
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Context-Aware Packet Switching in Ad Hoc Networks

Permalink
https://escholarship.org/uc/item/51k9m8pw

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2008-09-15

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/51k9m8pw
https://escholarship.org
http://www.cdlib.org/

1

Context-Aware Packet Switching in Ad Hoc
Networks

J.J. Garcia-Luna-Aceves†‡ Marc Mosko† Ignacio Solis† Rebecca Braynard† Rumi Ghosh†
‡ Computer Engineering Department

University of California at Santa Cruz
Santa Cruz, CA 95064

† Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

Abstract—We present the design and performance of a new
approach to packet switching for MANETs, which we call
Context Aware Protocol Engines (CAPE). With CAPE, nodes
disseminate information in the network by means of context-
aware packet switching that enables the statistical multiplexing
of bandwidth, processing and storage resources using integrated
signaling covering channel access, routing and other functions,
to share and store the context within which information is
disseminated. Data packet headers consist of simple pointers
to their context, and elections and opportunistic reservations
integrated with routing are used to attain high throughput and
low channel-access delay.

I. INTRODUCTION

The protocols and architectures used in mobile ad hoc
networks (MANET) today [1]–[3] still reflect the severe
memory and processing constraints imposed on computing
equipment dedicated to communication tasks 40 years ago [4]–
[6]. Because of such constraints, the protocols used in the
ARPANET had to be organized into a stack in which most
protocols were decoupled from the physical medium, each
protocol layer operated independently of other, and processing
and storage “inside” the network was kept to a minimum.
The resulting packet switching architecture was based on “in-
band, in-packet signaling” aimed at minimizing the use of in-
network processing and storage resources while maximizing
the utilization of communication links. In this approach,
routers (packet switches) maintain the minimum needed to
forward packets (e.g., a next hop); each packet contains a
header and a payload, with the header carrying all the control
information needed for each protocol layer of the protocol
stack; each packet (datagram) is switched independently of
others or the intent or type of its payload, and all processing
and storage of content occurs at the edges of the network (i.e.,
at the hosts).

Given the success of the IP Internet, datagram switching
based on protocol stacks was arguably the most sensible
approach to packet switching at the time the ARPANET was
created. Furthermore, it is still adequate for wired segments
of the Internet in which over-provisioning of links is feasi-
ble. However, “stacked datagrams” it is not the right packet
switching approach for today’s MANETs. MANETs are very
different than a wired network due to node mobility, the

characteristics of radio channels, and the relative scarcity of
bandwidth (compared to fiber). The in-network processing and
storage power available even in small mobile nodes (e.g.,
PDAs, cellular phones) today are orders of magnitude larger
than what was available inside a network more than 40 years
ago [6]. Furthermore, while there were compeling cost reasons
for a division of labor between hosts and routers (switches)
40 years ago, the wireless portions of the Internet need to
be ubiquitous and invisible, each node of a MANET must
act as a host and a router, and providing the user with the
service or content she wants is far more important than trying
to attain high link utilization. Interestingly, as our review in
Section II of prior work on new approaches to packet swithcing
in MANET indicates, all prior work has adhered to at least
some of the original approach to packet switching introduced
in the ARPANET.

In this paper, we show by example that context-aware statis-
tical multiplexing of network resources is far more effective (in
some cases by orders of magnitude) than implementing data-
gram switching using protocol stacks. Section III introduces
our approach, which we call Context Aware Protocol Engines
(CAPE), as an instantiation of context-aware packet switching
for MANETs. The approach we advocate in CAPE is the
exact opposite approach than today’s protocol architectures.
CAPE is based on nodes storing the entire context within
which packets are to be switched, and each packet contains
its payload and a pointer to bind it to the stored context.
The signaling used in CAPE is “in-band, off-packet integrated
signaling,” in that the same links are used to communicate
control and data, but signaling and control information used
to establish how a given data packet is to be processed is
disseminated ahead of the transmissions containing user data,
and a single protocol is used to establish the context for the
dissemination of packets, and such context includes all the
control information needed to attain integrated scheduling,
routing and congestion control decisions. A key advantage of
integrating the signaling used for scheduling and routing is that
the schedules obtained to access the shared channel take into
account the constraints imposed by flows that must hop over
multiple relays, as well as network-level knowledge of which
neighbors of a node should be receiving the transmission. The
protocol used for signaling and channel access in CAPE is the

2

Context Aware Scheduled Access (CASA) protocol. Channel
access with CASA is based on a combination of distributed
fair elections to determine which nodes are allowed to use
or bid for unreserved time slots, together with reservation
mechanisms to provide channel-access time guarantees to
those nodes that have succeeding accessing the channel and
must persist using the same time slots.

The implications on network efficiency resulting from us-
ing “stacked datagrams” in MANETs is most evident in
the low efficiency with which bandwidth is shared and the
large overhead incurred with context-free packet switching of
information. Accordingly, while CAPE spans all the layers of
a traditional protocol stack, this paper focuses primarily on
the benefits obtained with context-aware channel access and
integrated signaling. Section V compares the performance of
CASA and the overhead improvements attributed to integrated
signaling against the use of traditional protocol stacks based
on IEEE 802.11 DCF. The results clearly show that the
use of a contention-based channel access discipline that, in
essence, attempts to emulate “Ethernets in the sky,” is simply
not applicable to MANETs with voice and data traffic. The
context-aware channel access used in CAPE provides a solid
foundation for the support of multiple media in MANETs. The
overhead incurred with datagram switching implemented with
layer-independent signaling can be substantial when either
the payload per packet is small or the duration of an end-
to-end flow is relatively long (involving many packets). Our
results indicate that the integrated signaling in CAPE provides
reduced overhead even when the signaling asociated with route
maintenance and end-to-end transport is not considered.

II. RELATED WORK

There has been considerable work in the past attempting
to improve the efficiency and scaling of ad hoc networks.
We organize this work into: (a) protocol-header compaction
or compression, (b) cross-layer optimizations, and (c) new
protocol architectures.

Protocol-header compaction proposals focus on reducing
the overhead of the headers required in specific protocols,
without incurring any information loss, while compression
proposals allow some loss of information. Header compression
or compaction approaches are based on at least one of the
following observations: (a) many header fields of packets in
the packet stream of an end-to-end session are the same (e.g.,
source and destination address, ports, version, protocol, flow
label, hop limit), (b) nodes can use local identifiers instead
of globally unique identifiers provided that they maintain a
mapping for them, and (c) protocol headers unnecessarily carry
all the fields that the processing of a packet may require.
Most of the attention has been given to the overhead of
TCP, UDP, and IP in ad hoc networks [7]–[10]. What is
most striking about all the approaches to date on compaction
and compression is that they all assume a layered protocol
architecture based on in-band in-packet signaling in which one
layer encapsulates the higher layer and all protocol headers
are included in each packet. The goal is simply to attempt to
reduce overhead of specific protocols defined within that ar-

chitecture. Consequently, the benefits of cross-layer interaction
are not fully exploited.

Because the characteristics of the physical layer impact the
performance of the entire protocol stack in an ad hoc network,
much work has recently been done attempting to integrate
the operation of multiple layers to make them more efficient.
To date, cross-layer optimization schemes have focused on
exploiting advances at the physical layer and have addressed:
(a) using multiple channels at the link and network layers (e.g.
[11], (b) taking advantage of more sophisticated receivers (e.g.
[12]), and (c) taking advantage of information processing by
the relaying nodes [13]–[16]

The importance of these prior results is that taking ad-
vantage of multi-packet reception (MPR) for channel access
benefits from dynamic approaches to channel division (in
time, frequency, and space), and requires the scheduling of
concurrent transmissions around receivers based on their char-
acteristics and the channel state at the receivers. Hence, truly
scalable protocol architectures for ad hoc networks need to
consider the use of scheduled channel access.

Very few new architectures have been proposed to improve
the performance of ad hoc networks. The majority of the
architectures proposed for ad hoc networks in the past have
focused on organizing nodes into clusters (identified either by
a cluster identifier or a node identifier) or into a connected
backbone that links all nodes to reduce signaling overhead.
Recently, however, Ramanathan [17] proposed an architecture
based on three layers: a relay-oriented physical layer, a path
access control (PAC) layer, and a collaborative transport layer.
While Ramanathan’s proposal captures many of our goals in
CAPE, it has some limitations. The PAC layer is subject to
unfair access to resources much more so than today’s 802.11
DCF is, because the right to use resources at the physical layer
is entirely based on a reservation handshake carried without
information about the context within which flows are being
transmitted. In addition, while cooperation among nodes is
important, it may not be possible for the transmitters to have
accurate channel state information when nodes move fast.

III. CONTEXT AWARE PROTOCOL ENGINES (CAPE)

Contrary to the case of wired networks, scheduling, routing,
congestion control and retransmission control are very much
interrelated in a MANET. A transmission schedule, in effect,
defines a “link” between a transmitter and a receiver. A route
established and used dictates the maintenance of links and the
decay of others, and therefore impacts the schedules. Lastly,
the routes established determine the congestion to which links
are subjected, and changing routes or the allocation of traffic
to such routes impact congestion. Therefore, establishing the
context within which resources are shared and information is
exchanged needs to take place together with channel access,
and channel access needs to be performed jointly with the
other network control functions.

Accordingly, in CAPE, we substitute the traditional protocol
stack with: (a) A context database storing the context within
which user information is disseminated and network resources
are shared; (b) the Context Aware Scheduled Access (CASA)

3

protocol, which is used to access the shared channel and
disseminate all context and user information; and (c) a set
of network-control algorithms.

The information in the context database includes infor-
mation about the flows competing for shared bandwidth,
the nodes capable of causing interference around receivers,
link characteristics, node positions (if available), transmission
schedules and routes, other characteristics of the environment
that may also help define the context, and state information
used by network control algorithms.

CASA integrates the signaling required for channel access,
routing, congestion control, and retransmission control. In-
stead of having a medium access control (MAC) protocol,
a unicast routing protocol, a multicast routing protocol, and
a congestion control protocol each carry its own signaling
independently of the others, nodes exchange their context with
one another using CASA, and such context includes all the
control information needed to attain integrated scheduling,
routing and congestion control decisions. Although CASA
supports the signaling for multiple functions, the algorithms
used to implement different network control functions are
not integrated into a single algorithm, given that such an
optimization problem would be much too complex.

Environment context packets contain information about lo-
cal neighbors and routes. They occur periodically and maintain
routing tables and the neighborhood information required by
the scheduler. Flow context packets on the other hand relate
information about a specific data flow. They are in charge of
setup, update and teardown of the context information needed
to forward the actual data.

CASA is a time-slotted MAC layer that uses a slot header
and a per-packet packet header in aggregated slots. Both
headers are 64 bits. The slot header identifies who the sender
is, what version of CASA is used, control flags, and the
number of packets in the slot. The packet header contains
the identifier of the context within which the packet should be
processed, the version of the context identifier, the size of the
packet. This information determines the format of the context-
dependent header (CDH) and how to process the packet. An
example of data that might be part of the context-dependent
header is a link sequence number.

Data flows are established by first setting up a context using
context setup packets. In CAPE, a source identifies a flow by
a globally unique Flow ID (FID), and the FID is propagated
through the network as part of the the connection setup. The
FID takes a role akin to an IP socket descriptor: it uniquely
identifies a flow between endpoints. Once a pair of neighbors
along a flow path agrees on the setup, the nodes switch the
flow by using the context id. However, because nodes know
the FID associated with specific peer connections, nodes may
multiplex a flow over multipaths. The cost of path repairs in
CAPE is minimized because nodes can locally re-route a flow
using the FID.

Setup packets are used to build the context. They allow
different types of data flows to be set up. Figure 1 shows
a graphical representation of a setup packet. The next hop
determines the node that should receive the packet next. The
destination is the destination of the flow. Flow ID is the globaly

Fig. 1. CASA packets and fields

unique identifier for this flow. Version determines the version
of the context. Type determines what kind of flow this is, an
example would be an encapsulated IP flow, or a CAPE native
flow. The setup packet also contains a set of TLV (type-length-
value) entries that define the flow and create the context. There
are two types of TLV entries differentiated by the first bit. Type
A uses 7 bits for Type and 8 bits for length. This will be used
for the most common options. Type B uses 18 bits for type and
13 bits for length, this will handle the extended options. One
of the TLV entries present in most setup packets will be the
Flow Definition (IP Flow definition can be seen in figure 1).

The context defines how to interpret the context-dependent
header, and includes information that needs to be processed
specifically for a given flow. In the case of an IP flow, the
header includes a field called Link Sequence Number. This is
a sequence number for the packets of this flow over the specific
link in which they are sent. It is used for link retransmissions
and flow control.

IV. CHANNEL ACCESS

CASA provides access to a shared channel by means of
elections and reservations based on the context information
exchanged among nodes. Nodes implement a distributed elec-
tion algorithm to select which node is allowed to use time
slots that have not been reserved using the context they share
to run the election, without the need to configure anything in
the schedule other than the number of time slots used in each
frame. Reservations are used to provide channel-access time
guarantees to those nodes that have succeeded accessing the
channel and must persist using the same time slots oer time. To
calculate schedules and propagate reservations, nodes regularly
broadcast their context. The context needed for channel access
consists of neighborhood and reservation information. Nodes
also utilize an in-band time synchronization protocol that does
not rely on external time sources such as GPS. The remainder
of this section details the components of CASA: neighbor
maintenance, slot elections, reservations, and in-band time
synchronization.

4

TABLE I
NOTATION

NDi
j Hop-count distance at node i to neighbor j

NAi
j Age since last update of NDi

j

Tnbr Timeout for neighbor updates (default 1S)
T1 Reservation timeout at reserving node
T2 Reservation timeout at non-reserving node
M Number of slots in a frame
Rmax Max reservations per frame
Rnew Max new reservations per node per frame
RHi Number of reservations held

by node i (default maximum 80% of M)
RN i New reservations in the current

frame by node i (default 1% of M)

Neighbor maintenance is used to populate an N-hop neigh-
bor table, which is the basis for the dynamic election of time
slots that have not been reserved. A neighbor update is the
pair {id, distance}, where id is the node ID of a neighbor
and distance is the hop count from the node. When sending
context, all neighbors of distance less than N (for an N-hop
neighborhood) are sent at once in one long array of neighbor
updates, though an incremental approach is also possible.
When sending the mini-context, a node fills in the nbr id

with any distance 1 neighbor. We use a round-robin of all
distance 1 neighbors from slot-to-slot.

A neighbor j of node i is declared a valid N-hop neighbor
if and only if NDi

j exists and NDi
j ≤ N and currentT ime−

NAi
j ≤ Tnbr. For the remainder, when we say a node j is an

N-hop neighbor of i, we mean this definition.
Upon receiving a neighbor update, a node updates the

distance to the neighbor. A neighbor update may be received
three possible ways: inferred from a slot header, inferred from
the mini-context, or from a neighbor update. From a slot
header, node i assumes a distance d of 0. From a mini-context,
a node assumes a distance of 1. From a neighbor update,
a node uses the stated neighbor distance. Upon receiving
a neighbor update, if it is a new neighbor, node i creates
NDi

j ← d + 1 and NAi
j ← currentT ime. If the neighbor

entry already exists, NAi
j is updated and NDi

j is updated only
if the distance decreased.

A node executes a cleanup algorithm at the beginning of
every frame. This removes any old neighbor entries and pushes
back (i.e. increments the distance) any timed out entries. For
each neighbor j of i, if currentT ime − NAi

j > Tnbr, then
NDi

j is incremented. If NDi
j > N , then the neighbor entry is

removed.
1) Time-Slot Scheduling: Previous dynamic scheduling pro-

tocols [18]–[20] offer high channel utilization even at high
load, but still have problems with real-time data traffic,
because their randomized slot assignments do not provide
bounds on channel access times. Our approach maintains high
utilization without sacrificing real-time data flows.

A major difference in the time-slot elections in CASA
compared to previous election-based scheduling schemes is
that prior work has focused on running an election for each
individual time slot, while elections in CASA run for an entire
frame. CASA’s election algorithm is based on generating a
pseudo-random permutation of time slots for each node. These

Algorithm 1:
RUN ELECTION(P [node][slot],W [node][slot], N, M)
(1) S[1, . . . , M]: winning ids, initialized to N + 1
(2) R[1, . . . , M]: the rank ordering of node winning slot
(3) V [1, . . . , M]: the weight of node winning slot
(4) for t = 1 to M
(5) for n = 1 to N
(6) if S[t] = N + 1 or (R[t] = t and W [n, t] < V [t])
(7) S[t]← n
(8) R[t]← t
(9) V [t]←W [n, t]
(10) return S

permutations are then compared to determine which node
wins the right to transmit in each time slot. Although the
permutations are frame-length, the permutations and election
algorithm may be run in amortized time over a frame. For each
frame number t, define K(t) to be some random number called
the frame key. We assume that all nodes know the common
frame key K(t). The frame key is used as the random number
seed used to generate the random permutation vectors.

Algorithm 1 shows how to determine the schedule of
winning node IDs given the set of random permutation vectors
in the matrix P [node][slot] and the set of node weights for tie-
breaking. After one generates the random permutation vectors,
Alg. 1 scans them in time-slot order such that the node with
the minimum rank for a time slot winds the slot. The weights
could be random numbers or they could be a deterministic
value based on node ID. If the weights are independent of the
slot time and have the same sort order as the node identifiers,
the second clause of line 6 and vectors R and V could be
removed.

When used with reservations, the reservation for a slot
always takes precedence over the election results. Each node
computes the election results exactly as in Alg. 1, but makes a
final check to see if the slot is reserved. If the slot is reserved
by the node itself, it may transmit in the slot without winning
the election. If the slot is reserved by different node, then
the local node cannot transmit in the slot, even if it won the
election.

2) Reservations: The present reservation scheme is de-
signed to support voice calls, and as such is a “hold until
done” strategy for keeping a reservation until it is no longer
needed. When a node has data to send, it may reserve any slot
for which it wins the election, while below the reservation
limits. CASA limits a node in the rate of slot reservations
and in the maximum number of reservable slots. Nodes can
keep their slot reservation as long as they have qualifying data
(described below). When a neighbor receives a slot reservation,
it propagates the reservation information over the N-hop
contention area so the participating nodes can use it in the
distributed election. If a reservation is not refreshed, neighbors
timeout stale reservations using a soft-state approach.

A node may reserve a time slot if several conditions are
met. The total reservations held by node i must be less than
the global maximum: RH i < Rmax. The number of new
reservations per-frame must also be less than the allowable:
RN i < Rnew . The type of traffic to be sent in the slot must

5

also qualify. If there is at least one voice packet scheduled or
there are at least two queued data packets, the traffic qualifies
for a reservation. We found through experimentation that this
definition of qualifying traffic yields good overall performance,
but other strategies could be employed. To reserve a slot, a
node sets the ‘R’ flag in the slot header flags field. The node
will continue to set the ‘R’ flag in the time slot as long as it
has qualifying traffic to send in that slot. If at least T1 seconds
pass without qualifying traffic, the node releases its reservation
and can no longer use the slot without winning it again in an
election.

When a node receives a slot header with the ‘R’ flag, it
will record the tuple {res id, res slot, res seen, res sent},
where res id is the node identifier from the slot header,
res slot is the slot number, res seen is initialized to the
current time, and res sent is initialized to 0. As part of a
context control message, every node will transmit a list of the
known reservations that are no older than T2. The reservations
are ordered by res sent such that the newest (initialized to 0)
and least-recently sent reservations go first. Periodically, such
as on slot 0 of each frame, a node runs a maintenance routine
that purges the reservation cache of any expired reservations.
An expired reservation has an age greater than T2.

A node may hear about multiple reservations for the same
time slot. However, if the node is also one of the reserving
nodes, it must perform contention resolution, such that no two
nodes in a contention area hold the reservation. We use a
random tie-break based on the hash of the node ID and slot
number.

3) Time Synchronization: We chose the CSMNS protocol
[21] for time synchronization in CASA, because of its simplic-
ity. The basis of CSMNS is the use of a proportional controller
to drive the clock at each node to a common time. Let node
i have a real-time clock with drift βi and initial phase offset
αi, then the drift time, t

(d)
i , at node i is

t
(d)
i (t) = βi · t + αi. (1)

Each node has a control factor si such that the synchronized
time, t

(s)
i , at node i is t

(s)
i = si · t

(d)
i . In each slot header, a

node transmits its timestamp t
(s)
i as a 64-bit integer. To aid

convergence, we also adopt the rule that if a node has never
received a timestamp before, it adjusts its offset to equal the
received timestamp, such that with si = 1, the two clocks are
perfectly synchronized.

The control factor is maintained by the synchronization pro-
tocol through a proportional control equation. The initial factor
is si = 1. Each time node i receives a time synchronization
packet from a neighbor, it updates si. Let node i receive such
a packet with the timestamp t

(rx)
j in the packet header from

node j. Node i updates si as si = si + K ∗
t
(rx)
j

−t
(s)
i

t
(s)
i

. The
term K is the proportional factor, and typically takes a value
in the range 0.3 to 0.8.

V. PERFORMANCE EVALUATION

In this section we present our evaluation of CAPE and
compare its performance to 802.11e using the OLSR [22]

TABLE II
SIMULATION PARAMETERS

Terrain 2500m x 1000m
PHY 802.11a at 12 Mbps
802.11e AC3 voice, AC0 TCP
Radio model Statistical propagation, two-ray ground pathloss,

constant shadowing, -111 dB propagation limit
Voice data 56 bytes CBR (17.6 kbps codec), 30s exp. turnaround
Bulk data 50 HTTP sessions [24]
CASA frame 400 slots at 0.5 msec/slot (650 byte MTU)
Contention area 4 hops
Guard interval 10 µsec
Reservations 300 out of 400 slots reservable
Res timeouts 1601 msec local, 2001 msec neighbor
Res rate at most 4 new reservations/node/frame

routing protocol in the Qualnet simulator [23] using the
parameters shown in Table II. The simulations are done for
a 50 node static mesh environment and evaluate how CAPE
handles a mix of web and voice traffic. We consider the metrics
of delivery, latency, and HTTP bytes delivered. We will show
that CAPE has comparable CBR delivery to 802.11e with few
CBR flows, but CAPE is over 3x better with many CBR flows
and that CAPE’s scheduling maintains low latency that is over
an order of magnitude less delay than 802.11e while delivering
more elastic TCP traffic. The graphs show the average of 5
independent simulation runs and the 95% confidence interval
(assumed Normal). We show that CAPE outperforms 802.11e
in a variety of topologies and workloads.

CASA has few collisions due to being a contention-free
MAC protocol, but packets can still be dropped due to fading
channels, errors due to additive noise or collisions in the
infrequent case of stale context. All CASA experiments are run
with an acknowledgement schemed called “TcpAcks”. This
scheme only acknowledges and retransmits TCP traffic; all
CBR and routing UDP traffic is strictly best-effort. TcpAck
utilizes a basic acknowledgement scheme that transmits an
ACK for each TCP packet. Packets are retransmitted after
50ms of no ACK is received by the sender. Packets are
retransmitted a maximum of three times.

Fig. 2 shows the delivery ratio of CBR packets. The deliv-
ery ratio is the total number of in-order datagrams received
by a destination divided by the total number of datagrams
sent by all senders. The 802.11e plots use standard 802.11
RTS/CTS/ACK with retransmissions. The CAPE plot using
CASA does not ACK or retransmit any data. Despite this lack
of link ARQ, CAPE has a fairly flat delivery ratio over all
loads. CASA and 802.11 have statstically equivalent delivery
ratios when there are only 5 CBR flows. Beyond 5 CBR
flows, the 802.11 delivery ratio drops quickly below the CASA
performance.

Fig. 3 shows the end-to-end CBR latency. CASA has
a significantly lower delay than 802.11e in all cases. The
802.11e delay ranges from 1S to 6S. The CASA delay is
between 40 msec to 60 msec for up to 25 CBR flows and
then up to 160 msec for 50 CBR flows. This means that even
with each node having a 16 kbps conversation with another
node and each node browsing we pages, CASA maintains a
high CBR delivery ratio and low CBR delay, whereas 802.11e

6

 0

 0.2

 0.4

 0.6

 0.8

 1

0 5 10 25 50

Ra
tio

CBR Sessions

CBR Delivery Ratio (050 node random, 050 tcp flows)

802.11e
CASA OLSR TcpAcks

Fig. 2. Delivery ratio 50 HTTP

 0.001

 0.01

 0.1

 1

 10

0 5 10 25 50

Se
co

nd
s

CBR Sessions

Average CBR End-to-End Latency (050 node random, 050 tcp flows)

802.11e
CASA OLSR TcpAcks

Fig. 3. CBR Latency 50 HTTP

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

0 5 10 25 50

By
te

s

CBR Sessions

WWW Bytes delivered (050 node random, 050 tcp flows)

802.11e
CASA OLSR TcpAcks

Fig. 4. HTTP Bytes 50 HTTP

breaks down after about 5 CBR flows.
Fig. 4 shows the total HTTP bytes delivered over TCP. In

these scenarios, CASA uses the TcpAck mechanism to use link
ARQ on TCP packets. 802.11e and CASA delivery statistically
equivalent bytes at low load (up to 10 CBR sessions), but at 25
and 50 sessions, CASA delivers about 3x the bytes of 802.11e.

Although not presented here, all experiments were run with
both in-band time synchronization and perfect timing. In our
experiments, the drift is chosen uniformly between ±25 ppm,
which is similar to the 802.11 requirements for clocks. The
initial phase offset is chosen in the range [0, 100] µsec,
similar to Rentel [21], with K = 0.5. The results show that
the uncontrolled drift clock has a mean absolute error of
3, 656µsec with a standard deviation of 2148 µsec. Assuming
a Normal distribution, the 99% confidence interval (±2.576σ)
spread of clocks would be over 11 msec. For the controlled
clocks, the mean absolute error is between 1.205 to 5.669µsec.
More importantly, the standard deviation of the error is well
controlled between 0.825 to 9.431µsec. This would give a
worst-case spread over a 48µsec interval for the 9.431µsec
case. The majority of the deviations are close to 2µsec, which
has a 99% confidence interval spread of 10.3µsec, which
works well with the 10 µsec guard interval.

VI. CONCLUSIONS AND FUTURE WORK

We introduced CAPE as an example of context-aware packet
switching in MANETs. CAPE is based on nodes storing the
entire context within which packets are to be switched, and
having each data packet consisting only of its payload and a
pointer to bind it to the stored context. All signaling needed
in CAPE is exchanged by means of a single protocol, the
Context Aware Scheduled Access (CASA) protocol. We have
shown that CASA, the protocol used in CAPE for integrated
signaling and channel access, greatly improves channel uti-
lization under heavy loads. It also performs very well in cross
traffic scenarios, allowing the multiple flows to cooperate and
share the channel. To make CAPE a reality, future work that
must be undertaken includes the integration of routing with
the scheduling and reservations described for channel access
in CASA, and the introduction of hop-by-hop congestion and
retransmission control.

REFERENCES

[1] R.E. Kahn, S.A. Gronemeyer, J. Burchfiel, and R.C. Kunzelman, “Ad-
vances in packet ratio technology,” Proceedings of the IEEE, vol. 66,
no. 11, pp. 1468–1496, Nov. 1978.

[2] B.M. Leiner, D.L. Nielson, and F.A. Tobagi, “Issues in packet radio
network design,” Proceedings of the IEEE, vol. 75, no. 1, pp. 6–20,
Jan. 1987.

[3] J. Jubin and J. D. Tornow, “The DARPA packet radio network protocols,”
Proceedings of the IEEE, vol. 75, no. 1, pp. 21–32, Jan. 1987.

[4] R. Kahn, H. Frank, and L. Kleinrock, “Computer communication
network design: Experience with theory and practice,” Networks, vol.
2, no. 2, pp. 135 – 166, 1972.

[5] L.G. Roberts and B.D. Wessler, Computer-communication networks,
chapter The ARPA Computer Network, Prentice-Hall, 1973.

[6] S. Ornstein, F. Heart, W. Crowther, S. B. Russell, H. K. Rising, and
A. Michel, “The terminal IMP for the ARPA computer network,” in
Proc. AFIPS Spring Joint Computer Conference, 1972, pp. 243 – 254.

[7] Mikael Degermark, Mathias Engan, Björn Nordgren, and Stephen Pink,
“Low-loss tcp/ip header compression for wireless networks,” in Mobi-
Com ’96: Proceedings of the 2nd annual international conference on
Mobile computing and networking, 1996, pp. 1–14.

[8] S. Casner and V. Jacobson, “Compressing IP/UDP/RTP Headers for
Low-Speed Serial Links,” RFC 2508 (Proposed Standard), Feb. 1999.

[9] M.A. Spohn and J.J. Garcia-Luna-Aceves, “Exploiting relative address-
ing and virual overlays in ad hoc neworks with bandwidth and processing
constraints,” in Proc. ICWN, Jun. 2003.

[10] I. Solis, K. Obraczka, and J. Marcos, “FLIP: a flexible protocol for
efficient communication between heterogeneous devices,” in Proc. IEEE
ISCC. IEEE Comput.Soc, July 2001, pp. 100–6, IEEE Comput. Soc.

[11] P. Kyasanur, X. Yang, and N. Vaidya, “Mesh networking protocols to
exploit physical layer capabilities,” in Proc. IEE WiMesh, Sep. 2005.

[12] J. Park and M. Gerla, “Mimoman: A mimo mac protocol for ad hoc
networks,” in Proc. AdHocNow, Oct. 2005.

[13] S. Toumpis and A.J. Goldsmith, “Capacity regions for wireless ad hoc
networks,” Wireless Communications, IEEE Transactions on, vol. 2, no.
4, pp. 736–748, July 2003.

[14] R. M. de Moraes, H. R. Sadjadpour, and J. J. Garcia-Luna-Aceves,
“Many-to-many communication: A new approach for collaboration in
manets,” IEEE INFOCOM, pp. 1829–1837, May 2007.

[15] A. Ozgur, O. Leveque, and D. Tse, “Hierarchical cooperation achieves
linear capacity scaling in ad hoc networks,” IEEE INFOCOM, pp. 382–
390, May 2007.

[16] J. J. Garcia-Luna-Aceves, Hamid R. Sadjadpour, and Zheng Wang,
“Challenges: towards truly scalable ad hoc networks,” in proc. Mo-
biCom, 2007, pp. 207–214.

[17] Ram Ramanathan, “Challenges: a radically new architecture for next
generation mobile ad hoc networks,” in Proc. MobiCom, 2005, pp.
132–139.

[18] Lichun Bao and J. J. Garcia-Luna-Aceves, “A new approach to channel
access scheduling for ad hoc networks,” in Proc. MobiCom ’01, New
York, NY, USA, 2001, pp. 210–221, ACM Press.

[19] L. Bao and J.J. Garcia-Luna-Aceves, “Hybrid channel access scheduling
in ad hoc networks,” in Proc. of IEEE ICNP 2002, 2002.

[20] Z. Tang and J.J. Garcia-Luna-Aceves, “A protocol for topology depen-
dent transmission scheduling,” in Proc. IEEE WCNC, Sep. 1999.

[21] Carlos H. Rentel, Network Time Synchronization and Code-based
Scheduling for Wireles Ad Hoc Networks, Ph.D. thesis, Carleton
University, 2006.

[22] T. Clausen, P. Jacquet, A. Laouiti, P. Minet, P. Muhlethaler, A. Qayyum,
and L. Viennot, “Optimized link state routing protocol,” IETF Internet
draft, draft-ietf-manet-olsr-06.txt, Sept. 2001.

[23] Scalable Network Technologies, “The qualnet simulator 4.0,” .
[24] Bruce Mah, “An internet simulated atm networking environment,” http:

//www.employees.org/∼bmah/Software/Insane/.

