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Abstract. Enabling Internet connectivity for mobile objects that do
not have a permanent home or regular movements is a challenge due to
their varying energy budget, intermittent wireless connectivity, and in-
accessibility. We present a hardware and software framework that offers
robust data collection, adaptive execution of sensing tasks, and flexible
remote reconfiguration of devices deployed on nomadic mobile objects
such as animals. The framework addresses the overall complexity through
a multi-tier architecture with low tier devices operating on a tight energy
harvesting budget and high tier cloud services offering seamless delay-
tolerant presentation of data to end users. Based on our multi-year ex-
perience of applying this framework to animal tracking and monitoring
applications, we present the main challenges that we have encountered,
the design of software building blocks that address these challenges, and
examples of the data we collected on flying foxes.

1 Introduction

Tracking wildlife at continental scale has received high research interest for
decades due its significance for ecological conservation and disease spread mon-
itoring. Ecologists are interested in understanding the movement and condition
of animals across different landscapes and environmental conditions, as this un-
derstanding can lead to better conservation and management decisions [I1]. The
significance of wildlife tracking is further amplified for species that can carry
virulent and potentially deadly diseases, as the movement of animals correlates
highly with the likelihood that the disease spreads across the landscape [9]. For
instance, fruit bats are known carriers of viruses such as Nipah, Ebola, and
Hendra. Australian federal and state governments have set up a national moni-
toring program to understand where these highly mobile animals travel for better
understanding of Hendra virus dynamics, through a combination of individual
animal tracking tags and manual surveys of roosting sites.

Effectively tracking wildlife involves temporal, spatial, and functional as-
pects. On the temporal dimension, ecologists need individual tracking of animals
that is long-term, high frequency, and delay-tolerant. Long-term operation is re-
quired because the animals move in nomadic patterns that vary over time scales



of weeks to months. High frequency position and condition sampling are impor-
tant for fine-grained understanding of animal movement patterns and behaviour.
Delay-tolerant operation ensures that the data from tagged animals with pro-
longed disconnections from the communication infrastructure is reported once
connectivity returns. Spatially, tracked animals can move large distances over
short time periods. For instance, flying foxes can typically move tens of kilo-
metres over a night, and have been reported to move up to 600 kilometres in
one night. The communication infrastructure for retrieving data from tracked
animals must therefore be spatially spread across large geographical areas and
must provide seamless and efficient download capabilities. Finally, at an op-
erational level, wildlife tracking is clearly a long-term activity where many of
the research questions evolve with inflow of new data, which necessitates highly
reconfigurable and re-taskable systems.

Recent work in wildlife tracking, however, falls short on addressing the above
requirements. Most tracking projects collect either short-term frequent data or
long-term sparse data, subject to very limited battery energy that is constrained
by the weight of tracking nodes. Delay-tolerance has been partially addressed
in some efforts by logging data continuously and offloading it when connections
resume [I2]. For tracking systems over large spatial scales, however, base sta-
tions that serve as the data collection points typically act independently, without
coordinating with other base stations to check whether data from the tracking
node had been previously downloaded. This creates potential for redundancies
in data download as well as bandwidth and energy inefficiencies in the system.
Finally, currently available systems do provide a degree of manual remote recon-
figuration of sensor sampling schedules, such as GPS, but they do not support
re-tasking or fully reprogramming nodes remotely. This limits the versatility of
tracking studies once the nodes are deployed.

This article addresses the above challenges by proposing an architecture for
long-term delay-tolerant networking, consisting of three tiers: (1) mobile nodes,
(2) gateways, and (3) cloud services. Our mobile nodes include solar panels,
GPS, and many low-power sensors, in addition to algorithms for energy-based
sensor scheduling and delay tolerant data collection. Our gateway nodes that
are spatially dispersed across an area spanning more than 2000km (see Fig-
ure [5{(a)) synchronise data availability through the cloud services tier to ensure
that data is downloaded only once throughout a continental-scale deployment.
The architecture supports, in addition to remote reconfiguration, full remote re-
programming of the nodes once they are in contact with a base station, providing
maximum versatility for long-term tracking studies. We showcase the features
of our architecture through the motivating application of tracking flying foxes
across Australia, which has inspired its original design.

2 Related Work

Technological advances in positioning systems have been adopted by scientists
to facilitate the study of animal behaviour in their natural habitat. Starting



from the 1960s, animals have been tagged with VHF radio transmitters, which
allowed to determine the animal’s location using triangulation from multiple
receiver locations. However, this process is very labour intensive, often requiring
biologists to walk through the animal’s habitat, and thus potentially affecting
the animal’s behaviour.

With the launch of the Argos satellite system in 1978 it became possible to
track platform transmitter terminals (PTT) by measuring Doppler shifts [13],
which allowed for global tracking applications with high spatio-temporal reso-
lution. Beacon signals received by the Argos satellites are forwarded to ground-
based processing stations and can then be accessed by Telnet.

The availability of the Global Positioning System (GPS) for civilian applica-
tions in the 1990s provided for the first time very accurate positioning for animal
tracking devices. Driven by advances in consumer electronics, form factor and
power consumption of GPS receivers have further decreased since then. Modern
Argos transmitters have also been combined with an integrated GPS receiver to
improve location accuracy, but still use satellites to relay positioning data.

Within the last decade, wireless radio transceivers have been integrated
into tracking devices to offload positioning samples to a base station located
within the habitat [I7] or employ cellular communication networks (GSM/G-
PRS/3G) [I] to relay position and sensor information in near real-time.

3 Challenges

Animal ethics considerations push limits of the form factor and weight of elec-
tronic devices attached to animals and deployment-of-scale requirements limit
the unit cost of tracking devices. Consequently, tracking devices will have lim-
ited computation, communication, data storage, and energy capacity available
on the device. Here, we distill the key technical challenges that we encountered
in long-term animal tracking applications.

Challenge #1: Constrained and Variable Energy Budget. Due to strin-
gent constraints for weight and form factor, mobile nodes need to rely on tiny
batteries for energy storage. Most current work in animal tracking employs non-
rechargeable batteries for high frequency sampling [7J6]. Energy harvesting al-
lows to recharge the on-board batteries and thus allows for long-term operation.
However, energy harvesting exposes new challenges with energy availability and
sensor sampling as energy budgets are dynamic and unpredictable with an order
of magnitude difference between energy harvested on sunny summer and cloudy
winter days. Therefore, the software needs to gracefully adapt to a varying en-
ergy budget. To avoid missing critical data due to lack of energy, the nodes need
to schedule sampling of several on-board sensing modalities in accordance with
the current battery state of charge, daily energy budget, and predicted activity
of the mobile object.

Challenge #2: Intermittent Network Connectivity. Wildlife can roam
vast areas each day, which are often remote and not within coverage of cellular



communication networks. Satellite-based tracking systems provide global cov-
erage, but have limited bandwidth. High subscription costs and weight/energy
constraints restrict their use in some animal tracking applications. While tradi-
tional commercial devices [7] based on VHF radio offer opportunistic wireless
download through a portable receiver device, labor costs of such human-based
data collection methods are prohibitive for large deployments. Animal track-
ing projects have mainly focused on either a single base station [17/2], which
limits their spatial scalability, or collection of contact logs [12] without captur-
ing heterogeneous sensor data, or multi-modal sensing without absolute position
sampling [6]. Instead, our software framework is designed to offer seamless com-
munication with local data buffering to support situations when animals leave
a known area for weeks and return to a different area, possibly hundreds of
kilometers away.

Challenge #3: Lack of Physical Access. Due to the nature of the deploy-
ment scenarios involving animals, physical access to nodes might not be possible
after the initial deployment, as it is often infeasible to capture a tagged ani-
mal again. Therefore, mobile nodes need to operate on a near-perpetual basis
for long periods without physical human intervention. However, our experience
has shown that it is often necessary to verify that nodes operate correctly and
to refine the initially selected sensing parameters as more data gets available.
Therefore, it is important that the software framework provides methods for
remote debugging and task configuration that operate over the wireless channel
and handle intermittent connectivity between gateways and mobile nodes.
Case Study. Our case study of flying fox tracking exemplifies this scenario.
Flying foxes, also known as fruit bats or mega bats, congregate in large numbers
in day roosts (bat camps), where placing a gateway node provides a great oppor-
tunity to download data from the tagged animals in the roost. During nightly
foraging flying foxes can fly large distances and migrate to other roosts. While
many animals come in proximity with a gateway placed at a known day roosting
camp every few days, it might also take several weeks before the next contact
with a gateway is made.

4 Network Architecture

The main challenge that we need to tackle is the lack of wireless communication
infrastructure in a majority of the animal’s habitat. Consequently, we based
our system architecture around a sparse network of gateways that communicate
directly with mobile nodes to download the most recent data and use the Internet
to connect to a cloud-based service to deliver sensor data and to synchronise the
metadata among gateways (see Figure [1)).

Mobile Nodes (Tier 1). The mobile nodes are attached to the monitored ani-
mal using specially designed collars or halters. When designing the mobile node
units, the form factor and weight restrictions heavily depend on the physical
size of the tagged objects (e.g., animal ethics regulations require collars to weigh
less than 5% of the animal’s body weight, which is about 20g for the flying
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Fig. 1. Three-tier device architecture for the delay-tolerant animal tracking and mon-
itoring (top). Mobile node integrated into a collar for flying foxes (bottom left), and a
gateway node mounted at the back of a solar panel (bottom right).

fox example). Mobile nodes feature sensor chips for multiple sensing modalities,
persistent data storage and a short-range wireless transceiver [I0]. We use the
Texas Instruments CC430 system-on-chip together with Contiki OS [5], which
is optimised to prolong node lifetime when running from small batteries. Con-
sequently, the energy budget, computational power, communication bandwidth
and storage capabilities of such devices are highly constrained.

Gateway Nodes (Tier 2). The second tier consists of battery- and solar-
powered gateway nodes, which are deployed at animal congregation areas and
are equipped with a 900 MHz short-range wireless radio to communicate with
the mobile nodes. As the communication range of the mobile nodes is typically
restricted to a few hundred meters, gateways are placed at strategic locations
where animals tend to congregate (e.g., flying foxes roosting camps, cattle drink-
ing troughs) to maximise the opportunity of wireless connectivity with mobile
nodes. Gateways are built around low-cost embedded platforms and can be con-
nected to the Internet using cellular networks, or point-to-point WiFi links.



We implemented a framework for remote method invocations with low over-

head using bi-directional radio packets between a gateway and a mobile node [I5].
A remote procedure call (RPC) is initiated by a radio packet containing the
command identifier and optional arguments and is acknowledged by a response
packet [3]. Our framework provides the flexibility to implement high-level com-
munication protocols for data download, remote configuration or reprogramming
on top of basic RPC commands (see Section @
Cloud Services (Tier 3). The third tier in our system consists of a web service
located in the cloud. As bandwidth is less restricted between gateway nodes and
the cloud services, we employ standard Internet protocols such as HTTP and
encode data traffic into JavaScript Object Notation (JSON) objects. At the core
of Tier 3 is a REST [8] web service which provides access to sensor data, global
view of the node download state, and node configuration information. The data
ingest service accepts HTTP POST requests containing the sensor data in a
JSON object wrapper and stores it using the HDF5 hierarchical storage system.
We further implemented a REST API to provide hierarchical access to resources
and sensor data, which is also used by our system dashboard for engineers and
domain scientists.
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Fig. 2. Software architecture of our framework: Sensing tasks can be remotely con-
figured using a set of simple rules that are evaluated at runtime by the energy- and
context-aware task scheduler. Sensor readings from different sources are encoded into
a TDF stream on the mobile node and decoded on the gateways before the data is
forwarded to the cloud service. Gateway nodes can update the task configuration and
program image remotely using RPC commands.

5 Energy Constraints

The main challenge of the software architecture is to integrate devices operating
in different system tiers and with different energy budgets. With the exception



of the cloud services in Tier 3, individual devices might be duty-cycled and
operate according to a schedule that depends on the available energy budget
and mobile-node related activity.

Mobile Nodes. The mobile nodes need to operate in a highly efficient manner
to meet their strict energy constraints. They must use ultra-low power in sleep
mode, optimise sensor sampling for maximum information gain, such as track-
ing animal location only when the animal is moving, and minimise idle listening
in their communication protocols. We designed the application deployed on the
mobile nodes to provide unsupervised long-term operation with energy aware-
ness. The battery state of charge is subject to fluctuation, which largely depends
on the energy consumed to execute sensing and communication tasks, and on
the amount of harvested energy [14]. At the core of the mobile node’s software
is a task scheduler, which manages different sensing tasks based on the available
energy and context, as illustrated in Figure [2|

A task configuration defines entry and exit conditions such as time of day,
battery voltage and context (e.g., animal motion detected) for each sensor pro-
cess. The task scheduler periodically checks all configurations and starts the
corresponding task if its entry conditions match. Similarly, running tasks are
checked for the specified exit conditions (e.g., number of samples acquired) and
stopped if necessary. Execution of sensing tasks based on the state of charge
allows to gracefully reduce the amount of sensor data collected with decreas-
ing battery charge level. We show an example of this scheduling mechanism for
a mobile node deployed on a flying fox in Figure [3| The scheduler adapts the
sampling rate of the GPS receiver based on the measurement of the battery
voltage. In case of a low voltage reading, the GPS is sampled less often, e.g.,
only periodic samples are taken instead of motion-triggered continuous tracking.
Consequently, more energy harvested from the solar panels can be stored in the
battery. Once the battery voltage recovers to an acceptable level, the GPS can be
scheduled more often again. Furthermore, multi-modal sensing capabilities (e.g.,
inertial, audio, temperature, pressure) can classify the node context further for
optimal scheduling of energy intensive operations, which can result in significant
energy savings [10].

Gateway Nodes. In general, continuous power supply is not available at suit-
able gateway locations in animal congregation areas. Therefore, we operate gate-
ways on batteries and employ solar panels for energy harvesting. However, it
still might become necessary to operate the embedded PC and cellular network
transceiver at a duty cycle, which will result in intermittent connectivity to the
cloud services. In order to optimise power usage at each gateway location, we
prolong gateway operation when many packets are waiting to be downloaded
from mobile nodes, while the gateway can go back to sleep immediately when
no mobile nodes are in proximity.
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Fig. 3. Battery voltage measurement and GPS starts as reported by a mobile node
attached to a free-living flying fox. The task scheduler decreases the GPS activity as
soon as the battery voltage falls below the low voltage threshold of 3.7V on Day 6. This
allows the battery to recharge and the voltage increases again. GPS sampling returns
back to normal sampling as soon as the battery voltage reaches a value of 3.9V on Day
16.

6 Intermittent Connectivity

As mobile nodes spend only short time periods in areas with wireless connec-
tivity, we need to provision for logging sensor data to a temporary storage on
mobile nodes and provide delay-tolerant mechanisms to upload the data to the
cloud services. For our flying foxes case study, we show the cumulative distribu-
tion function (CDF) of the time interval between two subsequent contacts with
a gateway node for 73 animals with collars in Figure 4l While 70% of contacts
recur daily, the remaining 30% of inter-contact intervals range between a couple
of days to up to six and half weeks, highlighting the need of supporting delay tol-
erance in the software framework. Furthermore, the framework should support
intermittent connectivity not only with the mobile nodes, but also with gateway
nodes that may be energy constrained themselves.

Data Storage and Transfer. We implemented a logging abstraction that al-
lows to access the local storage in a unified way without needing to know the
structure of the underlying hardware architecture (e.g., Flash chips or microSD
cards). The logging abstraction is based on pages, whose size corresponds to
the page size of the physical storage medium (e.g., 256 Bytes for common flash
chips). We use increasing page numbers to retrieve data from the logger and
identify data that has been downloaded already.

The data format used to store sensor readings is an important consideration
as it influences the energy efficiency of communicating the data over the radio.
For transmission efficiency reasons, we store and transmit data in a binary for-
mat, which makes it difficult for humans to interpret directly, but introduces
significant energy savings. We use the Tagged Data Format (TDF) [3] to en-
code multiple sensor readings into a byte stream. Each sensor sample is stored
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Fig. 4. Distribution of the time interval between successive contacts with a wireless
gateway for 73 flying foxes (fruit bats) collared with tracking devices.

with a unique sensor identifier, which defines how the value will be interpreted.
All sensor samples are timestamped at a granularity that fits application accu-
racy needs and storage constraints [I5]. In line with recent approaches to store
and transmit information from Internet of Things devices [4], we advocate for
separation of the actual data from metadata that defines how the data can be
interpreted. In our case, the metadata information is stored at the cloud service
to which gateways periodically synchronise (see Figure . Mobile nodes, on the
other hand, keep a static version of the metadata and backwards compatibility is
ensured through creating new data types in the metadata rather than modifying
the old ones.

Protocols for Delay-tolerant Network Operation. Organisation of our sys-
tem into three distinct tiers (mobile nodes, gateways, cloud services) enables us
to tailor communication between different tiers to meet the resource constraints
imposed by the application scenario. At the mobile node layer, we employ a uni-
cast radio communication protocol based on the Contiki RIME [5] stack for node
discovery and data transfers taking into account the highly asymmetric energy
resources available at mobile and gateway nodes. Consequently, mobile nodes
employ duty-cycling of the radio transceiver to reduce the power consumption,
while gateway nodes can afford to keep their radio enabled for longer periods.
Thereby, the mobile node’s radio remains powered off most of the time and is
only active for a short amount of time to send a packet containing node sta-
tus information. Unless the gateway requests the mobile node to keep its radio
enabled, it will go back to sleep until the next beacon is due.

We implemented a mechanism to download sensor readings from the flash
storage using our RPC framework. Data stored in flash pages are sequentially
transferred by requesting small chunks that each fits into a single radio packet. In
real-world scenarios, we achieve a throughput between 4 and 6 pages downloaded
per second. Since data transfers are initiated by the gateway, the application



logic in the mobile node is not required to keep track which parts of the buffered
sensor data have already been downloaded.

Delay-Tolerant Operation with Multiple Gateways. Gateway nodes will
forward data downloaded from mobile nodes to a web service, where sensor
readings are then stored into the database. Mobile nodes periodically broadcast
their maximum available page number, which is overheard by the gateway nodes
when in proximity. We use a central web service, which provides the lowest page
number that has not been downloaded yet and the range of pages waiting for
download. The gateway node will report the successful download of each page to
the web service. This ensures that other gateways will not attempt to download
the same memory region again in the future.

In addition to data downloaded from mobile nodes, gateway nodes will also
periodically report gateway health information to the server such as uptime,
battery state of charge, temperature conditions, and storage capacity, which are
used to monitor the reliable operation of our network of duty-cycled gateways.

Gateway nodes keep a local copy of the global node state in persistent stor-
age, which allows to operate gateway nodes when no cellular connection to the
Internet is available. In this case, sensor data downloaded from mobile nodes
is temporarily buffered on the gateway until an Internet connection becomes
available and data can be synchronised to the cloud services.

7 Configuration Management and Remote Debugging

Long-term tracking operation requires remote inspection and control of the soft-
ware running on the devices due to lack of physical access after the deployment.
For energy efficiency, the system supports reconfigurability at different levels of
the software stack: (1) changing parameters such as thresholds, (2) reconfigura-
tion of application-level logic, and (3) replacement of the whole program binary
running on the node. Remote instrumentation and debugging techniques have
proven to be a crucial tool during the initial prototyping and the actual deploy-
ment phases. We leverage our RPC command framework described in Section [4]
for interactive memory inspection and to query the application state, such as
information about running tasks, battery voltage level, and logger page count.
Remote Configuration. We use a multi-level approach for remote configura-
tion and modification of applications running on inaccessible mobile nodes. We
keep a dedicated flash memory area for persistent storage of configuration pa-
rameters. Therefore, small changes to the application, such as modifying sensor
sampling rates, can be performed without the need for updating the full applica-
tion code. Furthermore, task configurations can be added, modified or removed
using RPC commands. This proved to be a very useful tool when testing and
debugging novel software components in the field, as they can be enabled and
disabled remotely without the need to update the whole program image.
Wireless Reprogramming. Techniques for remote application updates are
known as wireless reprogramming [16]. In order to update the program code
running on the node, we split the binary application image into several smaller



chunks that can be transmitted using radio packets. At the node, the image is
then re-assembled and written to the program memory. While this approach al-
lows to replace the complete application, a considerable number of radio packets
is required to transfer the new image, so it is only used in more significant cases,
such as critical bug fixes to low-level components.

Delay-tolerant Configuration Updates. Users might want to change the
configuration of one or several nodes to adapt their sensing tasks to a changing
context or to address novel research questions. However, the specified nodes
might not come into proximity of a gateway for several weeks. Therefore, we use
a delay-tolerant approach to update the task configuration and/or the program
code running on a node, which does not require manual intervention. Upon
receiving a beacon packet from a mobile node, the gateway node requests a
description of each node’s up-to-date task configuration from the web service and
uses RPC calls to compare it to the actual configuration present on the mobile
node. If the two configurations differ, the new task configuration is written to the
node, and the gateway notifies the cloud service that the node’s configuration
has been updated. Similarly, we also check for the version number of the program
image currently running on a node and update the program binary if necessary.

8 Discussion and Lessons Learned

We have successfully implemented the proposed framework in the context of ani-
mal tracking and monitoring applications. It has become clear that a multi-tiered
architecture is necessary to shift the computational and communication complex-
ity away from inaccessible and resource-constrained devices towards the cloud.
We have also established the value of multi-level reconfiguration features for no-
madic devices without accessing them physically, ranging from simple parameter
updates to full node reprogramming, both in real-time or with delay-tolerance,
to maximise versatility as application requirements evolve over time.

Several services and abstractions turned out to be essential during prototyp-
ing, testing, and operation of these applications. First, the typed data storage
abstraction offered the necessary flexibility with adding different sensing modal-
ities to applications at various sampling rates. Next, the methods that we pro-
posed for autonomous and delay-tolerant operation of mobile nodes proved to
be of critical importance for tracking flying foxes, as data had to be buffered
locally possibly for weeks at a time until the animal returned to a roosting camp
with gateway nodes, as shown in the GPS traces presented in Figure [5 It turns
out that observed gaps in the trajectory can occur due to spurious mismatches
between the sensitivity of the accelerometer-triggered GPS sampling and the
accelerometer reading when an animal actually moves, which highlights the im-
portance of remote reconfiguration to optimise these sensitivities over time.

We also learned that while nodes can maintain a healthy battery voltage for
a given sensor sampling configuration thanks to solar harvesting, long absences
from gateways result in a backlog of data that requires significant energy for
download once the node returns (see Figure [f|c) after day 23). Sensor sampling
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battery voltage during the deployment period.

frequencies can then be reduced temporarily after this bulk download to allow
the node to recover its energy supplies. Adaptiveness of the software provided
our domain scientists with an interactive tool to adjust the way the sensors are
sampled based on retrospective data analysis or new scientific discoveries, which
provides great benefits over deploying several generations of devices during the

scientific discovery process.

While animal monitoring has helped motivate and mature our network archi-
tecture, we expect it to be useful more broadly, for instance to the traceability
of foods products in transit, and more generally to objects that move beyond

urban regions.
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