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Abstract—In this work we study the problem of channel state
feedback and user scheduling in a single cell downlink wireless
network employing multiple orthogonal parallel channels. The
aspect of the system we are focusing on is stability. For user
scheduling for stability as a performance measure, both the queue
and channel states need to be known by the base station. However
channel states can be known only via feedback from the receivers.
In order to collect CQI feedback from each user at one channel,
a fraction of the available time for transmission is used. This
means that the time left to transmit is getting smaller. We present
a joint feedback and scheduling algorithm which can guarantee
an expansion of the stability region with respect to prior works.
We also provide expressions regarding the distribution of the
time needed to be devoted for feedback at each channel in some
special cases. The proposed algorithm does not need knowledge
of the statistics of the channels and traffic patterns. Simulations
illustrate the operation of the proposed scheme.

I. INTRODUCTION

User scheduling has emerged as an attractive solution to

improve the performance of wireless networks by allocating

the resources (timeslots, frequencies) to the users depending

on their channel states. On the other hand, since each user

in the network is associated with an incoming traffic pro-

cess, stability is among the first-order desirable properties

(performance metrics) of a scheduler. It roughly means that

the mean of all the queue lengths (and consequently delays

experienced by the users) in the network is finite. It was shown

that MaxWeight types of scheduling policies are throughput

optimal, i.e. stabilizing the system if it can indeed be stabilized

[1], [2]. However, these works assume that the realizations

of the channel processes are known to the scheduler at each

time slot, which can only be done by feedback from the

receivers. The cost, in terms of resources, needed to acquire the

instantaneous channel processes is neglected in these works.

This problem of limited feedback in wireless systems has

recently been the subject of quite intensive research, however

in most works (e.g. see [3] and references therein, also [4])

the focus is on maximizing the total throughput, not taking

queueing behaviour into account. Regarding the effect of

feedback on stability performance, the authors in [5] study the

problem of deciding which subset of users to collect feedback

from, while the authors in [6] investigate the achievable sta-

bility region in a multichannel system with infrequent channel

measurements. In these works channel statistics are assumed

known . Moreover, in [7], a CSMA-based scheme is presented

for channel state feedback and in [8] the authors devise a

feedback scheme for a multiuser MIMO downlink employing

orthonormal beamforming. In these cases however the authors

do not take into account the fact that the base station must

wait for some time in the slot before the feedback can be

used. Assuming channel statistics are known, the authors in

[9] propose a heuristic feedback scheme with two feedback

slots based on the idea of maximum quantile scheduling.

Furthermore, in [10] it is shown that for a system of L carriers

with FDD mode for feedback,the base station needs to acquire

at least Θ(L) channel realizations each time slot to obtain

very close to the biggest achievable stability region. In [11],

a TDD mode of feedback is used: the base station manually

requests the users to feed back their channel states but each

procedure is centralized and takes up a portion of the time

slot. Based on optimal stopping theory and assuming that the

distributions of the channel gains are known to the base station,

the authors derive the general properties of the centralized

optimal probing policy and completely characterize it in some

special cases. Finally, for the same model, the authors in [12],

[13] have recently propose a simple feedback scheme for a

single channel system. This scheme requires no knowledge

of channel and traffic statistics and is shown to guarantee

greater stability region than a scheme where all channels

are probed. In multi-carrier systems, the probing problem is

more challenging since a user may be scheduled on a subset

of channels and therefore each user needs to feed back the

channel state informations CSIs of a subset (as small as

possible) of its channels. Applying directly the aforementioned

schemes to multi-carrier systems may not result in a good

stability region because the number of users feeding back

on each channel might be still big. This poses more of a

problem as the number of users in the cell increases. In [14]

the authors addressed the same problem we consider here and

introduced a randomized scheme based on this work in which

a user feeds back at every channel with some properly defined

probability. However the policy obtained therein was based on

loose bounds and the analytical results are valid for the case

where there is enough time for everyone to feed back.

In this paper, we focus on the downlink of a multichannel

single cell system with feedback in TDD mode. We propose a

scheme where a threshold for the achievable rate of the channel

is adjusted by the base station according to the queue lengths



of the users and then users with rate above the threshold feed

back in this channel (in a way similar to [13]). However,

at every channel, the base station can stop the process and

transmit anytime if no improvement is going to happen by

letting more users feeding back. The analysis and main result

is valid for any number of users and feedback cost.

The rest of the paper is organized as follows: In Section

II we present the system model. In Section III, we describe

the proposed feedback and scheduling scheme and provide

some insight on its behaviour in terms of number of users

feeding back. In Section IV, we present simulation results and

a discussion on the performance of the proposed scheme and

Section V concludes the paper.

II. SYSTEM MODEL AND BASIC NOTIONS

We consider a single cell multi-carrier system where a

base station serves K users using N channels, assumed to

be randomly time varying, i.i.d. across time. This can model

the case of OFDMA downlink schemes with N carriers or the

case where the base station is equipped with N antennas and

orthonormal beamforming is used (in the latter case a ”chan-

nel” is a beamforming vector). Time is slotted. Let Rkn(t) be

the achievable rate for user k at channel n at timeslot t (in

bits per timeslot duration). This rate is assumed to belong

to a set of finite values, {r1, .., rL}, r1 = 0, rl+1 > rl,
which is the case in practical systems, as a finite number

of modulation and coding schemes is used. Also the rates

are independent from each other and across users, but not

necessarily identically distributed. Each user i ∈ {1, ...,K}
is associated with a randomly incoming traffic process with

mean rate λi. Incoming traffic processes are i.i.d. across time,

independent across users and independent with respect to

the channel processes.For the MAC layer, the base station

maintains a different queue for each user, whose queue length

at time slot t is denoted Qi(t).
Central in our case is the notion of stability of the system.

We say that the system is (strongly) stable if for every queue i
it holds limT→∞ sup 1

T

∑T

t=1 E{Qi(t)} < +∞. This implies

that the process of queue lengths converges to an ergodic

distribution and that the queues (therefore delays) for each

user will be finite.

Definition 1 (Stability Region). The stability region Λ of an

algorithm is defined as the set of vectors of the arrival rates

for which the system is stable under this algorithm.

Define now the weight of user k at channel n as Wkn(t) =
Qt(t)Rkn(t) . If all channel realizations are known, the

MaxWeight scheduler, where at each channel n the user

with the maximum weight is scheduled achieves the biggest

stability region possible [2]. However, we consider feedback

in TDD mode and the slot divided in minislots of duration

βTs. At each minislot, at each channel the base station can

either request a user to feed back on this subcarrier, broadcast

information or let users feed back in a decentralized way. In

channel n, let Mn(t) be the number of minislots used by

the feedback procedure at time slot t; then, if user k∗(n)

is scheduled, it will receive (1 − βMn(t))Rk∗(n)n(t) bits

at timeslot t. Define Zkn(t) the scheduling decision at time

slot t (i.e. Zkn(t) = 1 if user k is scheduled on channel

n at time slot t and zero otherwise). As mentioned in the

Introduction, we will compare our scheme with the scheme of

[13] applied in multiple carriers (will be referred to as ”SSF”

in the rest of the paper, standing for ”Selective Scheduling

and Feedback” [12], [13]). Variables with a tilde will be

the quantities corresponding to the proposed scheme, while

variables denoted with normal letters will correspond to the

SSF scheme. Note then that Zkn(t) is the same schedule as

MaxWeight scheduling when all the channels were known

[13].

Define the following quantities under the two scheduling

and feedback schemes:

f(Q(t)) =

E

{

N
∑

n=1

[1− βMn(t)]
+

K
∑

i=1

Qi(t)Rin(t)Zin(t)

∣

∣

∣

∣

Q(t)

}

(1)

f̃(Q(t)) =

E

{

N
∑

n=1

[1− βM̃n(t)]
+

K
∑

i=1

Qi(t)Rin(t)Z̃in(t)

∣

∣

∣

∣

Q(t)

}

.
(2)

Note that these quantities correspond to negative part of the

drift of the quadratic Lyapunov function under the aforemen-

tioned schemes. Then, the following holds (see [15], also e.g.

[13], [10]):

Theorem 2. If there exists an ǫ > 0 such that for every queue

length vector Q(t) it holds

f̃(Q(t))

f(Q(t))
≥ 1 + ǫ, (3)

then Λ̃ ⊇ (1 + ǫ)Λ .

Since at most one user can be scheduled on a channel,

Zkn(t) = 1 only for the user with the maximum weight at

channel n.

Unless stated otherwise, all expectations in the remainder

of the paper are taken over the stationary distribution of the

channel states and the decisions taken.

III. FEEDBACK AND SCHEDULING SCHEME

A. Proposed Scheme

We assume that at the beginning of each timeslot the base

station broadcasts a pilot signal of negligible duration, so

that the users can know their current channel states. Denote

Un(m, t) the set of users that have fed back at control slot

m of timeslot t. The proposed algorithm actually considers

every channel in isolation and consists in the following steps

for every time slot t at each channel n:

1) The base station requests the CQI of the user with the

biggest queue length, k∗.

2) If after receiving feedback in the first minislot it holds

that 1−β
1−3β

Qk∗ (t)
Qk(t)

Rk∗n(t) ≥ rL, ∀k 6= k∗, the base



station transmits at user k∗ at its achievable rate for the

rest of the timeslot (and so the algorithm terminates).

Otherwise, it broadcasts Rthr,n(t) := Rk∗n(t) during

the second feedback minislot.

3) For each minislot m > 2, at the beginning the base

station chooses k∗ = argmaxk∈Un(m,t){Rkn(t)Qk(t)}.

If it holds that 1−mβ
1−(m+1)β

Qk∗ (t)
Qk(t)

Rk∗n(t) ≥ rL, ∀k /∈

Un(m, t) then the base station transmits to user r∗ and

the algorithm terminates. Otherwise, user i /∈ Un(m, t)
with rate Rin(t) > Rthr,n feeds back according to a

decentralized rule.

4) The algorithm stops when there is no user to feed back

on channel n (that is all remaining users not yet fed back

have worse channel state than the one broadcasted) or

when m = ⌊ 1
β
⌋. The latter means that this is the last

minislot; in this case, the base station transmits to the

user with the maximum weight among the ones that fed

back.

The main idea behind the algorithm is to transmit when

there is no possibility that receiving further feedback will

increase the weight of the user scheduled in the channel, thus

increasing (2). For example, if the user with the maximum

queue length has the maximum possible rate allowed by the

standard on channel n, then it is useless to do the procedure

of feedback, since it is the user with the maximum weight in

this channel. Formally we can show the following:

Proposition 3. Under the algorithm described in this section,

Λ̃ ⊃ Λ, where Λ is the stability region when the algorithm in

[13] is used.

Proof. We consider the beginning of minislot m
at channel n at timeslot t and denote k∗n(m, t) =
argmaxk∈Un(m,t) {Rkn(t)Qk(t)}, that is the user with the

maximum weight at this channel so far. If m > 2, then if user

i /∈ Un(m, t) feeds back, the maximum weight of the channel

in minislot m+1 will increase if (1+β(m+1))Rin(t)Qi(t) >
(1 − βm)maxk∈Un(m,t){Rkn(t)Qk(t)}. This implies that,

since the queue lengths vector is known to the base station,

the weight in this channel gets bigger if i /∈ Un(m, t) feeds

back at minislot m if

Rin(t) > R̂in(m, t)

:=
1− βm

1− β(m+ 1)

maxk∈Un(m,t){Rkn(t)Qk(t)}

Qi(t)
.

(4)

Consider now the case where we have

R̂in(m, t) ≥ rL, ∀i /∈ Un(m, t) (5)

Since 1−βm
1−β(m+1) is an increasing sequence in m, R̂in(m +

1, t) > R̂in(m, t) > rL, ∀i /∈ Un(m, t). This analysis implies

that if (5) holds in the beginning of minislot m then the weight

of the user scheduled at channel n will not increase any further.

Similar analysis holds for m = 1 as well, taking though into

account that if the base station decides not to transmit and at

least one user is above the threshold, then it can transmit again

after minislot m = 3 the earliest due to the second minislot

used for broadcasting (thus the denominator of Step 2 in the

algorithm).

The above implies that, given any (possibly randomized)

rule for the decentralized feedback scheme, for any realization

of this rule under any realization of the channel states and any

fixed queue length vector we have that if Rk∗(n)n(t) < rL,

it holds
[

1− βM̃n(t)
]+

∑K

i=1 Qi(t)Rin(t)Z̃in ≥

[1− βMn(t)]
+ ∑K

i=1 Qi(t)Rin(t)Zin with probability 1.

In the case where the Rk∗(n)n(t) = rL, the user with the

maximum queue length is the user with the maximum weight

already. This user is scheduled right after the first minislot

in our algorithm while under SSF the second minislot is also

used for the broadcasting of this rate, so the weight under

our algorithm in this case is stricly bigger than SSF with

probability one. This analysis implies that for every channel

n = 1, ..., N

E

{

[

1− βM̃n(t)
]+ K

∑

i=1

Qi(t)Rin(t)Z̃in

∣

∣

∣

∣

∣

Q(t)

}

>

E

{

[1− βMn(t)]
+

K
∑

i=1

Qi(t)Rin(t)Zin

∣

∣

∣

∣

∣

Q(t)

}

.

(6)

Summing over all channels and using the fact that they are

independent we get f̃ (Q(t)) > f (Q(t)), and combining this

with Theorem 2 completes the proof.

A further issue is how exactly the users that have better rate

than the broadcasted one can be coordinated to feed back. This

can be done for example if the base station ranks the users and

communicates this ranking with them (i.e. it can be a ranking

according to their IDs, communicated at the beginning of the

systems’ operation), and divides the portion of the second

minislot that remains after the threshold broadcast among the

users (in a TDMA manner in each channel). There when it s

the turn of each user, they can send a signal if their rate at the

channel is above the threshold and send nothing otherwise.

In any case, the number of minislots used for the feedback

phase for the SSF algorithm does not depend on the way the

users above the threshold feed back, our algorithm outperforms

SSF under any user ordering scheme. However, in principle

the actual ordering scheme will affect the stability region of

our algorithm. For the threshold broadcast step to make sense,

we must have β < 1/3 and K > 2 users.

B. Analysis of the time spent for feedback for i.i.d. channels

Here we will provide some mathematical analysis on the

number of minislots taken up by our proposed policy. In

order to simplify the model, we will assume that all channels

are identically distributed with P{Rkn(t) = rl} = ql. In

addition, we will assume that the users feed back according to

a ranking based on the queue lengths. This can be implemented

as follows: The base station can broadcast a ranking of the

users according to the queue lengths with the user with the

highest queue length first at the beginning of the timeslot

(e.g.at the beginning of the first minislot and then in the



remaining time of this minislot the first user in the ranking

feeds back in all channels). Then, the procedure described

in the previous subsection for determining the sequence at

which users will feed back is followed. Note that, since we

are actually interested in maximizing the quantity (2) and the

channels are iid, this method will give the biggest stability

region (biggest value of (2)) over any feedback sequence under

the proposed scheme.

Given the stopping condition at each minislot and the above

mentioned feedback scheme, we can further see that the

expected number of minislots used is the biggest when the

queue lengths are equal since it leads to
Qk∗ (t)
Qk(t)

= 1 in the

stopping condition. Therefore we will examine this setting in

order to obtain a worst case analysis of the scheme. Since all

queues are equal, without loss of generality, ranking will be

assumed to be according to the user IDs in ascending order

(i.e. user 1 feeds back first etc.). Denote p̃n(m) the probability

that exactly m minislots are used at carrier n under our scheme

and pn(m) the corresponding quantity for the SSF algorithm.

Note that when m > ⌊ 1
β
⌋, more time than the duration of

the timeslot needs to be used. So, eventually the base station

does not transmit at all in the slot (this goes for the SSF

algorithm as our proposed one stops at most after the minislot

just before the last that can fit in the timeslot duration). Also

denote Fl = P{Rkn ≥ rl} =
∑L

l=l ql, so FL+1 = 0. For the

SSF algorithm, the number of minislots needed is the number

of users out of the remaining K − 1 that have rates over the

threshold plus the two minislots in the beginning, so we have

for

pn(m) =
L
∑

l=1

ql

(

K − 1

m− 2

)

Fm−2
l+1 (1− Fl+1)

K−m+1,m ≥ 2

and zero for m=1.

For the proposed scheme, note that we have for m = 1

p̃n(1) =

L
∑

l=1

ql1{rl≥ 1−3β
1−β

rL}.

For m = 2, it corresponds to the case when the stopping

condition is not fulfilled after the user with the maximum

queue lengths feeds back but no user among the remaining

K − 1 has greater rate, thus we have

p̃n(2) =

L
∑

l=1

ql1{rl< 1−3β
1−β

rL}(1− Fl+1)
K−1.

For m = 3, the corresponding event, given the threshold

rate (the rate of the user with the maximum queue length) is

that the stopping condition did not hold for the first minislot

and that either only one of the K − 1 users has rate above

the threshold or this happens for more than one user but

the stopping condition holds after a user feeds back in this

minislot. Replacing the probabilities we get

p̃n(3) =

L
∑

l=1

ql1{rl< 1−3β
1−β

rL}

(

(K − 1)Fl+1(1− Fl+1)
K−2+

(

1− (K − 1)Fl+1(1− Fl+1)
K−2 − (1− Fl+1)

K−1
)

L
∑

l′=l+1

ql′1{rl′<
1−4β
1−3β

rL}

)

.

For m > 3, getting closed form expressions like the above

becomes more difficult, since for every m this probability

depends on which users have fed back and their channel

realizations, thus boiling down to a combinatorial problem.

Define for m > 2 the outcome of the feedback process until

and including the m-th minislot as

π(m) =

(

(i1(π), Ri1(π)n(t)), (0, 0), (i3(π), Ri3(π)n(t)),

..., (im(π), im(π)(t))

)

.

More specifically ij(π) is the user that fed back at minislot

j ≤ m and Rij(π)n(t) the corresponding achievable rate. A re-

alization π(m) = ((i1, r
(1)), (0, 0), ..., (ij , r

(j), .., (im, r(m)))
is possible if the following conditions are met: (i)r(j) >
r(1), ∀j = 3, ..,m, (ii)(1 − β)r(1) < (1 − 3β)rL (iii)(1 −
βj)max {r(1), r(3), ..., r(j−1), r(j)} < (1−β(1+ j))rL, ∀j =
1, ..,m−1 and (iv) either m−1 exactly user have rates above

the threshold or (1−βm)max {r(1), r(3), ..., r(m−1), r(m)} ≥
(1− β(1 +m))rL. Let Π(m, (1, rl)) be the set containing all

possible realizations of the feedback algorithm lasting exactly

m minislots when the user requested to feed back first has rate

rl. Then we have that for m > 2:

p̃n(m) =
L
∑

l=1

ql
∑

π∈Π(m,(1,rl))

m
∏

j=3

P{Rij(π)n(t) = r(j)(π)}(1− Fl+1)
ij(π)−ij−1(π).

The above equation comes from the fact that since users

are ranked using their IDs, if after user ij−1, user ij feeds

back, it implies that the users with IDs from ij−1 +1 till and

including ij − 1 have achievable rates below the broadcasted

threshold at channel n.

The results in this subsection can be used to numerically

obtain an estimate of the mean amount of time needed in each

timeslot for the feedback procedure to be executed under our

algorithm.

IV. SIMULATION RESULTS

In order to illustrate the gains from our proposed feedback

and scheduling algorithm, we will consider for convenience

a downlink system with N = 15 channels which identically

distributed among them and among users, and i.i.d. in time.

The possible rates are derived following the LTE standards.

In addition, the traffic processes are Poisson with the same

rate for each user and i.i.d. in time. What we are showing



in this Section, therefore, is stability behaviour on the line

λ1 = λ2 = ... = λK in a system with identical channels for

each user. The point where the system is becoming unstable

is the point where the total average queue length plotted in

the figures that follow starts increasing very steeply. We are

comparing the performance of our algorithm with the one in

[13] applied directly in multichannel systems.

In Figure 1 we present the simulation results for different

numbers of users and β = 0.1. As the number of users grows,

the stability region of both algorithms shrinks, and the region

under our algorithm is bigger than the region under [13].

However, we can observe that the absolute difference between

the two algorithms is very similar for each of the cases shown,

which suggests that the absolute difference in the stability

regions between the two algorithms does not change much

with the number of users. An explanation for this is that the

proposed stopping rule does not take at all into account the

number of users, so (unless the number of users is so large

that there is not enough time for everyone to feed back even

in the SSF scheme) the degradation on the stability region of

both algorithms is similar.

On the other hand, in Figure 2, we present the results for

different values of the fraction of time, β for one user to

feed back on a channel in a system with 10 users. Unlike the

previous case, we observe that relatively small changes to the

parameter β result to different absolute differences, and more

precisely the bigger this parameter is, the bigger is the gain,

with respect to the algorithm in [13], of using the proposed

algorithm (and again, the stability region of both algorithms

shrinks as β increases).

V. CONCLUSIONS

In this paper we presented a feedback and scheduling

algorithm for enlarging the stability region in multichannel

systems when a fraction of the timeslot must be taken for each

user to feed back. Our algorithm does not require knowledge

about statistics of the traffic and the channels and can indeed

increase the stability region with respect to the state of

the art. Simulation results imply that this increase becomes

more significant as feedback becomes more costly. Further

work may include modification to take into account other

performance measures (e.g. delay) and finding the maximum

achievable stability region under this feedback model.
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