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Abstract—Authenticity and secrecy of broadcast message con-
tent is important in wireless sensor networks deployed for
battlefield control, emergency response, and natural resource
management. Encryption of broadcast data requires the key to
vary in time, typically via a key chain, so that a key compromised
at a receiver does not compromise broadcast security for the
entire network. An unfortunate consequence of time-varying keys
is that a receiver that misses (due to packet loss) one or more
keys from the chain cannot decrypt subsequent messages, thereby
getting excluded from all broadcasts. In this paper we develop a
scheme that allows receivers to recover from one or a few lost
keys by having the transmitter probabilistically reuse old keys
from the chain. Our scheme makes the broadcast system more
robust to packet loss, at the expense of increasing vulnerability
to compromised old keys. Analysis of our scheme shows how
the trade-off can be controlled by tuning parameters, and a
prototype implementation on a MicaZ mote testbed demonstrates
the feasibility of our scheme in real sensor network platforms.

I. INTRODUCTION

Large-scale wireless sensor networks deployed for bat-
tlefield control and resource management are expected to
use broadcasting capability for operations such as command
dissemination and network query. Securing such broadcast
messages is important, and has been gaining attention in the
research literature [1]. Central to broadcast security is authen-
tication [2] of the broadcast source and data. Additionally, pri-
vacy of the broadcast data is mandated in certain applications,
such as battlefield messaging and natural resources monitoring
[3]. Scalable solutions for ensuring authenticity and privacy
of broadcast data pose a challenge given that wireless sensor
nodes have very limited resources. Asymmetric cryptographic
techniques for encryption and digital signatures are impractical
due to their high computation and communication overheads.
Symmetric encryption that uses a common static key shared by
all broadcast recipients is problematic since key compromise at
one node compromises the entire network, and the likelihood
of key compromise increases with the number of receivers.
Scalable solutions for broadcast security therefore need to use
symmetric cryptography with time-varying keys.

The idea of time-varying keys for broadcasts was used in
[4] for authentication and by us in [5] for encryption. The
central idea is that the key changes in time according to a
“key chain”, where each key in the chain hashes to the previous
key in the chain; the one-way nature of hash functions ensures
that a received key can be verified but not generated from the
previous key in the chain. Assuming the initial “root” key of

the chain is known to all legitimate receivers (either statically
programmed at deployment time or dynamically conveyed
by the transmitter via unicast mechanisms), upon each key
change the new key is included by the transmitter in the
broadcast message. Receivers decrypt the broadcast message
using the key they hold, and accept a new key only if it
hashes to their existing key, thereby ensuring authenticity.
Keys can be varied slowly once every pre-determined time
period [4], or from one packet to the next [5]. Time-varying
keys offer several important advantages in the context of
broadcast: 1) Receivers need perform only hashing (e.g. MD5,
SHA1) and symmetric-key decryption (e.g. RC5), which are
computationally less intensive than public-key cryptography
and/or digital signatures; 2) Key compromise at a receiver does
not allow the intruder to deduce subsequent keys in the chain
needed for forging broadcast messages, and authenticity is
thus guaranteed; 3) Intruders get a reduced window of time in
which to crack a key before the key changes, thereby need-
ing increased computational/storage capability to compromise
broadcast privacy.

The strong authenticity and privacy protection offered by
key chain schemes have the unfortunate effect of reducing
system robustness to packet loss. A receiver that has missed
a key cannot decrypt broadcast messages to extract the next
key (even if extracted, the received key would not validate), in
effect making the receiver no better off than an intruder who
has no keys. In this paper, we propose a scheme that addresses
this shortcoming. The basic idea is for the transmitter to
include in broadcast packets some “recovery information” that
probabilistically reuses old keys of the chain to allow receivers
that have lost one or a few keys to recover. The likelihood of
recovery diminishes with the number of missing keys, thereby
allowing system robustness (ability of a receiver to recover
from a small number of missing keys) to be balanced against
system vulnerability (ability of an intruder to attach using an
old compromised key). We analyse our scheme to show how
this balance can be controlled by tuning the probability of
old key selection. We also prototype our recovery scheme on
a MicaZ mote based platform to demonstrate feasibility, and
show that its performance in experiments matches our analysis.
We believe that our scheme represents a practical, scalable, and
controllable way of improving robustness of broadcast security
in sensor networks for battlefield control, resource monitoring,
and other critical applications.
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Fig. 1. Key chain encryption of broadcast packets

The rest of this paper is organised as follows: Section II
describes key chain based encryption of broadcast messages.
In Section III we describe our proposal for recovery from
lost keys, and Section IV analyses its performance. Section
V describes our prototype implementation and experimental
results, and the paper concludes in Section VI with pointers
to future work.

II. BACKGROUND

In this section we briefly summarise key chain based
encryption and authentication of broadcast data presented by
us at PIMRC last year [5]. The main steps are described below
and shown in Fig. 1:

1) Key-chain generation: The transmitter generates a key
chain by first choosing an arbitrary random key kM ,
and hashing successively to obtain kM−1, . . . , k1, k0,
i.e. ki−1 = H(ki) for i = 1, . . . ,M , where H(.) can
be SHA1 or MD5. The length M of the chain can
be arbitrarily large (allowing the chain to be used for
broadcasting as many as M data packets), but in practice
the key-width will limit the number of unique keys
obtained by hashing.

2) Bootstrapping: The root key k0 is securely conveyed to
each receiver, either statically at deployment time or via
one of several dynamic key management schemes [6].

3) Data transmission: Once all receivers have the root
key, the transmitter creates the first broadcast packet by
concatenating the broadcast data and the successor key
k1, and encrypts the entire message with a symmetric
encryption technique (e.g. RC5) using key k0. So that
the encrypted data and encrypted key are not separable
in ciphertext, an appropriate block cipher scheme such
as offset code-book (OCB) mode [7] should be used.
The encrypted packet is then broadcast to all nodes.

4) Data reception: A receiver sensor node can decrypt the
message using key k0 (which it already holds) to reveal
the broadcast data as well as the successor key k1. It

then tests whether H(k1) = k0: if so, authenticity and
integrity of the packet’s source and data is assured and
the packet is accepted. The key k0 is now discarded by
the node and the new key k1 stored in its place.

5) Iterate: Steps 3 and 4 are repeated for successive
broadcast packets, using key ki in lieu of k0, and ki+1

in lieu of k1 for i = 1, 2, . . .. Care must be taken that
successive packets are transmitted at a rate which gives
nodes sufficient time to extract the data payload and
prepare for the next packet. Once all the M available
keys have been used up by the transmitter, it has to
return to step 1 to generate a new key chain before secure
broadcast transmission can continue.

We note here some aspects of the above key chain based
broadcast security scheme:

• Authenticity of broadcast source and data is guaranteed
by virtue of the non-forgeability of the successor key,
together with the fact that the encryption mode ensures
that the key and data are inseparable in ciphertext. Au-
thenticity is guaranteed even if one or more sensor nodes
in the network are compromised.

• Confidentiality of broadcast data is guaranteed only if
no key is compromised. An intruder trying to ascertain
the key corresponding to a broadcast packet either has
to crack the key before the next broadcast transmission
(since the key will change), or store all packets trans-
mitted while it is trying to crack the key (so that it
can progress along the chain to “catch up” with the key
in the chain currently being used by the transmitter);
otherwise the cracked key will be useless for decrypting
subsequent broadcast messages. Assuming that breaking
the encryption to obtain a single key takes a non-trivial
amount of time, only sophisticated intruders with large
computation or storage capacity will be able to effectively
attach to the broadcast session.

• The broadcast encryption scheme has some other attrac-
tive properties: it assures freshness of broadcast data
since packet captured and replayed by an intruder would
not contain the valid time-varying key and would be
discarded by the sensor nodes. The scheme also ensures
semantic security, namely identical data encrypted at
separate time instants yields different ciphertext – this is
useful in sensor networks where the broadcast messages
are chosen from a small set, and the encrypted ciphertext
should not give information to an intruder about which of
these messages was sent. Additionally, the scheme allows
dynamic broadcast data, namely, the broadcast data
need not be known by the transmitter in its entirety before
packet transmissions start; this makes the scheme efficient
not just for broadcast file transfers (e.g. a new code
image), but also for short dynamic broadcast messages
(e.g. battlefield commands). Lastly, the scheme allows
incremental processing whereby each received packet
can be immediately verifiable without having to wait for
additional data.
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Fig. 2. Packet structure augmented to include recovery information

• The scheme currently operates in single-hop networks,
and requires no time synchronisation in the system. In
multi-hop networks checks are required to ensure that a
transit node does not hold back several packets, extract
the keys, and use them to generate broadcast packets
containing malicious data but valid keys, which would be
accepted by receivers downstream. We have extended our
original scheme to multi-hop networks in [8], but restrict
the current work in this paper to single-hop networks.

• The scheme has no resilience to key loss, which is the
problem addressed by this paper, and discussed in the
next section.

III. LOSS RECOVERY SCHEME

The key chain approach of [5] described above has the prob-
lem that a receiver which misses even one broadcast packet
is effectively excluded from all future broadcast messages,
since the key contained in the missing packet is needed to
decrypt the subsequent packet, which in turn contains the
key to the next packet, and so on. This is not a problem
in applications that perform reliable delivery of broadcast
data (e.g. network programming protocols), since lost packets
will be retransmitted as part of the protocol and lost keys
recovered therein. However, there are applications in which
reliable delivery of broadcast data is unnecessary or prohibitive
in cost. For example, consider a group of soldiers each of
whom is equipped with a communication device receiving
broadcast command and control data from a base-station (say
a satellite or unmanned aerial vehicle). In such an application
it is infeasible to make the broadcast reliable since the base-
station may not know how many receivers are reachable at any
time (some receivers may be inoperational or out of range),
and moreover, it may be unwise to have receivers reveal their
location by transmitting requests for missing data. In such
unreliable broadcast scenarios, the loss of data in the packet
may not be very crucial (the base-station may periodically
repeat the data), but the loss of the key contained in the packet
is a problem, since the encryption scheme does not reuse keys.

We propose a scheme for lost key recovery that operates
as follows. Recall that the base-station in each broadcast
packet Pi sends data Di and the successor key ki+1, together
encrypted using the current key ki. In addition, we include
in packet Pi the following “recovery information” (see Fig.
2): the next key ki+1, an integer m ≥ 1, and the hash digest
H(ki+1|m), the entire recovery information being encrypted
with an older key ki−m of the chain. The idea is to allow a
node that has missed m previous broadcast packets to use the
key it holds to jump forward in the chain and recover the next
key to be used.

// current key denotes the node’s last correct key
1. decrypt data field of Pi using current key to

obtain data and extracted key
2. if extracted key hashes to current key // no key loss
3. replace current key with extracted key
4. process data
5. else // keys may have been missed
6. decrypt recovery field of Pi using current key

to obtain ki+1|m and recovery hash
7. if hash of ki+1|m matches recovery hash
8. separate ki+1|m into extracted key and m
9. hash extracted key m + 1 times

and store in trial key
10. if trial key matches current key
11. replace current key with extracted key
12. else discard packet // cannot authenticate key
13. else discard packet // decryption unsuccessful
14. end

Fig. 3. Operations performed by node upon arrival of broadcast packet Pi

Fig. 3 shows in pseudocode what a node does upon receipt
of packet Pi. Steps 1-4 describe regular packet processing in
the absence of packet loss. If the key chain validity check
in step 2 fails, the node could have potentially lost previous
broadcast packets, and recovery is attempted in steps 5-13.
The node does not know which old key in the chain is used
by the base-station for encrypting the recovery information
(since it neither knows the number of packets it has missed,
nor the number m chosen by the base-station); consequently
the decryption in step 6 that uses the node’s stored key may
be unsuccessful (i.e. yield nonsense), and step 7 is needed
to verify this by checking the contained hash. If correct, the
successor key ki+1 is authenticated by hashing it m+1 times
(step 9) to verify (in step 10) that it belongs to the key chain,
and is then accepted (step 11), at which point the node has
successfully reattached to the broadcast session. The packet is
discarded if the key does not authenticate (step 12) or if the
decryption was unsuccessful (step 13), which happens when
the base-station has used a different key for encryption than
the key held by the receiving node, or when the packet is
malicious.

Our scheme has two attractive properties: 1) receivers that
do not need recovery are not penalised (beyond the cost
of receiving the recovery field), since they will satisfy the
check in step 2 and ignore the recovery information. Further,
receivers requiring recovery will spend a computation time at
most linear in the number of lost pckets (step 9), and malicious
packets will be dropped after a single decryption (step 6) and
hash (step 7) operation; 2) our recovery scheme requires local
computation at the receivers but no radio transmissions; this
makes the scheme scalable to a large number of receivers,
and attractive in scenarios where node location is required to
remain hidden.

With the above scheme, a receiver that has missed m packets



(since its last success) can reattach using the next correctly
received broadcast packet only if the base-station has picked
the same number m for constructing the recovery informa-
tion in that packet (otherwise the receiver cannot decrypt
the recovery information). An important question therefore
concerns the choice of m that the base-station should make,
given absence of any knowledge of how many packets each
of the (potentially large number of) receivers has missed (in
fact a receiver itself may not know how many packets it
has lost). If m is chosen as a small constant, a node that
has lost j > m packets can never reattach, since its last
key ki−j cannot decrypt the recovery information in packet
Pi or any subsequent packet. If m is chosen to be a large
constant, a node that has lost j � m packets either has to
wait for m− j subsequent broadcast packets to pass before it
can reattach, or spend much computational effort in trying to
decrypt the recovery information in packet Pi by trying key
ki−j and previous keys ki−j−1, . . . , ki−m (that it can derive
by successive hashing). No single choice of m is therefore
equally effective across receivers that have missed different
number of broadcast packets.

Instead of fixing m, the base-station can vary m in a
randomised way from packet to packet. We propose that the
base-station choose m according to a geometric distribution
given by (1 − p)m−1p for a chosen parameter p ∈ (0, 1)
(discussed further below) – the base-station can implement this
choice easily by simulating a (biased) coin toss. With such a
choice of m by the base-station, a receiver that has missed
k > 1 broadcast packets can successfully decrypt (step 6)
the recovery information in the received packet if and only
if k = m, which happens with probability (1 − p)m−1p. A
formal analysis of our scheme to quantify the impact of the
coin-toss bias probability p is presented next.

IV. ANALYSIS

In this section we analyse our recovery scheme to study the
impact of parameter p on the recovery probability and expected
recovery time. Let Sk denote the probability that a chosen
receiver that has lost l previous keys will recover within k
subsequent packet receipts. To compute S1, we note that the
receiver recovers using the first received packet (subsequent
to its l lost packets) only if the recovery information in that
packet was encrypted using the last key held by the receiver
– this key is l back in the chain, and the probability that
the base-station chooses that key for encrypting the recovery
information is p(1− p)l−1. Therefore

S1 = p(1− p)l−1. (1)

We can generalise this argument to obtain for general k:

Sk = Sk−1 + (1− Sk−1)p(1− p)l+k−2, (2)

which states that a receiver recovers within k steps if either
it has already recovered within k − 1 steps, or if it has
been unsuccessful in recovery in the first k − 1 steps, and
recovers successfully in the k-th step, the latter happening
with probability p(1− p)l+k−2. The recurrence in equation 2,
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Fig. 4. Ultimate recovery probability versus p for various number of lost
packets
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Fig. 5. Attempts required for 10% chance of successful recovery versus p
for various number of lost packets

together with the initial condition in equation 1, can be used
to numerically compute Sk for arbitrary k. In particular, the
probability S that the chosen receiver will ultimately recover
is given by

S = lim
k→∞

Sk. (3)

The ultimate recovery probability S is plotted in Fig. 4
as a function of the parameter p (on log scale) for various
number of keys lost by a receiver. For the special case of
exactly one lost key, p = 1 guarantees recovery since the
transmitter will always choose one key back in the chain,
which is available at the receiver, and lowering p reduces the
chances of ultimate recovery. However, for the more general
case where a receiver has missed more than one key, recovery
probability monotonically increases with decreasing p. This
can be explained by the fact that as p reduces, the transmitter
is more likely to use older keys in the chain, which gives
more opportunity to a receiver to wait for the right recovery
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key, irrespective of the number of keys it is missing.
Though a lower p increases chances of ultimate recovery,

one would expect to pay a price in terms of the time taken for
recovery (i.e. number of packets that a receiver needs before
recovery succeeds). Fig. 5 shows the number of attempts (on
log scale) needed to achieve a 10% chance of successful
recovery (namely, the lowest k for which Sk > 0.1) as a
function of p. Note that some curves terminate at the right
since larger values of p do not yield a 10% chance of ultimate
recovery. The plot clearly shows that for a given number
of lost packets l, the number of attempts is minimised at
approximately p = 1/l, and grows rapidly with p decreasing
below this value. This confirms our intuition that a small
p, though more likely to ultimate yield recovery, requires
an increasing number of attempts to do so. An operator of
this recovery scheme may therefore tune the p value in the
system to balance these two aspects depending on application
requirements and expected operating conditions.

V. PROTOTYPE IMPLEMENTATION AND RESULTS

We undertook an implementation of our scheme on a
MicaZ mote [9] based platform available from Crossbow
Technologies running TinyOS. We used the RC5 symmetric
encryption module from TinySec [10], which uses 8-byte keys.
The transmitter creates a key chain by choosing an initial 8-
byte random number and hashing it using the SHA1 algorithm
(with the lowest 8 bytes of the 20-byte result being used as
the predecessor key in the chain). It then broadcasts successive
packets with format as described earlier and shown in Fig. 2,
where the data field carries just an 8-byte sequence number
that increments with each packet. Each receiver implements
the packet processing operations, including recovery from lost
keys, described in Fig. 3. The program image on the receiver
used 16652 bytes of ROM and 3762 bytes of RAM, and fits
comfortably within the available memory on the MicaZ motes.
We programatically forced one of the receivers to periodically

drop a packet, and then timed the number of attempts required
for recovery. We performed three sets of experiments, with
settings of p = 0.5, 0.2, and 0.1 at the transmitter. For
each setting the experiment was repeated nearly 100 times
to measure the recovery time from one lost packet. Fig. 6
plots the observed cumulative recovery probability Sk as a
function of k for each of the three values of p, and also
compares them to the values obtained from eq. (2) of the
analysis. The match is found to be quite good, and validates the
analytical prediction of recovery performance against actual
implementation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have addressed the robustness of key chain
based encryption of broadcast messages in wireless sensor
networks, and developed a scheme that allows recovery of
keys missed by receivers due to packet loss. Our solution
is easy to implement, requires small computational resources
at the receiver nodes, scales well to systems with a large
number of receivers, and keeps receiver location hidden. The
ability to recover using an old key of the chain can be
balanced against the number of packets required for recovery,
allowing the operator to tune the system to balance robustness
against vulnerability to a compromised key. This trade-off was
quantified analytically, and verified experimentally on a MicaZ
mote based platform. We believe our scheme can be useful in
sensor networks used for battlefield and resource monitoring
applications that require robust mechanisms for broadcast
security. Our future work will undertake more experimental
measurements of scenarios in which receivers miss multiple
keys, and develop guidelines for tuning p under specific
application settings.
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