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Abstract

We propose an efficient framework for enabling secure
multi-party numerical computations in a Peer-to-Peer net-
work. This problem arises in a range of applications such as
collaborative filtering, distributed computation of trustand
reputation, monitoring and numerous other tasks, where the
computing nodes would like to preserve the privacy of their
inputs while performing a joint computation of a certain
function.

Although there is a rich literature in the field of dis-
tributed systems security concerning secure multi-party
computation, in practice it is hard to deploy those meth-
ods in very large scale Peer-to-Peer networks. In this work,
we examine several possible approaches and discuss their
feasibility. Among the possible approaches, we identify a
single approach which is both scalable and theoretically se-
cure.

An additional novel contribution is that we show how to
compute the neighborhood based collaborative filtering, a
state-of-the-art collaborative filtering algorithm, winner of
the Netflix progress prize of the year 2007. Our solution
computes this algorithm in a Peer-to-Peer network, using a
privacy preserving computation, without loss of accuracy.

Using extensive large scale simulations on top of real
Internet topologies, we demonstrate the applicability of our
approach. As far as we know, we are the first to implement
such a large scale secure multi-party simulation of networks
of millions of nodes and hundreds of millions of edges.

∗The work on this paper was done when DB was a Ph.D. student at the
Hebrew University of Jerusalem. Supported by The Israel Science Foun-
dation (grant No. 0397373).

†Supported by The Israel Science Foundation (grant No. 860/06).

1 Introduction

We consider the problem of performing a joint numeri-
cal computation of some function over a Peer-to-Peer net-
work. Such problems arise in many applications, for ex-
ample, when computing distributively trust [18], ranking
of nodes and data items [10], clustering [5], collaborative
filtering [6, 27], factor analysis [12] etc. The aim ofse-
cure multi-party computationis to enable parties to carry
out such distributed computing tasks in a secure manner.
Whereas distributed computing classically deals with ques-
tions of computing under the threat of machine crashes and
other inadvertent faults, secure multi-party computationis
concerned with the possibility of deliberate malicious be-
havior by some adversarial entity. That is, it is assumed that
a protocol execution may come under attack by an exter-
nal entity, or even by a subset of the participating parties.
The aim of this attack may be to learn private information
or cause the result of the computation to be incorrect. Thus,
two central requirements on any secure computation proto-
col are privacy and correctness. The privacy requirement
states that nothing should be learned beyond what is ab-
solutely necessary; more exactly, parties should learn their
designated output and nothing else. The correctness re-
quirement states that each party should receive its correct
output. Therefore, the adversary must not be able to cause
the result of the computation to deviate from the function
that the parties had set out to compute.

In this paper, we consider only functions which are built
using the algebraic primitives of addition, substraction and
multiplication. In particular, we focus on numerical meth-
ods which are computed distributively in a Peer-to-Peer net-
work, where in each iteration, every node interacts with
a subset of its neighbors by sending scalar messages, and
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computing a weighted sum of the messages that it receives.
Examples of such functions are belief propagation [22], EM
(expectation maximization) [12], Power method [18], sepa-
rable functions [20], gradient descent methods [25] and lin-
ear iterative algorithms for solving systems of linear equa-
tions [9]. As a specific example, we describe the Jacobi
algorithm in detail in Section 5.1.

There is a rich body of research on secure computation,
starting with the seminal work of Yao [26]. Part of this re-
search is concerned with the design ofgenericsecure pro-
tocols that can be used for computing any function (for ex-
ample, Yao’s work [26] for the case of two participants, and
e.g. [8, 16] for solutions for the case of multiple partici-
pants). There are several works concerning theimplemen-
tation of generic protocols for secure computation. For ex-
ample, FairPlay [19] is a system for secure two-party com-
putation, and FairPlayMP [7] is a different system for secure
computation by more than two parties. These two systems
are based (like Yao’s protocol) on reducing any function
to a representation as a Boolean circuit and computing the
resulting Boolean circuit securely. Our approach is much
more efficient, at the cost of supporting only a subset of the
functions the FairPlay system can compute.

A different line of work studies secure protocols for com-
puting specific functions (rather than generic protocols for
computing any function). Of particular interest for us are
works that add a privacy preserving layer to the computa-
tion of functions such as the factor analysis learning prob-
lem (for which [12] describes a secure multi-party protocol
using homomorphic encryption), computing trust in a Peer-
to-Peer network (for which [18] suggests a solution using
a trusted third party), or the work of [25], which is closely
related to our work, but is limited to two parties.

Most previous solutions for secure multi-party compu-
tation suffer from one of the following drawbacks: (1)
they provide a centralized solution where all information
is shipped to a single computing node, and/or (2) require
communication between all participants in the protocol,
and/or (3) require the use of asymmetric encryption, which
is costly. In this work, we investigate secure computation in
a Peer-to-Peer setting, where each node is only connected to
some of the other nodes (its neighbors). We examine differ-
ent possible approaches, and out of the different approaches
we identify a single approach, which is theoretically secure,
efficient, and scalable.

Security is often based on the assumption that there is
an upper bound on theglobal number of malicious partici-
pants. In our setting, we consider the number of malicious
nodes in eachlocal vicinity. Furthermore, most of the ex-
isting algorithms scale to tens or hundreds of nodes at the
most. In this work, we address the problem in a setting of a
large Peer-to-Peer network, with millions of nodes and hun-
dreds of millions of communication links. Unlike most of

the previous work, we have performed avery large scale
simulation, using real Internet topologies, to show our ap-
proach is applicable to real network settings.

As an example for applications of our framework, we
take the neighborhood based collaborative filtering [6]. This
algorithm is a recent state-of-the-art algorithm. There are
two challenges in adapting this algorithm to a Peer-to-Peer
network. First, the algorithm is centralized and we propose
a method to distribute it. Second, we add a privacy pre-
serving layer, so no information about personal ranking is
revealed during the process of computation.

The paper is organized as follows. In Section 2 we for-
mulate our problem model. In Section 3 we give a brief
background of cryptographic primitives that are used in our
schemes. Section 4 outlines our novel construction. We
give a detailed case study of collaborative filtering as an ex-
ample application in Section 5. Large scale simulations are
presented in Section 6. We conclude in Section 7.

We use the following notations:T stands for a vector or
matrix transpose, the symbols{·}i and{·}ij denote entries
of a vector and matrix, respectively. The spectral radius
ρ(B) , max1≤i≤s(|λi|), whereλ1, . . . λs are the eigenval-
ues of a matrixB. Ni is the set of neighboring nodes to
nodei.

2 Our Model

Given a Peer-to-Peer network graphG = (V,E) with
|V | = n nodes and|E| = e edges, we would like to per-
form a joint iterative computation. Each nodei starts with
a scalar state1 x0

i ∈ R, and on each round, sends messages
to a subset of its neighbors. We denote a message sent from
nodei to nodej at roundr asmr

i,j .
Let Ni denote the set of neighboring nodes ofi. De-

note the neighbors of nodei as ni1 , ni2 , . . . , nik , where
k = |Ni|. We assume, wlog, that each node sends a mes-
sage to each of its neighbors. On each roundr = 1, 2, · · · ,
nodei computes, based on the messages it received, a func-
tion f : Rk+1 → Rk+1,

〈xr
i ,m

r
i,ni1

, · · · ,mr
i,nik

〉 = f(xr−1
i ,mr−1

ni1
,i, · · · ,m

r−1
nik

,i)

Namely, the function gets as input the initial state and all the
received neighbor messages of this round and outputs a new
state and messages to be sent to a subset of the neighbors
at the next round. The iterative algorithms are run either
a predetermined number of rounds, or until convergence is
detected locally.

In this paper, we are only interested in functionsf which
compute weighted sums on each iteration. Next we show
that there is a variety of such numerical methods. Our goal

1An extension to the vector case is immediate, we omit it for the clarify
of description.
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is to add a privacy preserving layer to the distributed com-
putation, such that the only information learned by a node
is its share of the output.

We use the semi-honest adversaries model: in this model
(common in cryptographic research of secure computation)
even corrupted parties are assumed to correctly follow the
protocol specification. However, the adversary obtains the
internal states of all the corrupted parties (including the
transcript of all the messages received), and attempts to use
this information to learn information that should remain pri-
vate.2 In Section 7 discuss the possibility for extending our
construction to the “malicious adversary”, which can be-
have arbitrarily.

We define a configurable local system parameterdi,
which defines the maximum number of nodes in the local
vicinity of nodei (direct neighbors of nodei) which are cor-
rupt. Whenever this assertion is violated, the security of our
proposed scheme is affected. This is a stronger requirement
from our system, relative to the traditional global bound on
the number of adversarial nodes.

3 Cryptographic primitives

We compare several existing approaches from the liter-
ature of secure multi-party computation and discuss their
relevance to Peer-to-Peer networks.

3.1 Random perturbations

The random additive perturbation method attempts to
preserve the privacy of the data by modifying values of the
sensitive attributes using a randomized process (see [4, 13,
14]). In this approach, the node sends a valueui+ v, where
ui is the original scalar message, andv is a random value
drawn from a certain distributionV . In order to perturb
the data,n independent samplesv1, v2, · · · , vn, are drawn
from a distributionV . The owners of the data provide the
perturbed valuesu1 + v1, u2+ v2, · · · , un+ vn and the cu-
mulative distribution functionFV (r) of V . The goal is to
use these values, instead of the original ones, in the com-
putation. (It is easy to see, for example, that if the expected
value ofV is0, then the expectation of the sum of theui+vi
values is equal to the expectation of theui values.) The

2Security against semi-honest adversaries might be justified if the par-
ties participating in the protocol are somewhat trusted, orif we trust the
participating parties at the time they execute the protocol, but suspect that
at a later time an adversary might corrupt them and get hold ofthe tran-
script of the information received in the protocol.

We note that protocols secure against malicious adversaries are con-
siderably more costly than their semi-honest counterparts. For example,
the generic method of obtaining security against maliciousadversaries is
through the GMW compiler [16] which adds a zero-knowledge proof for
every step of the protocol.

hope is that by adding random noise to the individual data
points it is possible to hide the individual values.

The random perturbation model is limited. It supports
only addition operations, and it was shown in [13] that this
approach can ensure very limited privacy guarantees. We
only demonstrate this method as a lightweight protocol,
mainly for comparing its running time with the other pro-
tocols.

3.2 Shamir’s Secret Sharing (SSS)

Secret sharing is a fundamental primitive of crypto-
graphic protocols. We will describe the secret sharing
scheme of Shamir [23]. The scheme works over a fieldF ,
and we assume the secrets to be an element in that field.
In ak-out-of-n secret sharing the owner of secret wishes to
distribute it betweenn players such that any subset ofk of
them is able to recover the secret, while no subset ofk − 1
players is able to learn any information about the secret.

In order to distribute the secret, its owner chooses a
random polynomialP () of degreek − 1, subject to the
constraint thatP (0) = s. This is done by choosing ran-
dom coefficientsa1, . . . , ak−1 and defining the polynomial
as P (x) = s +

∑k−1
i=1 aix

i. Each player is associated
with an identity in the field (denotedx1, . . . , xn for play-
ers1, . . . , n, respectively). The share that playeri receives
is the valueP (xi), namely the value of the polynomial eval-
uated at the pointxi. It is easy to see that anyk players can
recover the secret, since they havek values of the polyno-
mial and can therefore interpolate it and compute its free
coefficients. It is also not hard to see that any set ofk − 1
players does not learn any information abouts, since any
value ofs has a probability of1/|F | of resulting in a poly-
nomial which agrees with the values that the players have.

3.3 Homomorphic encryption

A homomorphic encryption scheme is an encryption
scheme which allows certain algebraic operations to be car-
ried out on the encrypted plaintext, by applying an efficient
operation to the corresponding ciphertext (without knowing
the decryption key!). In particular, we will be interested
in additively homomorphic encryption schemes: Here, the
message space is a ring (or a field). There exists an effi-
cient algorithm+pk whose input is the public key of the
encryption scheme and two ciphertexts, and whose output
is Epk(m1) +pk Epk(m2) = Epk(m1 + m2). (Namely,
this algorithm computes, given the public key and two ci-
phertexts, the encryption of the sum of the plaintexts of two
ciphertexts.) There is also an efficient algorithm·pk, whose
input consists of the public key of the encryption scheme, a
ciphertext, and a constantc in the ring, and whose output is
c ·pk Epk(m) = Epk(c ·pk m).

3



We will also require that the encryption scheme has se-
mantic security. An efficient implementation of an addi-
tive homomorphic encryption scheme with semantic secu-
rity was given by Paillier [21]. In this cryptosystem the
encryption of a plaintext from[1;N ], where N is an RSA
modulus, requires two exponentiations moduloN2. De-
cryption requires a single exponentiation. We will use this
encryption scheme in our work.

3.3.1 Paillier encryption

We describe in a nutshell the Paillier cryptosystem. Fuller
details are found on [21].

• Key generation Generate two large primes p and q.
The secret keysk is λ = lcm(p − 1, q − 1). The
public keypk includesN = pq andg ∈ ZN2 such that
g ≡ 1 mod N .

• Encryption Encrypt a messagem ∈ ZN with ran-
domnessr ∈ Z

∗
N2 and public keypk asc = gmrN

mod N2.

• Decryption Decrypt a ciphertextc ∈ Z
∗
N2 . Decryption

is done using:L(cλ mod N2)
L(gλ mod N2) mod N whereL(x) =

(x− 1)/N .

4 Our construction

The main observation we make is that numerous dis-
tributed numerical methods compute in each node a
weighted sum of scalarsmji, received from neighboring
nodes, namely

∑

j∈Ni

aijmji, (1)

where the weight coefficientsaij are known constants. This
simple building block, captures the behavior of multiple
numerical methods. By showing ways to compute this
weighted sum securely, our framework can support many
of those numerical methods. In this section we introduce
three possible approaches for performing the weighted sum
computation.

In Section 5.1 we give an example of the Jacobi algo-
rithm which computes such a weighted sum on each itera-
tion.

4.1 Random perturbations

In each iteration of the algorithm, whenever a node needs
to send a valuemji to a neighboring node, the node gener-
ates a random numberrj,i using the GMP library [1], from
a probability distribution with zero mean. It then sends the

valuemji + rj,i to the other node. As the number of neigh-
bors increases, the computed noisy sum

∑

j∈Ni
(mji+ rj,i)

converges to the actual sum
∑

j∈Ni
mji.

When the node computes a weighted sum of the mes-
sages it received as in equation 1, it multiplies each incom-
ing message by the corresponding weight. The computed
noisy sum

∑

j∈Ni
aij(mji + rj,i) converges to the actual

sum
∑

j∈Ni
aimji.

We note again that this method is considered mainly for
a comparison of its running time with that of the other meth-
ods.

4.2 Homomorphic Encryption

We chose to utilize the Paillier encryption scheme,
which is an efficient realization of an additive homomor-
phic encryption scheme with semantic security.

Key generation: We use the threshold version of
the Paillier encryption scheme described in [15]. In this
scheme, a trusted third party generates for each nodei pri-
vate and public key pairs.3 The public key is disseminated
to all of nodei neighbors. The private keyλi = prvk(i)
is kept secret from all nodes (including nodei). Instead,
it is split, using secret sharing, to the neighbors of node
i. There is a thresholddi, which is at most equal to|Ni|,
the number of neighbors of nodei. The scheme ensures
that any subset ofdi of the neighbors of nodei can help
it decrypt messages (without the neighbors learning the
decrypted message, or nodei learning the private key). If
di = |Ni| then the private key is shared by giving each
neighborj a random valuesji subject to the constraint
∑

j∈Ni
sji = λi = prvk(i). Otherwise, ifdi < |Ni| the

valuessji are shares of a Shamir secret sharing ofλi. Note
that fewer thandi neighbors cannot recover the key.

Using this method, all neighboring nodes of nodei
can send encrypted messages usingpubk(i) to node i,
while nodei cannot decrypt any of these messages. It can,
however, aggregate the messages using the homomorphic
property and ask a coalition ofdi or more neighbors to help
it in decrypting the sum.

The initialization step of this protocol is as follows:

H0 The third party creates for nodei a public and private
key pair, [pubk(i), prvk(i)]. It sends the public key
pubk(i) to all of nodei’s neighbors, and splits the pri-
vate key into shares, such that each nodei neighbors
gets a sharesji. If di = |Ni| thenprvk(i) = λi =

3It is also possible to generate the key in a distributed way, without
using any trusted party. This option is less efficient. We show that even the
usage of a centralized key generation process is not efficient enough, and
therefore we did not implement the distributed version of this protocol.
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∑

j∈Ni
sji. Otherwise thesji values are Shamir shares

of the private key.

One round of computation: In each round of the algo-
rithm, when a nodej would like to send a scalar valuemji

to nodei it does the following:

H1 Encrypt the messagemji, using nodei public key to
getCji = Epubk(i)(mji).

H2 Send the resultCji to nodei.

H3 Nodei aggregates all the incoming messageCji, using
the homomorphic property to getEpubk(i)(

∑

aijmji)

After receiving all messages:Nodei’s neighbors assist it
in decrypting the resultxi, without revealing the private key
prvk(i). This is done as follows (for the casedi = |Ni|):
Recall that in a Paillier decryption nodei needs to raise the
result computed in [H3] to the power of its private keyλi.

H4 Nodei sends all its neighbors the result computed in
[H3]: Ci = Epubk(i)(

∑

aijmji).

H5 Each neighbor, computes a part of the decryption
wji = C

sji
i wheresji are nodei private key shares

computed in step [H0], and sends the resultwji to node
i.

H6 Nodei multiplies all the received values to get:

Πj∈Ni
wji = C

P

j∈Ni
si

i = Cλi

i =
∑

aijmji mod N.

(2)

If di < |Ni| then the reconstruction is done using Lagrange
interpolation in the exponent, where nodei needs to raise
eachwji value by the corresponding Lagrange coefficient,
and then multiply the results.

Regarding message overhead, first we need to generate
and disseminate public and private keys. This operation re-
quires2e messages, wheree = |E| is the number of graph
edges. In each iteration we send the same number of mes-
sage as in the original numerical algorithm. However, as-
suming a security ofℓ bits, and a working precision ofd
bits, we increase the size of the message by a factor ofℓ

d
.

Finally, we adde messages for obtaining the private keys
parts in step H4.

Regarding computation overhead, for each sent message,
we need to perform one Paillier encryption in step H1. In
step H3 the destination node performs additionalk−1 mul-
tiplications, and one decryption in step H4. At the key gen-
eration phase, we add generation ofn random polynomial
and their evaluation. In step H4 we compute an extrapo-
lation of thosen polynomials. The security of the Paillier
encryption is investigated in [21, 15], where it was shown
that the system provides semantic security.

4.3 Shamir Secret Sharing

We propose a construction based on Shamir’s secret
sharing, which avoids the computation cost of asymmet-
ric encryption. In a nutshell, we use the neighborhood of
a node for adding a privacy preserving mechanism, where
only a coalition ofdi or more nodes can reveal the content
of messages sent to that node.

In each round of the algorithm, when a nodej would like
to send a scalar valuemji to nodei it does the following:

S1 Generate a random polynomialPji of degreedi − 1,
of the typePji(x) = mji +

∑di−1
i=1 aix

i (wheredi ≤
|Ni|).

S2 For each neighborl of nodei, create a shareCjil of the
polynomialPji(x) by evaluating it on a single pointxl.

S3 SendCjil to nodel, which isi’s neighbor.

S4 Each neighborl of nodei aggregates the shares it re-
ceived from all neighbors of nodei and computes the
valueSli =

∑

j∈Ni
aijPji(xl). (Note that the result

of this computation is equal to the value of a polyno-
mial of degreedi − 1, whose free coefficient is equal
to theweightedsum of all messages sent to nodei by
its neighbors.)

S5 Each neighborl sends the sumSli to nodei.

S6 Nodei treats the value received from nodel as a value
of a polynomial of degreedi − 1 evaluated at the point
xi.

S7 Nodei interpolatesPi(x) for extracting the free coef-
ficient, which in this case is the weighted sum of all
messages

∑

j∈Ni
aijmji.

Note that the messagemji sent by nodej remains hid-
den if less thandi neighbors ofi collude to learn it (this
is ensured since these neighbors learn strictly less thandi
values of a polynomial of degreedi − 1). The protocol re-
quires each nodej to send messages to all other neighbors
of each of its neighbors. We discuss the applicability of this
requirement in Section 7.

4.4 Extending the method to support
multiplication

Assume that nodei needs to compute the multiplication
of the values of two messages that it receives from nodesj
andj′. The Shamir secret sharing scheme can be extended
to support multiplication using the construction of Ben-Or,
Goldwasser and Wigderson, whose details appear in [8].
This requires two changes to the basic protocol. First, the
degree of the polynomials must be strictly less than|Ni|/2,
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Figure 1. Schematic message flow in the pro-
posed methods. The task of node i is to com-
pute the sum of all messages: mki+mji+mli

(a) describes a message sent from j to i us-
ing random perturbation. (b) describes steps
[S3] in our SSS scheme, where the same
message mji is split into shares sent to all of
i neighbors. (c) describes steps [S4] in our
SSS scheme, where shares destined to i are
aggregated by its neighbors. (d) shows steps
[H6] in our SSS scheme, which is equivalent
(in term of message flow) to step [H2] in our
homomorphic scheme.

where|Ni| is the number of neighbors of the node receiv-
ing the messages. (This means, in particular, that securityis
now only guaranteed as long as less than half of the neigh-
bors collude.) In addition, the neighboring nodes must ex-
change a single round of messages after receiving the mes-
sages from nodesj andj′. We have not implemented this
variant of the protocol.

4.5 Working in different fields

The operations that can be applied to secrets in the
Shamir secret sharing scheme, or to encrypted values in
a homomorphic encryption scheme, are defined in a finite
field or ring over which the schemes are defined (for exam-
ple, in the secret sharing case, over a fieldZp wherep is a
prime number). The operations that we want to compute,
however, might be defined over the Real numbers. Working
in a field is sufficient for computing additions or multipli-
cations of integers, if we know that the size of the field is
larger than the maximum result of the operation. If the ba-
sic elements we work with are Real numbers, we can round
them first to the next integer, or, alternatively, first multi-
ply them by some constantc (say,c = 106) and then round
the result to the closest integer. (This essentially means that
we work with accuracy of1/c if the computation involves
only additions, or an accuracy of1/cd if the computation
involves summands composed of up tod multiplications.)

Handling division is much harder, since we are essen-
tially limited to working with integer numbers. One pos-
sible workaround is possible if we know in advance that a
numberx might have to be divided by a different number
from a setD (say, the numbers in the range[1, 100]). In
that case we first multiplyx by the least common multiple
(lcm) of the numbers inD. This initial step ensures that di-
viding the result by a number fromD results in an integer
number.

5 Case Study: neighborhood based collabo-
rative filtering

To demonstrate the usefulness of our approach, we give
a specific instance of a problem our framework can solve,
preserving users’ privacy. Our chosen example is in the field
of collaborative filtering. We have chosen to implement
the neighborhood based collaborative filtering algorithm,
a state-of-the-art algorithm, winner of the Netflix progress
prize of 2007. When adapting this algorithm to a Peer-to-
Peer network, there are two main challenges: first, the al-
gorithm is centralized, while we would like to distribute it,
without losing accuracy of the computed result. Second,
we would like to add a privacy preserving layer, which pre-
vents the computing nodes from learning any information
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about neighboring nodes or other nodes rating, except of
the computed solution.

We first describe the centralized version, and later we
extend it to be computed in a Peer-to-Peer network. Given
a possibly sparse user ratings matrixRm×n, wherem is the
number of users andn is the number of items, each user
likes to compute an output ratings for all the items.

In the neighborhood based approach [6], the output rat-
ing is computed using a weighted average of the neighbor-
ing peers:

rui =
∑

j∈Ni

rujwuj .

Our goal is to find the weights matrixW wherewij signi-
fies the weight nodei assigns nodej.

We define the following least square minimization prob-
lem for useri :

min
w

∑

v 6=u

(rvi −
∑

j∈Ni

wijrvj)
2 .

The optimal solution is formed by differentiation and so-
lution of a linear systems of equationsRw = b. The opti-
mal weights (for each user) are given by:

w = (RTR)−1RTb (3)

We would like to distribute the neighborhood based col-
laborative filtering problem to be computed in a Peer-to-
Peer network. Each peer has its own rating as input (the
matching row of the matrixR) and the goal is to com-
pute locally, using interaction with neighboring nodes, the
weight matrixW, where each node has the matching row in
this matrix. Furthermore, the peers would like to keep their
input rating private, where no information is leaked during
the computation to neighboring or other nodes. The peers
will obtain only their matching output rating as a result of
this computation.

We propose a secure multi-party computation frame-
work, to solve the collaborative filtering problem efficiently
and distributively, preserving users’ privacy. The computa-
tion does not reveal any information about users’ prior rat-
ings, nor on the computed results.

5.1 The Jacobi algorithm for solving sys-
tems of linear equations

In this section we give an example of one of the simplest
iterative algorithms for solving systems of linear equations,
the Jacobi algorithm. This will serve as an example for an
algorithm our framework is able to compute, for solving the
neighborhood based collaborative filtering problem. Note
that there are numerous numerical methods we can compute
securely using our framework, among them Gauss Seidel,

EM (expectation minimization), Conjugate gradient, gradi-
ent descent, Belief Propagation, Cholskey decomposition,
principal component analysis, SVD etc.

Given a system of linear equationsAx = b, whereA is
a matrix of sizen × n, ∀iaii 6= 0 andb ∈ R

n, the Jacobi
algorithm [9] starts from an initial guessx0, and iterates:

xr
i =

bi −
∑

j∈Ni
aijx

r−1
j

aii
(4)

The Jacobi algorithm is easily distributed since initially
each node selects an initial guessx0

i , and the valuesxr
j

are sent among neighbors. A sufficient condition for the
algorithm convergence is when the spectral radiusρ(I −
D−1A) < 1, whereI is the identity matrix andD =
diag(A). This algorithm is known to work in asynchronous
settings as well. In practice, when converging, the Jacobi
algorithm convergence speed is logarithmic inn4.

Our goal is to compute aprivacy-preservingversion of
the Jacobi algorithm, where the inputs of the nodes are pri-
vate, and no information is leaked during the rounds of the
computation.

Note, that the Jacobi algorithm serves as an excellent ex-
ample since its simple update rule contains all the basic op-
eration we would like to support: addition, multiplication
and substraction. Our framework supports all of those nu-
merical operations, thus capturing numerous numerical al-
gorithms.

5.2 Using the Jacobi algorithm for solving
the neighborhood based collaborative
filtering problem

First, we perform a distributed preconditioning of the
matrixR. Each nodei divides its input row of the matrixR
by Rii. This simple operation is done to avoid the division
in 4, while not affecting the solution vectorw.

Second, since Jacobi algorithm’s input is a squaren× n
matrix, and our rating matrixR is of sizem × n, we use
the following “trick”: We construct a new symmetric data
matrix R̃ based on the non-rectangular rating matrixR ∈
R

m×n

R̃ ,

(

Im RT

R 0

)

∈ R
(m+n)×(m+n). (5)

Additionally, we define a new vector of variables̃w ,

{ŵT , zT }T ∈ R
(m+n)×1, wherex̂ ∈ R

m×1 is the (to be
shown) solution vector andz ∈ R

n×1 is an auxiliary hid-
den vector, and a new observation vectorb̃ , {0T ,bT }T ∈
R

(m+n)×1.
4Computing the pseudo inverse solution (equation 2) iteratively can be

done more efficiently using newer algorithms, for example [11]. For the
purpose of the clarify of explanation, we use the Jacobi algorithm.
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Now, we would like to show that solving the symmet-
ric linear systemR̃w̃ = b̃, taking the firstm entries of the
corresponding solution vector̃w is equivalent to solving the
original systemRw = b. Note that in the new construc-
tion the matrixR̃ is still sparse, and has at most2mn off-
diagonal nonzero elements. Thus, when running the Jacobi
algorithm we have at most2mn messages per round.

Writing explicitly the symmetric linear system’s equa-
tions, we get

ŵ+RT z = 0, Rŵ = b.

By extractingŵ we have

ŵ = (RTR)−1RTb.

the desired solution of equation 3.

6 Experimental Results

We have implemented our proposed framework using a
large scale simulation. Our simulation is written in C, con-
sists of about 1500 lines of code, and uses MPI, for running
the simulation in parallel. We run the simulation on a cluster
of Linux Pentium IV computers, 2.4Ghz, with 4GB RAM
memory. We use the open source Paillier implementation
of [3].

We use several large topologies for demonstrating the
applicability of our approach. The DIMES dataset [24] is
an Internet router topology of around 300,000 routers and
2.2 million communication links connecting them, captured
in January 2007. The Blog network, is a social network,
web crawl of Internet blogs of half a million blog sites
and eleven million links connecting them. Finally, the Net-
flix [2] movie ratings data, consists of around 500,000 users
and 100,000,000 movie ratings. This last topology is a bi-
partite graph with users at one side, and movies at the other.
This topology is not a Peer-to-Peer network, but relevant for
the collaborative filtering problem. We have artificially cre-
ated a Peer-to-Peer network, where each user is a node, the
movies are nodes as well, and edges are the ratings assigned
to the movies.

Topology Nodes Edges Data Source
Blogs Web Crawl 1.5M 8M IBM

DIMES 337,326 2,249,832 DIMES
Netflix 497,759 100M Netflix

Table 1. Topologies used for experimenta-
tion

We ignore algorithm accuracy since this problem was
addressed in detail in [6]. We are mainly concerned with
the overheads of the privacy preserving mechanisms. Based
on the experimental results shown below, we conclude that

the main overhead in implementing our proposed mecha-
nisms is the computational overhead, since the communi-
cation latency exists anyway in the underlying topology,
and we compare the run of algorithms with and without the
added privacy mechanisms overhead. For that purpose, we
ignore the communication latency in our simulations. This
can be justified, because in the random perturbations and
homomorphic encryption schemes, we do not change the
number of communication rounds, so the communication
latency remains the same with or without the added privacy
preserving mechanisms. In the SSS scheme, we double the
number of communication rounds, so the incurred latency
is doubled as well.

Table 2 compares the running times of the basic oper-
ations in the three schemes. Each operation was repeated
100,000 times and an average is given. As expected the
heaviest computation is the Paillier asymmetric encryption,
with a security parameter of 2,048 bits. It can be easily ver-
ified, that while the SSS basic operation takes around tens
of microseconds, the Paillier basic operations takes frac-
tions of seconds (except of the homomorphic multiplication
which is quite efficient since it does not involve exponentia-
tion). In a Peer-to-Peer network, when a peer has likely tens
of connections, sending encrypted message to all of them
will take several seconds. Furthermore, this time estimation
assumes that the values sent by the function are scalars. In
the vector case, the operation will be much slower.

Table 3 outlines the running time needed to run 8 iter-
ations of the Jacobi algorithm, on the different topologies.
Four modes of operations are listed: no privacy preserv-
ing means we run the algorithm without adding any privacy
layer for baseline timing comparison. Next, our three pro-
posed schemes are shown.

In the Netflix dataset, we had to use eight computing
nodes in parallel, because our simulation memory require-
ment could not fit into one processor.

As clearly shown in Table 3, our SSS scheme has sig-
nificantly reduced computation overhead relative to the ho-
momorphic encryption scheme, while having an equivalent
level of security (assuming that the Paillier encryption is
semantically secure). In a Peer-to-Peer network, with tens
of neighbors, the homomorphic encryption scheme incurs a
high overhead on the computing nodes.

7 Conclusion and Future Work

As is demonstrated by the experimental results section,
we have shown that the secret sharing scheme has the lowest
computation overhead relative to the other schemes. Fur-
thermore, this scheme does not involve a trusted third party,
as needed by the homomorphic encryption scheme for the
threshold key generation phase. The size of the messages
sent using this method is about the same as in the origi-
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Scheme Operation Time (micro second) Msg size (bytes)
Random perturbation Adding noise 0.0783745 8

Receiver operation −
SSS Polynomial generation and evaluation 11.18382125 8

Polynomial extrapolation 6.13709025
Paillier Key generation 5016199.4 2048

Encryption 203478.62
Decryption 193537.97
Multiplication 99.063958

Table 2. Running time of local operations. As expected, the P aillier cryptosystem basic operations
are time consuming relative to the SSS scheme.

Topology Scheme Time (HH:MM:SS) computing nodes
DIMES None 0:33.36 1

Random Perturbations 0:35.27 1
SSS 10:53.44 1
Paillier 28:44:24.00 1

Blogs None 1:28.16 1
Random Perturbations 1:34.85 1
SSS 38:00.24 1
Paillier 101:52:00.00 1

Netflix None 5:31.14 8
Random Perturbations 5:54.69 8
SSS 21:40.00 8
Paillier - -

Table 3. Running time of eight iterations of the Jacobi algor ithm. The baseline timing is compared to
running without any privacy preserving mechanisms added. E mpirical results show that computa-
tion time of the homomorphic scheme is a factor of about 1,350 times slower then the SSS scheme.

nal method, unlike the homomorphic encryption which sig-
nificantly increases message sizes. However, the drawback
of this scheme is that neighboring nodes to nodei need to
communicate directly between themselves (and each mes-
sage sent to nodei needs to be converted to messages sent
to all its neighbors). In Peer-to-Peer systems with locality
property it might be reasonable to assume that communi-
cation between the neighbors of nodei is possible. (There
is a way to circumvent this requirement, by adding asym-
metric encryption. Each node will have a public key, where
message destined to this node are encrypted using its public
key. That way if nodej needs to send a message to node
l, it can ask nodei do deliver it, while ensuring that nodei
does not learn the content of the message. We identify this
extension to our scheme as an area for future work.

Another area of future work is the extension of our work
to support malicious participants. The threshold Paillier
cryptosystem supports verification keys [15], that enable
participants to verify validity of encrypted messages. Simi-
larly, verifiable secret sharing schemes like [17] can be used

to secure secret sharing against malicious participants, by
verifying validity of polynomial shares.

Regarding the operation in synchronous communication
rounds, we have assumed, in order to simplify our exposi-
tion, that the iterations of the peers are synchronized. How-
ever, in practice it is not valid to assume that the clocks
and message delays are synchronized in a large Peer-to-Peer
network. Luckily, it is known that linear iterative algorithms
such as the Jacobi algorithm converge in asynchronous set-
tings as well (meaning that some peers might have made
more iterations than other peers but the resulting computa-
tion will still converge to the same optimal solution).
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