polyhedron in log n time. By extension, it can also detect the intersection of the

polyhedron with a segment, since a segment is a degenerate polygon.

So the intersection of ail segments in Vi with the faces in F; (Step 1 above), can be

performed in

(5.3)

•

•

using the drum structure, where ns is the number of segments and nI is the size of

the polyhedron against which to check intersection. ns is the cardinality of Vi, which

is bounded above by N. Because the graph of a polyhedron is planar, the cardinality

of the face set of M; has the same order as that of its vertex set. But Vi is the vertex

set of M;, and its cardinality is also bounded above by N. Hence, O(nl) = N and

Step 1 requires O(N log N) operations per iteration.

Step 2 requires the determination of the maximal depth convex layer for each V;!
set. In 2 dimensions, this can be achieved in O(ml log ml) (Chazelle, 1983), which

is provably optimal, where ml is the cardinality of the input set. No such result is

known in three dimensions however, so we resort to a repeated application of the

simple gift-wrapping technique (Preparata, 1985, pp. 125 and 166). This convex

hull construction technique consists in determining an initial facet of the hull, and to

"march" around the partial hull by joining each sub-facet of the. already-constructed

facets with a given data point. This data point is selected from the set of input points

using simple trigonometric relationships. Hence each input point is "inspected" a

number of times proportional to the number of sub-facets of the resulting hull. In

three-dimensions, the sub-facets are the edges of the hui!. From the planarity of the

graph, the number of edges is of the same order as the number of vertices on the hull.

Hence if there are ho vertices on the hull, the gift-wrapping technique determines the

zeroth layer hull in O(hom/ ). Similarly, it determines the i1h layer in
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O(h; L: hj) < O(h; L: hj) = O(h;m/ ),
j=i j=O

123

(5.'1)

where d is the depth of the set of points. Since ali layers must be computed before

arriving at the maximal-depth layer, Step 2 is performed in

L:O(h;m/)= 0 ((min,
1

(5.5)

•

•

for each graph faee. Recali that ml is the cardinality of pl augmented by :3, and that

the sum of the cardinalities of the pl's is the cardinality of Vi, which is bounded above

by N. Renee Step 2 requires at most 0(N2) operations per iteration and dominates

the running time of the algorithm's iterations.

Renee, the overali algorithm's complexity is given by the running time of Step 2,

multiplied by the number of iterations. Sinee we are aggregating at least one point

at each iteration, the worst-case complexity of the algorithm is 0(N3).

The bound is achieved if and only if

1. At each step of the algorithm, only 0(1) faces are intersected by segments of

Vi.

2. At each step of the algorithm, only 0(1) points are aggregated into the graph.

This can only happen if the above condition is satisfied and the cardinality of

the set of maximum depth is 0(1).

Because of the recursive nature of the algorithm, we can reasonably hope thatthe
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partition of segments into faces is well-balanced, and that a large number of points

gets aggregated at each algorithm iteration. For example, suppose that for every

subgraph face f E G{, the number of points of pl of maximal depth is O(n), where

n is the cardinality of pl. Then the number of iterations is 0(1) and the algorithm

requires 0(N2) operations: Additionally, suppose that at every iteration, the number

of faces of Mi that get crossed by segments is O(N). Then each pl set is at most 0(1),

and Step 2 is performed in constant time a constant number of times. Step 1 however

is incompressible, giving the algorithm total execution speed of O(N log N). The

claim that the expected speed is smaller than 0(N3) is warranted by the experimental

execution speeds for the example mns we report in the next sections.

5.2.6 Example

We implemented the above algorithm on real noisy three-dimensional data. We gath­

ered the data wi th a two-dimensional triangulation-based synchronized laser range

finder developed at the NRC (Rioux, 1984). The subject was the pencil holder shown

in Figure 1.6. The essential criterion for the choice of subject was that it be homeo­

morphic to a sphere, 50 as to be properly modeled by a polyhedron. A second criterion

for the subject was that it not be convex, since a convex object is trivially modeled

by the graph Go, and therefore it does not test the algorithm. The pencil holder

is a very simple shape, since it contains only one deficiency 3, but is still difficult

to model from purely geometric tests because of that deficiency's large size. Also

note that the deficiency is itseif convex, making the pencH holder a strongly visible

polyhedron. Such a polyhedron has the property that any point of its deficiencies is

visible from any point on their lido The concavity lid is the face of the hull separating

3We borrow the term from the Computational Geometry Iiterature. In this chapter, we reserve
the term c.ncavily to refer to sets of merged faces (See Section 5.3).
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the deficiency from the object's exterior. Strong visibility is a sufficient, although not

necessary, condition for the object to be entirely visible from its exterior. A practical

consequence is that we do not have to penetrate the hull's interior, thereby avoiding

the complications depicted in Figure 5.2.

The subject measures approximately 20cm in each dimension. Several thousand three­

dimensional surface data points were taken from three different viewpoints from a

distance of about 60cm, and were smoothed with a Gaussian rilter. Ali three views

were designed to sampie a substantial portion of the deficiency. The accuracy of the

measurements using this setup is better than Imm. The inter-view calibration was

done with a least-squares minimization technique on a set of seven fiducial points,

namely the top of the pyramids shown in Figure 1.6. We empirically verified that the

absolute positional error after transforming the data to a common frame \Vas as large

as 3-4 millimeters. As a result, we used no more than a few hundred points to test

the algorithm. Equal numbers of points were selected from the three vie\Vs. Within

each view, the sampling of the data points was made across approximately equal solid

angles. Other than this data point selection mechanism, we made no further use of

the fact that the data points came from a small number of vie\Vs, rather than as a

set of isolated acquisition segments.

The model output by the algorithm from an input set of 250 data points is shown in

Figure 5.5.

The results are somewhat disappointing from a perceptual point of view. The main

reason is that the edges from the higher level always remain in the graph. Where a

large deficiency is present, as is the case in the example, each higher-level face gets

carved as if it contained its own separate deficiency. As the carving proceeds, these

"separate" deficiencies get larger and eventually criss-cross.
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Figure 5.5 Model output by the algorithm from an input set of250 surface points
acquired off the pencH holder shawn in Figure 5.12.
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In order to alleviate the problem, we added a heuristic to the algorithm to allow

the "merging" of severàl higher-level faces in cases where a deliciency encompassing

severa! of these faces is likely to be present. We present the heuristic in the next

section.

A second problem pertains to the planar-facet representation itself and also shows

up in the form of self-intersections for the resulting mode!. Claim 3 only shows that

Proposition 2 is true locally. It shows that the acquisition segments of the vertices

spanned by a local graph GI do not intersect any face of GI. However, they still may

intersect the faces of Gl', where f of f' (we then say loosely that the subgraphs GI

and Gl' intersect).

Unfortunately, as shown by the tests presented above, such situations do frequently

arise in practice. One reason of course is that the data is insufficiently sampled to



• 5.2 Algorithm Description 1·,-.1

•

•

1.\ correctly and unambiguously reconstruct the object. As weil, the sensing errors in­

troduce local spurious artifacts. But a more fundamental reason is that. the simplicial

representation we adopted is an arbitrary representation for the underlying surface.

In practice, it tends to "carve out" too much of the object's encloscd volume.

Consider the simple case illustrated in Figure 5.6. J and J'are two faces, each of

which is intersected by one acquisition segment. ln this case, no segment-to-face

intersection is present.

Figure 5.6 f and f' are two (neighbor) faces of a graph Gi. The cardinality of
both pl and pl' is 1. The acquisition segments are shown for the singletons v E 1'1

and v' E pl'. On the right of the figure, the corresponding graph for G{+l and G{~l
is shown.

If we modify the position of the data points in Figure 5.6 to allow v' to translate

towards the left of the figure, we reach a limit where v' penetrates through a face ,p

of F41' as shown in Figure 5.7. As a result, s(v~) intersects,p, and the graph violates

Proposition 2.

,.
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Figure 5.7 The faces of Of and Of' intersect. The graph shown on the right
1I0W violates Proposition 2. For clarity, the acquisition segments are omitted from
this and the following figures.
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This happens because the volume of the deficiencies carved out by the convex Mi

objects is too large. As mentioned at the end of Section 3.1.2.3, the implicit visi­

bility information provided by the acquisition segments is only that there exists an

f-diameter cylinder of free-space around each segment, instead of a polyhedron of

free-space rooted at face f. The polyhedral representation we adopt is one of conve·

nience.

Hence, suppose that we fix face q, at its vertices, and that we "bend" it away from v',

thus making it non-planar, so as to allow v' (and hence S(V')) to not intersect q, any.

longer. Because we know that both s and s' entirely lie in free-space, there exists a

topological mapping T such that the image of q, through T is a sheet with the same

boundaries as q" but which intersects neither s(v) nor s(v').

Hence, although the geometry of the modeled object is incorrect, the connectivity
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of its vertices is consistent (in the sense of Section 1.3.2) with the data acquisition

procedure. This is similar to the situation we encountered in Section 4.2.5.

Still the large number of segment-to-face intersections and of model self-intersections

is a very undesirable feature of the algorithm. The heuristic we present in the next

section reduces that number.

5.3 The Face-Merging Algorithm

Figure 5. i il1ustrated a situation where one of the segments s of Cf crosses a face t/>

of Cf'. Clearly this violates the opacity assumption. While we argued in the previous

section that we could make the model consistent with the acquisition procedure by

relaxing the planar facet constraint, we present in this section a heuristic that reduces

the number of such occurrences and also retains the same output representation.

We first illustrate the Jace-merging concept. Refer back to Figure 5.6. Faces J and

J'both spawn a sub-tree, with vertex v and v' respectively. Each sub·tree models a

deficiency, which is deemed to have been "discovered" by the intersecting segments

s(v) and S(V'). Thanks to the particular geometry of the data, the mode! drawn by

the resulting graph is free·of self-intersections.

In Figure 5.8, the same data configuration is shown, except that the convex layer

algorithm has been performed by merging faces J and J'. More formal1y, the convex

layer algorithm has been applied to the merged input set
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We can see thiJ.t the resulting boundary and graph-theoretic interpretation of Fig­

ure 5.8 is as consistent with the data as that of Figure 5.6. Vet the face-merging

algorithm we described chooses Figure 5.6's interpretation. This choice agrees with

the least-commitment principle outlined on Page 15. The chosen interpretation mini­

mizes the volume enclosed by the models drawn by the subgraphs, hence it maximizes

the volume of the resulting model (See the proof of Claim 2) .

•
r

r

.•.........................•.........................

x.

Figure 5.8 f and f' have been merged for the ccnvex layer algorithm, resulting
in a different graph.

Contrast the above situation with that which we illustrated in Figure 5.7, where the

resulting planar-facet model violated the opacity condition. The same data geometry

is shown in the companion Figure 5.9, but with the convex layer algorithm having

been applied to the merged faces f and /'. As before, merging faces yields a different

graph. Vet it also eliminates the self-int~rsection between GI and GI'.

This example illustrates the need for merging faces in the case where neighboring
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Figure 5.9 Modified graph for f and l'. The segments associated with the
segments of vertices of VJ.f' do not now intersect any face of GJ.f'.

deficiencies intersect. In the next subsection, we formalize the face-merging conditions

for any set of graph faces.

5.3.1 The Face-Merging Conditions

Let Gi be the dual graph of Gi. If we assign a uniform weight (say of 1) to the edges of

Gi, we can calculate the shortest path between any two faces of Gi. Let sp(f,J') =<

1, ft, .. · .JD-2' l' > be the shortest path between faces 1 and l'. D(f, l') is the

distance between 1 and l' along the shortest path.

Recall that model self-intersection occurs in a large part when a unique deficiency to

be modeled by GH ! is "covered" by more than one face of Gi • Figure 5.10 illustrates

a geometry where this takes place. If the subgraphs rooted at the faces shown in
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the figure do not intersect, we assume, in the absence of better knowledge, that the

subgraphs each correspond to a separate deficiency and no merging takes place. If on

the other hand, they do intersect, their parent faces are candidates for merging.

Figure 5.10 More than one graph face may make up a deficiency lido In this
figure, f, f' and f" cover a hole. They are intersected by acquisition segments which
tra.yel down to the bottom of the hole. If their corresponding subgraphs intersect
two-by-two, the faces are merged.

The additional merging conditions we now outline are designed to ensure that

1. The heuristic does not degrade the algorithm's average computational complex­

ity.

2. The resulting graph remains a 3CMPG.

The first condi;'ion is met by setting an upper bound D on the faces'mutual distance.

J and J'are not checked for intersection if DU, J') > D. This ensures that the face­

merging process remains in genera/local. This point is further explained below.
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The second condition is met by ensuring that the merged faces do not contain a cycle.

It they do, there must exist a data point v internai to that cycle (See Figure 5.11).

Because the face-merging step breaks al! the edges separating the merged faces, the

existence of a cycle in the set implies that v becomes an isolated vertex. This situation

cannot be al!owed if the graph is to remain 3-connected. Consequently, the face­

merging algorithin does not attempt merging face sets which form or contain a cycle.

The dual of a triangulated polygon is a tree (O'Rourke, 1987, Chapter 1). Therefore,

a set of faces is acceptable for merging if and only if the dual of these faces form a

tree.

•

•

Figure 5.11 The faces at left (shown in bold) cannot be merged together, as
indicated by their dual, which forms a cycle. If they belong to a unique equivalence
class, the algorithm does not attempt to merge them. In contrast, the faces at right
can be merged.

We now give a more detailed description of the face merging process for a given itera­

tion i. The complete algorithm is further described in pseudo-code in Appendix BA.

We assume we have constructed the G{ subgraphs for each face of Fi-t as described

in Section 5.204. Then we construct the dual graph Gi- i . For each face f of Fi, we

check if the subgraph rooted at f intersects any of its neighboring subgraphs, up to

a graph distance orDo If we detect no intersection, we proceed to iteration i + 1 as
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before.
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Suppose however we that we detect sorne subgraph intersections. Then for each pair

of intersecting subgraphs, we merge the faces at which they are rooted, along with al!

the faces that lie on their shortest path. 'Ne cal! the merged faces concavities. Let C

be such a concavity and let F be the set of faces that comprises it. The convex layer

algorithm is then reapplied for C, by setting

pC = U pli,
fi={ il ,i2,ia}eF

V C =U{i},i2,i3 }U pC.

li

Then the subgraph intersection detection is also repeated for the concavities. If inter­

sections between the concavity subgraphs are found, these subgraphs are themselves

merged, thus growing the concavities further.

Note that the bound D does not necessarily preclude f and f' from being merged

if their mutual distance exceeds D. If the subgraphs of the faces lying on sp(j, fi)

intersect two-by-two in such a way that none of the intersecting face pairs have a

mutual distance greater than D, than al! faces on the path, including f and j', may

be merged. Hence D does not in principle limit how far the merging process eventual!y

extends. A concavity can theoretically grow to comprise a number of faces in the order

of the input size. For this reason, the face-merging heuristic theoretical!y degrades

the worst-time algorithmic complexity by a linear factor. In practice, the process

stops early, thanks to the existence of the distance bound D, or due to the detection

of a cycle in the dual graph. In the latter case, the algorithm reports the existence

of the cycle and does not attempt to grow the olfending concavity any further.

'Ne implemented the algorithm and tested it on experimental, noisy data. Figures 5.12
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and 5.13 show a snapshot of the object first shown in Chapter 1 (a pencil holder)

and its planar-facet representation through three iterations. The object is made up of

300 distinct data points. The maximum graph distance D for sllbgraph intersect.ioll

testing WolS set at 3.

--•
..... .lç-

•

Figure 5.12 Left: A round object with a deep d'1ficiency.
Right: The zeroth-orde,r graph of the object (the convex hull). The black Iilles are
the range !inder's line-oT-sight rays for those points which make IIp the lIext order's
graph.

The average actual running speed of the two algorithm versions are shown in Table 5.1

for a series of three tests. For the regular algorithm, the complexity progression is

approximately quadratic, as expected. While the face-merging algorithm takes much

longer to terminate, its only exhibits a complexity progression slightly greater than

quadratic.

c-
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Figure 5.13 Left: The first-order graph of the object. Artifacts on the round
part of the object are caused by calibration inaccuracies. The deficiency is now only
partially carved.
Right: The second- and final-order graphs of the object .

5.4 Chapter Summary

We have presented a global algorithm for automatically constructing the connectivity

graph of a set of points that lie on the surface of an object homeomorphic to a

sphere. We assumed the points are acquired with a line-of-sight sensor and the

details of the acquisition procedure are known. The algorithm uses the convex hull

of the data points as its initial shape and builds successive Iterations by carving the

previous Iterations' faces. A consequence is that the more detailed representations are

strictly included inside the less detailed ones, making it well-suited for applications

such as path planning that require hierarchical representations. The algorithm has a

complexity at worst cubic in the input size, and approximately quadratic in practice.

In order to obtain more perceptually-pleasing results, we implemented a heuristic to
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Number of Input Points Regular Algorithm With face-merging
20 .1 .1
40 .3 .3
80 .8 3
160 4 18
320 17 " 80;

. 640 68 445
1280 295 1987

13ï

•

•

Table 5.1 Aetual running-time (in User Time seconds) of the two algorithm versions
for different input sizes. The non-optimized code was run on a SPARC 1 workstation
using the C++ programming language.

reduce the number of model self-intersections, when the graph assumes a planar-facet

representation.
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Chapter 6

Conclusions

The automatic integration of three-dimensional scenes from multiple viewpoints moti­

vated the work we presented in this thesis. We reviewed the existing literature on the

topic, and we saw that image integration is a large body of research in the computer

vision field. As a result, many approaches perform data integration through image

analysis and object reconstruction techniques, which are a form of data compres­

sion. Recent technological advances in range data acquisition have spurred interest

in adapting these techniques to range images. We argued that the geometrical nature

of range data, coupled with knowledge of the details of the data acquisition proce­

dure, allows for a different form of processing. This processing obeys what we called

the ASOT paradigm. The ASOT paradigm delays the data compression performed

by image understanding and object reconstruction techniques. Rather, the output of

the ASOT is a general-purpose least-commitment representation.

The least-commitment representation decouples the multiple viewpoint integration

phase, which is low-level and purely geometric, from the object reconstruction phase,

138
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which is high-level and context-dependent.
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Thus we found that an essential task of the ASDT is to determine the cOllllccl,ivity

of the surface data points. Connectivity for a set of discrete data points can be ex­

pressed as a graph, whose vertices form the data point set. This connectivity is often

simply assumed, or computed solely based on the basis of the Enclidean distance

between the points. When the surface resolution for the acquired scene is high, this

may be a reasonable thing to do. For example, an implicit and correct connectivity

is often assumed between neighbor points in pixel-based images. However, when the

resolution is coarser than the object features, we showed that neither image neigh­

boring relationships nor Euclidean proximity lead to accurate inferences of surface

connectivity.

We observed that the topological class we model must be known ahead of time in

order to properly determine connectivity. Hence, we looked at the case of the simplest;

two-dimensional topological class, namely the sphere, which is homeomorphic to the

polyhedron. We then showed that the theoretical number of polyhedral graphs that

can be drawn on a given data set is prohibitively large. We then introduced the as­

sumptions of surface opacity and rigidity in order to prune the number of admissible

graphs. These assumptions are useful only if additional information is known about

the data acquisition procedure. Such information led us to mode! range data acqui­

sition as a process whose output is a set of surface data points, each of which lies al.

the boundary of the object being acquired, and of a subset of free-space. The geom­

etry of these subsets depends entirely on the data acquisition ,technique. For many

of these techniques, including triangulation-based laser scanning, the subset can be

approximated as a line segment that extends from the acquisition device's imaging
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center to the data point. This knowledge yields additional information, which com­

plements that of the coordinates of the data point. Then we demonstrated that this

~eometrical information helps in reconstructing surface connectivity.

The two-dimensional equivalent problem was already solved. A polygon in a plane can

he unambiguously and efficiently reconstructed from a set of line segments terminating

on its contour. At the outset, we determined that reconstruction uniqueness cannot be

guaranteed for three-dimensional objects probed under similar conditions. Yet, the

question remained as to whether "perceptually-consistent" polyhedral connectivity

can be constructed from simple geometric considerations.

We developed merge-frames, an "on-Iine" , i.e. incremental algorithm for doing so

in the case where the input is grouped into a set of frames, where a frame is an

abstraction for a matrix of data points wi th a cornmon imaging center. The frame is

a convenient data organization model for range "images". One of the main features of

this algorithm is to use the partial connectivity provided by the individual frames, as

initial subgraphs for the modeled object. Further, the structured form of the frames

allows us to merge the subgraphs using a sequence of efficient binary searches. The

object of the binary search is to determine geometrical relationships, such as the

intersection of acquisition segments with planaI' "sheets" defined by an acquisition

center and a subset of its data points.

We gave precise definitions for graph validity based on object opacity and visibility

considerations. We proved several results fô\. the algorithm, but we did not deem

those results to be sufficiently powerful to warrant implementation and testing. We .

found counter-examp!es that made the graph produced by the binary searches invalid.

The major failure mode of the algorithm oceurs when the object's concavities are

acquired before its protuberances. This has the effect of invalidating the intersection
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tests performed before the acquisition of the protuberances.
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merge-frames showed that tests based on partial information may be invalidated by

subsequent data. Bence we developed a globo.l algorithm, for which ail data must

be acquired before attempting 1.0 establish connectivity. An advantage of this algo­

rithm is that il. makes noassumption about the organization of the data points. \n

particular, il. does not assume that range data is organized along frames, or images.

This algorithm is based on the Iterative "carving" of the graph faces, starl,ing [rom

the convex hull of ail points. Bence, the algorithm proceeds "from the ontside in"

by incorporating an ever larger set of data points into the current graph. The algo­

rithm terminates when ail points are inserted into the graph. At each Iteration, the

algorithm partitions the points internai 1.0 the current iteration's model, based on t.he

intersection of faces with the segments associated with those points. New faces are

created by joining the intersected face with the points of the maximum depth convex

layers for that partition. The remaining points are themselves further subpartitioned

al. the start of the next iteration. This algorithm is therefore recursive as weil, and

displays an average computational complexity which is quadratic in the number of

data points, although the worst-case complexity is cubic. The algorithm produces a

hierarchical representation. Each node is a model, from the less detailed convex hull

al. the top, 1.0 the more detailed spanning graph al. the bottom. The deeper nodes

are guaranteed 1.0 lie inside the higher ones.

We tested the algorithm on an object containing a large concavity, on experimental,

noisy data obtained from a triangulation-based laser range !inder. Even though the

connectivity information calculated by the algorithm was essentially correct, we found

that il. did notyield perceptually pleasing results. One reason was that wc chose 1.0

display the results with a planar-facet model, and by doing so, wc madc assumptions
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about the object's geometry that were not present in the original data, nor in the

constructed graph. A second rcason pertains to the a!gorithm itself and has to do with

the fact that there is no one-to-one correspondence between the concavities present

in the object, and the faces of the higher-Ievel graphs. We introduced a heuristic to

rcmedy this problem. The heuristic merges faces that appear to "cover" the same

concavity. These faces are detected by testing for mode! self-intersections. We found

that this heuristic reduced the number of planar-facet model self-intersections, for a

computational cost at most linear, and in practice sub-linear, with respect to the size

of the input.

•

•

6.1 Further Work

The approach we followed III this work applies mostly to scenes acquired with a

low- to medium-resolution. One reason is that high resolution a~quisition yields an

implicit connectivity which is generally correct. The connectivity is simply inferred

from Euclidean distance or from image plane nearest-neighbor relationships. A second

reason is that the planar faces are a very crude underlying representation for planar

graphs. When the cardinality of the input set increases, our algorithm is not robust

enough to handle the greater probability for model self-intersections.

This second problem, however, can be circumvented by developing a better underlying

geometrical representation for the resu!ting graph. For example, curving inward the

faces of the subgraphs rooted at a given face, would reduce the volume enclosed by

the model drawn by that subgraph. As a result, the number of subgraph intersections c,>"" /i?';
... /

c'

would be reduced, resulting in a perceptually more pleasing mode].; '.;;,;"
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Another approach 1.0 reduce the number of self-intersections would be to experiment

with other heuristics for the global face-merging algorithm. For example, the graph

distance beyond which faces are not merged, can be made 1.0 depend on the geometric

resolution.

Yet, the cause al. the root of the difliculties we encountered in showing the generality of

the approach is due 1.0 the nature of the input data. Points and line segments are zero·<

and one-dimensional entities that are used 1.0 reconstruct a three-dimensional object.

As a result, no three-dimensional subset of space can ever be unarnbiguously c1assified

as free or ernpty. If the w free-space regions were three-dirnensional, as wit.h contact.

sensing or CMM, the data reconstruction would be rnuch less arnbiguous. Howevel'

segrnent-based graph construction is justifiedby techn,,'logical considerations.
-.,."'-
~ ,

,'--'. ~./-' "

Ha~dÙl)g other topological classes such a~ single- or rnulti-hole tori woûld be agen-

eralization of this work. We stres~",d that in order 1.0 maintain graph consistency, the

topological c1ass of the desired model must be known. Such knowledge couId be an

ASDT's input variable. Then, when a segment tS found 1.0 "penetrate" through the

object, il. can serve as a basis for "growing" a topological hole.

In donclusion, we showed that range data acquisition allows the automatic construc­

tionoE least-commitment connectivity models with simple geometrical tools. Further
".~."

work remains to bêùun~.to generalize this approach, to increase its robustness, to

improve the perceptual appearance of the resulting model, and to study how it can

be used "in conjunction with the higher-level processes of three-dimensional analysis.

..
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Appendix A

The Number of Labeled

3-connected Maximal Planar

Maps

i..\
1) A.1 Labeled and U nlabeled Enumeration

•

In the first paragraph of their seminal book on graphical enumeration (Harary and

Palmer, 1973), Harary & Palmer state:"Labeled enumeration problems always appear

to be much easier to solve than the corresponding unlabeled problems." This is true

because the solution of an unlabeled enumeration problem require the computation

(explicit or implicit) of the number of symmetries that various graphs have. Unfor­

tunately, no general method exists to detect symmetries, and solutions to unlabeled

enumeration problems often involve ingenious but ad hoc methods.

144
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We shall see that Harary & Palmer's statement applies to the problem of enumerating

3-connected ma.ximal planar graphs (3Cr"IPG's). Even though no exact formula is

known for enumerating unlabeled 3CMPG's, we derive such a formula for t.he labcled

case. We could not find such a formula in t.he existing literaturc.

A.2 The Connect-the-dots Problem

•

Let Il be a set of n points embedded in the 3-dimensional Euclidean space. Suppose

we wish to connect the points of Il t.o form a fully-t.riangulatcd polyhcdron P of 'II

vertices. It is well-known that the set. of vertices and edgcs of P form a 3CMPG G.

G is maximal because since every face of P is a triangle, no edge can be added to G

without losing the planarity property. It is 11.150 well-known that every 3CMPG can

be realised as a fully-triangulated polyhedron (Grünbaum, 1967, page 235).

We wish to calculate the number of different such polyhedra realisable from Il. By

the above observation, this number is the number of different 3CMPG 's. Because

the points of Il are assumed to have a specific embedding however, different t.hough

isomorphic graphs yield different space-occupancy functions, and hence correspond to

different polyhedra. As a result, we will concern ourselves with enumerating labclcd

3CMPG's.

A.3 A review

•
The best account on the research status of enumeration of 3-connected planar graphs

was given by Federico (Federico, 1975). In this review, Federico concerncd himself
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•

with the enumeration of unlabeied graphs,because of the one-to-one correspondence

between polyhedra types and unlabeled 3-connected planar graphs. He indicated that

no exact solution was known, and that rote enumeration had not even been carried

beyond 12 vertices.

A.3.1 Edge-rooted planar triangulations

Tutte' (Tutte, 1962aj Tutte, 1962bj Tutte, 1963) was the first to make significant

contributions to the theOl'y of enumerating planar graphs.

He tackled the problem by rooting planar graphs. A rooted planar graph is a planar

graph embedded on the sphere, where a particular edge and the embedding sphere

have both been assigned a positive orientation. Hence, a planar graph with e edges

gives rise to 4e rooted graphs.

In. (Tutte, 1962a), Tutte showed that the effect of rooting a graph,is to destroy any

symmetry present in the unrooted graph. He went on to give a recursive formula for

the number of rooted 3-connected planar graphs, and an explicitformula q\(n) for the

number of rooted 3CMPG's on n vertices 1.

2(4n-ll)!
q\(n) = (n _ 2)!(3n - 7)! (A.l)

•
where we slightly changed Tutte's notation to suit the definitions given in this note.

From the above observation on the number of rooted graphs, we can conclude that

1Brown (Brown, 1964) later generalîzed 'lUtte's explicit formula to ail rooted 3-connected planar
graphs.
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the number of unlabeled 3CMPG's is bounded above by cP( n) and bounded below by
,,(n)

4e .

The upper bound is true since wc know that cP(n) is the number of non-isomorphic

rooted 3CMPG's, and that there at least as many rootcd 3CMPG's as thcrc arc

unrooted 3CMPG's. The lower bound is true by the above observation on the number

of edge-rooted graphs obtainable from a given unrooted graph.

Tutte also showed that to each unrooted 3CMPG G corresponds r(l~l rooted 3CMPG,

where qG) is the number of symmetrics of G (technically, the order of the automor­

phism group of G).

It follows that the number U(n) of unlabeled, unrooted 3CMPG's of n vertices is

• U( ) = 'Ç""' cPi(n)n L...t -le ,
i T

(A.2)

•

where cPi(n) is the number of 3CMPG's having i symmetries. further, the index i is

known to vary OVef the set of divisors of 4e (Harary and Tutte, 1966).

A.3.2 Unlabeled Planar Triangulations

Tutte (Tutte, 1962a) conjectured that the number of unlabeled 3-connected planar

graphs tends to "1;l as n tends to infi~ity. In other words,'almost ail 3CMPG.'s are

unsymmetric for large n, and the ratio of symmetric to !lIlsymmetric 3CMPG's tends
~,.~

to zero as the numher of vertices tends to infinity.

Il
Bender and Wormald (Bender and Wormal~" 1985j)ater provcd that the fraction of

~·c ""-

e-edged 3-connected planar graphs which are symmetrigis at most O(ce ), ...,ith c < 1.
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Since for rr:a.ximal graphs, e and n are linearly related, it proyes Tutte's conjecture

for 3CMPG's. Therefore,

lim U(n) = </>(n).
n_oo 4e

A.4 Labeled Planar Triangulations

(A.3)

The number of ways of Iabeling a giyen graph G of order n is (Harary and Palmer,

1973, page 4)

•

•

n!
[(G) = r(G)'

Let L(n) be the number of labeled 3CMPG's of n yertices. By (A.4),

'<'-
'~,

L(n) = U(~)n!
l

= " </>j(n) n!
L..." ,le .

i T t

= L </>j(n)n!
j 4e

= ,--,</>(-,-n)_n!
4e

= :-::</>",(....:.n)_n!~
12(n - 2)'

where we use the relation e = 3n - 6, which holds for ail 3CMPG's.

Substituting (A.I) inta (A.5), we get

(A.4)

(A.5)
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Ln = 2(4n-11)! n!
() (n - 2)!(3n - ï)! 12(n -"', 2)

(4n -11)! n(n - 1)
=

(3n - ï)! 6(n - 2)

= (4n -11)! (n).
(3n - 6)! 2

A.5 An Asymptotic Formula
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(A.6)

.,

•
We now compute an asymptotic formula for L(n) in order to estimate its rate or

growth. Setting m = n - 3 and using Stirling's factorial formula, (A.6) becomes

·,.

•

(4m +1)4m+t J27r(4m +1) e-4m - 1 (m +3)(m +2)
L(n) ~ '7:::--'-::-7==~;====--=",='''--'---';:;-'---"-

(3m +3J3m+3 J27r(3m +3) e 3m-3 2 ,

(4 (1 + ..1.))4m+t 4 (1 + ..1.) t 2(1.' .1·\11 + 2.)_ m <lm m <lm -4m-l+3m+3,m /~r::·:·m:':\-'.::" 111 '

- (3m(1 + ..iL ))3m+3 3m(1 + ..iL) e -=. 2<3m 3m __

~ (4m)4m
+t e !f

e
_m+2 m2

(3m)3m+3e3 V3' 2

= (256 )m 4V3
27e m 81

_ 4V3 (256 _ )n-3
- 81 27e(n 3) . (A.7)
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A.6 Conclusion

•

•

.;

No explicit formula exists for the number of unlabeled 3CMPG's. By using Tutte's

formula for the number of rooted 3CMPG's and the general relation between the

numbers of labeled and unlabeled graphs, we easily derived an explicit formula for

the number of labeled 3CMPG's. This number is the number of different fully­

triang~lated polygons that can be drawn on a set of verticesembedded in E3 •

Table A.1 displays the numbers for particular values of n, for both the exact number

and its asymptotic approximation. We checked the results by rote enumeration up

to n = 6.

n L(n) (exact formula) L(n) (asymptotic formula)
4 1 .2983
5 10 4.163
6 195 98.00
7 5712 3241
8 223,440 138,005
9 , 1.093e+07 .7187e+07
10 6.413e+08 4.424e+08
11 4.386e+lO 3.144e+10

;12 Û~124e+l2 2.532e+l2
. ','13 3.004e+l4 2.280e+14.,

14 2.926e+l6 2.26ge+l6

: i"r:(
120 i2.534e+304 2.466e+304

Ci \
Table A.1 Exact and asymptotic number of labeled 3,r.onnected maximal planar
graphs expressed as a function of the number of vertices.;i'he greatest value we could ,\:,.
compute using standard 8-byte floating point arithm~tic w<l.SJor n = 120.. '

(t:."
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A.7 Proofs of Theorems

A.7.1 Proof of Theorem 1

We first prove the two fol1owing lemmas:

Lemma 1 po< : VO< ---+ VO<, is bijective.

151

•
Proof: P is injective by definition, and so is its restriction. Since va' is the image

set of va, every element of Vo<' has a pre-image. Now suppose:

(3x' E Va')(3x,y E VO<), PO«x) =po«y) = x'.

---> --->
Then Oz = Oy and rPz = rPy. But then 3,\ > 0, pax = ,\pa y, which violates our

assumption. Thereforc, every element of VO<, has only one pre-image through pa. 50

po< is also surjective, which proves the Lemma.

Lemma 2 Ga and Ga' are isomorphic.

o

iproof: By Lemma 1, po< is a bijection between va and Va'. Further, (4.3) implies
\~,

thC;re_exists a bijection between E(Ga) and E(GO<'). Therefore, Ga and Go<' are
-----..~::-

•

isomorphic (Bondy and Murty, 1976).

Notation:

"

ë-:: ,:.,:;: \ \

o
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• VC s.t. C is a closed, compact set, I(C) is the interior of C.

• VC s.t. C is a closed, compact set, B(C) is the boundary of C.
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•

We wish to prove that if GO' is a planar triangulation, then GO is a triangulation and

is 2 1/2-consistent. Since GO and Ga' are isomorphic, Ga' is a planar triangulation if

and only if there exists an embedding for which Ga is a planar triangulation. This is

true by assumption. Hence the first validity condition is satisfied by Lemma 2.

We must now praye that Ga is 2 1/2-consistent. We will do so by showing that if

either consistency condition on GO is not verified, then Go i cannot be a triangulation.

Let A be the set of closed triangles defined by the triplets of (IIa)3. Since P is a central

col1ineation, it is incidence-preserving, so for every closed, planar curve C C E3, the

fol1owing four statements hold:

P(C) is a closed curve,

(x E B(C)) =? (P(x) E B(P(C))),

(x E I(C)) =? (P(x) E I(P(C))).

P(closure of C) =closure of (P( C)).

In particular, Vt E A,

P(t) is a triangle on 8 2
,

•
(x E B(t)) =? (P(X) E B(P(t))),

(x E 1(t)) =? (P(X) E I(P(t))).

(A.8)

(A.9)
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•
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A.Î Proofs of Th_or_ms

P(closure of t) = closure of P( t).

Suppose there exists a segment Si terminated al. point Xi such that condition (-l.I) is

not verified. Then:

3y E E3 ,3t E Fa, ((y # Xi) fi (y E t) fi (1/ E Si))'

----+ ->
Since (Xi E Si) fi (y E Si), 3,\ > 0, pa Xi = ,\P"'y. l'lence, P(:r;) = P(y) sinee [J'" is the

center of the collineation P.

Suppose now that y E B(t). From (A.8), P(y) must belong ta B(P(t)), that is

ta an edge of Ptt). Let x[,x2,and X3 be the vertices of t and XI"X/, and X3' be

their respective images through pa. Since {XI,X2,X3} C va, :rl # :r2 # :ra. Then,

Xl',X2',X3' E va' and x~ # x; # x~ by the bijectivity of pa.

Sa, pa(t) has four vertices, namely Xl',X2',X3' and pa(x;). Therefore, Ga' cannat be

a triangulation.

Suppose now that y E f(t). From (A.9), P(y) must belong ta f(P(t)). Sa, P(y)

belongs ta the vertex set of Ga' and belongs ta the interiar of a face of Ga'. Therefore,

Ga' cannat be a triangulation.

Hence in bath cases Ga' cannat be a triangulation. Sa condition (4.1) must be truc.

Similarly, suppose condition (4.2) is not:~atisfied. Then, 3Xi, (Xi E Si) fi (Xi ET),

where Xi is a dà:tum point, Si is its segment, and T is the visibility tetrahedron with

one vertex al. pa and the others al. the vertices of a triangle t E A.
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•

------;

Let R be the semi-infinite segment terminated at po and whose support is pOx;. We

first prove that (R nt) # 0.

Since T is a convex figure, R intersects it in at most two points. By construction, one

of those points is po. Further, R contains at least one point internai to T, namely,

x;. Hence the intersection of R with T is non-degenerate and the second intersection

point must belong to a face other than those to which po belongs. But po belongs

to ail faces of T, except for t. I-Ience the second point of Rn T is in t. Let y be that

point.

By construction, ail points of R verify P(l) = PO(x;) = yi. I-Ience P(y) = yi.

We can now show as above that yi E vol (since P (x;) = yi), and that either

P(y) E 1 (P (t)), ( if y E 1 (t)), or P (y) E P (t), ( if y E B(t)). Either case violates

the assumption that Goi is a triangulation, so condition (4.2) must also be true.

1)

So Go is 2 1/2-consistent, which proves the theorem.

A.7.2 Proof of Theorem 2

o

"

:.'".:
If f3 < 211', the polar angle transformation P maps VO on an open hemisphere H

,......,
around p&. But for any open hemisphere there exists a bijective mapping T3 between

a Euclidean plane and the open hemisphere. One such mapping is the projection with

center po onto a plane II tangent to H and parallel to its equator (Preparata, 1985,

page 23). So II always exists.

Since T3 is a central collineation around po, the polar coordinates of any point x E E3
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•

are invariant under S. Similarly, since Q is a central collineation arolllld pl", the

polar coordinates of any point x, xE E3 are invariant under Q. So, v.."C E Va, P(x) =

p(S(Q(X))) But since S(Q(x)) EH, S(Q(x)) is invariant by P. Hellcc,

"Ix EV", P(x) = S(Q (."C)).

Suppose now that the graph G"" is a triangulation Il'''' in n.

Let G'" be the graph with V(G"') = {x' E HIVx" E Il'''',:c l = S(~;")}, and

VxVy EV"", (x,y E E (G"")) ~ (S(x),S(Y) E E (G"/))

In the same manner as in Lemma 2, we can show that Ga' and Ga" arc isomorphic,

thanks to the bijectivity of S. Furthcr, since S has the incidence property, it maps

every triangle of Ga" into a unique triangle on H. Therefore, S maps G"" into an

isomorphic triangulation Ga' on H. Then, by Theorcm 1, G" is valid.

A.7.3 Proof of Theorem 3

o

•

The proof of this theorem follows the lines of that given for Theorem 1. Replacing

P" by n", we can prove as in Lemma 2 that G" and G"I arc isomorphic and hcncc

that G" is a chain if G'" is a chain.

Suppose now that condition (a) in Definition 5 is not vcrified. So thcre exists a

segment Si terminated at Xi such that

3y E E2,3e E E(G"), ((y # Xi) /1 (y E e) /1 (y E sil}
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-> ->
Since (x; Es;) /1 (y Es;), we have P"'Xi = )'P"'y, with ), > O.
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•

",

50, 'R"'(Xi) = 'I(.(y). Let XI E V" and XI+! E \1'" be the vertiees that edge e joins. By

the bijectivity of 'R"',

50 'R"'(x;) belongs to e while it is not either of its endpoints. Renee G",III is not a

chain if condition (a) is not verified.

Suppose 1l0W that condition (b) in definition 5 is not verified. Then

where t is the triangle formed by XI, XI+l, and P"'.

->
Let R be the semi-infinite segment whose support IS P'" Xi. As in the l'roof of

theorem l, we can easily show that R intersects edge e in a point y, such that

'R(y) = 'R"'(Xi). Because 'R has the incidence property, 'R(y) E 'R(XI), 'R(xI+Il.

Renee, 'R"'(x;) E 'R"'(x,), 'R"'(XI+l)' As above, this implies that G",III cannot he a

chain. 0

A.7.4 Proof of Theorem 4

Let P = {Pl, ... ,PN} be the set of suceessive positions 0 assumes on,C. "Ix E E2,

let <Pz be the polar angle of x around Pl, subject to 'PI = a and to 'Pi > a for i -# 1.
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Let

n: {l, ... , N} ----t [0,27<],

Let Cl be a circle centered at Pl' Let 9 = (P, E(g)} be a graph such that

VP;, VPj E P, (p;, Pj E E (g)) Ç} (j = i + 1),

and let g' be its projection on Cl as defined in Theorem 3.
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Since 0 follows a closed, convex, planar curve, n is a monotonically incrcasing l'une­

tion of i. So gis a (convex) chain and so is g'.

'·Henee, the "frame"

is 2-valid by Theorem 3.

Now the acquisition segments lie on the directed tangents to C. By the eonvexity of C,

these tangents never cross (See Figure 4.4). Rence, the projection of the data points

onto Cl yields the same monotonic ordering as did n. But both the clements of P

and the data points lie on the segments. Renee the graph G = (II, E(G)) defined by

Vx;VXj E li, (x;,Xj E E(G)) Ç} (j = i + 1)

•

is 2-valid. o
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A.8 The merge-frames IncrementaI Merging AI­

gorithm

•

•

The main procedure. Ali is the set of back-crossing segments and Alli is the set of

back-crossing segments that eventually do not get inserted at ail into G.

procedure merge-frames()

G= GI
;

Ali = 0;

for 13 E {2, ... ,v}

Ali = A"U merge-one-frame (Vil, G);

Alli = merge-one-frame(A", G);

This procedure merges one frame into the current graph G.

procedure merge-one-frame(V, G)

(A,A',B,O) = partition-one-frame(V,G);

insert-one-frame(A,B, 0, G);

return (A');

This procedure partitions one frame with respect to the current graph G. It returns

the partition to the calling procedure. i is the current frame index.

procedure partition-one-frame(V,G)

foreach! E F(G)

AJ = A/ = 0;

'i foreach! E (F(G) n (U~=l Fa))

B tl = 0;

foreach triangle of the bounding sheets of all frames
. ~



•

•

•

A.8 The merge-frames IncrementaI Merging Aigorithm

Bu' = 0;

0= 0;

foreach x 13 E V

"s" =partition-one-point(x, C);

S=SU{x};

return (A, A', B, 0);

159
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•

•

This procedure returns a string which is the name of the global set that the data point

should be partitioned into. It iterates through the existing frames until a visibility

face is found, with respect to whom the point corresponds to either a convexity or a

concavity. Then it descends the subgraph of G rooted at that face until a face of G

is reached.

procedure part i t ion-one-po int (x, G)

a = 1;

do"

"8" =part i t ion-one-po int-with-a-graph(x ,Fa);

if ("8:' = "A/")

return "A/";

a = a+ 1;

until(C8" = " A/) or (" 8" = "Bt/) or (a = 13))

if(0: = 13)

return ("0");'

while(("8" ="A/) or ((" 8" = "Bt/,) and f~F'(G)))
"8" 't' ., h h( G)=part1 1on-one-po1nt-w1t -a-grap x, f;

return (" 8");

This procedure partitions a point with respect to a visibility graph, or to a subgraph

of G. i is the current frame index.

procedure partition-one-point-with-a-graph(x, g)

k;fF(g)(S = Pi);

Îf s front-crosses f
retufif (" A/);

elseif s back-crosses f

return (" A/");

"-, ç:­
~J(j~/1,,'/.-
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•
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"

A.8 The merge-frames Incrementai Mrrging Algorithm

elseif :il f E U~=l T", s.t. (f E F(G) n F(g)) fi (x E If)

return ("B ,,).
tf '

else

return ("Bu''') or ("0");

'f

",'.'

161
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This procedure inserts a given frame into G.

procedure insert-one-frame(A, B, 0, G)

insertB(B, G);

insertA(A, G);

insertO(0, G);
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•

. This procedure,,-inserts the "convexity" points, namely those that lie in a visibility
!: - -.

tetrahedron. Function triangulat(:B, J) bui/ds a 2 1/2 valid triangulation of the

set B augmented with the vertices of face f.

procedure insertB(B, G)

foreachBtJ E B

triangulate(BtJ, J);

This procedure inserts the "concavity" points, namely those whose segments front-

cross the graph.

procedure insertA(A, G)

foreach AJ E A .

triangulate(AJ,I);

1\
"This procedure bui/ds \~!sconnected subgz;<tphs for the data points neither lie in a

tetrahedral bundle nor cross any face of the graph.

pro,cedure insertO(O, G)

S =connected sets of 0;
'.

foreach sES

g. =;:. tr'iangulate(s, 0);
',\ c

G = GU.es:g.;
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A.9 Modifying Algorithm merge-frames to Guar­

antee 3-Validity in the Two-Frame Case

•

•

A.9.1 Inserting the convexity points

As indicàted in Section 4.2.4, the elements of B are inserted first into the graph. Each

subset Bt is inserted in tarn. The order in which the insertion occurs, JlOwever, is

important. In this subsection, we define that order.

Definition 16 The (i,j)-cell of:r-a is the region bounded by Ut, Urt!, ~o, Ij':j.l (0 <

i < n,O < j < m). We cali these regions proper cells. The pl'opel' eclls IlI'C insidc

TO. Each proper celi contain" twotet1'llhed1'll ofTo. Additionllliy, thc bounding shcets

of:F° define n +m +4 infinite improper cells. An impl'opel' cell is {i,j)-cell sueh

::.;. that i = 0 V i = 0 V i = n V j = m.

Definition 17 The d-neighbours of the {i,j)-cell Ill'e the (k,l)-celis such t/wt Ik ­
il +11- jl = d. Further, a point lying i~'a given (i,j)-celi c is sllid to bc Il d-neighboul'

of a point Iying in Il d-neighbour. Criil of c,

Notation:

• For a given Bt E Bg, d(Bd = d if and only if the elements of Bt are d-neighbours
;-..

of piJ,

.'
The elements of Bg are inserted in such a way that d = d(Bt ) forms a.1l increasing

-;.--:::=:::-/'_~ /.'

sequence. That is, we first insert the O-neighbours of piJ (if piJ E TO), theh' we insert

//
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the I-neighbours of p(J, etc...

164

•

•

We cali the modilied algorithm merge-frames-20. In the following subsection, we

show the subroutines that are different from those used by merge-frames O .

..-.:':.:

Ci

'"
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A.9.2 The merge-frames-2 Inclemental Merging Algorithm

This procedure implements the frame-merging for the second frame :F~ .ln this algo­

rithm, the elements of B are inserted into the graph in a certain order. This order

guarantees that if one of the new segments s intersects one of the new l".<tces J, J is

creaied before we check for front-crossing of s with the graph faces.

procedure merge-one-frame(V, G)

A' = partitionA'(V,G);

V = V\A'j

B = partitionB(V,G)j

A = insertB(B, G)j

V = V\Bj

A = partitionA(A, V, G)j

0= V\Aj

insertA(A, G)j

insertO(O, G)j

retwn (A')j

~Tnis procequre finds the backcrossing segments and retums them as a set.
_Y~;-~--:-::i--:.;:"'-

•

procedure partitionA' (V, G)

foreac~ ..~ E V

fore~~h f E F(G)
--+ :,--.

if (Px back-crosses f)

Ai = Ai U {x}

A' = UfEF(G)(Ai)j

retiIrn (A')j

)
i/

,-
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This procedure finds the points that lie in the tetrahedral bundles.

procedure partitionB(V, G)

foreach x EV

foreach f E F(G)

if (3àE {1, ... ,({1-1)}),j E F'" Ax E tf

BtJ = BtJ U {x};

B = Uf(BtJ );

return (B);

This procedure inserts the points that lie in the tetrahedral bundles.

procedure insertB(B, G)

foreach BtJ E B

d =d(BtJ );

for(d = Oi d <= d(BtJ)'~~"'; d = d +1)

foreach Bt" s.t. d(BtJ ) = d

1 = 0;

foreach x E Bf

foreach <P E F(G)

if (~ crosses <p)

A~ = A~U Xi

else

1 = lU x;

triangulate(I, J);

A = U;~F(G)(Af);

rettdn (A)i

<:
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This procedure finds the front-crossing segments. Function firstcross",d(s, C) rc­

turns the first face in the set C that s crosses.

procedure partitionA(A, 11, C)

foreach x E 11

C= 0;

foreach J E F(C)
• -->
If (s = Px front-crosses J)

C = Cu {I};

if CI' 0

F = firstcrossed(s, C);

AF=AFU{x};

A =UJEF(G)(AJ);

return (A);
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A.ID Proof of Theorem 6

•
i!

•
/r~

:fI

We wish to prove that, when only two frames are present, say :Fi and P, then

algorithm merge-frames-2 yields a graph which is:

• Either a triangulation or a set of triangulations.

• 3-consistent.

IL is easy to see that the first statement is true. Ali data points but those in Ar are

inserted. The points of both A; and of Br are triangu!ated within Ci. Finally, those

in Br or 0; are inserted in the form of separate triangulations.

We now prove that the resulting graph is 3-consistent.

ln the remainder of this paper, we shall say that a face f of the graph is I-consistent

with respect to a given acquisition segment s if and only if s does not front-cross f

in such a way that (4.10) is violated. By definition, 3-consistency with respect to a

segment implies I-consistency with respect to that segment.

Similarly, we shall say that a face f of the graph is II-consistent with respect to a

given acquisition segment s if and only if s does not terminate within a visibility

tetrahedron tJ in such a way that (4.11) is violated. By definition, 3-consistency with

respect to a segment implies II-consistency with respect to that segment.

We shallomit in the remainder the subscript and superscript from the names of the

partition subsets. For example, we shall write A in place of A;.
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Lemma3

->
Vx E V 2

, Vf E Ft, (x E B) ==> (J is [-consistent lVith s = Px).

Proof:

169

•

If xE B, then s does not front-cross Cl. Therefore the premisse of (4.10) is false fOI"

ail faces of GI. Rence ail faces of FI are I-consistent with respect to s. 0

Lemma4

-->
Vf E F(G),Vx E Vt,f is II-consistent lOith s = plx.

Proof:

If x E SI, the set of prio~ frames is empty for x. Rence any face of G is II-consistent

with respect to the segments of SI. 0

The following proof follows the steps of the insertion procedure.

Lemma 5 After insertion of B, the graph G = Ci,a is 3-valid.

Proof:

After insertion o(B,

• where TJ is the 2 1/2-valid triangulation of BJ within f.

(A. ID)
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•

We shall praye that all the faces of F( G) are 3-consistent with ail the segments of S.

The faces of FI are obviously 3-consistent with the segments of S' since GI is val id.

Further, since we are only considering the data points of Band their associated

segments, the faces of FI are I-consistent with the segments of 8 2 by Lcmma 3.

In order for each such face f to also be be II-consistent with the segments of 52, il. is

sufficient that each tetrahedron If E T' contain no data point. If il. is trne, thcn wc

are done. If it is not, then B f is not empty, and by (A.10), f~F(G). So the faces of

F(G)nFI are II-consistent with respect to ail segments and therefore are 3-consistent

with respect to all segments.

We now prove that the faces of Tf are 3-consistent.

The vertex set of each such triangulation Tf is Bf U {.1:J,X2,.1:3}' where {X"X2,X3}

is the vertex set of f. Hence, Tf has the property that all its vertices lie inside the

closure of the visibility tetrahedron If, and If is a convex figure. Therefore, the faces

of Tf entirely lie inside If.

Now since FI is 2 1/2 valid, If is intersected by no segment of 51. Hence, no face

of Tf is intersected by a segment of S'. Hence the faces of Tf are l-consistent with

respect to the segments of 51.

But by Lemma 4, the faces of Tf are II-consistent with respect to the segments of
"SI.SO the faces of Tf are 3-consistent with respect to the segments of S' .

It remains to prove that the faces of Tf are 3-consistent with the segments of 82 .

Sorne of the faces of Tf are made up of vertices belonging to V 2 only. By the 2

1/2-validity of G2, those faces are 3-consistent.
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•

The other faces of Tf are mixed. They are made of up of vertices of VI and of

V 2 • These faces are not faces of any visibility graph, and there exists no visibility

tetrahedron associated with them. So they are necessarily II-consistent.

Lastly, we need to show that the mixed faces are I-consistent with respect to the'

segments of S2. We need to prove that a given segment segment s E S2 front-crosses

no mixed face.

We stated above that ail faces of Tf, and hence ail rnixed faces, were entirely contained

in the visibility tetrahedron tf. So a given segment sE 8 2 can only intersect a rnixed

face inside tf'

Let 8 be the sequence of visibility tetrahedra traversed by s, starting from p2, and let

Sn be the last such tetrahedron. The d-neighbour number with respect to p2 increases

monotonically along S. Bence, if s front-crosses a mixed face f inside a tetrahedron t

other than Sn, the d-neighbour number of t is lowerthan that of Sn' This means that

algorithm rnerge-frames-2 has inserted f prior to verifying the faces front-crossed

by s. Therefore, the datum point associated with s cannot be an '~lement of B.

Finally, s cannot front-cross a mixed face within Sn' Since Sn is the last tetrahedron

traversed by s, s terminates in Sn' Bence the data point associated with s is an

element of Bsn • But the triangulation built over the elements of ESn is by definition

valid with respect to the segments of S2.

o

Lemma 6 After insertion of A, the graph G = GI,B,A is 3-valid.
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Proof: This proof follows the same lines as the proof of Lemma 5.

The set of faces of G becomes:

1_')
1.

(A.ll)

•

•

where Tf is the 2 1/2-yalid triangulation of Af within J, and f is a face of G,,8.

We first proye that the old faces, namely the faces in F(G'·8) n F( G), are :J-consistent

\Vith the new segments. In the [ast lemma, we saw these faces were :J-consistent with

the old segments.

Let f be such a face. J cannot be the first face of the graph that .5 front-crosses, since

if it were then x would be inserted into J, and by (A.ll), f would not be a face of

the graph.

I-consistency of f is then clearly true: x is inserted into the first face J' of the graph

that s crosses. Sa if salsa front-crosses f, then f' is the 3-cycle in G such that (4.10)

is yerified.

Likewise, II-consistency is also true for f. If f~FI, then (4.11) is true by definition.

So suppose f E (FI n F). Suppose further that 3x E A,s.t. x E If. Since:r. E A,

s front-crosses at least one face f' of GI,8. That face cannot he J, for if it was x

would be outside of if. So the only way for x to be inside If is for s to back-cross f.

Therefore x E A', which is false by assumption.

We 1l0W praye that the new faces are 3-consistent with respect to ail segments.
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Let J be such anew face, and let f' be the face of the currem graph that s front­

crosses. Then either J is made up of vertices of A only or J is made up of vertices of

A and of f'. In bath cases, J lies entirely ta the interior off', whereas p2 lies ta the

exterior of J'.

H~nce there exists a 2 1/2-consistent visibility graph for A Uf' V(f') with respect ta

P2,'(Vnere V(f') is the set of vertices of f'. Hence every new face is guaranteed ta be

3-consistent with respect ta the segments of 52.

Final1y, we need ta prove that the new faces are 3-consistent with the segments of 51.

We first prove that no segment s E 51 can front-cross J.

Suppose that there exists such a segment s. Then s must also front-cross f' since pl

is ta the exterior of f' and J' is ta the exterior of J. But this is impossible since the

current graph is 3-consistent. Sa J is I-consistent with respect ta the segments of 51.

Lastly, by Lemma (4), J is II-consistent with the segments of 51.

Lemma 7 After insertion aJ D, the graph G = G1.B,A.O is 3-valid.
~

Proof:

D

•

The e!ements of 0 are such that their segments cross none of the faces of the graph.',.

Further, they lie in none of the tetrahedral bundles of the previous visibility graphs.

Sa the faces of the current graph are 3-consistent with the triangulations induced on

the connected components of O.
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These triangulations in turn are constructed so that they are 2 1/2-consistent, hcncc

3-consistent with respect to the segments Qf 8 2 •

•

•

By the previous lemmas, therefore, Gis' 3-consistent

Theorem 6 trivially follows, since G = Gl"I,B.O = G1•2 .

o

o



•

•

Appendix B

Proofs of Chapter 5 Claims

B.l Proof of Claim 1

We' p'rove the daim that Gi is a three-connected maximal planar graph (3CMPG) by

induction on the faces of Gi-l' We first note that by construction, Go is a 3CMPG.

Suppose now that we have aggregated 1elements of the partition Pi-l into a graph

Gi(l) such that

(B.l)

Cr

•
where for convenience the graph superscript indicates the face index rather than the

face itself. We will show that if Gi(l) is a 3CMPG, then the graph defined as

175
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Gi(l + 1) = G;(l) U G~+1

lï6

(8.2)

is also a 3CMPG. thus proving the daim. We stated that, by construction. the current

iteration's subgraphs verify

Hence G~+1 is a 3CMPG . .-\lso by construction.

•
IW) n \1;'+1 = {XI,X2,.C3},

Ei(l) n E!+l = {(Xl, X2), (X2, X3), (XI, 'C3)},

Fi(l) n F/+1 = {(X},X2,X3)}'

(8.3)

(BA)

(8.5)

It is well-known (Hartsfield and Ringel, 1990, Chapter 8)that a 3CMPG verifies the

relationships

n-e+f=2

e = 3n - 6,

(8.6)

(8. 7)

where n, e, and f are the number of vertices, edges, and faces of the 3CMPG respec­

tively. The first expression expresses the Euler number relationship, white the second

holds in the case of maximal planar graphs.

•
It immediately follows from (B.6,B.7) that

3f = 2e.

.--..:

,.,

(B.8)
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Now let nI, el and fi be the number of vertices. edges, and faces of Gi(/), n2, e2 and

.h be the number of vertices. edges, and faces of the subgraph G~+l, and n3. e3 and

h be the number of vertices, edges, and faces of the union graph Gi(/ + 1).

From (BA), it follows that

(B.9)

since the cardinality of the intersection graph edge set is 3, and from (B.5), that

h=fl+f2-2 (B.10)

•
since the one common face of the component graphs does not belong to 'the union

graph. ;;:'::1
/.:~./ \:':;:-,
,r :"
il -~\

Hence

(B.ll)

•

Hence Go(/ + 1) obeys the maximal planar graph face-edge relationship. It remains

to show that Gi(/ + 1) is 3-connected, namely that each of its vertices has at least
"3 neighbors. But the union of any number of n-connected graphs is necessarily n-

connected since the connectedness of each vertex of the union is at least as large as

the conIl;~ctedness of that vertex in each of its components.

Since, for êach l, Go(l) is a 3CMPG, it follows that Gi = Gi(fd is a 3CMPG. 0
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B.2 Proof of Claim 2

By definition. a11 the vertices of a given polyhedron ",vtf belong ta Vi-l and hence are

contained in ..VI;-h except for the vertices of f which are shared by bath polyhedra.

Rence ..VIf is contained in ..VI;_l'

Furthermore. the acquisition segments associated with the vertices of ..VI{ cnd thcir

course inside ..VIf, but by construction. these segments cntirely lie la the outside

of ..Vli_l. Sa the inside of ",vt{ lies outside of .Vl i- l • Since this is truc for ail ..VI{

polyhedra, we have:

•
(B.12)

Equation (.5.2) directly fa11s out if we write (B.12) for each level i, and then eliminate

the ..VI;'s for ail values of i. save 0 and imaz (where ..VI = ..VI; ..o,)'

o

B.3 Proof of Claim 3

•

We are to show that the segments associated with the vertices of eàch subgraph do

not intersect any face of that subgraph.

Suppose the daim is not true. Let s be the offending segment, v its associated vertex

and 4> the intersected face. Let Mf be the convex figure drawn by Gf.



B.3 Proof of Claim 3 li9

We distinguish two cases. Jepending on whether v is one of the vertices of 1 (i.e.

whether v E {v" V2, va}). Suppose first that it is false. In this case, because v belongs

ta p{, s intersects face l, and v lies on the boundary of lvl{. Since v terminates s, and

since 1 is a face of M{ (but.not of G{), it fo!f~ws that s has two distinct intersections

with lvlf, one of which is non-strict. But if s has a third intersection with lvl{ at

[ace </J, }"1{ is not convex, which violates the assumption.

•

•

Figure B.l .'vI{ and s lie on opposite sides of face f.

Suppose now v E {VI, V2, va}. In this case, s cannat intersect any face lvr.{ because

s and ~'vI{ entirely lie on opposite sides of face 1 (See Figure B.1). To prove the

statement, note that 1 belongs to the cof.vex figure J'vI{. Hence J'vI{ entirely lies to

one side of l, say the "beyond" side. For ~ach element p of pl, however, s(p) intersects

first l', where l' is the face that 1 is rooted at, then it intersects 1 and terminates at

p. Since p belongs to J'vi {, it lies on the be.rond side of l, and hence l' lies on near

side of J. But s also intersects l' (remember that s must be an element of pl'), and
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lies on one side of f only since it terminates al. a vertex of f. Therefore s lies on the

near side of f and the proof is complete in the case of a regular iteration i. If i = 0

though, l' does not exist. But in this case :\..1~ = f; and the daim is trne by virtue

of Proposition 1. o

B.4 Proof of Claim 4

We are to show that the convex layer algorithm always terminatcs.

The termination condition is

• Hence it suffices to show that

(B.13)

•

'Vi,pl(i + 1) is a proper subset of ]Y(i).

The associated segment of each element of pl, and hence of each element of pl l

~,- ~

intersects f. Hence these elements al! lie on the same side of f. Thel'efore, i:/i~ the

vertices of f are extreme;'of VI(i) and j belongs to the set of faces of GI(i). Hence
\:'.;-.

the vertices of f never have degree zero in GI(i). We th~n have

Since we also have by construction



It remains to show that p/(i+ i) t= pl(i). Suppose both sets are equal. Then al! points

of pl (i) are internai to C;I (i + 1). Therefore, the only points \Vith non-zero degree in

(;I(i + i) are va, V" and V2' But since the e!ements of pl(i) are not coplanar \Vith

f (they strictly intersect f) this implies that pl(i) is empty. But if pl(i) is empty,

pl(i + 1) is not constructed by virtue of the stopping criterion. So the situation does

•

•

•

BA Proof of Claim 4

,/(i)U{VO,V"V2} = VI(i),

pl (i + 1) ç If! (i),

a simple Venn diagram shows that

/(i + i) ç /(i).

not occur.

,c

181
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B.5 The Global Face-Merging Algorithm

•

•

The main procedure. It first constructs the hull of ail data points. Then il builds

new graph iterations as long as the graph does not span ail data points,

procedure main (li, S)

G = convex-hull (V);

while (V # 0)

i terate-graph (G)i

V = internal points of (G);

return G;

This procedure partitions the internal points according to which face intersccted by

their segment. Each equivalence class forms a concavity. C is the set of concavities.

procedure i terate-graph (G)

C= 0;

foreach f E F(G)

p(f) = {vl(v E V(G)) Il (s(v) n f # 0)};

V(f) = p(f) U vertices of fi

C = Cu {V(f)};

merge-faces (C);
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•

•

This procedure merges concavities when certain criteria are met. It first builds the

maximal-depth convex hull CL for each concavity. Then it selects a set P of concavity

pairs which are candidates for merging. If the respective hulls of the candidates

intersect, ail the concavities that lie on the shortest path between the candidates are

merged into a single concavity. The process continues unti! no intersection is found.

procedure merge-faces(C)

do

Intel'section = False;

foreach cE C

CL(c) =convex-layer(c);

P =build-concavity-pair-test-set (C);

foreach p = (Ct,C2) E P

if (CL(ct) n CL(c2)) # 0

CI =shortest-path(clo C2);

C2 = 0;

C = C \ C2;

Intersection = Trlle;

while (Intersection == True);

This procedure computes the constrained maximal-depth convex layer of the concav­

ity. The constraint is that the concavity faces helong to each convex layer.

procedure convex-layer(c)

do

CH =convex-hull (c);

If = (internai points of CH) U(face vertices) ;

while (li # 0);

return CH;
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•

•

This procedure constructs the set of candidate pairs for the concavity merging test.. s/,

is the shortest-path between a pair, measured by the number of separating concavities

in the current graph. If s/' is short, Ilnd only contains concavities which arc not

intersected by segments (except for the pair clements), Ilnd contains no cycle, thcn

the pair is a candidate.

procedure build-concavity-pair-test-set (C)

P=0;

foreach (Cl,C2) E (C x C)

SI' =shortest-path(c),c2);

if (dist(SI') < D) Il (not-cYcle(s/,)) Il (;IcEs/, 1 (pU)) (c) # 0)
P=PU(Ct, C2);

return P;
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