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Abstract

This work addresses the automatic construction of geometric models of real scenes,

from multi-view three-dimensionﬁl’ééhsor data.

We review range data acquisition,\-‘frmlti-view integration, and solid modeling. We
show that knowledge about the data aE'qqisition procedure yields not only the coordi-
nates of the acquired points, but also additional geometrical information. We use that
information to draw a geodesic proximity graph with respect to thcr"s;\;fface the data
points lie on. Such a graph is useful because it provides the congéctivity information
necessary for subsequent differential-geometric processing, and tl;.;ee-aimedsional sur-
face modeling. We say that the graph is a least-commitment bounldaf_ryr representation,

because it does not involve the use of higher level or cognitive proceséé’s.

We specialize the concept to the common case of line-of-sight optical sensors. We give
formal definitions of graph validity using assumptions of object opacity and object
rigidity, and we demonstrate that Euclidean proximity graphs drawn on the data

points are not valid when the data is sparse with respect to surface concavities.

We describe a sub-quadratic incremental view integration algorithm that assumes the
data is highly-organized. It guarantees graph validity under restrictive conditions.

~ Therefore, we present another non-incremental algorithm with ncassumption on the

input data organization. It is based on an iterative carving of the graph faces, starting - —

i «

&




with the convex hull of all points as the initial model, It builds a hierarchy of models,
each of which is internal to the previous one. We test the algorithm with real data
on an object homeomorphic to a sphere, and incorporate heuristics designed to yield

more geoinetrically pleasing results.
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Résumé

Cette these a pour sujet la construction automatique de modéles géométriques de

scénes réelles a 1’aide de capteurs télémétriques.

Nous faisons une étude bibliographique de ’acquisition de données et de la modélisa-
tion tri-dimensionnelles, et de I'intégration de vues multiples. Nous montrons que la
connaissance des détails de la procédure d’acquisition offre non seulement les coor-
données des points de surface, mais aussi de 'information géométrique supplémentaire.
Nous utilisons cette information pour tracer un graphe de proximité géodésique par
rapport a la surface sur laquelle les données sont échantillonnées. Ce graphe est utile
car il offre la connexité nécessaire au traitement différentiel subséquent, et enfin &
une représentation surfacique tri-dimensionnelle. Nous disons que le graphe est une
représentation de surface a engagement minimum, étant donné qu'il ne requiert pas

I'usage de processus cognitifs ou de haut niveau. i

P

Nous spécialisons ce concept au cas courant des capteurs optiques. Nous offrons des
définitions formelles de la validité du graphe en postulant des objects opaques et

rigides, et nous prouvons que les graphes euclidiens de proximité ne sont pas valides

lorsque la résolution des données est faible par rapport aux concavités de la surface

a modéliser.

Nous décrivons un algorithme incrémental d’intégration de données qui présume que
L

f—
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les données sont organisées sous forme matricielle. L’algorithme peuf garantir la
validité du graphe résultant sous certaines conditions restrictives. En censéquence,
nous présentons un autre algori*hme, cette fois non incrémental, qui ne présume
aucune organisation particuliere des données. Cet algorithme sculpte les faces du
graphe de fagon itérative, avec comme point de départ 'enveloppe convexe de tous
les points. Il-'zt':onstruit une hiérarchie de modeles, chacun étant strictement inclus dans
le précédant. Nous testons I'algorithme sur un object homéomorphique & une sphére

et nous incorporons des heuristiques afin d’obtenir des résultats perceptuellement
q P

meilleurs.
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Claim of Originality

W

We made the following original contributions:

We reviewed the state-of-the-art in range data acquisition, multi-view integraﬁ

tion, and solid modeling and showed the connections between these disciplines.

We determined that a least-commitment representation that retains all available
three-dimensional data is a desirable intermediate representation for multi-view

range data integration. We proposed the graph as such a representation.

We developed a formalism for the validity of a model with respect to its sensing

data.

We derived a formula for the number of labeled 3-connected maximal planar

maps.

We defined conditions for graph validity based on line-of-sight sensing ol objects

homeomorphic to spheres.

We developed a sub-quadratic incremental algorithm for highly-structured range

view integration, and gave conditions for its validity.

We developed a non-incremental algorithm for non-structured range view inte-

gration and tested it on real data.
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Chapter 1

Introduction

1.1 An Automated Scene Description Tool

Many technological application; such as robotics, CAD/CAM, computer graphics, or
virtual reality, require geometric descriptions of the surrounding three-dimensional
world. Such accurate descriptions are often assumed to be readily available, thus
overlooking the difficulty of obtaining them. This thesis is a step towards the goal of

automating the task of describing a three-dimensional environment or scene.

FFor example, imagine a robot manipulator having to reach a point of its workspace
through an environmentl cluttt;.red with obstacles. Planning a collision-free path re-
quires a map of the environment. Data files such as CAD specifications or other

pre-existing prototypes may provide geometrical models of some of the environment’s
features. Yet these existing models may be unusable by the path-planner. They
may be inaccurate or of a too low resolution, or their actual pose and attitude in
the environment may be undetermined. Hence actual sensing of the physical scene is

necessary to create or complement these models.

O



1.1 An Automated Scene Description Tool 2

One solution is to manually measure and enter the three-dimensional information into
a solid modeler. The task is painstaking, repetitive and prone to error. There are also
instances when one cannot even afford the luxury of manual data acquisition. For
example, a nuclear reactor is an environment too hazardous for an operator to enter.
A small or microscopic environment, or a cavity accessible only through a narrow
opening, as in geological exploration, makes it outright impossible for a human to

perform the task.

An Automated Scene Description Tool (ASDT) is a tool which performs the scene
description task automatically or semi-automatically; the latter term means that
some operator intervention and/or guidance is necessary. [ts purpose is to [acilitate,

speed up, and improve the reliability of the scene description task.

‘—:‘\_‘\__:
In the next section, we give examples where the availability of an ASDT is very

valuable. We begin with robotics, as it was the driving impetus behind this work.

Operator

Real scene Modelled
(scenels) ASDT scene

Figure 1.1 Simple ASDT input/output Relationships. Hashed lines indicate
optional paths or blocks.

7



1.1 An Automated Scene Description Tool 3

1.1.1 Robotics
1.1.1.1 From Off-line Programming ...

Industrial robots have long been programmed with the help of a “teach pendant”,
whereby an operator merely guides the robot through a series of moves which are
recorded as a history of joint positions. Although simple and effective, this method

of teaching-by-showing is increasingly being replaced by off-line programming.

In off-line programming, the task the robot must execute is described in a specialized

programming language such as VAL, AML, or RAIL, or with robot-control primi-
tives, as in RCCL (Hayward, 1984). Off-line programming frees up equipment and
improves the operator’s safety because it separates the robot and the surrounding
mapufacturing facilities from the learning task. Off-line simulation runs help validate
the program and allow specification of optimal parameters. Further, the task can be

easily redefined by altering the program. The program itself can be automatically

generated {from a high level task description.

1.1.1.2 ... To Scene Description

While many techniques contribute to the realization of off-line programming systems,
the task of planning the robot motions draws on recent results of artificial intelli-

gence (Whitesides, 1985; Latombe, 1991).

Accurate digital models of the geometry of both the robot and its environment must
be available in order to plan the robot path. In particular, the robot must “know”
the shape and location of obstacles, in order to avoid colliding with them, and of the

parts and fixtures, in order to perform its task.



1.1 An Automated Scene Description Tool 4

For a given manufacturing cell, the robot parameters are usually known from man-
ufacturer’s data (or they are experimentally determined), and do not change with
time. In contrast, the environment may frequently change with new production runs,
retooling or rejigging. Because the ASDT decreases the lead-time necessary to de-

scribe the newer environment, it is even more beneficial if the environment changes

- frequently.

So far we avoided the issue of local vs. global planning. The planning task we refer
to is global. It answers the question: “What steps does the robot have to follow in
order to accomplish the desired task?” Global planning is a geometrical task and
requires a map of the environment. Local planning, in contrast, is used to close the
loop inside the global pfan, and uses on-line sensor-based {eedback information, rather

than off-line geometrical models. We illustrate this with some examples.

In a welding application, the welding head is to follow a weld line while maintaining
a critical distance. This constraint can be met through local feedback with the aid
of various process parameters. However, local on-line information does not address
the problem of locating the weld-line, and of maneuvering the robot through the
task without collisions. Such global planning tasks require a global model of the

environment,

Robotic painting is another important robotic application, particularly for the car
manufacturing industry. As in the welding application, fine-tuning the end-effector’s
distance from the painted part can be done with sensor feedback, but gross motion

still requires a map of the environment.

Assembly is also a prevalent robotic task. Much research goes on in the area of
fine motion planning for assembly tasks (Lozano-Perez et al., 1984; Mason, 1984; De

Schutter and Brussel, 1988). The prevalence of jigs and fixtures in the scene often
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makes the environment quite complex.

In all of these applications, an ASDT is a very valuable tool for global motion plan-

ning.

1.1.2 Other Applications

An ASDT can also be used in a host of other fields unrelated to robotics, whenever

a three-dimensional description is to be obtained from a physical model.

The medical field offers many such applications. For example, an important task is
the modeling of the human body, or parts of the human body, as in tomography,

dentistry, or prosthesis design.

Other applications requiring the one-time automated acquisition of three-dimensional
models are as diverse as geological exploration, nuclear reactor maintenance, archiv-

ing, industrial process control, or baggage handling.

1.2 The Components of an ASDT

We call scenels the component elements of the scene '. The definition of a scenel is
very loose, the only restriction being that a scene be comprised of at least one scenel.
A scenel may be a physical object, such as a table, or a screwdriver. Alternately,
a scenel can be any easily identifiable part of an object, such as a tabletop, or a
screwdriver shaft. Yet still, a scenel can be a combination of objects, grouped by

virtue of their physical attachment, such as a motor and its gear drive, by virtue of

'Other researchers have used the same term to refer to sets of differential and reflectance prop-
erties associated with local scene elements (Breton et al., 1992).
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their function, such as a computer terminal and its detached keyboard, or by virtue

of their visual appearance, such as an object occluding another one.

As shown in Figure 1.2, the ASDT itself is split into three components: acquisi-
tion, integration and representation. All three are interdependent when designing an.
ASDT (Hayward and Aubry, 1987), but we decouple them hereunder to expose their

salient features.

Operator
0
1
_ Data ] grerssesassasenaans :
Real scene »| Data s Representation = Maodeiled |t I-Dimensional
(scenels) Acquisition and scene i. Anglysis

. t Imegration | | 00t e H

Figure 1.2 The ASDT paradigm. Hashed lines indicate optional paths or blocks.

1.2.1 Data Acquisition

The data acquisition phase senses the scenels’ surfaces and extracts the three-dimensional
coordinates of these surfaces. Methods used to gather surface three-dimensional data
can be classified under two main labels (Jarvis, 1983). Passive methods use the tech-
niques of computer vision (Ballard and Brown, 1982; Levine, 1985; Nevatia, 1982)
and recover the desired three-dimensional information by applying any of the so-
called shape-from-X techniques. Active methods acquire telemeiric data; their output -
is trivially mappable to spatial three-dimensional information. In Section '2.1:, We give

. a review of the different techniques, and show how the method of data acquisition
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influences the scene description paradigm. In the system we built as a result of this
work, real data is acquired with an active two-axis synchronized triangulation-based

laser range scanner (Rioux, 1984).

1.2.2 Data Integration and Representation

Because sensor data are always noisy, the first processing task is to filter them, gen-
erally at the cost of resolution. We consider filtering to be part of data acquisition
because it encompasses many mature techniques (Pratt, 1978; Gonzalez and Wintz,
1977), and because it is best tackled when knowledge aboufl the sensing mechanism

is taken into account.

Instead, the data processing task we concern ourselves with is that of date integration.
\|\

For a given scene, a data acquisition sequence generally yields se\'erdl\\:c_iata sets,

with each set coming from a different date source. Each raw data set must then

be correlated to the others in order to arrive at a global description of the scene. We

distinguish two types of data integration:

Sensor fusion This term usually refers to the case where multiple sensor readings
reduce the uncertainty associated with each. It is common to treat each reading
as the value of a random variable and to deduce the most likely estimate for
the underlying physical parameter using Kalmann filtering techniques (Durrant-
Whyt;.gz, 1987; Moutarlier and Chatila, 1989). When different sensing modalities
are uéé&, it is common to use prediction-verification paradigms (Aggarwal and

Magee, 1986; Krotkov and Kories, 1988).

A
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o

Multi-View Integration In general, it is necessary to position the sensing appara-
tus at several locaticns in order to completely acquire the desired scene. For ex-
ample, opacity prevents optical sensors from “seeing” beyond occlusions. Hence,
several optical sensors “looking” at a given scene but from different locations
acquire different but complementary information. In this case, the data sets
must be put in mutual relation, or infegrated. In particular, we must establish
data connectivity. In Section 3.1, we give a full review-of existing techniques for

doing so.

A major contribution of this thesis is how to accomplish the integration task

by incorporating information about the data acquisition procedure.

Finally, data representation, or data storage, refers to the maintenance of the filtered
and integrated data into a digital computer. The main (and often conflicting) objec-
tives of the many forms of data representation are ease of input, compactness and
ease of use. Solid Modeling is the field that studies these issues and we review it in
Section 2.2. Because the data integration algorithm depends in a large part on which
representation one chooses, data integration and data representation are displayed

together in Figure 1.2.

1.2.3 Global vs. Incremental Processing

Figure 1.2 features an optional feedback loop around the ASDT. When the loop is not

active, we say that the scene description process is global: All data sets are acquired

before the ASDT builds the model. When the loop is active, the scene description

process is incremental: intermediate models are built after each data set acquisition.

The incremental property ? is in general desirable because the evolution of the model

2Also called on-line property in the Computational Geometry literature.
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trough successive sets of data is better controlled. First, it allows the use of a stop-
ping criterion for the number of data sets to be acquired and integrated, based on
the quality of the current model. The fit can be purely empirical and based on the
judgment of the operator, or an analytic test for model convergence can be estab-
lished. Another advantage of the incremental property is that the data may not all
be available at once. In this case, it is preferable to build a model with only partial
information, a.nc.l to complement the model whenever new information becomes avail-
able, without having to rebuild it from the ground up. As we see in this work, not

all integration algorithms possess the incremental property.

1.2.4 Three-Dimensional Analysis

Figure 1.2 features an optional post-processing block labeled three-dimensional anal-
ysis. It refers to the process of isolating and describing the subcomponent shapes,
notably by isolating the discontinuities in the surface data. Three-dimensional anal-
ysis is a large field (Ferrie, 1986; Besl and Jain, 1988; Leclerc, 1989; Ferrie et al.,
1990). It leads to a much more concise representation for the scenels, while still cap-
turing their méjor features. Object recognition (Besl and Jain, 1985; Lowe, 1987; Fan
et al., 17989) is a typical example of an application requiring compaction into such a
terse model. For reasons of tractability, three-dimensional analysis is also generally

performed for most of the applications mentioned in Section 1.1.1.

We consider three-dimensional analysis to be outside the scope of the ASDT. The
ASDT’s function is to output a faithful, rather than compact, model of the scenels. In
this sense, the ASDT paradigm embeds a least-commitment principle, whereas three-
dimensional analysis commits to‘choosing significant features and shape parameters

among a large set of possible ones. Obviously, the model the ASDT outputs must be
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amenable to further three-dimensional analysis. Depending on the model’s ultimate

use, three-dimensional analysis may then be performed, as indicated by the post-

processing block.

While Figure 1.2 illustrated the ASDT’s paradigm, Figure 1.3 illustrates the paradigm
for which the result of three-dimensional analysis is the goal. In the latter figure,
three-dimensional analysis is performed before the resulting model is output. Data
integration must still be performed if data is acquired from separate sources. In
Chapter 3, we further expose why the integration procedure differs in both paradigms,
as a result of their different objectives. Finally, note that the optional incx:;mental

loop is also featured in this paradigm.

Real scene o Dala |— g Dam | 3-Dimensional —] Modelled
(scenels) Acquisition Integration Analysis scene

Figure 1.3 The Three-dimensional Analysis Paradigm. Hashed lines indicate
optional paths or blocks.

This concludes the description of the ASDT’s components. The next section addresses

the specifications of these components.
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1.3 The Specifications of an ASDT

1.3.1 Sources of Variation for Data Acquisition

We first consider data acquisition. For each set of scenels that is to have its surface |
scanned by one or more sensors, an infinity of different data sets can result. One
source of variation is sensor noise. Clearly, noise is undesirable and is directly related
to the type of sensor in use. Yet noise is always present, ‘as no sensor reading is
perfectly repeatable, but rather is a random variable. In the following discussion, we
disregard noise to concentrate on the other sources of input data variation one has

control over, given a particular sensing device.

We assume that the data is in the form of discrete three-dimensional points that lie
on the surfaces of the scenels. In Chapter 2, we show that this assumption is con-
sistent with both direct and indirect methods of three-dimensional data acquisition.
The points are a spatial sampling of the surface under consideration. The finer the
sampling, the more faithful the output model. Sampling size is fully under control
of the operator, up to the resolution of the sensing device. Hence sampling size is a
controllable source of variation. Another controllable source of variation is the extent
of the scene acquisition. Namely, a choice exists as to which scenels and which scenel
parts are to be acquired. Other controllable sources df variations for sensing are where

to position the sensors, how many independent readings to take, etc...
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1.3.2 Consistency of Data Integration

A given scene may give rise to many different data sets, because of the above-
mentioned sources of variation. Figure 1.4 illustrates the ASDT processes more for-

mally. S is the set of possible world scenes, and D is the set of < v, > pairs

where:

¢ v is a three-dimensional vector expressing the position of a scenel surface point,
in a world reference frame W,
¢ w is a composite structure containing information about the type of sensor used

to acquire v, and the sensor’s position and attitude with respect to W.

Each sensor-acquired surface point yields a < v,w > pair and constitutes a datum

for the purposes of this presentation. Thus, datum < v,w > is distinct from datum

< v,w' > if w # w'. As this work illustrates, the sensor-related details w of how the
value v is derived contains invaluable information that can be used during the later
data integration stage. From the above discussion on the sources of variation of the
data acquisition procedure, we model data acquisition as a one-to-many relation F
from S to P(D), where S and D are defined as above, P(D) is the power set of D,
and (s F d) if and only if it is physically possible to obtain the set d € P(D)
by sensing the surfaces of the scene s € §. We also model the data integration and
representation procedure as a mapping G from P(D) to M, where M is the sets of
models available ﬁith the chosen representation. d G m if and only if the integration

7
algorithm outputs the model m € M given the data set d € P(D).

We also define the subset S* C S of ideal scenes. An ideal scene is a scene that can
be modeled ezactly by a model of M. Since S

/7

that a given scene belongs to S’ is zero. Note that the larger the exﬁressive powé;'

13 the set of real scenes, the-probability -

R Y
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of the chosen representation is, the larger S’ also is. Then we define the “natural”
bijection B from M to §’, which to each model m € M associates the ideal scene

s e S; which m models exactly.

We are now ready to define representation consistency. We say that the model m is

a consistent representation of the scene s given a particular data set d acquired on s

(hence s F d) if and only if

(sy=m) = (B(m)Fd).

b

Figure 1.4 Illustra.tlon of:
e The set-theoretic relations between the ASDT’s components
..o The ASDT’s consistency condition. If s’ F 4 (shown as a thick hashed arrow in
" the figure) then m is not a consistent representation of s.

In other words, the consistency condition guarantees that if the real scene s was
replaced by an ideal instance B(m) of the modél m output by the ASDT, then the

same data acquisition procedure could still be performed on that instance end yield
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exactly the same results d, up to noise. Although consistency does not guarantce any
degree of “goodness” for the resulting model m, it is a predicate that partitions M
into acceptable and unacceptable models for s, based on physical characteristics of
the scene and of the acquisition procedure. An inconsistent model i is so because
the physical characteristics of data acquisition preclude m {rom being an exact model
for the scene at hand. We also say that the data integration and represéntation step,

and by extension the ASDT itself, is consistent if and only if

sFd
Yse€ 5, Vde P(D), A = B(m) F d,

G(d)=m

meaning that a consistent'integra.tion and representation stage outputs consistent
models for all scenes and for all data acquisition procedures. ASDT consistency
places a limit on the amount of distortion the model can ever introduce. The limit
is that if the real scene was to be replaced by its model, and measurements were to
be made on the model, while following the same acquisition procedures as for the

original data, then the same numerical data should be obtained, up to measurement

€ITorS.

This formal definition of consistency is the basis for the data integration methods
we develop in this work for the case of telemetric range finders. These set-theoretic

concepts are illustrated in Figure 1.4.

1.3.3 ASDT Efficiency

. The ASDT must acquire and model scenes in a “reasonable” amount of clock time,

as hours or even days taken on building a single -scene seriously restricts its use.
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Yet, unless one is modelling time-varying objects, such as people milling about in a
room, “real-time” is a clearly desirable but not generally essential specification for
an ASDT. Hence a good compromise is that the ASDT be able to model a scene in
minutes, or tens of minutes at most. This is the assumption we base our discussion
on in Chapter 2, when debating the practicability of different techniques. The speed
of the first step, data acquisition, depends almost entirely on the sensing device and

will not be addressed beyond the review given in Chapter 2.

The speed of the data integration step, in contrast, depends on the integration algo-
rithm used. We measure it both in terms of actual clock time used on a particular
platform and in terms of the number of necessary symbolic operations with respect to |
the size of the input data. In this thesis, we develop worst case asymptotic complexity
relationships (the “big 0" notation), as well as empirical expected performance for

the algorithms we describe.

1.4 Methodology

In the previous sections, we exposed the need for an ASDT, and we described its

components. Then we argued that the ASDT must:

1. Output a least-commitment representation. Such a representation retains
all available information and delays choosing between competing compacted
models until a later three-dimensional processing phase. This is in part because
the choice of optimal compacted representation depends on the model’s ultimate
use, which in turn depends on the particular application (Requicha, 1983).
The least-commitment representation provides an intermediate representation,

amenable to further compaction into a more structured one. In Section 2.2, we
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introduce representational issues, and further discuss this point,.

Another aspect of the least-commitment principle concerns the representation
of uncertainty. Unless the representation’s language allows for the explicit en-
coding of uncertainty, arbitrary choices must sometimes be made between com-
peting equally-plausible models. In this case, we favor mazimal-volume models.
The reason stems from the model’s likely ultimate use. Most of the applications
we detailed in Section 1.1 require some degree ol collision-avoidance between
objects. Models which contain the objects they represent are said to be conser-

vative and are therefore preferred for obvious safety reasons.

. Perform multi-view integration. Because acquiring the three-dimensional

surface data of a given scene requires several views, an essential component of
the ASDT is the integration of these views into a view-independent model. The

integrated model is expressed in a world-reference {rame, and includes the data

from all views.

. Incorporate knowledge about the sensing modality at the data inte-

gration stage. Three-dimensional data acquisition is still an emerging technol-
ogy (See Section 2.1). Many techniques exist, and use different working princi-
ples. Although these technologies are constantly improvinQ, three-dimensional
data acquisition is overall a rather slow and imprecise process. It follows that
in an unstructured environment where little a¢ priori information is available,

one is often limited to acquiring sparse surface information.

With such data, surface connectivity is difficult to establish: this is known
as the “connect-the-dots” problem and is illustrated in Figure 1.5 for a two-
dimensional contour. In the figure, the contour forms the boundary between
the object and the free space, and a line-of-sight sensor samples the contour

with discrete points. The underlying contour connectivity between the sampled
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points cannot he established on the basis of their coordinates alone. However,
it can be approximated if the geometry of the line-of-sight segmeﬁ—fs is taken

into account, as we show in this work.

In Section 3.1.2.3, we review existing methods for determining connectivity
between suriace points, in both the two- and three-dimensional cases. In later
chapters, we propose a general paradigm to determine point connectivity, which
considers not only the raw data, but also the way in which that data was
acquired. Namely, we use the additional information offered by the knowledge
about the data acquisition procedure, in order to infer point connectivity. For
this reason, we say that we use the knowledge about the sensing modality at

the integration stage. The next paragraphs expound on the point.

P2

Figure 1.5 A two-dimensional connect-the-dots problem. Py, P; and P; are three
camera positions. The connectivity between the sampled contour points cannot be
determined from the points’ coordinates alone.

As explained in Section 1.3.2, we assume each datum is a < v,w > pair. The crucial

. information contained in the structure w is a (possibly implicitly encoded) region of

~
0



1.4 Methodology 18

the three-dimensional space that is known to be free of any obstacle or scenel by
virtue of the physical data acquisition procedure. This region naturally includes the
physical location of the sensor itself, as well as a visibility region 3 E, where E lies

“between” the sensor and the scenel being sensed.

In the case of contact sensing, for example, £ is empty, so the {rce-space region
encoded in w is simply the physical space taken by the sensor. In the case of optical
sensing, which is of particulal '“'-'r.lterest for this work, E includes one or more directed
line-of-sight segments joining "t'he imaging system’s optical center(s) to the surface
point v. Obviously, these segments cannot cross the scenels’ surfaces, for if they did,
the scenel would not be opaque. But the acquired surfaces must be opaque in order
to reflect light and to allow acquisition with such a system. In other words, either
the surfaces are opaque, vindicating the assumption that they cannot be intersected
by the segments, or they are not, and the acquisition process itself yields spurious

information. Therefore, we assume that all scenels of interest are opaque.

The integration procedure is then as follows: the information provided by the sensor
isolates areas that are known to lie entirely in free space. Then the loci of these
areas are refined by performing sets of geometrical tests on the data. Additionally,
the refinement process determines data connectivity, from which a representation for

the scenels is inferred in turn.

The geometrical tests use both the surface coordinates {v) and the acquisition details

(w). They are designed to guarantee that no part of the resulting model intersect

any of the E regions.

The output of the integration procedure is a graph whose vertex set is the the set

of surface points v, and the edge set represents the connectivity between the pointé.

3We employ the term visibility very loosely in this general introduction.
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Every edge of the graph must belong to at least two cycles, or faces, so that the

resulting graph is a lesselation of a surface.

The faces of the tesselation can be modeled as patches. When the tesselation is a
triangulation, the simplest such patch is the first order approximation, namely the
planar patch. For lack of better knowledge of the differential-geometric properties of

the underlying surface, this is the representation we choose by default.

Figure 1.6 illustrates an example on which the algorithm was run. The resulting

model is shown in Figure L.7.

Figure 1.6 Photograph of a pencil holder. The small pyramids are not modeled,
but are used as fiducial marks, as explained on Page 123.

1.5 How to Read this Thesis

This chapter introduced the ASDT, and described some of its uses. In particular,

we argued that off-line programming requires being able to plan the robot motions,
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Figure 1.7 = The resulting connectivity graph on a set of sparse three-dimensional
surface points, as computed by the algorithm described in Chapter 3.

that planning required the existence of a model of the environment, and that such
a model is very difficult to obtain without an ASDT. Then we gave requircments
for the ASDT, and we used them to claim that the ASDT must perform multi-view
integration, must use a least-commitment representation, and must make full use of

the available knowledge about the data acquisition procedure.

In the next two chapters, we do a literature review of the state-of-the-art for these
issues, namely data acquisition, data integration, and data storage. Mosi readers can
skip the surveys of range data acquisition and solid modelling given in Chapter 2.
Chapter 3 reviews the state-of-the-art for the multi-view integration problem and
introduces the problem this work addresses. It should be read to put the later chapters

in perspective with previous work.

Chapter 4 describes a data integration algorithm that uses an incremental paradigm.

We did not implement that algorithm because we believed it did not represent a good



1.5 How to Read this Thesis 21

balance between efficiency, simplicity, and the generality of the problem it can suc-
cessfully solve. For this reason, the reader may skip Chapter 4 without compromising

the understanding of the later chapters.

In Chapter 5, we describe an alternate more general algorithm, which does not how-
ever possess the incremental property. We implemented this algorithm and tested it

on real data. Finally, Chapter 6 discusses the results, and describes further work.



Chapter 2

Literature Review

In Chapter 1, we described the ASDT’s three main issues: data acquisition, data
representation and data integration. We also argued that the relationship.between
these components must be kept in mind while designing an ASDT. In this chapter

and the next, we review existing techniques to accomplish that goal.

2.1 Data Acquisition

Sensing the scene with an apparatus capable of effecting dimensional measurements
is obviously the first step of the description process, and a host of methods exists
for performing such measurements (Beckwith et al., 1981, Chapter 11). This section

investigates and identifies candidates for use by an ASDT.

i\

22
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2.1.1 Data Acquisition Specifications

A data acquisition technique must combine speed and precision, while being practical
and providing a fair level of robustness. Below, we give rule-of-thumb numerical values

for these specifications.

In Chapter I, we mentioned that the ASDT must complete its task in no more than
tens of minutes of clock time. This upper bound on total scene building time implies
a time bound at least as stringent on the data acquisition phase. The requirement

can easily be met with current technology.

We also saw in Chapter 1 that a consistent ASDT builds models which are as accurate

" as its data acquisition system allows. Hence, the latter determines the accuracy of

the final model. Since robotics is one of thé major motivations for this work, the
accuracy of the model, and by extension of the data acquisition system, should be
at least as good as that of the robotic workstation. Most industrial robots achieve
a resolution accuracy in the order of the millimeter. This is the yardstick we use
to. select viable data acquisition systems. These requirements {acquisition time and

accuracy) are roughly in line with those given in (Jain and Jain, 1989, Table 1).

Finally, an ASDT ‘must achieve the above requirements with a range of depth and a
field of view in the order of the meter. This measure grossly corresponds to the size
of industrial robots and of their work envelope.

From these specifications, we can eliminate near-contact or contact methods.

Near-contact methods use proximity sensors, whose output depends on the sensed
material’s electrical or light-reflective properties. For example, pneumatic compara-
tors. and optical flats measure dimensions with great precision and without zissuming

particular properties about the objects.

i
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Contact methods record the displacements induced by the object’ surface on a mea-
suring device. Such a device is the CMM (Mengq et al., 1992; Choi et al., 1990) which
is mainly used as a manufacturing inspection tool. Recently developed miniature
touch sensors can also be mounted on robot manipulators and used to model the

environment by way of groping (Allen and Michelman, 1990).

Despite their very high resolution capabilities, both contact and near-contact devices
are too unwieldy and impractical for the purposes of the ASDT, because of the large
number of measurements (usually several thousand data} needed to model an entire
scene. As a result, the time constraints given above appear difficult to meet, because

of the considerable set-up time involved.

Long-range optical methods, such as photometry and optical telemelry, do not suiler
from these restrictions, as they permit the acquisition of a large number of data
in a short amount of time. Namely, each datum can be acquired in the order of
microseconds to milliseconds, while overall setup time is in the order of minutes. This
is a satisfactory speed for our application. These techniques are often called range
finding techniques, since they determine the distance between the sensing element and
the points on the scenel surfaces. We review them using the classification given in
Chapter 1, separating active from passive methods. We will see that active methods
are more suited to the purposes of the ASDT, but for completeness and because
of the close relation between passive and active methods, we first give a detailed

introduction tb the latter.

2.1.2 Passive Methods

Passive methods are characterized by the prior acquisition of photometric or intensity

images. An image is simply a two-dimensional array of light intensity values. The
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passive methods are so called because no light is shone onto the scene. The light that

reaches the array receptors is therefore due to ambient lighting only.

Such intensity images are difficult to analyze in general because they lead to am-
higuous interpretations. They map intensity, an extrinsic characteristic of the three-
dimensional world, onto the two-dimensional image plane along the lines of a perspec-
tive projection. The task of recovering the correct interpretation for a given image
is then a formidable one since it requires that the perspective ambiguity be resolved

from the intensity cue alone.

A simplified image formation model can be written

IM(a,b) = I(z,y, ),

\‘%‘
where [ is tJhe illumination-reflectance operator whose range is the set of scene surface
points visible to the sensing elements, and Z.M(a, b) is the intensity value associated

with the (a, b)-element of the image.

[nverting the operator I then recovers the three-dimensional coordinates of the surface
points of the scene. It can be proven that this process is an ill-posed problem (Ter-
zopoulos, 1988). Nevertheless, the various shape-from-X techniques that we quickly

describe below are attempts to perform that difficult inversion.

2.1.2.1 Shape from Shading

These approaches compute the normal vector for the surface points that I map into
the image. Knowledge of the depth of just one point then theoretically suffices to

determine a depth map for all connected points, by successive integration.

Horn (Horn, 1975) proved that the perceived intensity is a function of the gradient

v
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of the surface orientation, except at what he calis singular points, where the surface
orientation can be locally determined from the intensity. Knowledge of the reflectance
map and of the illumination model is necessary to reconstruct an approximation to
the surface map. The solution involves solving a first-order non-linear partial dif-
ferential equation and is essentially imprecise. It also requires establishing certain
constraints, such as the sign of the second derivative at singular/points. However
it breaks down for some classes of discontinuities, such as those created by occlu-
sions. Pentland (Pentland, 1986) arrived at a more robust solution by constraining
surfaces to be locally spherical and by assuming Lambertian reflectance only, whereas
Ikeuchi and Horn (Ikeuchi and Horn, 1981) dealt with surfaces with a high spéculzu'
component. Smith {Smith, 1983) proved that surfaces cannot in generzl be exactly
recovered from shading alone, while Ferrie (Ferrie, 1986) placed quantitative bounds

on the limitations of shading analysis.

2.1.2.2 Shape from Texture

Here, surface texture is used as a clue to derive depth. For example, so-called gradient
methods derive surface orientation from the tilt and slant parameters of the underlying
surface. The parameters are estimatéd from the direction of maximum rate of change
of the projection of a set of surface primitives. These methods assume that primitives
of a known shape dot the surface, and that the surface is made up of planar patches

of a sufficient size (Stevens, 1979; Kender, 1978). We note that the first condition

can be reliably enforced by projecting the desired patterns of light onto the surface,

" as.is done with structured lighting techniques (Will and Pennington, 1972; Potmesil,

1979; Wang and Aggarwal, 1989).
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2.1.2.3 Shape from Focus (Horn, 1968; Jarvis, 1976; Krotkov and Martin,
1986)

This method is based on a very basic optical principle: any point of the scene is in
focus for only one lens-to-image distance, and this distance is a unary function of
the distance between the point and the lens (i.e. the range.) Therefore the absolute
distance can be found by determining at ;vhich lens aperture a computed measure of
focus quality is maximized. Since a well-focused image is synonymous to a sharp one,
the existence of high spatial frequencies in the window of interest indicates a high
quality focus and hence yields the range. The range at which the focus is optimal is
found by dichotomic trial and error. Despite its simplicity, this method is slow since
the image plane must be sequentially physically displaced and the focus quality com-
puted for many possible range values in order to determine the sets of points in focus
. at each position (luckily focus quality is a unimodal concave function of aperture).
Moreover, the method breaks down in the face of homogeneous regions since they are
devoid of high frequency features. This technique was found useful for special-purpose

applications, such as automated focusing for commercial cameras (Goldberg, 1982).

2.1.2.4 Shape from Occlusion Cues (Rosenberg et al., 1978)

This method infers depth relationships by building a depth graph based on the oc-
clusion evidences appearing -in a segmented image. Probabilistic relaxation label-
ing (Hummel and Zucker, 1983) is used to resolve contradictions in the partially
constructed graph. Despite its elegance, this method suffers several drawbacks: it
is fairly complex, it only yields relative distances and it depends on the existence of

~ reliable occlusion clues as well as of prior reliable segmentation of the scene.
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2.1.2.5 Shape from Stereo Disparity (Yakimovski and Cunningham, 1978;
Levine et al., 1973)

Suppose a scene surface point projects on two different image planes. The sterco
disparity, or distance between the two projections in image coordinates, is inversely

proportional to the point’s distance to the image planes, or range.
p gE P g

This simple principle forms the basis for stereo methods. All such methods rely on
finding sets of feature pointslin the scene and matching them in the two (or more}
images. This difficult process solves the correspondence problem. It is usually carried
out by computing a correlation function over window pairs, with one window coming
from each of the images. Once the correspondence is established, it is a relatively
easy task to compute the depth of various points of the scene from simple geometric

relations, since we assume that inter-camera distances are known.

As with the focusing approaches, the windows being analyzed must contain enough

high frequency components for the correlation measures to be meaningful. If large

“areas of the scene are featureless, or if the scene’s features are repeated (imagine

the case of a macro-texture), window matching may turn out to be ambiguous and
unreliable, This difficult problem is sometimes tackled by exploiting one or more of

the following ideas:

e Not attempting to establish correspondence over windows but over chosen image
features only, such as oriented edges (Baker and Binford, 1981), zero-crossing of
the second derivative (Marr and Poggio, 1979), or surface differential-geometric
properties (Ferrie, 1986). This allows us to compute the depth of all “inter-

esting” points, whereas that of the other areas of the scene can be found by

interpolation.
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e Improving the reliability of the correlation match by using a hierarchical search
strategy similar to that of Tanimoto’s pyramid (Tanimoto and Pavlidis, 1975).
The idea is to perform the matching starting at a low resolution, to isolate
the matched image areas, and to repeat the process on those very areas after

expanding them to the next higher resolution (Moravec, 1979).

o Making use of cooperative algorithms which first perform matching at a lo-
cal level and then “correct” the correspondence results on the basis of global

continuity constraints (Baker and Binford, 1981; Marr and Poggio, 1979).

e Bypassing the correspondence problem by the use of structured lightning tech-

niques {See Section 2.1.3.1).

2.1.2.6 Passive Methods: Conclusions

Many other methods were left out from the above survey, including for example
shape from contour; (Stevens, 1979; Witkin, 1980), shape from motion (Ullman, 1979;
Skifstad and Jain, 1989), shape from parallax (Soneira, 1988), or shape from shad-
ows (Raviv et al., 1989). The reader interested in a more complete presentation of

passive ranging methods can refer to the authoritative survey of Jarvis (Jarvis, 1976).

The problem with passive methods is that non-geometric clues (occlusions, texture,
blurring, etc...), or underdetermined geometric clues (epipolar disparities, apparent
motion), are used to infer geometrical reality. As a result, all such methods require
extensive and complex processing. In practice, computing shape descriptions on a
few hundred or a few thousand points (pixels) on modern computers fail to meet the

speed requirements laid out above by several orders of magnitude.

More importantly, they make serious restrictive assumptions about the observed
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world. For this reason, no such method taken in isolation can achieve a high de-

gree of robustness.

Biological vision systems provide a proof by existence that passive depth reconstruc-
tion is possible, and this has greatly motivated computer vision rescarchers to pursue
such methods. However, they have long conjectured that deriving depth maps from
intensity-based images necessitates the introduction of high-level cognitive processes,
if robustness is to be achieved. Not surprisingly therefore, the above-mentioned com-
putational techniques fail to adequately reconstruct the three-dimensional world. In-
tercstingly, the numerous visual illusions we humans experience are a cluc that we
use imperfect, though powerful, methods to treat visual data, and the study of neu-
rophysiology and psychophysics has greatly contributed to computer vision (Levine,
1985; Marr, 1982). Tor example, it has been shown that humans make errors in

orientation estimates based solely on shading cues (Horn, 1975).

2.1.3 Active Methods

In opposition to photometric images, range or telemelric images embody an explicit
representation of the geometry of the scene and therefore allow us to bypass the
computationally difficult inversion of the illumination-reflectance operator . The
accuracy of the range information is then solely limited by the that of the sensor
since telemetric images are an intrinsic representation of the scene’s geometry. In

what follows we will use the terms telemetric images and range views interchangeably.

Range views are obtained through active vision. Instead of relying on ambient illumi-
nation, an active vision system shines light onto the scene at regular spatial intervals,
thus artificially creating unambiguous features that greatly simplify the processing:

the monitoring of the directed light yields two-dimensional geometrical information
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whose processing is straightforward. By placing a receiver at a known position with
respect to the emitter, the third dimension (the range) can be resolved from purely

geometric methods.

In other words, the interpretation of the returned visual data is made considerably
easier by the disambiguation the added degree of control provides. The price to be

paid is the additional hardware requirement.

Methods of obtaining range data vary, both in their principle and in their implemen-
tation. Range imaging is still relatively. new and for this reason it may well be that
future technological evolutions improve the feasibility of some of the less promising
methods described hereunder. A good survey of existing active range imaging sys-
tems can be found in (Besl, 1988). We give a brief review of these techniques below,

starting with the most-widely used of them, triangulation.

2.1.3.1 Range from Triangulation

Figure 2.1 illustrates the triangulation prinéiple. A light source O, usually a laser,
beams a ray towards a scene point P, which then reflects it ba.cic. If the surface is
Lambertian or nearly so, all directions will pick up a significant return signal. By
placing a recetver, usually a CCD camera, at @ such that the emitted and reflected
rays form a non-null angle, one can determine the distance, or range, of P from
simple trigonometry arguments: Since both the origin and the angle of the emitted
ray are known, the equation of the emitted ray is fully determined. Similarly, the
reflected ray is constrained to pass through both the center of the lens @ aﬁd the lit
camera element [ M, thus determining its equation. Both rays intersect at P, thus

determining its coordinates. -

By choosing a coordinate system positioned at @ and whose z-axis is orthogonal to
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the image plane, we can write:

di = zcotax (2.1)
=i M.

dy = } (2:2)

D = d] + dg, (23)

where D is the epipolar distance, f is the focal distance, I M, is the offset of the lit

element in the camera image plane. The “range”, or z-coordinate ol P is thus

D
Z= g, 24
%"- + cot & (2:4)
. Triangulation range finding offers several advantagesi First, it it based on a robust

principle, and avoids many of the restrictive assumptions of the shape-from-X meth-
ods. Seéond, it offers a fairly good accuracy, usuaﬂy considerably better than 1% of
measured range. This means that accuracies in the order of the millimeter can be
“obtained by limiting the range to under 1 meter. Finally, because il only requires
geometrical computations rather than knowledge-based processing, three-dimensional
data acquisition is greatly sped up. as hardware becomes the factor limiting acquisi-
tion speed. Although not as fast as intensity imaging, acquisition of several thousand
three-dimensional data can usually be done in seconds or less. This point is [urther

discussed below.

For these reasons, we propose triangulation as the method of choice for automating

the process of scene description.

The recurrent problem encountered when using trlangulatlon for range determination

is the mtssmg part problem. Since the emitter and the receiver are not coax1ai the. '
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Figure 2.1 The triangulation principle.

image perceived at the receiver does not register with the set of points illuminated
by the active lighting system. Consequently, missing parts, or shadows appear at

locations of the range image where no z component can be computed.

Shadows are illustrated in Figure 2.2 and are of two types. Type I shadows arise
when the illuminating ray does not reflect back to the receiver (because of object
seif-occlusions.) Type II shadows arise when the illuminating ray cannot reach a
point of the object which is visible from the receiver. The smaller the angle between
the emitter and the receiver, the smaller the shadows, but also the less accurate the

measurements.

Type'I shadows can be reduced by introducing an additional receiver (Bhanu, 1984)



I 2.1 Data Acquisition 34

iy

Type | Shadow

Bl 7ype 1 Shadow

O {camara}

© (light seurce)

Figure 2.2 The missing data problem.

. | whereas type II shadows can be reduced by the introduction of an additional ray
emitter (Sato et al., 1982). In principle, there is no limitation to the number of
extra emitters or receivers that can be introduced in order to reduce the shadows to
a minimum, although total shadow elimination can never be guara.nte'éd. Bec.a.use
of the additional hardware involved, the preferred setup remains the éingle emitter-
receiver combination. Further, missing data are just as easily recovered by displacing

the range finder to other locations and acquiring new views.

We now turn our attention to the scene illumination method. The illuminating ray
is deflected onto selected areas of the scene with a combination of opto-electronic

shutters or of rotating mirrors. Some popular configurations include:

Point Triangulation (Ishii and Nagata, 1976) The original and simplest method.
A light spot is sequentially directed towards all sampled points. The mechanical
movements involved in directing the spot slow down the acquisition process. In

. their original paper, Ishii and Nagata reported 2 time of almost one minute for
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acquiring a 128 x 128 image. Fortunately, recent advances in hardware have
considerably sped up the acquisition process. For example, Rioux (Rioux, 1984)

built a sensor that can acquire a similar image in less than a second.

Slit triangulation (Agin and Binford, 1976; Oshima and Shirai, 1983) This
method reduces the number of necessary mechanical movements by scanning
light slits, instead of spots, across the scene. A peak detector attached to the
camera allows to rapidly detect the set of pixels illuminated by the projected
slit. In (Oshima and Shirai, 1983), the total time for obtaining the range image
was reduced to a few seconds for a 128 x 128 image. A more recent paper by
Ozeki et al. (Ozeki et al., 1986) in which range computations are done in hard-
ware claims a processing time of half a second for a 50 x 50 image, or 3 seconds

for a 128 x 128 image.

Spa;ce Encoding Whereas point triangulation and slit triangulation require n* and
n distinct samples respectively for an n * n range image, structured lightning
methods cut the number of necessary samples further. Judicious encoding of the
projected patterns must be used to ensure that the correspondence between the
projected illuminant and its position on the receiver’s image plane is maintained.
Altschuler et al. (Altschuler et al., 1981) describe a system that projects a set of
binary coded masks on the scene with the help of an electro-optic encoder. log, n
masks are sufficient to entirely recover an n *n image. Sato and Inokuchi (Sato
and Inokuchi, 1985) use a Gray code rather than a plain binary one, thereby
making the method less error-sensitive. The bottleneck of this method resides
in the large number of digital meinory accesses necessary to store and retrieve

the patéerns.

‘Space encoding approaches culminate with methods that encode the scene with

a single lighting pattern. In (Carrihill and Hummel, 1985; Tajima, 1987), the
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single pattern contains varying intensity lightning subpatterns. In a general en-
vironment, however, the more robust patterns are those with only two intensity
levels, “bright” and “dark”, such as the color-coded stripe patterns of Boyer and
Kak (Boyer and Kak, 1987), or the overlapping binary patterns of Vuylsteke
and QOosterlinck (Vuylsteke and Oosterlinck, 1990).

2.1.3.1.1 Other Triangulation Scanners Various techniques have been devel-
oped to improve the accuracy (Harding and Goodson, 1986), to expand the range of
depth (Bickel et al., 1985) or the field of view (Rioux, 1984), or to realize a compact

design (Rioux and Blais, 1986). We describe the last two techniques below.

The Synchronized Scanner increases the field of view with a variant of the point by
point triangulation. It comprises three rotating mirrors, two of which rapidly move
. in unison while the third one rotates at a much slower pace. The faster mirrors sweep
the light spot along a line, whereas the slower one increments the sweep line in an

orthogonal direction, as in the slit triangulation method described above.

The originality of this scanner resides in the addition of the second fast mirror which
moves synchronously with the first one and deflects the ray. A geometrical analysis

reveals the advantages of the setup:

o All light rays are returned to a single line segment and a linear sensor is then
sufficient to collect them. By comparison, a full two-dimensional camera is

needed in most other setups. The bulkiness of the ranging head is reduced.

o The light rays hit the sensor over a shorter range than they would :usihg other
geometries. This permits the use of a lens with a longer focal length, and hence
a better resolution, without sacrificing on the field of view. Alternatively, the

. same resolution can be kept but with a smaller emitter-to-receiver angl'e. As “ '
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mentioned above, a smaller angle reduces shadow effects.

e The short range over which the light hits the position sensor permits the use qf
a small analog sensor, such as a lateral effect photodiode, instead of a slower
CCD array coupled to a peak detection circuit. The high dynamic range of
the former device allows capture and analysis of a 128 x 128 image in less than
half a second. In addition, such a sensor also outputs the amount of light
received, hencé “automatically” yields a registered intensity image. However,
the advantages of such a sensor have to be weighed against the higher sensitivity,

the higherT resolution and the absence of electronic drift of CCD’s.

In the compact 3-D camera of Rioux and Blais, a small mask pierced with two holes
is placed in front of a CCD camera. Planes of light are shone on the scene, hit the
object, pass through the mask, and hit exactly two camera elements. The separation
of these elements is inversely proportional to the degree of focus of the object and this
automatically yields the z-coordinate of the point (the range); the abso_lt;te position
of the elements yields the x- and y- coordinates. .:Because of its extreme simplicity,

this camera is very light and inexpensive.

This concludes the presentation of triangulation techniques. For completeness, the

next subsections review other active methods of obtaining range information.

2.1.3.2 Range from Time-of-Flight (Lewis and Johnston, 1977; Nitzan
et al., 1981; Moring et al., 1987; Svetkoff et al., 1984)

The idea of time-of-flight ranging is simple: one directs a ray of light onto the scene,

and measures the elapsed time until the signal returns. Since the emitter and the re-

- ceiver are coaxial, this method is immune to the missing part problem of triangulation-

based techniques. For the same reason, a registered intensity image can be obtained
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along with the range image (Nitzan et al., 1981). The availability of registered in-
tensity and depth images can prove a very valuable tool if one is to later perform

processing on the image, notably as a way to reinforce discontinuity cues (Gil et al.,

1983).

Time-of-flight range finders meet the resolution, work envelope and speed specifica-
tions laid out in Section 2.1.1. For example, the most recent sensor designed at ERIM
offers a resolution of .25 mm over a distance of 1 meter, and can acquire a 512 * 512

image in one second (Jain and Jain, 1989).

Time-of-flight however is hampered by the specialized hardware it requires. The
speed of light demands electronics with picosecond discrimination. Powerful lasers,
which are expensive, bulky and unsafe, must be used in order to improve signal-to-
noise ratio. This method therefore appears to be difficult to apply in an industrial
environment. However, should the required hardware become available at a non-
prohibitive cost, this method of obtaining range maps could become very popular,

especially if, for obvious safety reasons, the power of the laser can be kept low (below
10 mW).

A variation on the time-of-flight idea consists of using acoustical (ultrasound) rather
than light waves (Moravec and Elfes, 1985; Acampora and Winters, 1989; Audenaert
et al., 1992). ‘Even though sound waves travel considerably slower than light, thus
avdiding the drawbacks of the previous method, they present other problems. First, |
unlike light which can be made coherent, sound is hard to focus, offering a poor
resolution. For the same reason, reflections off surfaces other than the one being
gauged can easily confuse the sensor. Finally, frequent recalibration is needed as the
speed of sound is very sensitive to changes in both ambient temperature and humidity. ‘

Yet ultrasound ranging is fast and inexpensive. Because of its higher reliability at |

close range (even if still inaccurate), it has been found to be adequate for c@llision‘ o .




2.1 Data Acquijsition 39
avoidance in automated navigation applications (Borenstein and Koren, 1988).

2.1.3.3 Range from Moiré Gratings

In this method, light is shone through a grating and the returned ray (after it hits the
object) passes through another grating with the same pitch. The laws of interferom-
etry (Idesawa and Yatagai, 1980) tell us that the output yields contour lines of equal
range whose spacing depends on the Moiré pitch. The method is simple and generally
offers a resolution at least as good as triangulation range finders. Unfortunately, it
only yields relative distances and cannot handle occlusions or range discontinuities.
Further, it requires a dark room and specialized optical equipment. Moiré methods |

are reviewed in Reid (Reid, 1986).

Many other specialized active methods have been described in the literature, for
example holographic methods (Tozer et al., 1985), which are used to detect very fine
surface variations. Okada (Okada, 1982} also describes a short-range active sensor

which detects range based on the quantity of reflected light.

2.1.4 Ranging Methods: Conclusions

We have reviewed the main current 3-D imaging techniques, and seen that the so-
called passive techniques are still a long way from performing with the kind of as-
surance that humans effortlessly display at the task. For this reason, we believe that
active techniques, and in particular triangulation methods are still the most promising
ones for scene acquisition. Their main drawbacks, mainly their relative slowness and
incomplete data acquisition (i.e. the missing part problem) are slowly being resolved
with the emergence of faster, more compact and more reliable hardware, as well as

with numerous refinements of the basic operating principle.
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Finally, we note here that laser time-of-flight is still impractical for an industrial
environment, but could turn out to be the most practical method in a decade or so,
with the emergence of faster hardware, more sensitive photo-receptors, and higher

discrimination timing devices.

2.2  Solid Modeling

i
{

We have so far seen how to obtain the raw data for the scene. However, the scene

description process does not stop there as we still have to:

1. Combine the data from the several views,

2. Convert that information to a form suitable for a computer representation.

It turns out that these two tasks are closely interrelated. For completeness, we present
in this section a review of Solid Modeling, the field of research which deals with item
2 above. Authoritative reviews on the subject can be found in (Requicha, 1980;

Requicha, 1983).

The issues involved in choosing a representation scheme are storage and computational
requirements, ease of input, and the versatility of the representation for executing var-
ious algorithms. Unfortunately, these issues are often conﬂigting, which is why many
schemes are in use today. Representations can be classified “‘_'into a hierarchy of mod-
els forming a continuum between structured (or compact oﬁes) and enumerative (or
redundant ones) (Hayward, 1986). The following survey pflx:'?ceeds from enumerative

representations to structured ones.
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2.2.1 Volumetric Occupancy Schemes
2.2.1.1 Voxei Lists

Each volume element is represented by one logical bit, indicating whether the element
is full or empty. This method is simple but very storage intensive since it makes no

use of object coherence. It is usually inadequate for scene modeling,.

2.2.1.2 Octrees

Octrees are a compact form of voxel lists which makes use of object coherence through
a recursive decomposition of space (Meagher, 1982a; Meagher, 1982b). Octree en-
coding imposes a sorting on the 3-D space in both space and size, speeding up many
operations. Since only one primitive, the cube, is used, most processing tasks bear
some uniformity. Finally, octree computations naturally lend themselves to parallel

processing,.

Still, the construction of octrees is computationaily expensive, and much memory
is required to store the abundance of pointers. Alternate ways of encoding octrees
alleviate the latter problem but complicate the algorithms that operate on them.
Finally, the octree representation is extremely dependent on position and even more

s0 on orientation, making it highly non-unique.

The segment representation is an interesting volumetric representation variant. It was
introduced by Martin and Aggarwal (Martin and Aggarwal, 1983) and corresponds to
a double discretization of the scene into equally-spaced segments. This representation
is about as Space consuming as octrees are, but is much more intuitive and less

orientation dependent. It is easily constructed from a series of photometric views

.and is also easily converted to a surface representation. A major disadvantage of this
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scheme however is its poor graphical appearance on a display due to its lack of both

conciseness and structure.

2.2.1.3 Cell Decomposition

Cell decomposition comprises representations that decompose the space into instances
of a chosen primitive, such as tetrahedra (Faugeras et al., 1984), spheres (O’Rourke
and Badler, 1979), parallelepipéds (Kim and Aggarwal, 1986), or segments (Martin
and Aggarwal, 1983). Unlike octrees, these representations do not build a hierar-
chical description. They have been found to be useful for many applications. [For
example, spheres are invariant under projections and this property is useful for fast
graphical display. A tetrahedral representation is easily built with a general-purpose
three-dimensional Delaunay Triangulation algorithm (Preparata, 1985, Chapter 5).

Parallelepipeds have found applications in robotic path planning (Lozano-Pérez and

Wesley, 1979).

2.2.2 Boundary Representations

Boundary representations (B-Rep’s) are a family of representations where objects

are made up of faces which are bounded by edges, themselves bounded by vertices..

It is a well-behaved generalization of the wireframe representation (See next sub-
section). Several facial primitives can be used: triangles, general planar polygons,

quadtrees (Samet, 1984) or parametric surfaces (Faux and Pratt, 1979).

B-Rep’s make it possible to concisely represent arbitrarily complex shapes and they
are well suited to computer graphics applications. Regrettably, it is difficult to inter-

actively edit a B-Rep model that contains a large number of faces, in part because

they encode local information which bears little relation with the global structure of

o
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the model. The reader interested in a more detailed discussion of each primitive’s

advantages and disadvantages should refer to (Requicha, 1980).

2.2.3 Wireframe

The wireframe representation is simple and compact. It only encodes objects’ vertices
and edges. Many application programs already exist for computer graphics and for
[ast, interactive use. Unfortunately, it is ambiguous in three dimensions and can lead
to the creation of nonsense objects. For this rea,son:,— it is inadequate for the internal

representation of an object in a solid modeler.

2.2.4 Constructive Solid -Geometry

The difficulty that humans experience entering or editing a B-Rep model have led -
to the development of Constructive Solid Geometry (CSG). CSG represents a large
step in conciseness from B-Reps. It decomposes the scene into a set of simple global
primitives (usually cubes, wedges, fillets etc...). It is thus a high level description.
Note that CSG is very different from the cell decomposition representation because
in the latter, the shape of the cells is arbitrarily chosen ahead of time and bears no

relation to the high-leve] shape of the sub-objects.
e

CSG is well-suited to being manipulated either by a human or by an algorithm,
whether for purposes of creation or of alteration. CSG can represent large classes
of objects and supports Boolean operators. However, free-form surfaces are hard to
represent with CSG, and conversion to other representations is difficult. Finally, we
believe it is less suited to automatic scene description since global descriptions are

harder for machines to generate.

i,
e
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2.2.5 Other Representations

There are many other representation schemes, including popular ones such as Sweep
Representations (Agin and Binford, 1976) and Skeletons (Udupa and Murthy, 1977),
or more obscure ones such as Generalized Blobs (Mulgaonkar et al., 1982) or Prism
Trees (Faugeras and Ponce, 1983). We believe none of these offers much promise for

the task of scene description as they either lack generality or ease of manipulation.

2.2.6 Solid Modeling: Conclusions

We gave a brief survey of solid modeling techniques. The most common ones used by
solid modelers are CSG, B-Rep’s and to a lesser extent, octrees. We saw that B-Rep’s
and octrees are more versatile and that CSG is well suited to human input. Because
of the different advantages offered by each representation, solid modelers commonly

store several representations in parallel, picking the one that is most suited to the

particular operation to be performed.

2.3 Chapter Summary

We reviewed current methods of range data acquisition and solid modeling techniques.

for the purposes of building a description of a scene.

Based on these techniques, the ASDT must tackle the task of multi-view integration.
In the next chapter, we give a background review on that task and-set the stage for

the algorithms we describe in succeeding chapters.

We will see that the assumptions about the data acquisition techniques play an im-

portant role on data integration, and that the applicable algorithms directly depend

o



2.3 Chapter Summary 45

on the solid modeling technique one chooses.
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Chapter 3

i

Multi-View Integration: A review |

3.1 Data Integration

" 3.1.1 Finding the Inter-Frame Transform

As we saw in Chapter 1, the different views must be merged into a unified three-

dimensional model, a process which we called data integration. The first task of b

~“multi-view integration is to find the geometric transform between the different views.

Tli[i.s'step depends in part on the assumptions one is willing to make regarding the

environmental setup.

The silifi:ilééfgtase occurs when the range finder’s coordinate frame is registered with

. respect to the scene, and this is true regardless of the actual agent of movement.

For exa.mple the range imaging device can be kept stationary while the object(s) of
the scefie aré rotated on a monitored motor-dnven turntable (Faugera.s and Pauchon,
1983; Bhanu, 1984). If the scene is too large or bulky to be easily dlspla.ced one can

equwa.lently elect to displace the imaging device instead.
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An alternative strategy is to position fiducial marks around the scene. By identify-
ing the fiducials across the several views, the inter-view transformation parameters
are obtained through the solution of a least-squares problem (Potmesil, 1979). The
identification of the fiducials is itself an instance of the correspondence problem (See
Section 2.1.2.5), but the problem is normally easy to solve because of the highly-

structured nature of fiducials.

In some cases, one can also resort to operator-assisted feature identification. For
example, Hasegawa (Hasegawa, 1982) manually guides a laser spot through identical
feature points across a series of views, while a triangulation range finder determines
the coordinates of these features. Hence, correspondence is unambiguously estab-
lished. Operator feedback is in the form of a superimposition of the laser spot on a

video image of the scene.

. Finally, one can-estimate the inter-frame transform automatically by determinir;g
which one minimizes feature differences between overlapping parts of the object. This
is done by evaluating a matching cost function for a set of chosen evaluation points,
subject to a number of constraints. The evaluation points are usually image features,
the cost function is based on local similarities of those features, while the constraints
are that adjacency relationships between features are respected and that the transform

be a rigid motion.

In {Ferrie, 1986), intensity irﬁage windows taken around distinguished surface points
are correlated and consistency is verified using a relaxation labeling procedure. In (Her- -
man, 1985), trihedral polyhedral vertices are matched using geometrical and topologi-
cal constraints, the latter with a Waltz-like (Waltz, 1975) procedure. Potmesil (Potmesil,
1983) performed a heuristic search in the transformation parameter space, based on
positional, orientation and curvature differences between points of maximal curvature.

. i Chen and Medioni (Chen and Medioni, '1991) used a similar technique, minimizing
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distances from points to tangent planes. Parvin and Medioni (Parvin and Medioni,
1991) used a multi-layer neural network, which computes surface matching costs using

geometric and adjacency constraints between surfaces.

These computational approaches do not rely on external artifacts for their solution.
They are then more general, although complutationally expensive. Nevertheless, be-
cause they necéssitate the early computation of useful features, their overall cost
is lessened in view of the savings they introduce for the {eventual) later processing

stages.

3.1.2 Merging the Several Scenes Together

After the camera position is precisely determined, we must merge the views together.
This consists in finding a description for the scene in a world-coordinate frame, start-
ing from a collection of views which are all expressed in their own viewer-coordinate
frame. The methods reviewed below show that the algorithm used to perform the

task depends in a large part on the representation scheme we adopt.

3.1.2.1 Shadow Intersection Merging

The most common method of merging the scenes is the “shadow intersection” method.
This method is based on the assumption that the various scenels in the scene can
be unambiguously separated from the background. This is often an artifice but it
leads to simple algorithms and it can be used with both intensity and range images.
The scenels then project into “blobs”, or silhouettes, on the image plane. By back-,
projecting t?ese silhouettes into space, one creates semi-infinite conic sections (or
semi-infinite prisms if the orthographic projection is used) whose base is on the image

plane. This process is equivalent to assuming that every occluded area of the sgen_é
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is “full”, namely that the occluding scenel occupies that area. Similarly, it is as if

a “shadow” was'extended from the scenel to the image plane and from the scenel

infinitely far behind it.

As we obtain additional information from subsequent views, these shadows are “shrunk”
to their maximal plausible size, namely t}iéir common intersection. Figure 3.1 shows
a simple shadow intersection example illustrating the principle. The process stops
when “enough” views are taken, presumably when the whittled-down shadow éxactly
matches the scenel being modeled. This can either be decided by the operétor, or
some measure of convergence can be defined. One such measure is to stop when the

volume reduction ratio introduced by additional views drops below a certain value.

Figure 3.1 The shadow intersection method. A two-dimensional scenel is ac-
quired from three viewpoints. Its tangents of visibility determine semn-mﬁmte
shadow cones whose intersection determines the resulting modél.

Octrees are often used in conjunction with the shadow intersectidﬁ method. For ex-

-ample, Chien and Aggarwal (Chien and Aggarwal, 1986) built the octree of an ob]eat

seen from three orthogonal intensity views. Veenstra and Ahuja (Veenstra and Ahu_]a, “!r: ,
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1986) extended the method to up to 13 standard views. Hong and Schneier (Hong
and Shneier, 1985) presented a more general method that makes no assll-'lmpt_idﬁ on
the view positions. The already-built octree is projected onto the image plane of each

new view, and is intersected with the scenel’s projection for that view. Noborio et

al. (Noborio et al., 1988) later sped up the method by performing intersections in

three-dimensional space instead. Similar techniques are presented in (Potmesil, 1987;

Srivastava and Ahuja, 1990).

Alternate representations can also be used with the shadow intersection method,
influencing the intersection algorithms. For example, Martin and Aggarwal (Martin

and Aggarwal, 1983) use the segment representation to merge shadows, using the

scan-lines of the last view as the arbitrary direction of orientation for the segments.

Srinivasan et el. (Srinivasan et al., 1989) discretized the blobs appearing in the image
plane along arbitrary stacked planes, such that the eventual intersection tests be

between two-dimensional polygons.

The references given just above all used intensity images. With such images, object
concavities (such as the inside of a cup) cannot be recovered, since the method only
considersii-object projections, or silhouettes. When used with range ima,ges‘however,
the method’does not suffer from this defect and it also converges faster. In (Connolly,
1984), Connolly constn;cted a quadtree in each image plane of a set of synthetic range
views and used ray-tracing techniques to assimilate the quadtrees 'mti{o a global octree.
In (Stenstrom and Connoily, 1986), line segments are extracted from range images,
and are then swept arbitrarily far from their respective image plane, thus constructing
a wireframe model-for each range view, The wi}efram.e models g;é':,s“ﬂeshed out”

i

using the Markowsky and Wesley algorithm (Markowski and. Wesley, 1980}, and the

resulting polyhedra are intersected to yield a solid polyhedral model. In (Wang and - |
Aggarwal, 1989), relative depth is obta.in}%d by a structured lighting technique, and

\,
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is combined with passive sensing in yet another variation of the shadow intersection
meihod. The authors claim that the construction process is thus made more accurate

for a fixed number of views.

In summary, the shadow intersection method is a general and simple image integra-

.. tion paradigm which works with both intensity and range images, with the proviso

that concavities can only be acquired with the latter image type. It also requires a
volumetric representation scheme since it encodes the inside of the object (or what is

presumed to be its inside) rather than its surface.

The need for an a priori separation of scene from background restficts its applicability.
This separation is often hard to establish automatically, since object-background
separation is an instance of the unsolved general Segmentatign problem. Further,
the separation cannot be obtained nor can the sensor rotate around the scene in
some instances. Imagine the case whq{e the sensor is limited to moving around and—

scanning the inside a cavity or a room. Such a scene has no “backeround” to speak
g p

of and therefore does not admit a shadow intersection method.

We will in the -next sections ﬁzﬁmr-\our attention to methods that encodes surface.
rather than wvolume information. Since the acquired data is itself in the form of
surface information, we believe that B-Rep’s are a more natural representation for
the models built by the ADST. We distinguish two main methods, surface- and point-

based merging methods.

3.1.2.2 Surface Merging

In surface merging, individual views are processed as sets of surface components and
are then merged together. This technique clearly uses a boundary representation.

For each new view, four processing steps are taken:



o
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1. Identification of surfaces.

2. Transformation of the surfaces into a common reference using the known inter-

frame transform.
3. Surface overlap elimination.

4. Surface parameter update.

The first identification step may be done at a symbolic or at a data level. Symbolic
level merging is normally performed within the three-dimensional analysis pamdlgm
of Figure 1.3: one first detects features in the individual views, then these fcatules,
are matched across the views with a matching algorithm similar to those discussed in

Section 3.1.1.

. For example, Ferrie (Ferrie, 1986) uses shape-from-shading techniques to identify and
to segment surfaces based on differential-geometric properties, Dane (Dane, 1982} fits
quadric patches using a region-growing approach, and Parvin (Parvin and Medioni,
1991) detects range data discontinuities using zero- crossings of the second derivative.

These approaches build a composite graph, whose;nodes.are the 1denulﬁed surfaces

AR IT‘.—\\‘-:_‘_ W,
Ty RS

and arcs indicate adjacency relationships. # T

Surface identification can also be done at a data levei. In this case, individual views are
not “processed” and only a low-level deﬁcription is arrived at. This is more attuned
to the ASDT least-commitment paradigm of Figﬁre’-;}.?, where we do not seek a
trimmed high-level representation from which it is all But impossible to recover the
original data. Rather, the choice of the final structured representation is left up.to

the application program that subsequently uses the ASDT’s output.

For example, Potmesil (Potmesil, 1983) obtains range data by projecting grids of

. orthogonal lines on the scene, and matching grid junctions across the views. He .
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obtains a network of bicubic parametric patches which are used as the basic surface
elements. Using a triangulation range finder, Bhanu (Bhanu, 1984) simply aggregates

range data into small planar facets.

The surface descriptions are then transformed to a common reference using the inter-
view transform, which is either known or estimated as described in Section 3.1.1. After
this step, the actual surface merging is performed. One of the difficulties consists in.
eliminating the overlapping sections, namely the scene parts which appear in more

than one image. This process also depends on the surface representation employed.

In (Potmesil, 1983) overlapping surface segments are reparametrized by mapping a
‘new parametric grid on them. Soucy (Soucy, 1993) performs a similar reparametriza-
tion based on range images, except that the information coming from each view is
weighted by an estimate of its quality. In (Ferrie, 1986; Parvin and Medioni, 1991),
. the composite graph is updated by recomputing the boundaries of the surfaces, whiie
in (Dane, 1982) the quadric parameters are modified based on the newly-acquired

information.

3.1.2.3 Point Merging

DN
; In the. last section; we saw that a boundary repres‘éntation can be extracted from
Py _1_ \\
“ 7 ‘a scene at the data Ievel and that this paradigm was. iconsistent with the ASDT’s
i 8 description. In general however, range elements or rangels, are in the form of discrete
three-dimensioﬁ%.l points, as seen in Chapter 21,
P Many parametric methods exist for constructing smooth surfaces passing through or

near a collection of boundary pomts (Faux and Pratt 1979). The simplest method

There are exceptions to this, as some techniques use the close proximity of rangels to a}_gregatln
= them into lines for further processing (Oshima and Shlra.t. 1983). Ny

-
. = = ir‘-
- . - —
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‘however does away with the smoothness assumption and approximates the desired
surface with a collection of planar facets. For any triplet of adjacent points, we
approximate the surface by a face which passes through those three points. Processing
the point set is hence reformulated as defining adjacency relationships between the
data points. This is a three-dimensional connect-the-dots problem, as mentioned in
Chapter 1. The goal is to find the “most natural” triangulation of the data set, based
on a combination of contextual information and of heuristic measures. More formally,
we wish to b;.lild a connectivity graph G spanning the set V of data points, such that

(G embeds a kind of proximity graph in a Riemannian, or geodesic sense.

In the simplest case, suppose we acquire n points that are known to lie on the surface
of a connected object tha.t contains no hole: topologically, we say that the object
is homeomorphic to a sph.ere. We seek a triangulation, or a spenning, mazimal, 3-
. connected, planar graph on V. The collection of faces of the triangulation forms the
surface of a simple po!yhﬁzdron. In Appendix A, we derive a numerical formula for

#(n), the number of admissible such graphs:

(dn — 111 {n _
= ——_— . 3.1
Clearly, the enormous growth rate of the above formula precludes all attempts at

enumeration®?. Thus, clever algorithms must be designed to prune the candidate

SN graphs.
3
\‘\\\\ O’Rourke {O’'Rourke, 1981) defines the polyhedron of minimal area as the most nat-
S==3ural model for the set V. He also gives a heuristic “greedy” algorithm to compute a
~ good approximation for such a polyhedron. The algorithm selects the convex hull of
P V as an initial approﬁiination to the desired shape. The shape is then incrementally
Wl
R 26(10) > 400 million and ¢(120) > 103%4. Of course, the overwhelmlng majority of these graphs
. represent non-simple polyhedra, namely polyhedra with self-mtersectlons .
- e
EW e
AN ;
:;;“ .‘.“-;!.—;’" -
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“carved” by inserting its internal points into its boundary. The selection of the in-
ternal points and how to insert them into the current shape is based on local criteria

only, yielding an O(n®) algorithm.

An alternative method uses the three-dimensional Delaunay triangulation-as a seed
structure (Boissonnat, 1984). Note that triangulation here is a misnomer, since the
structure is actually a tetrahedrization of the convex hull of V. The tetrahedra are
then eliminated based on a local geometrical criterion that measures how “internal”
to the current shape the tetrahedron is. As with O'Rourke’s method, the process
stops after all the internal points are on the boundary of the shape. The final result

is a cell decomposition representation. Its boundary is a triangulation of the shape.

Hoppe (Hoppe et al., 1991) reconstructs surfaces from very dense data by first con-

structing a Riemannian Graph, a special type of proximity graph he derives from the -

Euclidean Minimum Spanning Tree. Good results are given using synthétic data.

Despite its name, the Riemannian graph, like the Delaunay Triangulation, is a prox-
imity graph based on Euclidean distance considerations only. One problem with
such graphs is that near points in a Euclidean distance sense may not be neighbors
in a Riemannian, or geodesic sense. In other words, two vertices may be near in
the three-dimensional space, and far from each other if one was to travel along the
two-dimensional surface on which they lie. Yet a Euclidean proximity graph will in-

correctly join such vertices. Of course, the geodesic distance cannot be computed, for

if it were, we would know the underlying surface.

The two-dimensional example of Figure 3.1 illustrates the above problem. The shape
shown in (a) is Delaunay-triangulated in (b). The two-dimensional analogue of Bois-
sonnat’s algorit\l\lm will remove triangle B instead of triangle A from the initial trian-

gulation, thus obtaining the result shown in (c). Since the convex hull is contained in

By



3.1 Data Integration 56
the Delaunay Triangulation, the two-dimensional analogne of O'Rourke’s algorithm
also yields the same result: Because creating A increases external perimeter by a
greater amount than creating B does, the shape of (c) is again favored. Yet, the

preferred perceptual connectivity is shown in (d).

(a)

{c)

(d)

Figure 3.2 (a) A two-dimensional closed shape with a set of boundary points
on its contour. ‘

(b) The Delaunay Triangulation on those points.

(c) The graph obtained by either of (O’Rourke, 1981; Boissonnat, 1984)
(d) The desired connectivity graph.

3.1.2.3.1 Constrained Point Merging The connectivity problem we just out-

lined does not lie with the particular algorithms, but rather with the ill-posed nature

e

of the connect-the-dots problem. A “cloud” of points does not make a well-defined

‘object. Contextual information is needed to help find the desired shap'e._'-- .
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For example, Boissonnat (Boissonnat, 1982) developed an algorithm for triangulating
the surface of an object provided that a label is available at all surface points, indi-
cating whether or not the surface is locally convex. However, the convexity boolean
is derived from the signs of the principal curvatures, which are second derivative fea-
tures. Because derivative-taking implies the prior knowledge of connectivity, the label

assumption only points to the existence of a “chicken-and-egg” problem.

A more realistic case occurs when the data is organized into a set of stacked planars
sections, and each section contains one or more polygonal contours. This form of or-
ganization is typical of tomographic data, where each plane corresponds to an acqui-
sition scan-line. The contours are then used as subgraphs of the desired connectivity
graph. Subsequent linking of adjacent contours yields a triangulation of all points,
where each triangle is composed of two adjacent points from a given contour, and
one point from an adjacent contour. Still, linking adjacent contours is a constrained
connect-the-dots problem. Choosing the contour-to-contour connections was shown
in (Keppel, 1975) to be reducible to finding a shortest-length path in a directed graph,
where the weights of the graph arcs optimize the heuristic criterion of choice. Kep-
pel chooses to minimize the volume of the polyhedra bounded by adjacent contours
and by the contour-to-contour triangles, thus minimizing the overall object volume.
At any stage of the triangulation, only two choices are present: either triangulate
“upwards” (with two vertices of thé:';newly-created triangle on the upper scan-line)
or. triangulate “downwards”(with the two same vertices now on the lower scan-line).
Fuchs (Fuchs et al., 1977) gives a similar, but more complete method which mini-
mizes the object’s surface area. Wang and Aggarwal (Wang and Aggarwal, 1986)
sped up Fuchs’ method by using the well-known graph search A* algorithm (Hart
et.a.l., 1968). In (Boissonnat, 1988), a different method is used: contour-to-contour
triangular transitions are built with the three-dimensional Delaunay Triangulation.

This method naturally handles the case of disconnected contours (i.e. more than one
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contour per planar section).

Another type of contextual information is the knowledge that a set of edges must
belong to the connectivity graph. This happens when the data consists ol stereo
edges, rather than stereo points, and the surface triangulation is then constrained to

include these edges (Boissonnat et al., 1988).

The last example supports our claim of Page 15 that much is to be gained using the
knowledge of the data acquisition procedure right at the data integration stage. In
Section 1.4, we saw that the line-of-sight segments of triangulation range ﬁndi.ng are
known to entirely lie in free-space, and that this knowledge can be used to discriminate

between shapes based on the consistency of physical observations.

For example, Faugeras and Pauchon (Faugeras and Pauchon, 1983) first built closed
planar contours using the line-of-sight information. As above, they assume the data
is partitioned into planar sets of points. However, the planar polygons are not known
a priori and must be built from the original point set before an algorithm such as
Keppel’s is applied. By solving the connectivity problem along parallel contours
independently, the connect-the-dots problem is made two-dimensional. For every
plane, the goal is to build a simple polygon (a spanning cycle in graph terminology)

from the set of points associated with that plane.

This two-dimensional connect-the-dots problem has also been studied in isolation.
For example, O’Rourke et al. (O'Rourke et al., 1987) solved the problem by building
a minimal spanning Voronoi tree, while Edelsbrunner ef al. (Edelsbrunner et al.,

1983) proposed an algorithm based on a generalization of the convex hull.

Rather, Faugeras and Pauchon’s algorithm used contextual information as follows:
For each acquisition plane, the sensor incrementally rotates around the object. I'or a

given plane, two criteria are used to establish point connectivity. For points acquired
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from the same sensor position, or view, adjacency is established following the angular
adjacency of these points with respect to the sensor (Refer to Figure 1.5). For points
acquired from different views, adjacency is established depending on whether the line-
of-sight of agwen data point intersects the edge joining the points of another view.

This last condition fulﬁ;“‘ié‘:_:;‘tlm opacity condition (See Section 1.4).

Alevizos -ct al. (Alevizos et -al., 1987) perfected the above idea and gave an algorithm
for building a simple polygon starting from a set of points, where each point lies at one
end of a finite segment. They prove that the solution, when it exists, is unique, and
they obtain it in the optimal worst-case asymptotic complexity of O(nlogn) time,
for an n-sized input. When the data comes from a Iphysical source, the existence of a
solution is guaranteed (up to sensor noise). The algorithm first builds the convex hull
of the data points. In that respect, it resembles both O’Rourke’s and Boissonnat’s
three-dimensional algorithms. Yet it differs in the way the subsequent “‘carving”‘qf
the convex hull is performed. Here again, the intersection of acquisition segments wiEh
edges of the polygonal contour is the decision criterion used in breaking adjacency

relations.

An attractive feature of both Faugeras and Pauchon’s and Alevizos et al.’s algorithms
is that the graph construction does not call for closeness measures in the Euclidean
rnefric sense, as the Delaunay triangulation does, nor does it require additional heuris-
tics or assumptions about the surface texture. The former method assumes that the
data is organized as a set of separate views, while thelatter also does away with that

assumption.

In the next chapters, we will extend the ideas contained in these algorithms to the
general three-dimensional connect-the-dots problem. Here, we give a simple graphical
example to illustrate the nature of the problem. Imagine an object with a deep

concavity is scanned with five acquisition segments.
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Equation 3.1 states that 10 different planar maximal triangulations can be drawn on
these vertices. The maximal triangulation on five vertices has 3% 5—6 = 9 edges, but
there are only (g) = ¢(5) = 10 possible edges. Hence, each graph is differentiated
by which edge is “missing” {rom its edge set. We use this fact to label graphs in the
following discussion. For example, (A, B) is the graph with no edge joining A and 3,

but with an edge joining every other vertex pair.

A
/ / |
Figure 3.3 A simple example with 5 vertices and their acquisition segments.

Imagine the graph shown in the figure is the most “perceptually-consistent” graph
for the underlying object, with point D lying at the bottom of the object’s cancavity.

Figure 3.3 shows graph (D, E) superimposed on the set of vertices and their ségmcnts.
The model based on graph (D, £) is consistent iﬁ the sense given in Chapter 1 since,
without any further information, the object could very well be exactly represented
if each graph face was replaced by a planar facet. On the other hand, any graph
with face (A, B, C) in its face set is not consistent since the acquisition segment of D

intersects that face, thus violating the opacity assumption.

By enumerating all ten possible graphs, we see that only four are consistent with the
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data acquisition, the other six containing face (A, B,C) in their face set. The four
consistent graphs are (A, B),(B,C),(A,C), and (D, E). Figure 3.4 shows such an

alternate graph.

C

Figure 3.4 (A, B)is an alternate consistent graph for the 5-vertex data set.

This simple example shows that contrary to the situation in the two-dimensional
case, graph reconstruction of three-dimensional objects based on vertex sets and their

acquisition segments does not admit a unique solution.

As well, note that the implicit visibility information provided by the acquisition seg-
ments is only that there exists an e-diameter cylinder of free-space around each seg-

ment. Nevertheless, the question arises as to whether, or when, such input data is

"suﬂicient to construct a consistent least-commitment connectivity graph using purely

geometrical tests.

~
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3.1.3 Chapter Suramary

We have reviewed the state-of-the-art in merging several views ol a three-dimensional
scene. We saw that the first step, finding the inter-frame transform between the

. . . o
views, is generally a semi-automated process. '

Several techniques exist to merge views once the geometric correspondence is known,
The shadow intersection method is the most simple and works well, but is restricted
to objects with a clear object-background separation. It also requires the use ‘of

volumetric representations.

We also described some surface merging techniques, which are akin to the three-

dimensional analysis techniques used in Computer Vision (Refer to Figure 1.3).

Finally, we reviewed point merging methods, which follow the ASDT paradigm (See
Figure 1.2). Since point-merging methods do not perform three-dimensional analysis
as described in Chapter 1, they implement the least-commitment principle introduced

in that chapter.

These methods also use surface-based representation, but they first construct a grap_h
by merging the sensor information purely at a data level, namely by inferring point-
to-point connectivity. This connectivity is essential for further differential-geometric
processing, since the latter requires the kﬁawledge of neighbor relationships between

points. 7

In most of the point-merging approaches, the graph is drawn from Euclidean proxim-
ity considerations only. This assumptioﬁ breaks down when the data is sparse with
respect to the surface concavities, which we illustrated with a simple example. Others

have introduced the idea of using the implicit additional knowledge given by the sen-

“sor acquisition segments’ paths. In (Alevizos et al., 1987), this idea was proven to be

{1



94

fis

3.1 Data Integration 63

powerful enough to unambiguously construct the graph of an object homeomorphic

to a (two-dimensional) disk.

In this work, we investigate whether the equivalent statement can be made for three-
dimensional graph reconstruction in general. Namely, can three-dimensional surface
graphs of real objects be reconstructed solely from the geometry of surface-segment

intersections?

The next chapter presents an algorithm for incrementally merging sets of data, each of
whlch has a common acquisition center. The followmg chapter preeents an algorithm

for globally merging data without any assumption wn;h respect to data organisation.
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Chapter 4

An Incremental Merging

Algorithm

4.1 The Ac_quisit‘i'on--"']':'y‘-rames

i~
s
&

."; - . . . -
In this chapter, we present a method to incrementally merge a series of tange vicws

into a graph embeddable on.a sphere. We do not assume that the points coming from

different range views are organised along parallel or non-intersecting lines, as was
done in most of the data integration methods reviewed in C'l'l;:apter 3. The reasons for
I;/-.

doing so are two-fold.

First, obtaining such scanlines may be an undesirable restriction in some environment

configurations. For example; we may wish to explore the environment using sensors

o ‘positioned a{:"’ar.bitrary positions and orientations. This may help greatly for-exploring

certain types of concgn};i-'aes, and for the general problem of navigation in an unknown

environment. : - "
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Second, although the scan-line approaches described in Section 3.1.2.3 (Keppel, 1975;
Fuchs et al., 1977; Wang and Aggarwal, 1986) adequately solve the two-dimensional
surface connectivity problem along one dimension, it does resort to using a Euclidean

metric in the orthogonal direction.

We will assume in the following that we have at our disposal an arbitrary but bounded
number of range images, whose position, orientation, and resolution are also arbitrary.
Our obj:s,‘ctive is to merge those images in order to build a surface connectivity

graphf;(G. The vertex set of (7 is the set of data points (See figure 4.1).
N

Notation: We will adopt the following notational conventions:
>

® VG s.t. G is a graph, E(G) is the edée set of G.
- o YG s.t. G is a graph, V(G) is the vertex set of G.
¢ VG s.t. G is a graph, F'(G) is the set of faces of G.
e ¥Gs.t. G is a graph, G =/(4, B) means that A = V(G) and B = E(G).
e 7,7 denotes the edge joining z and y.
® (z1,...,2,) denotes thé graph cycle &1,...,Zs, 2.

* &, denotes the closure of the (n — 1)-dimensional simpléx whose vertices -

are {x), \.., 2, }, minus those vertices.
W h L

¢ \ is the usual set difference operation.

S

4.1.1 - Definitions

e

S ey
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Figure 4.1 a)The inferred surface graph for frame F°.
b)The inferred surface graph for frame F7.

¢)The superposed graphs from both frames. The resulting graph remains to
be found. ' ' :
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Definition 1 A surface conneéi‘.ivity graph for a set V of poinis assumed to lie

on a lwo-dimensional surface M, is a graph whose vertez set is V and whose faces

are embedded on M.

Definition 2 A frame F = (P, V, 5} is a triplel consisting of the following geometric

enlities:

o A point P in free space.

o A sel V - {z1,...,zn} of surface pomts such that Vi j E {1 A NLEEA 2

'L‘ —.
___,/

O,P_:L':=a\~ﬁ;;.

o AselS={s1,...,sn} of directed line segments such thatVie {1,...,N},s; =
it

"
%

_.+ » . . u
Pz;, with s; lying entirely in free space.

A frame embeds the information about M that can be obtained from a single view-
point. In the case of range imaging, P is the imaging system’s fixed lens center, S
is the set of acqu:sxtlon segrments, no two of wh:ch are collinear, and V' is the set of
data points expréssed in world coordinates. Alternately, P could be the fixed end of
a thin mechanical sensing link, S;the set of successive lines of action of the links, and
V the s¢t of successive positions of its mox.fing end. We will refer to P as the center,
or acquisition center,ﬁ of the frame, to the elements of V' as the data points of the
frame, apd to the elements of S as the segments, or acquisiticr.segments, of the

{rame.

We assume in the following that there are v frames to be merged. For each frame,

,_--.

* the frame itself as well as its attributes are superscripted with Greek letters: For a

given frame «, we'll write Fo = (P*, V¢, 5%), The superscnpt may be Omltt("d when

there is no risk of confusion. Finally, the cardinality of each V* is assumed to be n®

and 3527 n® = N. Hence NV represents the total size of the input.

-

A\
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> Definition 3 A visibility graph of frame F° is a graph whose vertexr set is V™.
The graph will be denoted G*, and'its face set as embedded on .M will be denoled F'°.

The visibility graph of a frame corresponds to the partial conneéctivity that can reliably
be inferred from a unique viewpoint. We will show in the next subsection thal one
can easily construct a visibility graph for an isolated frame F « To that end, we first

formally define the notion of validity for a surface connectivity graph.

Definition 4 A wvisibility graph G will be called 2 1/2-valid, or simply valid if and
only if it is:

¢ A triangulation.

¢ 2 1/2-Consistent. G* is said to be 2 1/2-consistent, or consistent, if and only

if:

— No acquisition segment intersects the closure of any fuce of G, excépt al

its vertices. Formally,
Vf = (z1,22,23) € F*,Vs € §°, (s N5y, 25, 23) = 0. (4.1)

o — Each face of G* can be linked to the acquisition center P of the frame,
such that the closure of the resulting visibility tetrahedron confains no

_ data point, except at its vertices. Formally,

Y e
(Vf = (.1:1,.’.82,3.‘3) € F“),P“‘,:cl,a:g,:ng NVe = @.‘l (42)
The first validity condition relates to the fact that the graph can be embedded on
i .
A a given surface without' self-crossmgs, so the faces of the“graph form a covering of

the surface. Formally, w‘i* want G' to be embedded on a compact, connectecr“-(md

i
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orientablctwo-dimensional surface M. [t turns out that such a surface M can always

be triangulated {(Aleksandrov, 1956).

To enforce the planarity condition, we impose the additional restriction that the Euler

number of M must be equal to 2. Hence the surface must either:

¢ Be closed and of genus 0 (a sphere).

e Have one boundary curve (a disc}.

Any such surface can be triangulated in such a way that the resulting graph is isomor-
phic to a planar triangulation (Giblin, 1981). In summary, the first validity condition

is that & be isomorphic to a planar triangulation.

The second validity condition, the consistency condition, ensures that the assumed
connectivity is consistent with the data points, their respective acquisition viewpoints,

and the assumption of object opacity.

The first consistency condition, (4.1), ensures that all concavities are accounted for.
When it is {ulfilled, no data point z can be visible from a given center P located in
free-space, while its segment s, namely the line of visibility joining z to P, crosses a
face of G. In other \Gb_fds, z cannet at the same time be both visible and invisible

(hidden by a face) from P.

The second consistency condition, (4.2), ensures that all convexities (protuberances)
are accounted for. When it is fulfilled, no data point z can “stand™ between a face f
of G and the acquisition center P. In other words, f, as seen from P, cannot at the

same time be visible and obscured by z. =

—

0
Hence, cousistency ensures tha.t the graph G uses all the lniormatxon provided by

the sensor segments, na.mely that they lie entirely in free spau?- and that they are

<P

i/

W

A
s
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terminated at the boundary of free space and solid space.

4.1.2 Building the Frame Visibility Graph

Ti'this section, we show that for a particular frame F?, one can easily infer a “natu-

ral”, valid visibility graph.

Let £ be the three-dimensional world space, with its origin at P* and with an
orthonormal basis B. Let S? be a sphere centered at P, Vy € £3, let (0,, $,) be the
polar coordinate pair of y around P® with respect to B. Lel P be the polar angle

transformation around P%

P E®— 52,

y (O, &)

Let P* be the restriction of P to V. Let V*' = {a/|Vz € V2’ = P*(z)}. Let G*’
be the graph such that V(G®") = V*' and

VaVy € Vo, (77 € E(G*) & (P=(z),P°(y) € £(G™)). (4.3)

We can now state the following theorems:

Theorem 1 Let G* be any graph whose vertez set is V*. Let G*' be the graph on
the image set"\;f G* by the polar angle transformation P* such that (4.3) holds. If

G®' is a planar triangulation, then G* is valid.

Proof: See Appendix A.7.1.
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Theorem 2 Let Q be a projection of E3 onto a plane II not passing through P* and
whose cenler of projection is P*. Let B be the solid angle around P* spanned by the
elements of V®. Let V" be the image set of V* through Q.

If B < 27 steradians, 311 such that Il intersects all the elements of S*. Further, any
triangulation G°" in 11 of the mapped set V*" is valid.

Proof: See Appendix A.7.2.

In general, range images are acquired by sweeping the scene along two (sometimes
orthogonal) directions u and v, and by sampling at some, possibly regular, intervals
along those directions. Hence, the data points form a complete grid of parallelograms
on the projection (focal) plane IT (See Figures 4.1a, 4.1b, and 4.9). From theorem 2,
any triangulation on II is valid. In particular, the following triangulation is straight-
forward to constrict: Let x* designate the datum point acquired at the ¢th position
along the u camera motion direction and at the jth position along the v camera mo-
tion direction. For all four-tuples zi, z"i+1, gpit1J gi+li+l e let the following edges
belong to E(G*):
Titljs Til,j+l

Li 7y Titl,7y

Tijr Tit1,j41 OF Titl,5, Tij41-

Figure 4.9 on Pagfa 88 illustrates this process. In section 4.2, we shall use the special

properties of this arrangement to facilitate the process of merging the different frames

together.

it
)'F
{a
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(3

4.1.2.1 Graphs Drawn from the Trace of a Camera Path

The previous example showed that for a particular arrangement of the data points
and an immobile camera, one can easily infer a “natural” connectivity graph without
any computations. An interesting question would be the determination of whether

other “easy” valid graphs can be obtained in cases where the camera moves about.

4.1.2.1.1 Sliding the Sensor along its Line of Support. We can make an
immediate observation regarding the interpretation ot P in definition 2. Suppose the
camera lens center O moves to a location F; along the segment s; in such a way that
the following holds: |

Va; € V®,3) > 0, P = AP°z., (4.4)

Then the new frame F*' = (P*/,V*, 5%} is different from £ only in the length (but
not in the sense) of the elements of §* and §*'. Since the lengths of the segments
s; are irrelevant to the derivation of theorems 1 and 2, the latter still hold for frame
F®', In other words, the actual locations of O are irrelevant to the graph construction
process if the semi-infinite segments terminated at the data points all intersect in a

common point P (See Figure 4.2). In the remainder of this Chapter, we will continue

to refer to P* as the center of acquisition of the frame, but the reader may. wish, to

1\',\&\‘“ . .
keep in mind that P* could alternately be defined as any point in free spacé verilying

(4.4).

4.1.2.1.2 Moving the Sensor along a Curve or Path. We now wish to in-

vestigate whether the definition of a frame can be relaxed even further, while still )

offering us the possibility of inferring “natural” and valid visibility graphs. Suppose

T
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x1
x2

P&

x4

]

Figure 4.2 The actual camera locations are not important as long as all semi-
. infinite segments do intersect in a common point.

the acquisition center O moves along a path C and acquires a datum at N positions
Pi(i € {1,...,N}), where i is an index increasing with the parameter of C, and where
‘the acquisition segments are all tangent to C. Our goal is to find whether conditions
on C can be enunciated, such that the visibility graph obtained by joining adjecent

data points along C is valid.

Remark 1 Suppose O follows the trace of a three-dimensional curve C. Then the

elements of S have the trace of C for an envelope.

Proof: The elements of S are tangents to C and constitute a subset of the tangents
of C. Since a curve is an envelope of its tangents (Pogorelov, 1965, p. 35), it is also

an envelope of a subset of its tangents. g
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Suppose now that for each acquisition point P, z; is its datum point, s; is its acquisi-
tion segment, and r; is the semi-infinite segment terminated at z; and whose support

is §;.

We generalise (4.4) to the case where each ri(7 € {1,..., N —1}) intersects its neigh-
bour ri4; at a point P+, Formally, we say that that there exists a relation < on 3,
such that

Vi€ {1,....,N—1},(si < $i+1), | (4.5)

where (s; < s;) © ((Fx, A; > 0), (3P € E*),(Pla; = «\.-ﬁ:) A(Plz;= AJ%))

Obviously, every point P/ (7 =1+ 1) defines its own degenerate frame

= }-‘.j = (Pijs {xismj}a {Si = m:ssj = Fj;;;}) (46)

with the degenerate triangulation G¥ = ({2, z;}, {Z5;%;} ).

From (4.6) however, every z;(i € {1,...,N — 1}) belongs to exactly two frames,
namely to .
FE=Di = (P;i_{l'ij'{mf-1, i}, {8i-1, 8i})-

i

and to
FHD = (P (@i, zi0a}s {80, 801 ))-
Hence,
Vie {1,...,N -1}, G = ({z;, 201}, Ty Tign)-

If we now set G* = X! G'+1), G* becomes a connected chain (see figure 4.3).

A legitimate question is whether G* then is valid. Unfortunately, the chain structure

of 'G_C' does not constitute a very strong result since a valid connectivity graph should
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be a triangulation. The chain being a degenerate triangulation, its faces are edges
and the visibility tetrahedra defined in (4.2) are visibility triangles. If the segments

and data points are in “general position”, no segment will intersect any graph edge

and no data point will lie in the triangles defined just above. IHence the chain is

trivially valid whenever no set of three segments and no set of three data points are

coplanar.

Figure 4.3 Adjacent semi-infinite segments intersect in three-dimensional space.
When the data points and the segments are in general position, the chain

Z1,%2,...,%e forms a degenerate valid graph. =

We note however that we imposed the triangulation condition on our definition of
validity because we wanted to model a simple two-dimensional surface. If on the
other hand we wish to model a one-dimensional contour, then the chai:rlx should be
the valid graph-theoretic structure. The chain is open if homeomorphic to a segment

and is closed if homeomorphic to a circle.
i



. 4.1 The Acquisition Frames 76
Hence, we reformulate the definitions and theorems of the previous paragraph in a
setting for which the desired graph is a chain. This setting brings us back to the two-
dimensional case (Alevizos, Boissonnat, & Y-vinec, 1987). If we assume that the set V
of data points lies in a plane %2, and that we are to construct 2 contour connectivity

graph G ',f‘l‘or which V(G) = V, then the following definitions and theorems apply:

N
Pl _
Definition 5 The plane graph G whose edge set is the set of data points will be called

2-valid if and only if il is:

o A chain.
o 2-consistent. We define G to be 2-consistent if and only if:

. — {a) No acquisition segment intersects any edge of G, except at its vertices.

— (b) Each edge of G can be linked to the acquisition center of the frame, such
that the closure of the resulting triangle contains no data point, except at

its vertices.

T

~ In a manner similar to that of the previous péfagraph, we define S! to be a circle
centered at P?, for a given frame F* embedded in E2. Vz; € E?, let ¥; be the polar

angle of z; around P* with respect to an orthonormal basis B. Let
R: E* — 5%,

T = P,
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Let R* be the restriction of R to V. Let V" = {2"|Vz € V*,2" = R*(z)}. Let
G be the graph such that V(G®™") = V" and

VaVy € Vo, (T;7 € E(G“)) & (Re@) Ry € £ (Gd"')) CL (e

'/

Theorem 3 Let G* be any graph whose verter set is V for a fized fmmcrf“ ent-
bedded in E*. Let G*" be the graph on the image set of G* by the polar angle
transformation R* such that ({.7) holds. If G*" is a chain, then G is 2-valid. -

Proof: See Appendix A.7.3.

Theorem 4 Suppose that O follows a planar, closed, conver curve C such that each
acquisition segment is tangent to C. Then if ¢ is an index increasing with the parameler

of C, the graph obtained by joining each z;(i € {1,...,N ~1}} € V lo &;4, is 2-valid.

Proof: See Appendix A.7.4.

x1
x2
P3
X3
P1
& X
P4
PS
X4

Figure 4.4 O follows the convex,closed curve C. The graph obtamed by joining
adjacent elements of V is 2-valid.

RN

iy N
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4.1.2.2 Summary

In summary, we showed in this section that the definition of a frame and the conditions-

for validity can be somewhat relaxed in some special cases. In particular,

o The actual sensor locations are not important as long as (4.4) holds.

e .Suppose the sensor {ollows a three-dimensional path such that (4.5) ht;lds, that
it acquires data tangentially to the path, and that the data points and segments
are in general position. Then the graph drawn by joining adjacent data points

is degenerate but valid.

¢ Suppose the sensor {ollows a two-dimensional, closed, convex curve and acquires
. ' data tangentially to its path. Then the graph drawn by joining adjacent data

points is 2-valid.

These observations link the process of data acquisition with that of guaranteeing the
validity of connectivity inferences. Hence one may wish to put them to practical use

by incorporating such knowledge right at the early data acquisition staée.

4.2 Merging the Frames

We showed in Section 4.1.2 how we could construct a valid visibility graph for an
isolated frame. The next challenge is to combine the valid visibility graphs obtained

from the different views into a valid surface connectivity graph for the object M.
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4.2.1 Preliminaries
4.2.1.1 The Tetrahedral Bundles
Notation:

o Va€ {1,...,v}, Vf = (z1,72,23) € F*, we define {; to be the visibility tetra-
p—— s,
hedron z1, 3, 23, P*. We say that f is the cycle (or face) associated with

g

Definition 6 The planar polygons

o __ o .0 o o
UF = (P, z7y,255,...,T

{ i,m)

o o o X o &
( resp. V:, = (P 1m1,j53‘2.j""’2’n.j))’

are called the sheets of frame F* (See Figure 4.8).

The data subscripts in the above definition indicate their positions of acquisition
within F¢, with n angular increments along direction u, and m angular increments

along direction v.

By construction (see the discussion following Theorem 2), the vertices of Lhe sheets,
other than P®, form a connected chain which is a subset of G*. Further, this chain
is monotone in the direction of constant u (resp. v). Such a monotone planar éhain
can always be trivially triangulated with respect to P*. We shall make use of this

-

fact later. N

. Definition 7 We call U, U2, V", Vi the bounding sheets of frame F°.
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Definition 8 The tetrahedral bundle 7% of frame F* is defined as the set of all
visibilily tetrahedra ty, with f € F*.

We also loosely refer to 7% as the polyhedron whose set. of faces is the union of F'®

and of the bounding sheets of F®. The precise meaning is clear from the context.

We also introduce the following notation:

I’ .. [ ] Wl LSO
o uf is the triangle P, af, 274 -

F"_"“—\
a: . o o o
e v% is the triangle P*,z7;, 2%, ;-

e A is the set of triangles of the bounding sheets of F*=.

m m n 7t
A% = U Ui U U Un,j U U Y, ) U Un,i-
Jj=1 j=1 i=1

=1

Y

4.2.1.2 Orienting the Graph Faces

The object being modeled, M, is emb}cdded in the three-dimensional space E®, or in
a portion thereof. Since M is orienta‘ble, it is the boundary within E* of two open
sets, one of which we call the interior, and the other the exterior. One of these
two sets is the free space, in which the sensor ev.'olves, while the other is solid space.
The free space may be the interior of M, such as when the boundary is the set of
connected xvalls of a room. Alternately, it can be the exterior of M, such as when
the boundqfr‘ir is that of a solid object isolated from the background on which it rests.
For now, ‘Jge define the np_tioﬁé of exterior and interior for the faces of the visibility

and connectivity graphs by assuming the center of acquisition P lies in M’s exterior:

14
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Definition 9 Let F* be an isolated frame. Vf € F®, let Iy be the plane in which [
lies. Then we define the exterior of f as the semi-space of Iy in which P™ lies. The
interior of f is the other semi-sp;r,ce. We also define the normal vector 7i(f) of [ as
the vector perpendicular "t:;a f, and which points towards the exierior of f.

Contrarily to the faces of the visibility graphs, the faces of the connectivity graph
have vertices which do not all belong to the same frame. The acquisition pomt pe
is not defined in that case. So we need a different procedure for detmmmmg the

orientation of those faces.

In the next section, we describe how the frames are merged together and how new
faces are built, Wedelay until then the description of how to determine the exterior

and the interior of all faces of the connectivity graph G.

fr

— _ :
Definition 10 We say that a segment s = PPz back-crosses a face f € G =
Gl8=1) if and only if s intersects f and P lies to the interior of [ (see Figure 4.5).

Conversely, we say thal s front-croéses f if and only if s intersects [ and P lies lo

the exterior of f.

Definition 11 Let s = PPz, Let F be a set of oriented faces. Then we define

fE(s) be the first face of F, starting from PP, that s intersects, if such a face exists.
Formally,

FF(s) = {fi[ (ij € Fist. sN f; = {y; = Ass}, A = min A,-)} .

Definition 12 We say that a segment s = PPz back-crosses the graph G if and only
if FFC(s) exists and s back-crosses it. Conversely, we say that s front-crosses the

graph G if and only if fFO)(s) ezists and s front-crosses zt
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- Figure 4.5 "The segment r back-crosses the face f € F2.

4.2.2 Overview of Merging Algorithm

Because segments do not in general intersect in three-dimensional space, neither Ale-
vizos et al.’'s method nor the particular examples of section 4.1.2.1 generalise to the
solid mode] case. In the method we describe below, we start from the visibility graph
for frame F*=! and we incrementally insert into its faces the data points from the

. other frames F*(8 € {2,...,v}). -

B

4.2.2.1 Inserting Points into Faces

Suppose we have constructed a graph G = G*+(®-1 and that we acquire a new frame
_ . FP. In this section, we describe how to insert the data points of V% into a particular
. ' face of the current graph G.

B =)

-’
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4.2 ‘Merging the Frames

Suppose we wish to insert only one point z, of V? into f. We do it by simply
splitting f into three new graph faces fi, f2, and f3, all with a common vertex at z,

(see Figure 4.6). After insertion of z,, the set of faces of the graph is modified such

that F(GYB-1n) = F(GQ)U {11, fa, fa} \ [.

o
X3

Figure 4.6 Inserting =, € V# into f € F(G).

Suppose now that we wish to insert more than one datum point of V# into the same

given face f := (21,22, 23). Let P be that set of points and let P’ = P U {z, z,, z3}.
Then P is inserted into G by building a valid (with respect to P?) triangulation T
on P'. Then, F(G'B=-1P) = p(G)U F(T)\ f.

In practice, we may build T as follows. We first build a valid triangﬁlation on :F', as

described in Section 4.1.2. Since the triangulation has an embecliec-ling, its boundary is

well-defined. This boundary is the set of projections of the frame’s bpund—ing sheets.

The next step is then to build a valid triangulétion between the vertices of the bound-

ary of P and the vertices of f. We call the resulting triangulation the triangulation

—_—

ey
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of face f. This process is illustrated in Figure 4.7.%

As mentioned in section 4.2.1.2, we need to define the exterior and interior of those
faces whose vertices come [rom different [rames. This is done as follows. Suppose f
is a lace of a visibility graph; its exterior and normal vector are well-defined. Then
suppose we are to insert a set of data points into f, so as to create new faces. Then
for each such face f’, its (exterior pointing) normal vector is-defined as the vector
perpendicular to 7 and which points in the same general direction as f. In other

words, 7i{ f) is such that #(f) - 7(f') > 0.

I\ 7 J\
DVANNN™

-

Figure 4.7 A set of points can be easily triangulated within face f.

4.2.2.2 The Insertion Criteria

We now address the question of determining which points to insert into which faces

of the graph.

A necessary condition for a given datum point © € V* to be inserted into a face of

. the graph G = G'~¥-1) is that either:
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—
s = PPz front-crosses G, (4.8)
or that
Jae{l,....0 -1}, T z e (.9)

In the first case, the first consistency condition is violated and we say that the point
z corresponds to a concavity. We eliminate the consisiency violation by inserting

into the first face that s [ront-crosses.

Otherwise, we look for violations of the second consistency condition. Il there exists
a visibility tetrahedron ¢ of a previous frame such that x lies inside ¢, we say that @
corresponds to a convexity. We remove the consistency violation by inserting z into

the face that ¢ is associated with.

Note that if a segment back-crosses the graph, we do not take a.ny' action, even though

it is a violation of condition (4.1).

4.2.2.3 Determining the Insertion Face

It remains to determine into which face of the graph the update is to be made.

If (4.8) applies, we insert z into fF{9)(s). We note that if f = fF(9)(s), then the last

tetrahedron intersected by s prior to intersecting f is ¢;. S

Similarly, if (4.9) applies, z is inserted into the face associated with the tetrahedron

in which z lies. This tetrahedron is also the last one intersected by s.

So in both cases we can find the face f € G into which z € V? is to be inserted
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by finding, for all previous {rames F*{a < ), the last tetrahedron of T° that the.

segment intersects.

Interestingly,  is found in the same way whether the datum point corresponds to a
concavity {violation of the first consistency condition) or to a convexity (violation of
the second consistency condition). In practice, f is found by performing intersection
checks between the segments of S# and the polygonal sheets formed by the tetrahedra

of T',...,T\¥"1) (See Figure 4.8).

pe

Figure 4.8 Determination of where to insert the new datum point is made by
finding the last t € 7% that the segment s; intersects. In the picture, s; crosses Uf
but does not cross Uf%;. A second search in the orthogonal direction would normally
be performed before t is actually determined.

. Suppose that at a given stage of the algorithm, we determine in the manner explained
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above, that £ € V7 is to be inserted into a face f € F*. If f € F(G), we simply
insert z into f. If however, there exists one or more data points from one more
intermediate frames (say F¥, with v > 8 > «) that have already been inserted into
f, then fEF(G), as explained in section 4.2.2.1. In this case, we should insert
into a face f' of the triangulation of f. We determine f’ in the same manner as we
did for determing f, namely by performing intersection checks between the segment

terminated at z and the sheets of bundle 75.

Hence we see that each face f of the original graph G becomes the root of a hierarchy
of triangulations. This hierarchy can be expressed in the form of a tree. Each node
of the tree is a face of the partial graph, constructed after aggregation of some of the
frames. The children of each node are the faces of the triangulation of their parent
face. Only the leaves of the tree are faces of the final graph, while the nodes are

3-cycles of that graph. For each such node f, we call G; the subgraph rooted at f.

In the next section, we see that concavity points are not inserted at the same time

as convexity points. A consequence is that the depth of the tree is at most 2v: each

frame may at most increase the depth of the tree by 2.

In the following, we give a more formal presentation of the algorithm, and we analyse

the validity of the resulting graph.

4.2.3 Partitioning a New Frame

Suppose we have already constructed a valid graph G'(¥=1) and we wish to aggregate

the data contained in a new frame F* into the augmented graph G, =
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We first construct a partition P of V?; this subsection indicates how to perform the

partition. Following that, we insert the elements of P into G'~{f-1),

4.2.3.1 Partitioning a Frame with Respect to Another Frame

For a given previous frame F2, we partition V? into five disjoint sets A?, B, A® "l
g p -] [+ 4 & o [+

and 0. These sets are illustrated in Figure 4.9 and are defined as follows:

AP is the set of points of ¥# whose acquisition segments front-cross G°.

R

— j"
AP = {z € V? s.t. PPz front-crosses G°}. /

Ag' is the set of points of V# whose acquisition segments back-cross G°.

‘ e
A8 = {z € VA, s.t. PPz back-crosses G°}.

B is the set of points of (V#\ A%\ A8") which lie in the tetrahedral bundle 7.

Bf = {z e (VP\ A8\ AD)|(3t; € T°,z € ty)).

B' is the set of points of (V?\ A%\ A%\ B?) whose acquisition segments do intersect
Te.
’ ! -
BS = {ze (VAN AB\ AP\ BA)(z N T = Q) A (PPz N T # 0}.

0% is the remaining set of points of frame 8. They lie outside T* and so do their
acquisition segments.

08 = (V#\ A%\ A%'\ B2\ BY).
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For clarity in the following discussion, we drop the subscript and superscript of the

elements of the partition. Some of these elements are [urther partitioned into disjoint

subsets as follows:

Ay is the set of points of A whose acquisition segment front-crosses f of /™.

Fe B
A= A whereA;:{mEAU' (P%:):f}.
feFe

By is the set of points of B which lie within tetrahedron t of 7=,

B= | B where B,={z € Ble € t}.
teTo

B;, is the set of points whose last triangle of A* their segment intersects is u.

, . .
B'= | B, where B, = {m € B| [(s == Pﬁ:c) Nu={y= As},

uglo

/\(VUJ' € A% s.t. sN U; = {y_,- = /\jS} YA = maxin)] }

Remark 2 The mazimum number of triangles of A® a given segment s € FP infer-

secls 1s 2.

Proof: The triangles of A* all belong to the convex hull of 72 since they are ex-
treme in the directions {u, —u,v,—~v}. Barring singularities, we know that a three-
dimensional segment intersects a convex figure in at most two places. So, s intersects

A% in at most two faces. . . e D |
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€4y

ze 0

X]
p I€pB,

re B,

PQ

Figure 4.9 Illustration of the graph for frame F* as well as of the partitioning
of V# with respect to F.

In summary, we have:

VE=ABUASUBCUBYUOS = |J A;U | B U | BLu 42U OF =7,
fEFa teTa ‘ UEAS

where p2 is one of {Ay, B,, B, 0, A'}.

4.2.3.2 Partitioning with Respect to All Frames

The previous section outlined the partitioning of V* with respect to a given frame.

Here we describe how to obtain a global partitioning of V? with respect to all previous
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frames.

We first partition V# with respect to F*=!. Then we subpartition the resulting
subsets with respect to the other frames, in the order of frame acquisition. For a
given partition element p? this subpartitioning stops when all its data points are
definite. A datum point z € V? is said to be definite when either of the following

can be unambiguously determined:

—_
Ja € {1,...,{8 - 1)},s = PPz back-crosses G°.
s front-crosses G = G'+{8-1),
dae{l,..., (-1}, eT*zect;AfeFG).

Vae{l,....(8-1)},(z€05)V(ze BY).

If (4.2.3.2) holds for z, the partitioning procedure is complete for . We then say
that 2 € A}, Suppose now that (4.2.3.2) does not hold for z. Then we repeat
the partitioning procedure for all subsequent frames, until a frame F° is found, such
that either x € A2, or z € B2, In the first case, (4.2.3.2) holds, and let f be the face
of F® that s front-crosses. In the second case, (4.2.3.2) holds, and let f be the face
associated with the tetrahedron of 7% that z lies in. ‘

If f is a face of the graph G, then we say that z € Af,aba, if ¢ € A%, and l_;hé.t, .

| . : z € By, if © € BP. As explained in section 4.2.2.2, z is then to be inserted into f. L

AN
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If f however is not a face of G, we need to find the face of G that z is to be inserted
into. This is done by searching the face f’ of the subgraph Gy that z should be
inserted into. This process in turn determines if z € Ag,aba, orif z € Bf,oba,. If
front-crosses face f', then z € Ag,obal. If, on the other hand, z lies in the tetrahedron

associated with f’, then z € Bf,oba,.

We finally turn to the case of (4.2.3.2), where z cannot be inserted into any of the

I5)

faces of G. We then say that & € Oppe-

4.2.3.3 Summary of Partitioning Procedure

In summary, the partitioning procedﬁre is intimately linked to the process of deter-
mining which face of the current graph each new datum point is to be inserted into.
This process iterates over the graph induced by the previously inserted frames. The

graph is built in the form of a tree, which allows us to search it hierarchically.

The object of the search is to group the data points into subsets. The subsets such

that the acquisition segments of their elements back-cross a face of a visibility graph

[

are said to belong to Af ;.

Otherwise, the subsets such that the acquisition segments of their elements front-cross
a face of the graph are said to belong to Ayiosei. They are further subpartitioned with
respect to the face of the graph that they front-cross.

Otherwise, the subsets such that their elements lie in a visibility tetrahedron ¢ are

said to belong to By They are further subpartitioned with respect to the face of

the graph associated with t.
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The remaining subsets are said to belong to Ogiper. Both their elements and the

acquisition segments of their elements lie outside the tetrahedral bundles.

In the following, the subscripts and superscripts are omitted for the elements of the
partition. It is then clear from the context that the element names refer to the global

partitioning.

4.2.4 Inserting into the Previous Frames

We now wish to insert the elements of the partition constructed above into G'»{#~1),
such that after insertion of every element p?, the augmented graph G'=(f~1)# remain
valid. How to do this insertion depends on whether p? C A, A, B, or O. Inserting a

new frame is a three-step procedure.

First, the subsets corresponding, to convexities are inserted into the graph. These
subsets are those of B, The net effect of that insertion is to “enlarge” the modeled

object.

Second, the subsets corresponding to concavities are inserted into the augmented

graph. These subsets are those of A. The net effect of that insertion is to “carve up”

the modeled object.

Third, the connected subsets made of data points outside the ‘influence” of any of
the current tetrahedral bundles are triangulated and inserted into the augmented
graph. These subsets are those of 0. The net effect of that insertion is to leave the

graph disconnected. The number of connected components is equal to the number of

connected components left after the insertion of the last frame, plus the n‘lur_nbe_r‘c;f _

i

A
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connected components of O°.

Finally, the elements of A’ are not inserted into the graph, as no valid graph that

- includes the back-crossing data points in its edge set can be constructed (See Fig-

ure 4.5). This corresponds to the case where not enough information is available, as

noted in Alevizos et al. for the two-dimensional case.

We give a precise algorithm that performs the above tasks in Appendix A.8. We call
that algorithm merge-frames. We now turn to the analysis of the validity of the

resulting graph.

‘4.2.5 A New Definition of Validity

The previous definition of graph validity, namely 2 1/2-validity, turns out to be too
restrictive for the multi-frame three-dimensional graph connectivity problem.

)
We have already seen that back-crossing of a face by a segment should not be con-
sidered a violation of consistency condition (4.1), and we ironed that difficulty out
by not inserting into the graph the datum point associated with-the back-crossing

segment.

Another important difference is illustrated in Figure 4.10. There, a segment and
its datum point j}"”{riolate both consistency conditions, although with respect to two
different faces: s crosses f and lies inside ¢;.. If we insert z into f, consistency

condition (4.2) is stil];giolatéd, while if we insert z into f', consistency condition (4.1)

~is still violated. In this case, we contend from visibility considerations that the datum

point should be inserted into the face being crossed by the segment, namely into
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f. In other words, maintaining consistency condition (4.1) takes precedence over
maintaining consistency condition (4.2) because (4.1) of the strong assumption of

object opacity.

At times, a segment may front-cross more than one face of the graph, asis also shown
in Figure 4.10. In this case also, we contend from visibility considerations that the

datum point should be inserted into the first face that the segment front-crosses.

Note that in the last two examples, some faces of the resulting graph G intersect
and hence cannot model a simple polyhedron. Although a self-intersecting model is

not geometrically correct, the connectivity information that G conveys is nonetheless

correct.

Finally, because the elements of O and their associated segments entirely lie outside
the tetrahedral bundles, there may not be any preferred portion of the existing graph
with whom to associate them. In this case, it is preferrable not to “artificially” insert

them into a particular face of the graph. Hence we obtain a disconnected graph
whenever O # 0.

Algorithm merge-frames accounts for the above considerations. We now couch them

into the following validity definitions for connectivity graphs:

Definition 13 We say that o 3-cycle ¢ = (2,y, 2) of G is a bridge (o face [ € F(G)
for vertex 2, € V(@), if and only if every path from z, o a vertez of f passes through
either z,y, or z (See Figure {.11).

Definition 14 Let ¢ be a 3-cycle of G. Then the pseudo face af c (denoted fc) is . e

the face that passes through the vertices of c. o

’.
J
1
(

--.-_.r_-~
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Figure 4.10 A given segment may violate both consistency conditions. It may
also front-cross more than one face of the graph.

Definition 15 A surface connectivity graph G will be called 3-valid, if and only if
it is:
o A triangulation or a set of triangulations.

¢ 3-consistent. G is said to be 3-consistent if and only if, for each acquisition

—
segment s = PPx:

. . o ~ If s front-crosses a set of faces F C.F(G), then there ezists a F-cycle ¢ in
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x1

Figure 4.11 Cycle (z,¥,z) is a bridge to face [ lor vertex 2.
G such that s front-crosses the pseudo-face of ¢ before il does any fuce in
F, and ¢ is a bridge for = to all faces of I'. Formally,
VfeF(G),s.t. s €S front-crosses f,3 «¢ 3-cyele ¢ € G, s.t.

(fF@Ne(s) = £.) A (fe is a bridge to f for z). (4.10)

— If s does not front-cross G,then of all the prior visibilily letrahedra thal

lies in, at least one has its associated face not in F(G). Formally,
[N =0 =
(s ={tsl(ty e VEDIT) A (m e 1)} #0) = (3ty € §,s.t. [IF(C))].

(4.11)

As the following theorem shows, this new definition of validity is less restrictive than

the previous ones.

Theorem 5 If G is a 2 1/2-valid visibility graph, it is 3-valid.
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Proof: Follows from the definitious. The triangulation condition is trivially satisfied.
Condition (4.10) above follows directly from consistency condition (4.1): Since no
segment intersects any face of F'*, any statement on the crossed faces is always true.
Finally, since z lies in none of the visibility tetrahedra of 7%, condition (4.11) is

trivially satisfied by condition (4.2). ]

The major differences between this new definition and the previous validity definitions

are that:

¢ (G may be disconnected. An obvious example in which this is desirable is given
by the case when tetrahedral bundles do not intersect. There is then no criterion

by which the data points of different frames can be joined.

¢ Back-crossing of a face by a segment is not considered to be a violation of the

first consistency condition.

¢ A segment Pz may front-cross a face f of G, but only if z is inserted into a 3-
cycle of the graph that s front-crosses before it does f. This seemingly-contrived
statement embeds the notion that s may originally front-cross more than one
face. In order to remain a triangulation, z can obviously be inserted into only
one of those faces. The crucial point is that z be inserted into the first face
f that s front-crosses. Once the insertion is made, f becomes a 3-cycle of the

graph rather than a face, but the order of face crossings remains.

e For any graph G, at least one of the two consistency conditions is always verified
f_or_ea.ch segment s € S. Which condition is necessarily verified depends on
whether s intersects a face of G. Cases where the two consistency conditions

are violated but where only one can be resolved are thus avoided.

o

i
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¢ A datum point * may lie inside one or more tetrahedra ¢;, but only if f{F(G)
for at least one of the tetrahedra. The second 3-consistency condition states
that the points corresponding to convexities should be inserted into the face
associated with one of the tetrahedra in which they lie. Since they may lie in
more than one such tetrahedron, but can only be inserted into one face, this

condition is deemed sufficient.

4.2,6 Multi-frame Merging and 3-Validity

graph, giving it a tree-like structure. This structure in turn allows us to efliciently
. insert new data into the graph. Unfortunately, this efficient procedure makes the

algorithm fail to produce a 3-valid graph in some instances.

Figure 4.12 gives such an example. Suppose a datum point z° € V2 is found to lie
int; € T'. Algorithm merge-frames will insert z° into face f of F'. In doing so,
new faces will be created. Let F be that set of faces. Because the segments of the
earlier frames other than F! {for example those of F?) were not checked against the
faces of F', there is in general no guarantee that those earlier segments do not in fact
front-cross some of the faces in F. Thus, condition (4.10) may be violated in that

case and the 3-validity cannot be guaranteed.

A possible cure for that problem would be to check if any of the earlier segments
intersects any of the newly-created faces. Suppose such an intersection occurs between
a segment (s = FQ_:;) € 5% and a face f € G"?3, Then, = should be inserted into
f in order not to Qiolate condition (4.10). This step implies that z should be first -
. - removed from its current position in the graph G2,
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Figure 4.12 Themerge-frames algorithm may not always produce a 3-consistent
graph. Here, merge-frames would not detect that the first face crossed by s? is not
the one in which s, is inserted.

As a result, the problem of multi-frame graph construction using a modification of
merge-frames is at least polynomial in the order of the number of frames v. Although
this is [easible, this additional step greatly degrades the efficiency of the algorithm.
Worse still, it necessitates constructing a con;plex update mechanism which is not

compatible with incremental monotonic scene construction.

In the next sections, we outline the cases under which merge~frames is guaranteed

to yield a 3-valid graph.

o
™~

4.2.6.1 The Case of Two Frames

Theorem 6 Algorithm merge-frames can be slightly modified to yield a 3-valid graph
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Proof: See Appendices A.9 and A.10.

4,2.6,.2 The Two-dimensional Case and Extensions

The reason for the failure of the algorithm in the example given above is that segments
do not in general intersect in three-dimensional space. Even il a segment s = Pz
entirely traverses a given tetrahedron iy, i.e. crosses two of its sheets, it may be
that s front-crosses within t; a not-yet inserted face f'. Hence , [ is the first face

that s front-crosses, but merge-frames inserts z into f.

In two dimensions, the situation is quite different. If a segment s traverses a visibility
triangle formed by acquisition segments, opacity guarantees that s does not intersect

any graph edge inside that triangle. See figure 4.13.

Theorem 7 If any set of three acquisition segments intersect into a iriangle, there
exists no 2-valid graph on the dala set if the lriangle contains any data point. For-

mally,
V{slg 32, 33} C U Sa, :".:

a=1

(81,2, and s3 intersect in p;, p2, and pa) = ((t = ‘pl,pg,pa'nv) = 0)) . (4.12)

Proof: Since the data points all lie at the termination of a segment, there exists at
least three data points which lie outside ¢, namely the three data points z,, 2, and

z3 which terminate s,, s7, and s3.
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a%

The hashed region must be ampty of cata points.

Figure 4.13 Illustration of theorem 7.

. Now suppose i contains a datum point z. Then some elements of V' (for example
z1) lie outside t while at least one, namely z, lies inside £. Since G is a chain, it is
connected. By the Jordan Curve Theorem, any path joining z to z; must cross the
boundary of {. Hence at least one of the edges of G must cross either s;, s3, or s.

This violates the first 2-consistency condition. So G cannot be 2-consistent if (4.12)

does not hold, O

If we now project the data of figure 4.12 onto a plane, we can see that segments
P2xy, P'z,, P'z; intersect two-by-two, forming a triangle. By theorem 7, if datum
point z3 is in that triangle, there can be no 2-valid graph on the data. Hence, no
two-dimensional object homeomorphic to a circle may have generated such a data set

and the pathological situation of figure 4.12 cannot occur in two-dimensions.

A direct consequence of the validity of algorithm merge-frames in two-dimensions
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is that it also is valid in cases where the object being modeled is a “swept” two-

dimensional object or a surface of revolution.

4.2.7 Complexity Analysis

We assume in the following that there is a bounded and usually small number » of
frames. Each frame i{s composed of a maximum of n points and we are to merge a
total of NV data points. Hence, nv > N. We analyse the complexity of constructing

a graph on the merged data set.

As mentioned in section 4.2.2.1, the graph is built in the form of a tree, and this
structure reduces the number of computations needed to insert new points into the
graph. However, no guarantee can be given in the general case that the data points
will naturally equi-partition themselves among the tree branches. The [ollowing is

then a worst-case analysis, except when otherwise indicated.

The initial triangulation of a given frame or of any connected subset can obviously
be performed in a time that grows linearly with the number of data points involved:
thanks to the matrix-like indexing of the data, no check need be performed. The
analysis of complexity then centers on the amount of work needed to insert a new

point z; € V¥ into Gl+{8-1),

4.2.7.1 Complexity of algorithm merge-frames

Since the graph G is planar, the number of its faces never exceeds O(N) throughout

its construction. For each datum point, the main loop of the algorithm checks whether
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its segment intersects each face of G. Hence, an obvious worst-case complexity result

is that the algorithm runs in O(N?) time.

An interesting question is whether the expected behavior of the algorithm can be

made lower than the quadratic bound.

We first note that for a given new datum point = and its segment s = }T:E, not all
faces of the graph need in general be checked. Because the segment travels in a
straight-line path, and because the frames form a matrix structure, the number of
visibility tetrahedra of a given frame that s traverses never exceeds the larger linear
size of each frame. Hence we can precompute the set of faces that the segment may
R

New

Cross.

Let now suppose that the frames are approximately square. Since no frame contains
more than O(N) data points, the linear size of each frame is at worst O(v/N). In the
worst-case, namely when s is checked with respect to each tetrahedral bundle, the
complexity does not exceed

5
B

0 (Nz:jl\/ﬁ) = O(Nuy/a).

v is usually bounded downwards by 2 (the cones of support of the convex hull of the

object) but depends in practice on how we choose to position the sensor.

Table 4.1 illustrates how this compléxity result varies as a function of v. As one would
expect, the greater the number of frames, the fewer the points in each frame, and the

smaller the efficiency gain due to the frame data organisation.
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O(v) | O(n) { Complexity
1 N N3
V) |V Ni
N 1 N?

Table 4.1 Worst-case complexity of graph construction process when the frames are
approximately square.

4.2,7.2 Complexity of the 3-valid algorithm

As noted in Section 4.2.6, the algorithm merge-frames can be modified to guarantec
the 3-validity of the graph if, every time we insert a point corresponding to a con-
vexity, we verify that the newly-created faces do not intersect any earlier segment.
Since the number of newly-created faces is bounded by 3 for each new datum point
(the graph being planar), the complexity of this additional test then is proportional
to the number of earlier segments. Hence this algorithm is less efficient than algo-
rithm merge~frames by a factor of O(N). The overall worst-case complexity is then
O(N?®), and the expected complexity is O(N?vy/n), if one assumes that the frames

are approximately square.

4.2.7.3 Complexity in the Case of a Surface of Revolution

As mentioned above, the algorithm is guaranteed to be valid for an arbitrary number
of frames in the case of a surface of revolution. Here, we analyse the complexity in

that case.

We first must partition the set V’i into its subsets. For each z € V7, we must test |
if s = PPz intersects a face of G, and if so , which such face, or if = belongs to a -

- tetrahedron of 7%, and if so, to which tetrahedron.

)

W
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These tests are done by testing for intersections between s and the sheets of the
frames. For a given frame G®, the problem is equivalent to the point-location problem
in a planar graph subdivision. It can be resolved in O(log*n?®), while thanks to the
particular structure of G*, no initial preprocessing is needed (Preparata & Shamos,

1985, p. 23).

The U*(V*) sheets éleﬁne a complete ordering around P®. So we can logarithmically .
determine which sheets are crossed by s and which are not, until we find a pair of
adjacent sheets, only one of which is crossed by s (see figure 4.8). Alternately, if s
either crosses no sheet or crosses two bounding sheets, then z belongs to B’ or to O

respectively, and no further search is needed.

We make use of the following feature: if a segment s traverses a visibility tetrahedron

ty, we are guaranteed that there exists no face of the graph inside ¢, that s may first

front-cross. Since the object is a three-dimensional extension of a two-dimensional
shape, by theorem 7 ; cannot at the same time contain data any data point and be

entirely traversed by segments.

The search is first performed in, say, the u direction. This allows us to locate z
between two polygonal sheets U and Ug,,. Since the sheets are sorted, this requires
O(logn®) * Q where Q is the complexity of determining, for a given sheet, on which

of its two sides z lies.

Because the number of vertices of each sheet may be at least a constant fraction of
n®, the number of such vertices is O(n*). However, since the sheet has a trivial sorted
triangulation made up of the v§; triangles, we can also perform this test logarithmi-

cally. .Hence @ = logn®, and the complexity of partitioning a given point with respect

to a given frame is O(log®n®).



. ‘ 4.3 Chapter Summary 107

O(v) | O(n) | Complexity
1 N Nlog*(N)

VIN) | {/(N) | N log?(N)
N 1 e

Table 4.2 Worst-case complexity of graph construction process in the case of a surface
of reveolution.

We noted above that we may need to perform the partition with resi)ect; to each pre-
viously inserted frame. Hence partitioning a given point with respect to all previous

frames takes O(v * log*n) operations.

Finally, we need to estimate the work required to actually insert the point into the

graph. Since these operations are strictly local however, they can be performed in

constant time,

. In summary, since we have a total of N points and » frames, the worst-time complexity

of the graph construction process in the case of a surface of revolution is

N * (2 + v * (logn * logn)) = v * N * (log*n).

Table 4.2 illustrates how the complexity result varies as a function of v in this case.

4.3 Chapter Summary

In Chapter 3 we showed that surface connectivity of objects is a crucial consideration
for building solid models from discrete sensor data, and that connectivity cannot be
based on metric considerations alone. In this chapter, we gave formal definitions - -

of validity for the surface connectivity of objecfs homeomorphic to 'sphe':es-. : Th'esp'i'

. definitions allowed us to link the issue of object geometry and that of object -:v‘is_i'bilirt'yﬁ'j"f.j' 1
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We then described a sub-quadratic on-line data acquisition algorithm that incremen-
tally constructs a surface representation from a set of three-dimensional data points
and sensor positions. We analysed the algorithmic’s efficiency under different assump-

tions about the input data.

We analysed the conditions under which the algorithm maintains our formal validity
criteria. We were able to guarantee such validity in the most general case when the
number of sensor locations did not exceed two. We also obtained the same result when
the object was a surface of revolution, or a planar figure swept in space. In all other
cases, the validity of the resulting graph could only be guaranteed by relinquishing
the algorithm’s efficiency. For this reason, we conclude that algorithm merge-frames
cannot efficiently solve the the three-dimensional multi-frame on-line connectivity

reconstruction problem.



Chapter 5

A Global Algorithm

In the last chapter, we saw that organizing data along separate views does not in
general guarantee an efficient merging algorithm for a large number of views. The
reason is that merge-frames must verify whether the segments of the later frames
intersect the protuberances created by the elements of By belonging to the earlier

frames.

In this chapter, we describe another algorithm that assumes no organization [or the
data points. We do not require any longer that the data be partitioned into frames,
namely sets with a common acquisition center, It follows that the units of data with

which we,deal are the data points themselves, and we gain in generality.

On the other hand, such a paradigm does not support incremental data acquisition
and incremental data merging:*If it did, every point would constitute its own “fra_me"’.
But we saw in Chapter 4 that the initial frame requires a minimum of three points

in order for a face to be constructed. Even if we were to guarantee the existence of

109
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such a three-point-frame, the frame mérging algorithm would not perform efficiently
because the number of frames would still be of the same order as the number of

points.

Hence, a price to be paid for the lack of data organization into frames is the loss of
the on-line, or incremental property (See Section 1.2.3). As a result, all data must
be available before the reconstruction algorithm begins, and we thus say that the

algorithm is global.

5.1 Algorithm Overview

The global algorithm first constructs the convex hull! of the set V of all surface data
points as an initial approximation Gy to the desired graph G. Then successive graphs
G; are iteratively constructed by local modifications of G;_;. The number of data
points spanned by the successive graphs is guaranteed to grow monotonically. The

process stops when the set of vertices spanned by the graph is equal to V.

The modification of G; is done on a face-by-face basis, where each face f of G; is
locally modified into a new subgraph GY by the adjunction of new vertices not yet
spanned by G;. The vertex set of G/ is the union of the vertices of f and of the set

of vertices. whose acquisition segment traverses f.

We can see that the algorithm borrows ideas from both (O’Rourke, 1981) and (Ale-
vizos et al., 1987). While both of the above use the convex hull as an initial shape,

O’Rourke carves the convex hull by locally modifyingthe faces of the graph with

'The convex hull of a set of points is the smallest convex set including these points. Equivalently,

it is the intersection of all convex sets containing these points.
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points that are “near” these faces. As we noted in Chapter 3, nearness is in this case
defined using Euclidean distance criteria only. Alevizos et al., on the other hand,
use the information provided by the acquisition segments to obtain a total angu-
lar sort on the two-dimensional data points. The tolal sort represents the order of
the vertices along the boundary of the desired polygon. The sort is obtained using
segment-to-segment crossing arguments and is successful because lines in a plane in-
tersect in general. Since lines do not in general intersect in three-dimensional space,
their algorithm does not generalize in three dimensions. Note that the situation is
similar to the one we encountered in Section 4.2.6.2, as their algorithm relies on the

fact that the triangle formed by triplets of intersecting segments is provably empty

of data points.

5.2 Algorithm Description

5.2.1 Notation:

We use the following notational conventions. Also refer to the notation introduced in

Section 4.1.

¢ G is the resulting solution graph.
¢ V is the set of input data points (or vertices).

e S is the set of directed acquisition line segments associated to the elements of

V.IEV ¢ V, then S(V') is the set of segments associated with the elements of

-

V.
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e [ is the set of faces of G.

e If v € V, s(v) is the element of S associated with v, and p(v) is the other

endpoint of s{v), namely the point of acquisition of the datum.

e Graph subscripts indicate iteration levels. For example, G; is the graph at

iteration ¢ and S; is the set of acquisition segments of the vertices spanned by

Gi.

- Graph superscripts refer to the face of the preceding iteration’s graph that a
given subgraph is rooted at. For example, G is the subgraph of G; rooted at

face f, .where f is a face belonging to F;_;.

We elide graph attributes as follows: V(G;) = V;, E(G;) = E; and F(G;) = F.

Vi=V\V.

M/ is the polyhedron drawn by the graph GY, and M is the polyhedron drawn
by the final graph G.

5.2.2 Preliminary Assumptions

By definition, the elements of V} lie on the hull of V, whereas the elements of ¥
lie in its interior. As mentioned above, we first construct the convex hull of V, thus
obtaining the graph Gy, and we then determine which face of Fy each element of

S(Vo) intersects.

Proposition 1 Each element of V is associated with a segment that strictly
intersects no face in Fy. Each element of Vg is associated with a segment that

._ strictly intersects exactly one face in Fy.
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Discussion:

For Proposition 1 to be true, we must make a few additional assumptions. In the

following, intersections refer to strict intersections.

Because Gy draws the graph of a convex polyhedron My, any general segment has at
most two strict intersections with Mo, while a segment terminated in the closure of

My has at most one intersection with M.

We first discuss the first part of the proposition. The elements of 1 belong to the
boundary of Moy, therefore their associated segment has at most one intersection with

that boundary.

Gy

Figure 5.1 [Illustration of the first part of Proposition 1: Creation of a
phantom datum when not enough data is available. v’ is added to the data in
order to guarantee that the data points which belongs to the hull do not have an

associated segment which intersects the hull. Note the ensuing recomputation
of the initial shape.
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Suppose there exists v € Vg with exactly one such intersection (See the two-dimensional
analogue in Figure 5.1). In this case, p(v) lies outside M, hence it lies outside M
(M lies inside its convex hull). Because of the opacity assumption, s(v} must not
intersect any face of M. Hence s(v) entirely lies outside M, while v — es(—vs lies inside
Mo, for € infinitesimally small, since s(v) intersects My exactly once. On the other
hand,v' = v +e.s(_vi lies outside of My, since v is a boundary point and M is convex.
Hence v is an isolated point and M has no thickness at v. Hence M cannot model a

simple polyhedron.

Yet the figure shows this situation can occur when insufficient data is available, as
when the solid angle spanned by the acquisition procedure is less than 2r steradians.
The situation is easily detectable from its very definition: If a point v belonging
to the convex hull My is acquired with a segment which intersects Mg, we add a
phantom dat:;gint atv'=v+ es(_vj. The existence of v guarantees the first part of

Proposition 1 is true.

We next deal with the second part of the proposition. The elements of V; lie in the
interior of Mjy. Therefore, they have at most one intersection with the boundary
of Mp. Suppose there does exist a data point T whose segment has no intersection
with that boundary. Then s(%) entirely lies inside Mg, This means that T was
obtained while the sensor was inside Mg. Because s(¥) does not intersect the hull,
the globaliii'gg\rithm is unable to initialize the construction of Gy for that data point
(remember that Gy, is constructed by first verifying which face of G; the elements

of V; intersect).

In Section 1.4 we introduced the concept of a visibility region w associated with each
data point v. For simplicity, we later restricted w to be the segment of acquisition

8(v). Suppose instead that w(v) is the union of s(v) and of the path of travel of the
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sensing apparatus up to the taking of data v (See Figure 5.2). We distinguish two
cases depending on whether the sensor is known to have started its path from inside

or from outside of the convex object M.

[f the sensor starts its path outside My, then it must have intersected one of the faces
of Gy if there exists T € V such that s(7) lies entirely inside My. So w(3) intersects
a face f € Fy. So the algorithm prgf-zzecls as if s(7) had intersected f. In the event
where the sensor intersects several fé.ées of Fy, for example il the sensor moves in
and out of My, then f is chosen to be either the last such intersected lace before
acquisition, or the first intersected face after acquisition of that data. We assurme

that the acquisition procedure makes this information available.

Finally, suppose the sensor starts its path inside Mg. In this case, we are unable
to initiate the convex hull “carving” procedure. The global algorithm fails as it is
unable to make use of the additional information provided by w il the sensor does
not eventually leave the convex hull. However, if the sensor eventually leaves Mg by
crossing face f, all data points acquired before then are assigned as if their segment
had crossed f, and we then fall back into the previously-described situation for the

remaining data points.

In summary, if all data is acquired while the sensor remains inside the convex hull
of My, the global aigorithm cannot make use of the iﬁforma.tion provided by the
acquisition segments since no face of the hull gets ever crossed, neither by the segments
nor by the sensor itself. The algorithm then stops and fails. In general, such a
situation does not occur when one acquires an object by taking several views of it.
In such a case, it is clear that the sensor navigates outside of the hull My. But the
situation can nonetheless occur when acquiring data along the boundaries of say, the

inside of a room (See Section 4.2.1.2). It rnair then be that the sensor never leaves
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the inside of the the convex hull of all the acquired points. Such situations must thus

be avoided by careful design of the acquisition sequence.

Figure 5.2 Tlustration of the second part of Proposition 1: Generalization of
the visibility region w for a two-dimensional analogue. The arrows on the trace
of the sensor path indicate its sense. The small squares on the trace indicate the
sensor position at the time of acquisition. O is an arbitrary point on the trace of the
sensor path that lies outside the hull, and between hull boundary crossings. In this
example, the trace intersects face f several times. One possible definition of the w;
regions for vy, v2 and vs is:

wy = Trace(p(v), v1) U Trace(p(w ), 0).

wz = Trace(O, p(v2)) U Trace(p(vz), v2)

w3 = Trace(O, p(v3)) U Trace(p(vs), v3)

5.2.3 Graph Construction Iteration

We have described above how to initialize the algorithm. In the following sections we

. . describe a full algorithm iteration . We assume we have already constructed a graph
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Gi-1-

We first construct a partition P of V;.;, whose cardinality is that of f}_;. Each

element T of a given equivalence class pf of P is such that f is the first face intersected
by s(7).

Let f = (vo,v1,v2). If pf is empty, no element of Vi_; crosses f. In this case, we
define GY as the graph drawn by f (namely the complete graph on {vg, vy, v2}). If
p! is non-empty, we define G/ as a maximal three-connected planar graph whose
vertex set is V,-Jr = ¢/ U{wvo, v1, v2}, where ¢/ is a non-empty subset of p/, and whose

construction we explain in the next section.

Finally, we define G; as the union® of Gi-; and of all the G/ subgraphs, thus com-

pleting the ith iteration:
JEF f

Gi =G U U G:. (5.1)

If G; now spans the set V, (i.e. if V; = B), the algorithm stops. Figure 5.3 illustrates

the process for one subgraph.

Claim 1 At each iterationi, G; is a three-connected mazimal planar graph (3CMPG).

Proof: See Appendix B.1.

2The union of two graphs has for vertex set the union of the graphs’ vertex sets and for edge set
the union of the graphs’ edge sets(Harary, 1972, p 21).
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Figure 5.3 A hull G with one subgraph G’{ . The edges of Ey are shown in bold
face, those of F; are shown in lighter face. Non-visible (7.e. obscured) edges are not
shown,

An obvious corollary of the claim is that the final graph is guaranteed to be a 3CMPG,
which is a proper model for the polyhedron M.

Claim 2 The volume enclosed by the final model is that drawn by the convex hull, less
that of the union of the polyhedra drawn by the individual subgraphs of all iterations.
Formally,

1My= Mo\ U S r(ml), (5.2)

Proof: See Appendix B.2.

- Claim 2 states that each successive model monotonically “carves” the volume enclosed

. 'by the preceding one.
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Claim 3 The segments assoctated with the vertices spanned by G,-f do nol intersect

any of the faces of G{.

Proof: See Apﬁendix B.3.

Claim 3 states that each subgraph draws a figure which is locally consistent with the

data acquisition procedure and the opacity assumption.

Proposition 2 At any stage i of the graph construction, none of the segments as-

sociated with the vertices spanned by the current graph G; intersecls any face of F;.

Proposition 2 extends Claim 3 to all graph faces and all acquisition segments. Since
the graph eventually spans all the vertices of V, if Proposition 2 were true, then no
segment would intersect any face of G, and the graph would be fully compatible with

the opacity assurnption. The next sections address the following questions:

1. How are the subgraphs constructed?

2. Can we ensure that Proposition 2 is satisfied?

5.2.4 Subgraph Construction

Recall that fis a graph face of the previous iteration, and that the segments associated
with the elements of p/ intersect f. As in (Boissonnat, 1984), we prefer to link to the

vertices of f the points of p/ which are “close” to f,or those whose “penetration” into "
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f is shallow. In this manner, we first construct subgraphs whose faces are near the
original f face, and which are themselves intersected by the segments of the “deeper”
data points. Again we prefer to use the acquisition segments rather than Euclidean
distance measures in order to guide the carving process and to capture to notion of
“closeness”. This requirement can be met by a special use of convez layers (Preparata,

1985).

Let V/(0) = Vi = p/ U{ve, v1,v2}. We construct the zeroth layer by taking the
convex hull of V/(0). The next layer consists of the convex hull of the points internal
to that hull, again augmented with the vertices of f. The process is repeated until a
hull is found which contains no internal paint. The graph of that hull is the sought

subgraph G’. The process is more formally described in the next paragraph and is

v

illustrated in Figure 5.4.

Let G7(7) be the graph drawn by the ith convex layer and let V/(i) be its vertex set.
Let p/(i+1) be the subset of V/(i) with degree zero in G/(z). The elements of p/(i+1)

are the data points which are internal to the ith convex layer. If p/(i+1) is empty, then

G =GI6). Upf+ 1).is non-empty, we then let VIG+1) = p/ (i + 1) U{vo, v1, 02},

and the (14 1)th convex layer is the convex hull of V/(i+1), whose graph is G/ (i +1).

Claim 4 The convex layer algorithm always terminates.

Pt}

[

Proof: See Appendix B.4.

7

5.2.5 Algorithm’s Efficiency

We now analyze the theoretical worst-case asymptotic complexity of the algorithm.
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Figure 5.4 A convex layer at a given level i. =z, and z, have degree
zero in G¥(i). Hence, we write p/(0) = p/ = {x1,2q,23,24,25}, VI(0) =
{z1, 2, 3, T4, T5, Vo, v1, v2}, P (1) = {21, 22}, VI(1) = {z1, 22, vo, v1,v2}. For clar-
ity, the only acquisition rays shown here are those of z; and z,.

The initialization phase requires the computation of the three-dimensional convex hull
of a set of N spatial points. Such a hull can be optimally computed in O(N log V)

operations (Preparata, 1985). Each graph iteration then requires:

1. The determination of which face f in’M; each segment of S(V;) intersects.

2. For each face of F, the determination of the points of p/ which achieve maximum
depth, where the depth of a point is the number of convex layers that have to

be stripped from V/(0) before these points are removed.

In (Dobkin and Kirkpatrick, 1983), a data structure called the drum representation is

given for polyhedra. It can be constructed in O(nlogn) for an n-vertex polyhédroh," |

Among other uses, the representation can detect the intersection of.a polygon with o
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that polyhedron in logn time. By extension, it can also detect the intersection of the

polyhedron with a segment, since a segment is a degenerate polygon.

So the intersection of all segments in V; with the faces in £} (Step 1 above), can be
performed in

O(nylogns + n,logny) (5.3)

using the drum structure, where n, is the number of segments and n; is the size of
the polyhedron against which to check intersection. n, is the cardinality of Vi, which
is bounded above by N. Because the graph of a polyhedron is planar, the cardinality
of the face set of M; has the same order as that of its vertex set. But V; is the vertex
set of M;, and its cardinality is also bounded above by N. Hence, O(ny) = N and
Step 1 requires O(N log N) operations per iteration.

Step 2 requires the determination of the maximal depth convex layer for each v/
set. In 2 dimensions, this can be achieved in O(m/ logm/) (Chazelle, 1983), which
is provably optimal, where m{ is the cardinality of the input set. No such result is
known in three dimensions however, so we resort to a repeated application of the
simple gift-wrapping technique (Preparata, 1985, pp. 125 and 166). This convex
hull construction technique consists in determining an initial facet of the hull, and to
“march” around the partial hull by joining each sub-facet of the.alfeady-constructed
facets with a given data point. This data point is selected frotn the set of input points
using simple trigonometric relationships. Hence each input point is “inspected” a
number of times proportional to the number of sub-facets of the resulting hull. In
three-dimensions, the sub-facets are the edges of the hull. From the planarity of the

graph, the number of edges is of the same order as the number of vertices on the hull.

Hence if there are ho vertices on the hull, the gift-wrapping technique determines the

zeroth lajer hull in O(hom/). Similarly, it determines the i,k layer in

e
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O(hii h;) < O(h;zd: h;) = O(hym?), (5.4)
j=t j=0

where d is the depth of the set of points. Since all layers must be computed before

arriving at the maximal-depth layer, Step 2 is performed in

s oty = 0 ((m')'), | (55)

for each graph face. Recall that m/ is the cardinality of p/ augmented by 3, and that
the sum of the cardinalities of the p/’s is the cardinality of V;, which is bounded above

by N. Hence Step 2 requires at most O(/N?) operations per iteration and dominates

*

. the running time of the algorithm’s iterations.

Hence, the overall algorithm’s complexity is given by the running time of Step 2,
multiplied by the number of iterations. Since we are aggregating at least one point

at each iteration, the worst-case complexity of the algorithm is O(N?).

The bound is achieved if and only if

1. At each step of the algorithm, only O(1) faces are intersected by segments of

2. At each step of the algorithm, only O(1) points are aggregated into the graph.
This can only happen if the above condition is satisfied and the cardinality of

the set of maximum depth is O(1).

.' Because of the recursive nature of the algorithm, we can reasonably hope that the
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partition of segments into faces is well-balanced, and that a large number of points
gets aggregated at each algorithm iteration. For example, suppose that for every
subgraph face f € G;( , the number of points of p of maximal depth is O(n), where
n is the cardinality of p/. Then the number of iterations is O(1) and the algorithm
requires O(N?) opera.tions: Additionally, suppose.ltha.t at every iteration, the number
of faces of M; that get crossed by segments is O(N). Then each p/ set is at most O(1),
and Step 2 is performed in constant time a constant number of times. Step 1 however
is incompressible, giving the algorithm total execution speed of O(N log N). The
claim that the ezpected speed is smaller than O(N?®) is warranted by the experimental

execution speeds for the example runs we report in the next sections.

5.2.6 Example

We implemented the above algorithm on real noisy three-dimensional data. We gath-
ered the data with a two-dimensional triangulation-based synchronized laser range
finder developed at the NRC (Rioux, 1984). The subject was the pencil hc;lder shown
in Figure 1.6. The essential criterion for the choice of subject was that it be homeo-
morphic to a sphere, so as to be properly modeled by a polyhedron. A second criterion
for the subject was that it not be convex, since a convex object is trivially modeled
by the graph Go, and therefore it does not test the algorithm. The pencil holder
is a very simple shape, since it contains only one deficiency 3, but is still difficult
to model from purely geometric tests because of that deficiency’s large size. Also
note tbat the deficiency is itself convex, making the pencil holder a.l strongly visible
polyhedron. Such a polyhedron has the property that any point of its deficiencies is

visible from any point on their fid. The concavity lid is the face of the hull separating

3We borrow the term from the Computational Geometry literature. In this chapter, we reserve
the term concavity to refer to sets of merged faces (See Section 5.3).
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the deficiency from the object’s exterior. Strong visibility is a sufficient, although not

necessary, condition for the object to be entirely visible from its exterior. A practical

_consequence is that we do not have to penetrate the hull's interior, thereby avoiding

the complications depicted in Figure 5.2.

The subject measures approximately 20cm in each dimension. Several thousand three-
dimensional surface data points were taken from three different viewpoints from a
distance of about 60cm, and were smoothed with a Gaussian filter. All three views
were designed to sample a substantial portion of the deficiency. The accuracy of the
measurements using this setup is better than lmm. The inter-view calibration was
done with a least-squares minimization technique on a set of seven fiducial points,
namely the top of the pyramids shown in Figure 1.6. We empirically verified that the
absolute positional error after transforming the data to a common [rame was as large
as 3—4 millimeters. As a result, we used no more than a few hundred points to test
the algorithm. Equal numbers of points were selected from the three views. Within
each view, the sampling of the data points was made across approximately equal solid
angles. Other than this data point selection mechanism, we made no further use of
the fact that the data points came from a small number of views, rather than as a

set of isolated acquisition segments.

The model output by the algorithm from an input set of 250 data points is shown in

Figure 5.5.

The results are somewhat disappointing from a perceptual point of view. The main
reason is that the edges from the higher level always remain in the graph. Where a
large deficiency is present, as is the case in the example, each higher-level face gets
carved as if it contained its own separate deficiency. As the carving proceeds1 these

“separate” deficiencies get larger and eventually criss-cross.

oz
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Figure 5.5 Model output by the algorithm from an input set of 250 surface points
acquired off the pencil holder shown in Figure 5.12.

In order to alleviate the [:;"roblem, we added a heuristic to the algorithm to allow
the “merging” of several highér-level faces in cases where a deficiency encompassing
several of these faces is likely to be present. We present the heuristic in the next

section,

A second problem pertains to the planar-facet representation itself and also shows
up in the form of self-intersections for the resulting model. Claim 3 only shows that
Proposition 2 is true locally. It shows that the acquisition segments of the’ vertices

spanned by a local graph G'f. do not intersect any face of G¥. However, they still may

'~ intersect the faces of G/', where f s f' (we then say loosely that the subgraphs G/

and GY' intersect).

Unfortunately, as shown by the tests presented above, such situations do frequently

arise in practice. One reason of course is that the data is insufficiently sampled to
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correctly and unambiguously reconstruct the object. As well, the sensing errors in-
troduce local spurious artifacts. But a more fundamental reason is that the simplicial
representation we adopied is an arbitrary representation for the underlying surface.

In practice, it tends to “carve out” too much of the object’s enclosed volume.

Consider the simple case illustrated in Figure 5.6. [ and f' are two faces, each of
which is intersected by one acquisition segment. In this case, no segment-to-face

intersection is present.

Figure 5.6 f and f’ are two (neighbor) faces of a graph G;. The cardinality of
both p/ and p/' is 1. The acquisition segments are shown for the singletons v € p/

:'mdhv’ € p/’. On the right of the figure, the corresponding graph for G, 41 and G{;l
is shown.

If we modify the position of the data points in Figure 5.6 to allow v’ to translate
towards the left of the figure, we reach a limit where v’ penetrates through a face ¢

of F,-'f,_l, as shown in Figure 5.7. As a result, s(v) intersects ¢, and the graph vioiates

Proposition 2.
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Figure 5.7 The faces of G/ and G!' intersect. The graph shown on the right
now violates Proposition 2. For clarity, the acquisition segments are omitted from
this and the following figures.

This happens because the volume of the deficiencies carved out by the convex M;
objects is too large. As mentioned at the end of Section 3.1.2.3, the implicit visi-
bility information provided by the acquisition segments is only that there exists an
e-diameter cylinder of free-space around each segment, instead of a polyhedron of

free-space rooted at face f. The polyhedral representation we adopt is one of conve-

nience.

Hence, suppose that we fix face ¢ at its vertices, and that we “bend” it away from v/,
thus making it non-planar, so as to allow v’ (and hence s{v')) to not intersect ¢ any .
longer. Because we know that both s and s entirely lie in free-space, there exists a
topological mapping T such that the:image of ¢ through T is a sheet with the same

boundaries as ¢, but which intersects neither s(v) nor s(v').

Hence, although the geometry of the modeled object is incorrect, the connectivity
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of its vertices is consistent (in the sense of Section 1.3.2) with the data acquisition

procedure. This is similar to the situation we encountered in Section 4.2.5.

Still the large number of segment-to-face intersections and of model self-intersections
is a very undesirable feature of the algorithm. The heuristic we present in the next

section reduces that number.

5.3 The Face-Merging Algorithm

Figure 5.7 illustrated a situation where one of the segments s of G4 crosses a facc ¢

of G!'. Clearly this violates the opacity assumption. While we argued in the previous “':‘:‘
. section that we could make the model consistent with the acquisition procedure by :

relaxing the planar facet constraint, we present in this section a heuristic that reduces

the number of such occurrences and also retains the same output representation.

We first illustrate the face-merging concept. Refer back to Figure 5.6. Faces [ and
f’ both spawn a sub-tree, with vertex v and v respectively. Each sub-tree models a
deficiency, which is deemed to have been “discovered” by the intersecting segments
s(v) and s(v'). Thanks to the particular geometry of the data, the model drawn by

the resulting graph is free-of self-intersections.

In Figure 5.8, the same data configuration is shown, except that the convex layer
algorithm has been performed by merging faces f and f’. More formally, the convex |

layer algorithm has been applied to the merged input set

. VI = {2, 22,23, 24} Up U P,
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where f = (:E],xg,:l.';;) and f' = (2:1,:1:2,3,‘4).

We can see that the resulting boundary and graph-theoretic interpretation of Fig-
ure 5.8 is as consistent with the data as that.of Figure 5.6. Yet the face-merging
algorithm we described chooses Figure 5.6°s interpretation. This choice agrees with
the least-commitment principle outlined on Page 15. The chosen interpretation mini-
mizes the volume enclosed by the models drawn by the subgraphs, hence it maximizes

the volume of the resulting model (See the proof of Claim 2).

Figure 5.8 [ and f’ have been merged for the cenvex layer algorithm, resulting
in a different graph.

:'::‘\952 /f

el

Contrast the above situation with that which we illustrated in Figure 5.7, where the
resulting planar-facet model violated the opacity condition. The same data geometry
is shown in the companion Figure 5.9, but with the convex layer algorithm having
been applied to the mérged faces f and f'. As before, merging faces yields é different

graph. Yet it also eliminates the self-intersection between G/ and G¥'.

This example illustrates the need for merging faces in the case where neighboring
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Figure 5.9 Modified graph for f and f’. The segments associated with the
segments of vertices of /' do not now intersect any face of G/,

deficiencies intersect. In the next subsection, we formalize the face-merging conditions

for any set of graph faces.

5.3.1 The Face-Merging Conditions

Let G; be the dual graph of G;. If we assign a uniform weight (say of 1) to the edges of
G;, we can calculate the shortest path between any two faces of G;. Let sp(f, ) =<
fifi,-o .y fo—2, f' > be the shortest path between faces f and f'. D(f,f') is the
distance between f and f’ along the shortest path.

Recall that model self-intersection occurs in a large part when a unique deficiency to
be modeled by Gi41 is “covered” by more than one face of G;. IFigure 5.10 illustrates

a geometry where this takes place. If the subgraphs rooted at the faces shown in
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the figure do not intersect, we assume, in the absence of better knowledge, that the
subgraphs each correspond to a separate deficiency and no merging takes place. If on

the other hand, they do intersect, their parent faces are candidates for merging.

Figure 5.10 More than one graph face may make up a deficiency lid. In this
figure, f, f' and f" cover a hole. They are intersected by acquisition segments which
travel down to the bottom of the hole. If their corresponding subgraphs intersect
two-by-two, the faces are merged.

The additional merging conditions we now outline are designed to ensure that

1. The heuristic does not degrade the algorithm’s average computational complex-

ity.
2. The resulting graph remains 2 3CMPG. ’
The first condition is met by setting an upper bound D on the faces’ mutual distance.

DU f and f are not checked for intersection if D(f, f*) > D. This ensures that the face-

' . ) © ‘merging i)rocess remains in general local. This point is further explained below.
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The second condition is met by ensuring that the merged faces do not contain a cycle.
It they do, there must exist a data point v internal to that cycle (See Figure 5.11).
Because the face-merging step breaks all the edges separating the merged faces, the
existence of a cycle in the set implies that v becomes an isolated vertex. This situation
cannot be allowed if the graph is to remain 3-connected. Consequently, the face-
merging algorithm does not attempt merging face sets which form or contain a cycle,
The dual of a triangulated polygon is a tree (O'Rourke, 1987, Chapter 1). Therefore,
a set of faces is acceptable for merging if and only if the dual of these faces form a

tree.

Figure 5.11 The faces at left (shown in bold) cannot be merged together, as
indicated by their dual, which forms a cycle. If they belong to a unique equivalence
class, the algorithm does not attempt to merge them. In contrast, the faces at right
can be merged.

We now give a more detailed description of the face merging process fof a given itera-
tion :. The complete algorithm is further described in pseudo-code in Appendix B.4.
We assume we have constructed the Gf subgraphs for each face of F_; as described .
in Section 5.2.4. Then we construct the dual graph Gi_1. For each face f of F;, we |
check if the subgraph rooted at f intersects any of its neighboring subgraphs, up to

a graph distance of D. If we detect no intersection, we proceed to iteration ¢ + 1-as
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hefore,

Suppose however we that we detect some subgraph intersections. Then for each pair
of intersecting subgraphs, we merge the faces at which they are rooted, along with all
the faces that lie on their shortest path. We call the merged faces concavities. Let C
be such a concavity and let /7 be the set of faces that comprises it. The convex layer
algorithm is then reapplied for C, by setting

= U
fi={iria,ia}eF

Ve = U{il,iz, z'3} UIJC-
fi

Then the subgraph intersection detection is also repeated for the concavities. If inter-
sections between the concavity subgraphs are found, these subgraphs are themselves

merged, thus growing the concavities further.

Note that the bound D does not necessarily preclude f and f’ from being merged
if their mutual distance exceeds D. If the subgraphs of the faces lying on sp(f, f’)
intersect two-by-two in such a way that none of the intersecting face pairs have a
mutual distance greater than D, than all faces on the path, including f and f’, may
be merged. Hence D does not in principle limit how far the merging process eventually
extends. A concavity can theoretically grow to comprise a number of faces in the order
of the input size. For this reason, the face-merging heuristic theoretically degrades
the worst-time algorithmic complexity by a linear factor. In practice, the process
stops early, thanks to the existence of the distance bound D, or due to the detection
of a cycle in the dual graph. In the latter case, the algorithm reports the existence

of the cycle and does not attempt to grow the offending concavity any further.

We implemented the algorithm and tested it on experimental, noisy data. Figures 5.12
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and 5.13 show a snapshot of the object first shown in Chapter | (a pencil holder)
and its planar-facet representation through three iterations. The object is made up of
300 distinct data points. The maximum graph distance D for subgraph intersection

testing was set at 3.

Figure 5.12 Left: A round object with a deep deficiency.

Right: The zeroth-order graph of the object {the convex hull). The black lines are
the range finder’s line-ol-sight rays for those points which make up the next order’s
graph. :

The average actual running speed of the two algorithm versions are shown in Table 5.1
for a series of three tests. For the regular algorithm, the complexity progression is
approximately quadratic, as expected. While the face-merging algorithm takes much
longer to terminate, its only exhibits a complexity progression slightly greater than

quadratic.
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Figure 5.13 Left: The first-order graph of the object, Artifacts on the round
part of the object are caused by calibration inaccuracies. The deficiency is now only
partially carved.

Right: The second- and final-order graphs of the object.

5.4 Chapter Summary

We have presented a global algorithm for automatically constructing the connectivity
graph of a set of points that liec on the surface of an object homeomorphic to a
sphere. We assumed the points are acquired with a line-of-sight sensor and the
details of the acquisition procedure are known. The algorithm uses the convex hull
of the data points as its initial shape and builds successive iterations by carving the
previous iterations’ faces. A consequence is that the more detailed representations are
strictly included inside the less detailed ones, making it well-suited for applications
such as path planning that require hierarchical representations. The algorithm has a
complexity at worst cubic in the input size, and approximately quadratic in practice.

In order to obtain more perceptually-pleasing results, we implemented a heuristic to
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Number of Input Points || Regular Algorithm | With face-merging

20 1 .1

40 3 3

30 .3 3

160 4 138

320 17 S0

640 68 445

1280 295 1987

137

Table 5.1 Actual running-time (in User Time seconds) of the two algorithm versions
for different input sizes. The non-optimized code was run on a SPARC 1 workstation
using the C++ programming language.

reduce the number of model self-intersections, when the graph assumes a planar-facet

. representation.



Chapter 6

Conclusions

The automatic integration of three-dimensional scenes from multiple viewpoints moti-
vated the work we presented in this thesis. We reviewed the existing literature on the
topic, and we saw that image integration is a large body of research in the computer
vision field. As a result, many approaches perform data integration through image
analysis and object reconstruction techniques, which are a form of data compres-
sion. Recent technological advances in range data acquisition have spurred interest
in adapting these techniques to range images. We argued that the geometrical nature
of range data, coupled with knowledge of the details of the data acquisition proce-
dure, allows for a different form of processing. This processing obeys what we called
the ASDT paradigm. The ASDT paradigm delays the data compression performed
by image understanding and object reconstruction techniques. Rather, the output of

the ASDT is a general-purpose least-commitment representation.

The least-commitment representation decouples the multiple viewpoint integration

phase, which is low-level and purely geometric, from the object reconstruction phase,

138
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which is high-level and context-dependent.

Thus we found that an essential task of the ASDT is to determine the connectivity
of the surface data points. Connectivity for a set of discrete data points can be ex-
pressed as a graph, whose vertices form the data point set. This connectivily is often
simply assumed, or computed solely based on the basis of the Euclidean distance
between the points. When the surface resolution for the acquired scene is high, this
may be a reasonable thing to do. For example, an implicit and correct connectivity
is often assumed between neighbor points in pixel-based images. However, when the
resolution is coarser than the object features, we showed that neither image neigh-
boring relationships nor Euclidean proximity lead to accurate inferences of surface

connectivity.

We observed that the topological class we model must be known ahead of time in
order to properly determine connectivity. Hence, we looked at the case of the simplest
two-dimensional topological class, namely the sphere, which is homeomorphic to the
polyhedron. We then showed that the theoretical number of polyhedral graphs that
can be drawn on a given data set is prohibitively large. We then introduced the as-
sumptions of surface opacity and rigidity in order to prune the number of admissible
graphs. These assumptions are useful only if additional information is known about
the data acquisition procedure. Such information led us to model range data acqui-

sition as a process whose output is a set of surface data points, each of which lies at

" the boundary of the object being acquired, and of a subset of free-space. The geom-

etry of these subsets depends entirely on the data acquisition technique. For many
of these techniques, including triangulation-based laser scanning, the subset can be

approximated as a line segment that extends from the acquisition device’s imaging
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center to the data point. This knowledge yields additional information, which com-
plements that of the coordinates of the data point. Then we demonstrated that this

geometrical information helps in reconstructing surface connectivity.

The two-dimensional equivalent problem was already solved. A polygon in a plane can
be unambiguously and efficiently reconstructed from a set of line segments terminating
on its contour. At the outset, we determined that reconstruction uniqueness cannot be
guaranteed for three-dimensional objects probed under similar conditions. Yet, the
question remained as to whether “perceptually-consistent” polyhedral connectivity

can be constructed from simple geometric considerations.

We developed merge-frames, an “on-line”, i.e. incremental algorithm for doing so
in the case where the input is grouped into a set of frames, where a frame is an
abstraction for a matrix of data points with a common imaging center. The frame is
a convenient data organization model for range “images”. One of the main features of
this algorithm is to use the partial connectivity provided by the individual frames, as
initial subgraphs for the modeled object. Further, the structured form of the frames
allows us to merge the subgraphs using a sequence of efficient binary searches. The
object of the binary search is to determine geometrical relationships, such as the
intersection of acquisition segments with planar “sheets” defined by an acquisition

center and a subset of its data points.

We gave precise definitions for graph velidity based on object opacity and visibility
considerations. We proved several results fGr the algorithm, but we did not deem
those results to be sufficiently powerful to warrant implementation and testing. We .
found counter-examples that made the graph produced by the binary searches invalid.
The major failure mode of the algorithm occurs when the object’s concavities are

acquired before its protuberances. This has the effect of invalidating the intersection
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tests performed before the acquisition of the protuberances.

merge~frames showed that tests based on partial information may be invalidated by

subsequent data. Hence we developed a global algorithm, for which all data must

. be acquired before attempting to establish connectivity. An advantage of this algo-

rithm is that it makes no assumption about the organization of the data points. In

particular, it does not assume that range data is organized along frames, or images.

This algorithm is based on the iterative “carving” of the graph faces, starting [rom
the convex hull of all points. Hence, the algorithm proceeds “from the oulside in"
by incorporating an ever larger set of data points into the current graph. The algo-
rithm terminates when all points are inserted into the graph. At each iteration, the
algorithm partitions the points internal to the current iteration’s model, based on the
intersection of faces with the segments associated with those points. New [aces are
created by joining the intersected face with the points of the maximum depth convex
layers for that partition. The remaining points are themselves further subpartitioned
at the start of the next iteration. This algorithm is therelore recursive as well, and
displays an average computational complexity which is quadratic in the number of
data points, although the worst-case complexity is cubic. The algorithm produces a
hierarchical representation. Each node is a model, from the less detailed convex hull
at the top, to the more detailed spanning graph at the bottom. The deeper nodes

are guaranteed to lie inside the higher ones.

We tested the algorithm on an object containing a large concavity, on experimental,
noisy data obtained from a triangulation-based laser range finder. Even though the
connectivity information calculated by the algorithm was essentially correct, we found
that it did not .yield perceptually pleasing results. One reason was that we chose to

display the results with a planar-facet model, and by doing so, we made assumptions

b]
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about the object’s geometry that were not present in the original data, nor in the
constructed graph. A second reason pertains to the algorithm itself and has to do with
the fact that there is no one-to-one correspondence between the concavities present
in the object, and the faces of the higher-level graphs. We introduced a heuristic to
remedy this problem. The heuristic merges faces that appear to “cover” the same
concavity. These faces are detected by testing for model self-intersections. We found
that this heuristic reduced the number of planar-facet model self-intersections, for a
computational cost at most linear, and in practice sub-linear, with respect to the size

of the input.

6.1 Further Work

The approach we followed in this work applies mostly to scenes acquired with a
low- to medium-resolution. One reason is that high resolution acquisition yields an
implicit connectivity which is generally correct. The connectivits}-is simply inferred
from Euclidean distance or {rom image plane nearest-neighbor relationships. A second
reason is that the planar faces are a very crude underlying representation for planar
graphs. When the cardinality of the input set increases, our algorithm is not robust

enough to handle the greater probability for model self-intersections.

This second problem, however, can be circumvented by developing a better underlying
geometrical representation for the resulting graph. For example, curving inward the

faces of the subgraphs rooted at a given face, would reduce the volume enclosed by
>

the model drawn by that subgraph. As a result, the number of subgraph intersections R

would be reduced, resulting in a perceptually more pleasing model. NS
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Another approach to reduce the number of self-intersections would be to experiment
with other heuristics for the global face-merging algorithm. For example, the graph
distance beyond which faces are not merged, can be made to depend on the gcometric

resolution.

Yet, the cause at the root of the difficulties we encountered in showing the generality of

the approach is due to the nature of the input data. Points and line segments are zero-= =

i
and one-dimensional entities that are used to reconstruct a three-dimensional object.
As a result, no three-dimensional subset of space can ever be unambiguously classified
as free or empty. If the w free-space regions were three-dimensional, as with contact
sensing or CMM, the data reconstruction would be much less ambiguous. However

segment-based graph construction is justified by technological considerations.

Han;lllng other topological classes such .a's single- or multi-hole tori wotld be a gen-
e_r;_ili_zzition of this work. We stresged that in order to maintain graph consistency, the
topological class of the desired model must be known. Such knowledge could be an
ASDT’s input variable. Then, when a segment is found to “penetrate” through the

object, it can serve as a basis for “growing” a topological hole.

. In conclusion, we showed that range data acquisition allows the automatic construc-

" tion 6f least-commitment connectivity models with simple geometrical tools. Further

work remains to be dune_to generalize this approach, to increase its robustness, to

~ improve the perceptual appearance of the resulting model, and to study how it can

"~ be used in conjunction with the higher-level processes of three-dimensional analysis.
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Appendix A

The Number of Labeled

3-connected Maximal Planar

Maps

A.l Labeled and Unlabeled Enumeration

In the first paragraph of their seminal book on graphical enumeration (Harary and
Palmer, 1973), Harary & Palmer state: “Labeled enumeration problems always appear
to be much easier to solve than the corresponding unlabeled problems.” This is true
because the solution of an unlabeled enumeration problem require the computation
{(explicit or implicit) of the number of symmetries that various graphs have. Unfor-
tunately, no general method exists to detect symmetries, and solutions to unlabeled

enumeration problems often invoive ingenious but ad hoc methods.

144
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We shall see that Harary & Palmer’s statement applies to the problem of enumerating
3-connected maximal planar graphs (3CMPG’s). Even though no exact formula is
known for enumerating unlabeled 3CMPG’s, we derive such a formula for the labeled

case. We could not find such a formula in the existing literature.

A.2 The Connect-the-dots Problém

Let ¥V be a set of n points embedded in the 3-dimensional Euclidean space. Suppose
we wish to connect the points of ¥V to form a fully-triangulated polyhedron P of n
vertices. It is well-known that the set of vertices and edges of  form a 3CMPG (.
(G is maximal because since every face of P is a triangle, no edge can he added to G
without losing the planarity property. It is also well-known that every 3CMPG can
be realised as a fully-triangulated polyhedron (Griinbaum, 1967, page 235).

We wish to calculate the number of different such polyhedra realisable from V. By
the above observation, this number is the number of different 3CMPG’s. Because
the points of V' are assumed to have a specific embedding however, different though
isomorphic graphs yield different space-occupancy functions, and hence correspond to

different polyhedra. As a result, we will concern ourselves with enumerating lebeled

3CMPG’s.

A.3 A review

The best account on the research status of enumeration of 3-connected planar graphs

was given by Federico (Federico, 1975). In this review, Federico concerned himself
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“with the enumeration of unlabeied graphs, because of the one-to-one correspondence

between polyhedra lypes and unlabeled 3-connected planar graphs. He indicated that
no exact solution was known, and that rote enumeration had not even been carried

beyond 12 vertices.

A.3.1 Edge-rooted planar triangulations

Tutte’ (Tutte, 1962a; Tutte, 1962b; Tutte, 1963} was the first to make significant

contributions to the theory of enumerating planar graphs.

He tackled the problfam by rooting planar graphs. A rooted planar graph is a planar
graph embedded on the sphere, where a particular edge and the embedding sphere
have both been assigned a positive orientation. Hence, a planar graph with e edges
gives rise to 4e rooted graphs.

i
In.{Tutte, 1962a), Tutte showed that the effect of rooting a graph is to destroy any
symmetry present in the unrooted graph. He went on to give a reéﬁrsive formula for

the number of rooted 3-connected planar graphs, and an explicit formula ¢(n) for the

number of rooted 3CMPG’s on n vertices 1.

9(4n — 11)!
(n=Bn-"7)" °

b(n) = (A1)

where we slightly changed Tutte’s notation to suit the definitions given in this note.

From the above observation on the number of rooted graphs, we can conclude that

* 1Brown (Brown, 1964) later generalized Tutte’s explicit formula to all rooted 3-connected planar
graphs.

H. 7'&\ “\
Y =
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the number of unlabeled 3CMPG's is bounded above by ¢(n) and bounded below by
é(n)

de ©

The upper bound is true since we know that ¢(n) is the number of non-isomorphic
rooted 3CMPG’s, and that there at least as many rooted JCMPG’s as there are
unrooted 3CMPG’s. The lower bound is true by the above observation on the number

of edge-rooted graphs obtainable from a given unrooted graph.

Tutte also showed that to each unrooted 3CMPG G corresponds [('—("?) rooted 3SCMPQG,

where I'(G) is the number of symmetries of G (technically, the order of the automor-

phism group of G).

It follows that the number U(n) of unlabeled, unrooted 3CMPG’s of n vertices is

Um) = 32 40 (A2)

where ¢;(n) is the number of 3CMPG’s having 7 symmetries. Further, the index ¢ is

known to vary ovér the set of divisors of 4e {Harary and Tutte, 1966).

A.3.2 Unlabeled Planar Triangulations

Tutte (Tutte, 1962};) conjectured that the number of unlabeled 3-connected planar
graphs tends to 94(%1 as n tends to inﬁriity. In other words, almost all 3CMPQ’s are
unsymmetric for large n, and the ratio of symmetric to g;lnsymmetric 3CMPG’s L.ends
to zero as the number of vertices tends to infinity. ) |

il
Bender and Wormald (Bender and Worma.ld 1985}, later proved that the fraction of

e-edged 3-connected planar graphs whxch are symrnetn" is at most O(c*), with ¢ <1l
/

ot
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Since for maximal graphs, ¢ and n are linearly related, it proves Tutte’s conjecture
for 3CMPG’s. Therefore,
lim U(n) = 2. (A.3)

n—00 de

A.4 Labeled Planar Triangulations

The number of ways of labeling a given graph G of order n is (Harary and Palmer,

1973, page 4)

I(G) =

oGy

Let L(n) be the number of labeled 3CMPG’s of n vertices. By (A.4),

= plnjn! (A5)

where we use the relation e = 3n — 6, which holds for all 3CMPG’s.

Substituting (A.1) into (A.5), we get
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2(dn ~ 11)! n!
(n—2)(8n = T)112(n == 2)
(411 —11)in(n—-1)

T (Bn~T)! 6(n —2)

_ (dn — 11} {n ,, ..
= —————(3?1 ~ o) (‘)) ; (A.6)

=

Lin) =

A.5 An Asymptotic Formula

We now compute an asymptotic fermula for L(n) in order to estimate its rate ol

growth. Setting m = n — 3 and using Stirling’s factorial formula, (A.6) becomes

Ln) ~ (4m + 1)tm+1 \2x(4m + 1) e=1m-1 (1 4 3)(m + 2)
(3m + 3)3m+3 \/271' 3m + 3) e—3m—3 9
E4mE )™ [ 4m(l + ? e-4m—1+31n+3"ini(l;f C F ML+ ,“%)
3m(L+ 3) P N m(l + 57 TN
N (4m)4'"+le é _m+2m_2
(3m)3m+363 3 9
(256 )"‘4\/5
= | —m —_
27e 81

-5 (Fee-9) "

0~
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A.6 Conclusion

150

No explicit formula exists for the number of unlabeled 3CMPG’s. By using Tutte’s

formula for the number of rooted 3CMPG’s and the general relation between the

numbers of labeled and unlabeled graphs, we easily derived an explicit formula for

the number of labeled 3CMPG’s.

This number is the number of different fully-

triangulated polygons that can be drawn on a set of vertices embedded in E°.

Table A.1 displays the numbers for particular values of n, for both the exact number

and its asymptotic approximation. We checked the results by rote enumeration up

to n = 6.
n || L{n) (exact formula) | L{n) (asymptotic formula)
4 1 .2983 '
5 10 4,163
6 195 98.00
7 5712 3241
8 223,440 138,005
9 . 1.093e++07 T187e+07
o 10 6.413e4-08 4.424e+08
i 11 4.386e+10 3.144e+10
|12 3'424e+12 2.532e+12
oo T3 3.00de+14 2.280e+14
(;ﬁf 14 2.926e+16 2.269e+16
120 12.534e+304 2.466e+304

Table A.1 Exact and asyrnpifjotlc number of labeled 2.connected maximal planar .
graphs expressed as a function of the number of vertices. lhe greatest value we could ' N

compute using standa.rd 8-byte floating point arithmetlc was for n = 120..

fosbed
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A.7 Proofs of Theorems

A.7.1 Proof of Theorem 1

We first prove the two following lemmas:
Lemma 1l P*: V® — V¥ is bijective.

Proof: P is injective by definition, and so is its restriction. Since V' is the image

set of V=, every element of V' has a pre-image. Now suppose:

(Jo' € V) (3r,3 € V°),P*(x) = P(y) = o'

' — —_— ,
Then 8, = §, and ¢, = ¢,. But then 3A > 0, P*v = AP%y, which violates our
assumption. Therefore, every element of V' has only one pre-image through P*. So

P is also surjective, which proves the Lemma. O

Lemma 2 G® and G are isomorphic.

S

‘Proof: By Lemma 1, P* is a bijection between V' and V*’. Further, (4.3) implies
\\\

tﬁér\q}g_)\:\iﬂs a bijection between E(G*) and E(G®'). Therefore, G* and G*' are
isornorpl?ig (Bondy and Murty, 1976). | L—J
// -"i'f‘"_‘g"-ci:,?now prove the theorem. |
L"‘]
Notation: | e -
2 \,/ 5

; L I
A A -
im e e\

5N

— T
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e V(C s.t. C is a closed, compact set, I{C) is the interior of C.

o VC s.t. C is a closed, compact set, B(C) is the boundary of C.

We wish to prove that if G°’ is a planar triangulation, then G* is a triangulation and
is 2 1/2-consistent. Since G* and G*' are isomorphic, G*' is a planar triangulation if
and only if there exists an embedding for which G* is a planar triangulation. This is

true by assumption. Hence the first validity condition is satisfied by Lemma 2.

We must now prove that G* is 2 1/2-consistent. We will do so by showing that if

cither consistency condition on GG* is not verified, then G®’ cannot be a triangulation.

Let A be the set of closed triangles defined by the triplets of (V)3. Since P is a central
collineation, it is incidence-preserving, so for every closed, planar curve C' C E3, the

following four statements hold:

P(C) is a closed curve,
(.1: € B(C)) = (’P(m) ¢ B(’P(C))),
(:1: c I(C’)) - (P(:c) € I(P(C))).

P(closure of C') = closure of ('P(C)) .

In particular, Vt € A,
P(t) is a triangle on S?,

(w € B(t)) = (’P (z) € B(’P(t))), ' (A.8)

(:c € I'(t)) = (1: () € I(‘P(t))). (A.9)

R

e

)
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P(closure of t) = closure of P(t).

Suppose there exists a segment s; terminated at point a; such that condition (4.1) is

not verified. Then:

werate (A Ale)Alyes)).

Since (z; € 8;)A (¥ € 5;),3A > 0, Px; = ,\1-’_"3;. Hence, P(z;) = P(y) since £ is the

center of the collineation 7.

Suppose now that y € B(t). From (A.8), P(y) must helong to B(’P(l)), that is
to an edge of P(¢). Let 2y, z2,and z3 be the vertices of ¢ and x',2,’, and z3y' be
their respective images through P*. Since {z, 22,23} C V®, 2, # o # 3. Then,

z1', 29,23’ € V' and 2} # x5 # =} by the bijectivity of P,

So, P2(t) has four vertices, namely z,’, zo', 23’ and P=(x;). Therefore, G*' cannot be

a triangulation.

Suppose now that y € I(t). From (A.9), P(y) must belong to I(’P(t)). So, P(¥)
belongs to the vertex set of G*' and belongs to the interior of a face of G*'. Therelore,

G’ cannot be a triangulation.
Hence in both cases G*' cannot be a triangulation. So condition (4.1) must be true.

Similarly, suppose condition (4.2) is not-satisfied. Then, Jzi, (2 € ) A (z € 1),
where z; is a datum point, s; is its segment, and T is the visibility tetrahedron with

one vertex at P* and the others at the vertices of a triangle t € A.
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—_—
Let R be the semi-infinite segment terminated at P* and whose support is P*z;. We

first prove that (RNt) # 0.

Since T is a convex figure, R intersects it in at most two points. By construction, one
of those points is P*. Further, R contains at least one point internal to T, namely,
z;. Hence the intersection of R with T' is non-degenerate and the second intersection
point must belong to a face other than those to which P® belongs. But P* belongs
to all faces of T', except for {. Hence the second point of RN T is in {. Let y be that

point.
By construction, all points of R verify P(I) = P*(z;) =y’. Hence P(y) =y".

We can now show as above that ' € V' (since P (z;) = '), and that either

Ply) € [(P (1), (ify € I(t),or P(y) € P(t),(if y € B(t)). Either case violates

the assumption that G*' is a triangulation, so condition (4.2) must also be true.

So G is 2 1/2-consistent, which proves the theorem. i

A.7.2 Proof of Theorem 2

If 8 < 2r, the polar angle transformatior‘-lr"P maps V* on an open hemisphere A
around P‘;’ But for any open hemisphere there exists a bijective mapping B between
a Euclidean plane and the open hemisphere. One such mapping is the projection with
center P onto a plane II tangent to H and parallel to its equator (Preparata, 1985,

page 23). So II always exists.

Since B is a central collineation around P2, the polar coordinates of any point z € E3
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ot

are invariant under 5. Similarly, since @ is a central collineation around P®, the

olar coordinates of any point z,2 € E® are invariant under Q. So, Va € V*, P(a) =
P

’P(B (Q (m))) But since B(Q(m)) € H, B(Q(m)) is invariant by P. Hence,

Vo € Vo, P(z) = B(Q (:n)).

Suppose now that the graph G*” is a triangulation V=" in I1.

Let G’ be the graph with V(G*') = {2’ € H

vzl e Vo ot = B(x")}, and

VaVy e V', (ZF € £(G*)) & (B(2),B(v) € E ("))

In the same manner as in Lemma 2, we can show that G and G*" are isomorphic,
thanks to the bijectivity of B. Further, since B has the incidence property, it. maps
every triangle of G*” into a unique triangle on H. Therefore, B maps G*” into an

isomorphic triangulation G*' on H. Then, by Theorem 1, G is valid. O

A.7.3 Proof of Theorem 3

The proof of this theorem follows the lines of that given for Theorem 1. Replacing
P> by R*, we can prove as in Lemma 2 that G* and G*' are isomorphic and hence

that G* is a chain if G*' is a chain.

Suppose now that condition (a) in Definition 5 is not verified. So there exists a

segmei! s; terminated at z; such that

3y € £?,3e € E(G°), ((y La)A(yEe)A(yE 3,-));

i
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: —_— —_—
Since (z; € 5;) A (y € si), we have P¥x; = AP, with A > 0.

So, R*(x:) = R(y). Let z, € ¥ and 7141 € V* be the vertices that edge e joins. By

the bhijectivity of R,

-
=
SETL

R (1) £ R (w141) 7 B2 ().

So R*(x;) belongs to e while it is not either of its endpoints. Hence G*" is not a

chain if condition (a) is not verified.

Suppose now that condition (b) in definition 3 is not verified. Then

. dz; e V¥, d(e = :z:;,:c;+1) € G% s.t. 2; €1,

where £ is the triangle formed by z;, zi4,, and P®.

Let R be the semi-infinite segment whose support is PT';: As in the proof of
theorem 1, we can easily show that R intersects edge e in a point y, such that
R{y) = R*(z;). Because R has the incidence property, R(y) € R(z:i), R(x141)-
Hence, R*(z;) € R*(x1), R*(x;41). As above, this implies that G*" cannot be a
chain. ' ' U

A.7.4 Proof of Theorem 4

Let P = {P,..., Py} be the set of successive positions O assumes on-.C. Yz € EZ,

let ¢, be the polar angle of = around P, subject to ¢; = 0 and to ¢; > 0 for i # 1.
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bt |

Let
R:{l,...,N} —[0,2r],

P op;.
Let Cy be a circle centered at P;. Let g = (P, E(g)) be a graph such that
VPVP € P (PiB e E(g) & (1=i+1),
and let ¢’ be its projection on Cy as defined in Theorem 3.

Since O follows a closed, convex, planar curve, R is a monotonically increasing func-

tion of 7. So g is a (convex) chain and so is ¢'.

“Hence, the “frame” ~
Y

— —_—
(PP {RE,.... B} )
is 2-valid by Theorem 3.
Now the acquisition segments lie on the directed tangents to C. By the convexity of C,
these tangents never cross (See Figure 4.4). Hence, the projection of the data points

onto C yields the same monotonic ordering as did R. But both the clements of P

and the data points lie on the segments. Hence the graph G = (V, £(()) defined by
Yz vz, € V, (:L_'.?:—JE E(G)) e (G=itl)

1s 2-valid. O
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A.8 The merge-frames Incremental Merging Al-
gorithm

The main procedure. A" is the set of back-crossing segments and A" is the set of

back-crossing segments that eventually do not get inserted at all into G.

procedure merge-frames()
G =G
AH — w;
for B e{2,...,v}
A" = A"U nerge-one-frame (VA G);

AM = merge-one-frame(fl", G)’

This procedure merges one frame into the current graph G.

procedure merge-one-frame(V, &)
(A, A, B,0) = partition-one-frame(V, G);
insert-one-frame(A, B, 0,G);

return {A');

This procedure partitions one frame with respect to the current graph G. It returns

the partition to the calling procedure. ¢ is the current frame index.

procedure partit ion-one-frame(V,G)

foreach feF(G)

Af = Af’ = 0;
. foreachf € (F(G)n (Uﬁ=1 F“))
Bll = m;

foreach triangle of the bounding /s__heets of all frames
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B, =0

O=0

foreach z° € V
78" =partition-one-point(z,G);
S =SU{z};

return (A, A, B, 0);

)

i
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This procedure returns a string which is the name of the global set that the data point
should be partitioned into. It iterates through the existing frames until a visibility
face is found, with respect to whom the point corresponds to either a convexity or a
concavity. Then it descends the subgraph of G rooted at that face until a face of G

is reached.

procedure partition-one-point(z,G)

a=l;
do * .
"S” =partition-one-point-with-a-graph(z, #'*);
P P graph(;

SrEi if (”S;‘_ = ”A_f’”) .’f’;-
B "‘IJ
return " A"

a=a+l;

until((7S” = "A,”) or (*S” ="B,,") or (a = §))
if(a = 4) ’

return {("0");" R
while((”S“ = ”Af”) or ((” S” — ”Bt! ”) and féiF'(G)))
7 "5” =partition-one-point-with-a-graph(z,Gy);

return ("S5"); =

This pro}:édure partitions a point with respect to a visibility graph, or to a subgraph

of . i is the current frame index.

procedure partition-one-point- w:.th-a-graph(a: 9)
}rf”WS"Pﬂ, |
if s front-crosses f
return ("Af");
elseif s back-crosses f

return ("A;™);

'\\I
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elseif Ity € U2, Tos.t. (FEF(G)NF{g)A(x L))
return ("B;,");
else
return ("B,”) or ("O");
e r ; s
iy
3 - ol
\:- f"’ .
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This procedure inserts a given frame into G.

procedure insert ;one-frame(A, B,0,G)
insertB(8, G);
insertA(A, G);
insert0(0, GY;
" This procedurei-f'i“ﬁserts the “convexity” points, namely those that lie in a visibility
tetrahedron. F:inction triang;izla.t.‘_e";]?', f) builds a 2 1/2 valid triangulation of the

set B augmented with the vertices of face f.

procedure insertB(B, () /
foreéchBt ,EB
triangulate(Bty, f); )

This procedure inserts the “concavity” points, namely those whose segments front-

cross the graph. ,>

Rty
w

i

procedure insertA(A, G)
foreach A; ¢ A

s
A

triangulate(As, f); =
P |
This procedure builds ‘(i\isconnected subgraphs for the data points neither lie in a

tetrahedral bundle nor cross any face of the graph.

procedure insert0(0,G)
S =connected sets of O;
foreach s €S i
.g, ?,:tfiangulate(s,ﬁ);
G = C?U,esfgs; "

d

o
St
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A.9 Modifying Algorithm merge-frames to Guar-
antee 3-Validity in the Two-Frame éase

A.9.'1 Inserting the convexity points

As indicated in Section 4.2.4, the elements of B are inserted first into the graph. Each
subset B, is inserted in turn. The order in which the insertion occurs, however, is

important. In this subsection, we define that order,

‘Definition 16 The (i,j)-cell of F* is the region bounded by U, U, VA, V5, (0 <

i< n,0<j<m). We call these regions proper cells. The proper cells are inside
T, Each proper cell contains tws telrahedra of T*. Additionally, the bounding sheets
of F* definen+m+4 inﬁnite.improper cells. An improper cell is (i,j)-cell such

S thati=0Vi=0Vi=nVj=m.

Definition 17 The d-neighbours of the (i,j)-cell are the (k,1)-cells such that |k —
i| + |l —j] = d. Further, a point lying ina given (1,j)-cell ¢ is said Lo be a d-neighbour

of a point lying in a d-neighbour ced of c.
Notation:

e Foragiven B, € B, d(B,) = d if and only if the elements of B, are d-néighbours
of PP, : "

2

The elements of B? are inserted in such a way that d = d(B,) forms an increasing
=N
sequence. That is, we first insert the 0-neighbours of PP (if PP € T?), then we insert

R R

Ly
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the 1-neighbours of P#, ete. ..

We. call the modified algorithm merge~frames~2(). In the following subsection, we

show the subroutines that are different from those used by merge-frames().

ahe

It o ey

Ty

)
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A.9.2 The merge-frames-2 Incremental Merging Algorithm

This procedure implements the frame-merging for the second frame F2. In this algo-
rithm, the elements of B are inserted into the graph in a certain order. This order
guarantees that if one of the new segments s intersects one of the new faces f, [ is

created before we check for front-crossing of s with the graph faces.

procedure merge-one-frame(V, G)
A’ = partitiond(V,G);
V=V\4,
B = partitionB(V,G);
A = insertB(B,G);
V=V\B,
A = partitionA(A,V,G);
. O=V\4;
insertA(A, G),
insert0(0, G);

return (A');

Y-

_This procedure finds the backcrossing segments and returns them as a set.

procedureb‘partit;ionAJ (V,G)
foreach-m e V |
fore;?:il f € F(G)
if (Fm back-crosses f) o !

Rl ff = A} U {IE} -
Tl A= UfEF(G)(A‘-'f)’ !\ B
L i : -
o return (A"); 4 k

[
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This procedure finds the po{nts that lie in the tetrahedral bundles.

procedure partitionB(V,G)
foreach z ¢ V
foreach [ € F(G)
if (o€ {l,...,(B-1)}),feFe ATty
By, =B, U {z}
B= UJ’(B!J)§

return (53);

This procedure inserts the points that lie in the tetrahedral bundles.

procedure insertB(B,G)
foreach B,, € B
. d=d(B); &
for(d = 0;d <= d(B,,mazid = d + 1)
foreach B,,,s.t. d(étj) =d
I=0
foreach z € By
foreach ¢ € F(G)
if (P-_:;: crosses ¢)
Ay =AsU
else |
I=1IUgz; e
triangulate(/, f);
A= Q};F(G)(Af); o

o
ML
(N

ret;‘iic-n_ (A); ) | T

. ' e

vl

T
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This procedure finds the front-crossing segments. Function firstcrossgd(s,C) re-

turns the first face in the set C that s crosses.

procedure partitioni(A,V, )
fo;;ach zeV
C=0
foreach f € F(G)
if (s = Pz front-crosses f)
C=Cu{fk
if C#0
F = firstcrossed(s,C);
Ar = ApU{z}
A = Urere)(Ay);

. return (A);

I
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A.10 Proof of Theorem 6

We wish to prove that, when only two frames are present, say F' and F?, then

algorithm merge-frames-2 yields a graph which is:

e Either a triangulation or a set of triangulations.

¢ J-consistent.

It is easy to see that the first statement is true. All data points but those in A% are
inserted. The points of both A? and of B? are triangulated within G'. Finally, those

in B or O? are inserted in the form of separate triangulations.
We now prove that the resulting graph is 3-consistent.

In the remainder of this paper, we shall say that a face f of the graph is I-consistent
with respect to a given acquisition segment s if and only if s does not front-cross f
in such a way that (4.10) is violated. By definition, 3-consistency with respect to a

segment implies [-consistency with respect to that segment.

Similarly, we shall say that a face f of the graph is II-consistent with respect to a
given acquisition segment s if and only if s does not terminate within a visibility
tetrahedron ¢y in such a way that (4.11) is violated. By definition, 3-consistency with

respect to a segment implies II-consistency with respect to that segment.

We shall omit in the remainder the subscript and superscript from the names of the

partition subsets. For example, we shall write A in place of A2.
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Lemma 3

Yz e VEVf e Fl(z € B) = (f is I-consistent with s = E)

Proof:

169

If 2 € B, then s does not front-cross G?. Therefore the premisse of (4.10) is false for

all faces of G'. Hence all faces of F'* are I-consistent with respect to s.

Lernnia 4

—
Vf e F(G),Yz € V', f is Il-consistent with s = Px.

Proof:

0O

If z € S?, the set of priof frames is empty for z. Hence any face of GG is II-consistent

with respect to the segments of S7.

The following proof follows the steps of the insertion procedure.

Lemma 75 After insertion of B, the graph G = G'8 is 3-valid,

Proof:

After insertion of :B,

F(G) = F' U (Use0T1) \ (Vis 2000,
where Ty is the 2 1/2-valid triangulation of By within f.

4

O

g
A
Y

(A.10)
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We shall prove that all the faces of F(G} are 3-consistent wiith all the segments of S.

The faces of F! are obviously 3-consistent with the segments of S' since G' is valid.
Further, since we are only considering the data points of B and their associated

segments, the faces of F! are I-consistent with the segments of §% by Lemma 3.

In order for each such face f to also be be II-consistent with the segments ol S, it is
sufficient that each tetrahedron ¢y € T! contain no data point. I'il is true, then we
are done. If it is not, then By is not empty, and by (A.10), f{F'(G). So the faces of
F(G)NF! are Il-consistent with respect to all segments and therefore are 3-consistent

with respect to all segments.
We now prove that the faces of Ty are 3-consistent.

The wvertex set of each such triangulation Ty is By U {1, z9, 23}, where {z), 22, 23}
is the vertex set of f. Hence, T, has the property that all its vertices lie inside the
closure of the visibility tetrahedron ¢;, and ¢y is a convex figure. Therefore, the faces

of T entirely lie inside ¢;.

Now since F*! is 2 1/2 valid, ¢; is intersected by no segment of S'. Hence, no face
of Ty is intersected by a segment of S!. Hence the faces of T} are I-consistent with

respect to the segments of S!.

But by Lemma 4, the faces of Ty are II-consistent with respect to the segments of
)

5'.S0 the faces of T; are 3-consistent with respect to the segments of S'.

It remains to prove that the faces of Ty are 3-consistent with the segments of S2.
Some of the faces of T are made up of vertices belonging to V2 only. By the 2

1/2-validity of G2, those faces are 3-consistent.
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The other faces of Ty are mized. They are made of up of vertices of V! and of
V2, These faces are not faces of any visibility graph, and there exists no visibility

tetrahedron associated with them. So they are necessarily II-consistent.

Lastly, we need to show that the mixed faces are I-consistent with respect to the-
segments of S2. We need to prove that a given segment segment s € S? front-crosses

no mixed face.

We stated above that all faces of Ty, and hence all mixed faces, were entirely contained
in the visibility tetrahedron ¢;. So a given segment s € S? can only intersect a mixed

face inside ¢;.

Let S be the sequence of visibility tetrahedra traversed by s, starting from P2, and let
S, be the last such tetrahedron. The d-neighbour number with respect to P? increases
monotonically along S. Hence, if s {front-crosses a mixed face f inside a tetrahedron ?
other than S,, the d-neighbour number of ¢ is lower than that of S,. This means that
algorithm merge-frames-2 has inserted f prior to verifying the faces front-crossed

by s. Therefore, the datum point associated with s cannot be an element of B.

Finally, s cannot front-cross a mixed face within S,. Since S, is the last tetrahedron
traversed by s, s terminates in S,. Hence the data point associated with s is an -
element of Bs,. But the triangulation built over the elements of Bg, is by definition

valid with respect to the segments of S,

g

Lemma 6 After insertion of A, the graph G = G¥B4 5 3_valid.
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Proof: This proof follows the same lines as the proof of Lemma 3.

The set of faces of G becomes:

F(G) = F(G*"BYU (U4, 20)T1) \ (U, 20)f), (A.11)

where T is the 2 1/2-valid triangulation of A; within f, and f is a face of G"%.

We first prove that the old faces. namely the faces in (G"8)N F(G), are 3-consistent
with the new segments. In the last lemma, we saw these faces were 3-consistent with

the old segments.

Let f be such a face. f cannot be the first face of the graph that s front-crosses, since
if it were then = would be inserted into f, and by (A.11), f would not be a face of

the graph.

I-consistency of f is then clearly true: z is inserted into the first face f* of the graph
that s crosses. So if s also front-crosses f, then f’ is the 3-cycle in G such that (4.10)

is verified.

Likewise, II-consistency is also true for f. If féF!, then (4.11) is true by definition.
So suppose f € (F1 N F). Suppose further that 3z € A,s.t. z € iy. Since z € A,
s front-crosses at least one face f' of GVB. That face cannot be f, for if it was z
would be outside of ¢;. So the only way for = to be inside ¢/ is for s to back-cross f.

Therefore € A/, which is false by assumption.

We now prove that the new faces are 3-consistent with respect to all segments.



v
{

P

”Pz,“‘:\'fhere V(f') is the set of vertices of f'. Hence every new face is guaranteed to be
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Let f be such-a new face, and let f* be the face of the currenr:'gra,ph that s front-
crosses. Then either f is made up of vertices of A only or f is made up of vertices of
A and of f'. In both cases, f lies entirely to the interior of f/, whereas P? lies to the

exterior of f'.

Hence there exists a 2 1/2-consistent visibility graph for AUy V(f) with respect to

3-consistent with respect to the segments of S?.
Finally, we need to prove that the new faces are 3-consistent with the gegments of 51,
We first prove that no segment s € S§! can front-cross f.

Suppose that there exists such a segment s. Then s must also front-cross f’ since P!
is to the exterior of f’ and f’ is to the exterior of f. But this is impossible since the

current graph is 3-consistent. So f is [-consistent with respect to the segments of S!.

Lastly, by Lemma (4), f is II-consistent with the segments of S*. O

Lemma 7 After insertion oj'_O, the graph G = GV"840 is 3-yalid.

Proof:

i
i

The elements of O are such that their segments cross none of the faces of the graph.
Further, they lie in none of the tetrahedral bundles of the previous visibility graphs.
So the faces of the current graph are 3-consistent with the triangulations induced on

the connected components of O.
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These triangulations in turn are constructed so that they are 2 1/2-consistent, hence

3-consistent with respect to the segments of 5%,

By the previous lemmas, therefore, G is 3-consistent O
Theorem 6 trivially follows, since G = G*42.0 = G2, O
A
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Appendix B
Proofs of Chapter 5 Claims

B-.l_ Proof of Claim 1

We’p'rc.)ve the claim that G; is a three-connected maximal planar graph (3CMPG) by
induction on the faces of G;_;. We first note that by construction, Gy is a 3CMPG.

Suppose now that we have aggregated ! elements of the partition P, into a graph

G;(!) such that

s ..

Gi(l) = Gi1 JUIZG! (B.1)

where for convenience the graph superscript indicates the face index rather than the

face itself. We will show that if G;(!) is a 3CMPG, then the graph defined as

175
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Gi(l+ 1) = Gi{hHu G+ (B.2)

i1s also a JCMPG. thus proving the claim. We stated that, by construction. the current

iteration’s subgraphs verify

Vf = (1, 23, T3) € Fim1, G is a 3CMPG.

Hence Gi*! is a 3CMPG. Also by construction.

V() NV = {21, 22,03}, (B.3)
E{nEM = {(Ilsl‘z)a (w2, 23), (1'1,-’«‘3)}s (B.4)
() 0 F = {(z,20,) ) N (B.5)

It is well-known (Hartsfield and Ringel, 1990, Chapter 8)-that a 3CMPG verifies the

relationships

n—e+ f=2 (B.6)
e=3n—86, (B.7)

where n, €, and f are the number of vertices, edges, and faces of the 3CMPG respec-
tively. The first expression expresses-the Euler number relationship, while the second

holds in the case of maximal planar graphs.

It immediately follows from (B.6,B.7) that =~

3f = 2e. (B.8) |
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Now let ny, €, and f; be the number of vertices. edges, and faces of G:({), n2, €2 and

- f2 be the number of vertices. edges, and faces of the subgraph G, and ns, e and

| Js be the number of vertices. edges. and faces of the union graph G;({ + 1).
From (B.4), it follows that
€3 =€) +€— 3 (Bg)
since the cardinality of the intersection graph edge set is 3, and from (B.3), that
fa=fi+ =2 : - h(Bao)

since the one common face of the component graphs does not belong to the union

graph. e
i
Hence
3fs =3(fi+ fo) =6 = 2(e1 + €2) — 6 = 2(e; + €3 — 3) = 2. (B.11)

- Hence G;i(l + 1) obeys the maximal planar graph face-edge relationship. It remains

to show that G;(l + 1) is 3-connected, namely that each of its vertices has at least
1

3 neighbors. But the union of any number of n-connected graphs is necessarily n-

connected since the connectedness of each vertex of the union is at least as large as

the connectedness of that vertex in each of its components.

-

._'__Since, for each I, G;(!) is a 3CMPG, it follows that G; = G;(f1) s a 3CMPG. W
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=1
[2]

B.2 Proof of Claim 2

By definition, all the vertices of a given polyhedron M/ belong to Vi_; and hence are
contained in M;_;, except for the vertices of f which are shared by both polyhedra.

Hence J\/[{ is contained in M;_;.

Furthermore, the acquisition segments associated with the vertices of M end their
course inside .'\/i{, but by construction. these segments entirely lie to the outside
of M;_;. So the inside of \/t,’ lies outside of M;_;. Since this is true for all .M{

polvhedra, we have:

. JeF-
Mi= M\ Ul (B.12)

1

Equation (5.2} directly falls out if we write (B.12) for each level 7, and then eliminate

the M,’s for all values of 1. save 0 and tmaz (Where M = M

!ma:)'

B.3 Proof of Claim 3

We are to show that the segments associated with the vertices of each subgraph do

not intersect any face of that subgraph.

Suppose the claim is not true. Let s be the offending segment, v its associated vertex

and ¢ the intersected face. Let M/ be the convex figure drawn by Gl
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We distinguish two cases. depending on whether v is one of the vertices of f (i.e.
whether v € {v,, v5,v3}). Suppose first that it is false. In this case, because v belongs
to p{ , § intersects face f, and v lies on the boundary of .M,‘-r . Since v terminates s, and
since f is a face of M/ (but not of GY), it follows that s has two distinct intersections
with M/, one of which is non-strict. But if s has a third intersection with M at

face ¢, .M{ is not convex, which violates the assumption.

W3

()

Wl" il

| mm|||l||l|||l|||l“|\||

il
"!.:::ilhmi

= = v4

Figure B.1 \A;f and s lie on opposite sides of face f.

Suppose now v € {v1,v,v3}. In this case, s cannot intersect any face J\/!:-’r because
s and ‘M! entirely lie on opposite sides of face f (See Figure B.1). To prove the
statement, note that f belongs to the coﬁvex figure M/, Hence M/ entirely lies to
one side of f, say the “beyond” side. For éé.ch element p of p/, however, s(p) intersects
‘ﬁrst [’y where f is the face that f is rboted at, then it intersects f and terminates at
p. Since p belongs to M/, it lies on the beerond side of f, and hence f’ lies on near

side of f. But s also intersects f' (remember that s must be an element of p/’), and
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lies on one side of f only since it terminates at a vertex of f. Therefore s lies on the
near side of f and the proof is complete in the case of a regular iteration ¢. 1{i =0
though, f’ does not exist. But in this case .f‘viér = [, and the claim is true by virtue

of Propo§ition L. _ O

B.4 Proof of Claim 4

We are to show that the convex layer algorithm always terminatcs.

The termination condition is

In, pf(n) = 0. (B.13)

Hence it suffices to show that
Vi, p/(i + 1) is a proper subset of p/ (7).

The associated segment of each element of p/, and hence of each elemqnt of p/,
intersects f. Hence these elements all lie on the same side of f. Therefore, Vi, the
vertices of f are extremes of V! (i) and f belongs to the set of faces of G/(i). Hence

the vertices of f never have degree zero in G/(i). We then have

i

Vi,p{;("i +1) ﬂ{vo,vl,vg'} = {. W

s Since we also have by construction
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P (1) J{vo, vi, 02} = V(d),
pli+1) C Vi),

a simple Venn diagram shows that

P i+ 1) C P/ ().

[t remains to show that p/(i+1) # p/ (7). Suppose both sets are equal. Then all points
of p/(3) are internal to GY(i + 1). Therefore, the only points with non-zero degree in
(i + 1) are vg, vy, and v,. But since the elements of p/(¢) are not coplanar with
S (they strictly intersect f) this implies that p/(i) is empty. But if p/{i) is empty,
pf (i + 1) is not constructed by virtue of the stopping criterion. So the situation does

not occur. g O
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B.5 The Global Face-Merging Algorithm

The main procedure. It first constructs the hull of all data points. Then it builds

new graph iterations as long as the graph does not span all data points,

procedure main (V,5)
G = convex-hull (V);
while (V # 0)
iterate-graph (G);
V = internal points of (G); =

return G;

This procedure partitions the internal points according to which [ace intersected by

their segment. Each equivalence class forms a concavity. C is the set of concavities.

procedure iterate-graph (G)
C =0
foreach f € F(G) )
o) = {olwe VIEN A GeIn f £ 0)};
V{(f) = p(f) U vertices of f;
C=CUu{v(fH)k

merge-faces (C);

1 {!' ‘
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This procedure merges concavities when certain criteria are met. It first builds the
maximal-depth convex hull CL for each concavity. Then it selects a set P of concavity
pairs which are candidates for merging. If the respective hulls of the candidates
intersect, all the concavities that lie on the shortest path between the candidates are

merged into a single concavity. The process continues until no intersection is found.

procedure merge-faces(C)
do
Intersection = False;
foreach c€ C
C L(c) =convex-layer(c);
P =build-concavity-pair-test-set (C);
foreach p = (¢;,¢) € P
if (CL(cl) n cL(cQ)) £
¢, =shortest-path(c, ¢);
co = 0;
C=C\ey
Intersection = T'rue;

while (Intersection == True);

This procedure computes the constrained maximal-depth convex layer of the concav-

ity. The constraint is that the concavity faces belong to each convex layer.

procedure convex-layer(c)
do
C H =convex-hull (c);
V = (internal points of C'H)|J(face vertices);
while (V # 0);
return CH;
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This procedure constructs the set of candidate pairs for the concavity merging test. sp
is the shortest-path between a pair, measured by the number of separating concavitics
in the current graph. If sp is short, and only contains concavities which are not
intersected by segments (except for the pair elements), and contains no cycle, then

the pair is a candidate.

procedure build-concavity-pair-test-set (C)
P =0;
foreach (c¢;,¢;) € (C x C)
sp =shortest~path(ci, c2);
if (dist(sp) < D) A (not—cycle(sp)) A (3c € sp| (p(N) (¢) # 0))
P=PU(c1,c3);

return F;
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