2014 22nd Mediterranean Conference on Control and Automation (MED)

University of Palermo. June 16-19, 2014. Palermo, Italy

Using the Cross-Entropy Method for Control Optimization:
A Case Study of See-and-Avoid on Unmanned Aerial Vehicles

Miguel A. Olivares-Mendez'

Abstract— This paper presents an adaptation of the Cross-
Entropy (CE) method to optimize fuzzy logic controllers. The
CE is a recently developed optimization method based on a
general Monte-Carlo approach to combinatorial and continuous
multi-extremal optimization and importance sampling. This
work shows the application of this optimization method to
optimize the inputs gains, the location and size of the different
membership functions’ sets of each variable, as well as the
weight of each rule from the rule’s base of a fuzzy logic
controller (FLC). The control system approach presented in
this work was designed to command the orientation of an
unmanned aerial vehicle (UAV) to modify its trajectory for
avoiding collisions. An onboard looking forward camera was
used to sense the environment of the UAV. The information
extracted by the image processing algorithm is the only input
of the fuzzy control approach to avoid the collision with a
predefined object. Real tests with a quadrotor have been done to
corroborate the improved behavior of the optimized controllers
at different stages of the optimization process.

I. INTRODUCTION

The control issue is one of the most important aims in
the industry, an also in robotics. In the specific case of the
aerial vehicles, the complexity increases comparing them
to ground and underwater robots. In the UAV’s case, the
control system have to deal with stability, wind disturbances
and other forces just to keep the robot hovering in an
specific location. The uncertainty, inaccuracy, approximation
and incompleteness problems of the extracted data from the
sensors have to be taken into account to close a control loop.
These issues could be deal more easily with some of the Soft
Computing (SC) approaches. Fuzzy Logic Controller (FLC)
is one of the most active and fruitful SC control techniques.
This technique use the expert knowledge to configure the
controller, but a fine tuning is also needed to adjust the
controller for the specific problem to solve. It could be done
manually or using an autonomous optimization method. The
optimization of this type of controllers for UAVs is already
presented in the literature. Some of the most relevant of
works are [1], that shows a self-tunable fuzzy inference
system (STFIS) compared with model-based control system
to control a drone in presence of disturbances. The classical
and multi-objective genetic algorithm (GA) based fuzzy-
genetic autopilot are also designed and used for a UAV
[2]. An adaptive neuro-fuzzy inference system (ANFIS)

! Automation Research Group, Interdisciplinary Centre for Security, Re-
liability and Trust (SnT), University of Luxembourg.

2Computer Vision Group (CVG), Centro de Automatica y Robotica
(CAR), Universidad Politecnica de Madrid (UPM), 28006, Madrid, Spain.

Corresponding author. Tel.: +352 46 66 44 5478; fax: +352 46 66 44
5356; E-mail: miguel.olivaresmendez@uni.lu (M. A. Olivares-Mendez).

978-1-4799-5901-3/14/$31.00 ©2014 IEEE

Changhong Fu? Somasundar Kannan

1 1

Holger Voos' Pascual Campoy?

based controller for a UAV [3] was developed to adjust the
altitude, the heading and the speed together. Usually these
kind of method are designed for the specific task of control
optimization. But there are also some other mathematical
approaches that could be adapted to the control task. This is
the case of the Cross-Entropy. This is a method that derives
its name from the Kullback-Leibler distance, also known
as Cross-Entropy distance, which is a fundamental concept
of modern information theory. The method was motivated
by an adaptive algorithm for estimating probabilities of
rare events in complex stochastic networks, which involves
variance minimization. The CE method provides a unifying
approach to simulate and optimize [4]. Several applications
demonstrate the power of the CE method like in [5] for power
system reliability evaluation, in [6] for the selection of the
right antenna in communication tasks, and in [7] for motion
planning. This optimization method was also used for tuning
controllers, by the adaptation of the values of a controllers’
gains. As far as the authors known the only works presented
in the literature using this technique and done by other
authors are the optimization of the PID gains of a simulated
inverted pendulum by Bodur [8], the optimization of gains
of a Fuzzy PD-like controller for cutting force regulation of
a drilling process by Haber et al. [9].

The sense-and-avoid problem has been identified as one
of the most significant challenges facing the integration of
aircraft into the airspace [10]. Here, the term “sense” relates
to sensor or sensors used to automatically detect the potential
collision, whilst the term “avoid” relates to the autonomous
control action used to avoid the potential collision. In the
specific case of using a camera to sense the environment this
task is called see-and-avoid. The computer vision techniques
using either a camera or a thermal image sensor have been
used with success in some work presented in the literature
as [11][12][13].

In this work is presented the adaptation of the optimization
method, not just for the optimization of the gains of the
inputs, but also for the optimization of the membership
functions’ sets of each variable (inputs and outputs), and for
the assigned weight for each rule of the base of knowledge of
a fuzzy controller. The chosen task for the control approach
is the control of the orientation of an unmanned aerial vehicle
for see-and-avoid, using the visual feedback information
from an onboard camera.

This paper is structured as follows. Section IT shows
the approach of this method to optimize a fuzzy control
approach. The section III shows the vision algorithm used for
the detection of the predefined obstacle. The fuzzy control

1183

approach developed for the see-and-avoid task is presented in
the section I'V. The results of the three optimization processes
and the comparison of the optimized and non-optimized
controllers in real tests with a quadcopter are presented in
section V. Finally, concluding remarks and future work are
presented in Section VI

II. CROSS-ENTROPY APPROACH FOR Fuzzy CONTROL
OPTIMIZATION

The Cross-Entropy method is a recent optimization ap-
proach developed for stochastic optimization and simulation.
It was developed as an efficient method for the estima-
tion of rare-event probabilities. The CE method has been
successfully applied to a number of difficult combinatorial
optimization problems. This optimization method was used
in a set of applications, but most of them dealing with static
and noisy combinatorial, and continuous global optimization
problems. In this work this method was applied for control
optimization, dealing with the specific case of a fuzzy control
system. Here, it is shown how to optimize different parame-
ters of a fuzzy controller, such as the gains, the location and
size of the membership functions, and also the rules’ weight.
It is also could be used as a guide for the optimization of
other control approaches. A deeper explanation of the Cross
Entropy method for general uses is presented on [4].

The algorithm used for the optimization of the different
parameters is almost the same with differences in the dimen-
sionality size of the problem to optimize. The optimization
of the different parameters could be done in parallel or in
series. It was decided to do it in series and following the
tuning sequence defined for Fuzzy controllers in [14]. In
this work is explained that the changes in the different parts
of a FLC structure have different effects to its behavior.
These effects goes from macroscopic to microscopic and are
easily understood considering the FLC rules’ base as a 2D
table. Any changes on the gains of the variables affect to the
whole table, causing macroscopic effects to the behavior of
the controller. This type of tuning or optimization process is
also called Scaling Factors (SF) adjustment. If a modification
is done only in one set of the membership of one of the
variables of the FLC, it will just affects to one row or one
line of the table. These effects are measured as medium size
effects. Finally if a modification is done to the output or the
weight of one rule; it will affects just to one cell of this table,
causing microscopic effects to the controller behavior.

A graphical explanation of the optimization process is
presented by a flowchart in the Figure 1. This Figure shows
the two different loops involve in the optimization process.
The central loop corresponds to the phase, where all the
controllers generated in each iteration were tested. The
external loop is for the updating of the probability density
functions, that in this case are the normal distributions.

The generic version of the optimization process for fuzzy
controllers is presented in the Algorithm 1. The first step
of the algorithm corresponds to the initialization of the CE
parameters (the first green box in the Figure 1). The second
step corresponds to the generation of all the controllers to

. Start
Main

process Simulator parameters initialization

CE parameters initialization

NO
(NumTest > maxTests) YES
or (error < epsilon)

Update the normal
distribution

Generate parameters

Cross-Entropy N controllers
Select the Nelite

process best controllers
Sort the N tests by
the objective
function
NO _LYES
(iter >N)
Load next
controller
Main end
process

Fig. 1: Flowchart of the Cross-Entropy process for control
optimization.

test in the i, iteration, as is shown in the second green box
of the principal loop in the Figure 1. In the third step of the
Algorithm, all the generated controllers are tested and sort
by a cost function. In the fourth step, the probability density
function for each component to optimize is updated, based
on the best controllers. The steps 2,3 and 4, are repeat until
the ending criterion is reached. Finally, when this ending
criterion is reached the optimization process is finished. A
more detailed explanation of this Algorithm is presented
below.

Algorithm 1 Cross-Entropy Algorithm for Fuzzy controller
optimization

1. Initialize # = 0 and v(z) = v(0)

2 Generate a sample of N controllers: (x;(7))i<i<y) from
g(x,v(1)), being each x; = (xj1,x2,...,x;h)

3. Compute ¢(x;(z)) and order ¢1,¢s,...,¢y from smallest
(j=1) to biggest (j = N).

Get the N first controllers y(t) = X{eire)-

4. Update v(r) with .

v(t+1) = argymin iz):l}ljfe Loy zy(0)) - In g(xj(),v(2))
5. Repeat from step 2 until convergence or ending criterion.
6. Assume that convergence is reached at r = t*, an optimal
value for ¢ can be obtained from g(.,v(¢)*).

The adaptation of the general Cross-Entropy method is
based on the initial idea that each N samples randomly
generated is a single fuzzy controller. The selected parameter
to optimize (gains, membership functions or rules’ weight)
has a set of & components. For example in the case of the
gains, & is equal to the number of inputs (gains) to optimize.
One probability density function (pdf) is defined for each one
of the h components of the selected parameter. The initial

1184

parameters of each pdf depend on the range of the value to
optimize. In the case of the membership functions’ sets, the
value of /1 depends on the range of the variable itself, and the
number of sets that was defined during the designing process
of the controller. In case of the rule’s weight, a range of [0, 1]
can be assigned. The probability density function selected
in this work was the normal distribution. Based on this
preliminary information the Cross-Entropy method was set to
generate in each iteration N = 100 fuzzy controllers, where
each controller x; is composed by a set of generated values of
the 4 components of the selected parameter to optimize x; =
(xilvxiZ; ~"7xih)~ The g(x,v) = (g(xl,v),g(xz,v), "'7g(xhav))
is the probability function associated to each parameter’s
component. Depending on the specific parameter to optimize
each xj1,xp,...,x;; Wwill correspond to the different gains
of the variables (inputs and outputs), the position of each
membership functions’ sets, or to each rules’ weight. Once
all the generated controllers were simulated, the controllers
were sort based on the resulting value obtained by the
selected objective function. The most commonly used are,
the Integral Time of the Absolute Error (ITAE), the Integral
Time of the Square Error (ITSE) or the Root Mean-Square
Error (RMSE). Then, only a set of selected best controllers
(N¢lte = 5) were used to update the g(x,v). In the presented
case, that the selected pdf was a normal distribution, a new
mean (fi) and a new sigma (&) values were calculated using
this set of elite controllers, as is shown in the Equation 1.

Neltte xjh

- (cjn—t)*
.ulh:Zj 1 Nelztes A r (1

Nd ite
Gt h — Z Nelite

Where x is the value of the 4 component of the parameter
to optimize that belongs to the j* elite controller in the
specific ¢ iteration of the cross-entropy method. The mean
vector fl should converge to y* and the standard deviation &
to zero.

In order to obtain a smooth update of the mean and the
variance we use a set of parameters (,o,n), where o is
a constant value used for the mean, 7 is a variable value
which is applied to the variance to avert the occurrences of
Os and 1s in the parameter vectors, and f is a constant value
which modify the value of 1(z), as is shown in the Equation
2.

N =p—F-(1- 1y
f(r)=o-p@)+(1-a) plr—1) @)
6(1)=n()-6(1)+(1-n()) 61 —-1)

Where f[i(t —1) and &(r — 1) are the previous values

of fi(t) and 6(¢). The values of the smoothing update
parameters are 0.4 < <0.9,0.6<f<09and2<g<7.

III. IMAGE PROCESSING FRONT-END

Visual awareness is achieved by using an onboard forward-
looking camera. Images from the camera were sent to a
laptop Ground Station (GS) for the off-board processing.
Then the image is processed and the information extracted
is sent to the developed control system approach, that is

running in parallel, to finally sent back the specific command
to the UAV. The detection and avoidance of the obstacle is
done using a visual algorithm based on color detection for
the gains optimization process, and based on the detection
of an augmented reality (AR) marker for the membership
functions’ sets, and rules’ weight optimizations. The second
one is more robust against illumination changes than the first
one. For both algorithms the information extracted from the
processed images is the location in the horizontal axis of
the center of the marker inside the image. This information
is used with the camera calibration to estimate the angle
between the reference position inside the image, the center
of the object and the camera location (the quadrotor). The
second algorithm used is based on a developed library of
augmented reality using OpenCV named ArUco [15].

IV. Fuzzy CONTROL APPROACH FOR SEE AND AVOID

The see-and-avoid strategy is based on the control of the
heading or orientation of the aircraft, based on the visual in-
formation. The presented control system approach was done
by the design and develop of a controller based on Fuzzy
Logic. The decision to use this technique is based on the
non-linearity of the system, the high sensibility of the UAV
against potential disturbances. Furthermore, this technique
does not need to use a model of the system to control. The
designed heading controller was developed using the Miguel
Olivares’ Fuzzy Software (MOFS) [16]. The controller was
designed as a PID-like, with three inputs and one output. The
first input is defined as the angle error between the reference
position inside the image, the current position of the object
to avoid, and the UAV. The second input is the derivative of
this angle estimation, and the third input is the integral on
time of this error. The output of the control system approach
is the velocity command on degrees per seconds for the
orientation change rate of the aircraft. The inputs and the
output are defined using triangular membership functions.
Different approaches were developed using different number
of sets for the input variables. For the gains optimization
were used 3 sets and for the optimization of the membership
functions and rules’ weight were used 5 sets. The numbers
of sets of the inputs variables define the size of the rules’
base, being in the first case 27 rules and 45 in the second
one.

The defuzzification method used in this approach is the
height method, shown in Equation 3.

LY TS (m (xiwi)
g | (#xf(xi)wi)

Where N and M represent the number of inputs variables
and total number of rules respectively. u; denote the mem-

y= 3)

bership function of the /th rule for the ith input variable.
represent the output of the /th rule. w; corresponds to the
weight of the ith rule; that could takes values from O to 1.
The Figure 2 shows the control loop of the fuzzy control
approach and the three optimization processes represented
by the numbers 1,2,3 and the related colored lines. The

1185

box defined as objective function corresponds to the specific
objective function selected for each optimization (ITSE,
ITAE, RMSE, etc).

grmsmsmsssssssssssssnn D Objective function ferseeees

Cross
Entropy

e

Rules’
K Base

Fuzzyfication

Heading Fuzzy Logic Controller .

Fig. 2: Vision based control loop for the orientation of the
UAV. It is also indicated the three optimization processes
done in the different parts of the fuzzy control approach. 1 :
Gains optimization, 2 : Membership functions optimization,
and 3 : Rules’ weight optimization.

Defuzzyfication

V. EXPERIMENTS

In this section is explained the three different optimization
processes and the experiments done for the optimization
of the different parts of a fuzzy controller for the specific
task of the heading control for avoiding collisions. In the
first case is shown the optimization of the gains of the
inputs, secondly is shown the optimization process for the
membership functions, and finally is shown the optimization
of the rules’ weight. The optimization of the controller
were done in simulated environments. When the optimal
controllers were obtained, a set of tests with an AR.Drone
quadrotor [17] has been done to corroborate the improved
behavior of the optimal controllers. For all the different
experiments the testbed was set by, the UAV starts flying
against the obstacle and after one meter it starts to do the
maneuver to avoid the obstacle. Finally, when is one meter
close to the obstacle the maneuver finishes and the UAV has
to fly ahead, as is shown in the Figure 3. The longitudinal
speed was set in all the simulated tests to 0.3 m/s.

4, Overtake
the obstacle * |

)

1
3. Finish the !
avoiding task |

(image ~
processing) ©)

1. center the obstacle
to avoid inside the image +

Fig. 3: Description of the avoiding task test.

A. Gains Optimization

This type of optimization is the most simple and the
only one that is already presented in the literature done
by other authors. In [9] is shown the optimization of the
inputs, and output gains of a fuzzy controller for a drilling
process in a simulated environment, and under a highly
controlled environment such as a drilling machine. In [18]
is shown the optimization of the gains of a classic PID
controller to command an inverted pendulum in a simulated
environment, too. We go a step further doing the optimization
of the controller’s gains for a such complex and dynamic
environment as a UAV control task.

In this case the dimensionality of the problem is very
small. It is only three (2 = 3), one gain for each input.
For this experiment we set a simulation environment to
do the optimization using the Robotics Operative System
(ROS) and the 3D simulator Gazebo [19]. Using this software
platform we created a simulated scene composed by a virtual
quadrotor based on the Starmac model [20], and a balloon
in the middle of the trajectory of the UAV to be the object
to avoid. In this case, the objective function used was the
ITAE. The initial values for the normal distributions of all
the gains were set to it =0.5 and o =0.5. After 12 iterations
the optimization process converge to all the ¢ values under
0.016, and setting the gains of the different inputs to 0.9572
for the first input (K), to 0.4832 for the second input (Kd),
and to 0.4512 for the third one (Ki). The Figure 4 shows the
evolution of the normal distribution associated to one of the
gains during the optimization process.

Probability density
e
o
2

0.04

8.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
Gain of the first input variable (K)

Fig. 4: Evolution of the probability density function for the
first input gain.

A set of real tests were done at different longitudinal
speeds, where the optimized controller shows an improved
performance comparing to the non-optimized one (the initial
values of u of the different variables were set at the gains).
The Figure 5 shows the performance of the non-optimized
controller and the optimized controller, and how the non-
optimized controller can not accomplish the task success-
fully, and the optimized controller can do it in the right way.

The different tests done to check the behavior of the
optimized controller versus the non-optimized are shown as a
boxes graphs in the Figure 6. This Figures shows the results
measured by the RMSE in degrees of the full length of the
test at different longitudinal speeds.

A detailed information of this specific optimization pro-

1186

Lateral (meters)

B 0 1 2
Forward (meters)

(a) Non-optimized controller

Lateral (meters)

] [1

2
Forward (meters)

(b) Optimized controller

Fig. 5: 2D reconstruction of the trajectory with a longitudinal
speed equal to 0.08 m/s, where the black circle with the white
x represents the location of the object to avoid.

B

0.2 0.4

RMSE (degrees)

=

0.6 Speed (mis) 0-8 1.0 12

(a) Performance of the non-optimized controller.

3
H
7t
o T
0.2 0.4 0.6

Speed (m/570 8 o 12

(b) Performance of the gains optimized con-
troller.

Fig. 6: Performance of the gains optimized controller versus
the non-optimized one for the avoiding collision task with a
real quadrotor at different longitudinal speeds.

cess, and all the tests done are shown in [21]. It must be
taken into account that a mistake occurs in the published
version about the speed measurements by the inclusion of
an extra zero, that means, a longitudinal speed of 0.03 m/s
really represents 0.3 m/s.

B. Membership Functions Optimization

The optimization of the membership functions’ sets of all
the inputs and the output consists in the modification of the
value of center of the each set. It corresponds to the left
range of the next set, and the right range of the previous set,
as is shown in the Figure 7. In this Figure the first inputs and
the output are represented. The second and the third inputs
are very similar to the first just changing the range of the
variable from —30,30 to —10,10. The symmetric definition
of the variables, and the fixed values of the full variable

range and the center, reduces the points (components) to
optimize to one for each input and three for the output. For
this optimization process the dimension of the problem is six
(h = 6), that means, one set for each input (the second set),
and three sets for the output (the third, fourth and fifth sets).
Comparing to the previous optimization case the number of
sets for each variable was modified from three to five, to
check if the previous definition was the correct one of not
for this specific problem.

Big Left [Teft] Zero Right

1,0 N

BigRight

e
«

membership function

-30 -15

0 15 30
— degrees

(a) First input membership functions: Angle

error.
[Tieeele] Little
Left | Zero Right

Big Great
Right Right Right

-22.5) 0 225 a5 67.5 90
grees/s

membership function

(b) Output membership functions, Heading
Command.

Fig. 7: Definition of the Fuzzy PID-like controller to Opti-
mize. The values to optimize are marked by a red rectangle.

For this optimization case and the next one a different
simulation environment was defined using Matlab. With this
software there is no 3D representation for each test, so it
reduces drastically the CPU power consumption and time
elapsed for each test. Must be taken in to account that in
both simulation environments the model used is just an rough
approximation of the real one.

The initial values of the t and the o of each pdf depend
on the range of the variables, being the o = “’t/‘%, and
0y = (set’s size)%, e.g in the input shown in the Figure 7a,
the initial value of the p is —15 and the o is 10. The Figure
8 shows the evolution of one of the six sets to optimize.

120 T T T T

3
3
T

@
3
T

Probability density
P
5 3
T T

N
S
T

= |

0.85 0.9

8 5 0.55 0.6 0.65 0.7 0.75 0.8
location of the first membership function of the output

Fig. 8: Evolution of the probability density function for one
of the set location and size.

This optimization process reveals that five sets were too
much for some of the variables, more exactly for the derivate
and the integral of the error. For these variables the new
position of the second set overlaps the first set, so it means
that one set must be canceled and reduced from five to three.
This sets cancellation reduces the size of the rules base, from
125 to 45 rules. For the first input, the center of the second set

1187

was modified from —15 (as is shown in Figure 7a) to —3.18,
being the same for the right side of the variable definition.
For the second and the third inputs, the center of the second
set was modified from —5 to —10, this value reveals the
overlapping sets. The center of the three sets of the output
to optimize goes from —67.5, —45, and —22.5 (as is shown
in the Figure 7b) to —74.74, —56.4, and —15.54 respectively.
The new configuration of the variables modify the behavior
of the control system improving the response for the avoiding
tasks. This optimization process takes 90 iterations to get the
final values for the sets.

After this optimization process, the optimization of the
rules’ weight was done. This optimization process and some
results of the reals test of both optimization process are
shown in the next subsection.

C. Rules’ Weight Optimization

The last application of the CE optimization method pre-
sented in this work affects to the rules’ weight. Commonly
the base of rules of a fuzzy logic controller has no weights
assigned, but it could be used to assign more importance
to some rules against others. In this case we associate a
weight value for each rules. After the previous optimization
phase, the rules base is composed by 45 rules. Because of
the symmetric definition of the control system, each rule has
an opposite rule associated. This symmetry ensures the the
controller will has the same behavior to solve the avoiding
task either is the object is at the left side or at the right
side. Because of it we only have to optimize the number
of the rules plus one divided by two. It means that the
dimensionality of this optimization problem is reduced to
h = 23. So there are 23 components to optimize with 23
pdf associated in this process. We have assigned an initial
value equal to 0.5 to each rule, that is the ¢t of the normal
distribution of each rule. There is also a definition of the
maximum weight value that was set equal to one. The Figure
9 shows the evolution of one of the rules’ weight.

18— - T T

Probability densi

‘Weight value of the rule 27

Fig. 9: Evolution of the probability density function for one
of the rules’ weight.

This optimization process reveals that some of the imple-
mented rules were not necessary for this specific task, by
the reduction of the weight to a value under 0.01. By the
cancellation of these rules the rules base was reduced from
the 45 rules of the previous optimization phase until 31 rules.

A comparison between the non-optimized controller, and
the two optimized controller for the membership functions’
and the rules’ weight is shown in the Figure 10. This Figures
represents the evolution of the control in a real test. The

reference was changed in one precise moment from zero to
20 degrees, but it is not a real step signal because the UAV
continues flying with a constant speed against the object, so
the reference is changing in each new frame acquisition. In
order to be more easy to understand we represent it as a step
signal.

Heading Error
T

Reference
—— Non-optimized
—— Membership Functions Opt.
—— Rules’ Weight Opt.

degrees

o SN

%\

20k VA N /A E7 LN s
‘79/

1 N\

~40g é ; 8 é 15

seconds

Fig. 10: Comparison of the non-optimized controller and the
membership function and rules optimized controllers by the
evolution of the error in a real test.

A large set of tests have been done to check the behavior
of the two optimized controllers versus the non-optimized
one. The Figures 11 shows the results represented by boxes
graphs and measures by the RMSE in degrees of the full
length of the test at different longitudinal speeds from 0.2 to
1.2 meters per second.

boxes graph of all the Non-Optimized controller's tests

S

e

0.2 0.4

0.6 0.8 10 T2
Speed (m/s)
(a) Performance of the non-optimized controller.

14 boxes graph of all the Half-Optimized controller's tests

HTH

RMSE (degrees)
S
i

) °°
T

0.6 0.8 io 12
Speed (m/s)

(b) Performance of the membership functions
optimized controller.

14 boxes graph of all the Full-Optimized controller's tests

N

=3

RMSE (degrees)
>
[

=)

=
—=

0.2

=
0.4 10 T2

st}

0.8
ed (m/s)
(c) Performance of the rules’ weight optimized
controller.
Fig. 11: Performance of the three controller for the avoiding
collision task with a real quadrotor at different longitudinal
speeds.

1188

It must be taken into account that the quadrotor used for all
the presented tests has not a onboard computer, so the image
processing must be done in a remote computer connected by
WiFi with the UAV. The connection is quite unstable an the
number of images per seconds received is not constant during
the tests. This value moves from 6 to 20 frames per seconds.
Some video of the presented tests are available on [22], [23],
[24]..

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel approach of the
Cross-Entropy method to optimize three different parts of a
fuzzy controller making easier the tuning of a basic fuzzy
controller for a specific task. A fuzzy control approach to
command the orientation of an unmanned aerial vehicle for
avoiding collisions was used for the optimization process.
The optimization of the inputs’ gains, the membership func-
tions’ sets, and the rules’ weight were done using this re-
cently developed optimization method. The processes of the
different optimizations were done in two different simulated
environments. The optimized controllers were compared with
the initial controller configurations at different speeds in
indoor tests with a real quadrotor. The results show that
the optimized controllers improve the behavior of the non-
optimized ones, by a big reduction of the root mean square
error of the full tests, and by finishing successfully the
avoiding task at higher speeds. The membership functions
and the rules’ weight optimization processes, also reduce the
number of the rules in the base of knowledge, simplifying
the initial control system approach.

The presented adaptation of the Cross-Entropy method
for fuzzy control optimization could be also used to opti-
mize other control approaches, that is in what the authors
are working right now, to compare the different optimized
control approaches for different specific tasks.

REFERENCES

[1] K.M.Zemalache and H.Maaref, “Controlling a drone: Comparison
between a based model method and a fuzzy inference system,” Applied
Soft Computing, vol. 9, pp. 404-418, September 2009.

[2] A.R.Babaei, M.Mortazavi, and M.H.Moradi, “Classic and fuzzy-
genetic autopilot design for unmanned aerial vehicle,” Applied Soft
Computing, vol. 11, pp. 365-372, November 2011.

[3] S. Kurnaz, O. Cetin, and O. Kaynak, “Adaptive neuro-fuzzy inference
system based autonomous flight control of unmanned air vehicles,”
Expert Systems with Applications, vol. 37, pp. 1229-1234, 2010.

[4] R.Y.Rubinstein and D.P.Kroese, The Cross-Entropy Method: A Unified
Approach to Combinational Optimization, Monte-Carlo Simulation,
and Machine Learning. Springer-Berlin, Germany, 2004.

[5] F. Belmudes, D. Ernst, and L. Wehenkel, “Cross-entropy based rare-

event simulation for the identification of dangerous events in power

systems,” in Proceedings of the 10th IEEE International Conference

on Probabilities Methods Applied to Power System, 2008, pp. 1-7.

Y. Zhang, C. Ji, W. Malik, D. O’Brien, and D. Edwards, “Cross-

entropy optimisation of multiple-input multiple-output capacity by

transmit antenna selection,” Microwaves, Antennas Propagation, IET,

pp. 1131-1136, December 2007.

[7]1 M. Kobilarov, “Cross-entropy randomized motion planning,” in Pro-
ceedings of Robotics: Science and Systems, Los Angeles, CA, USA,
June 2011.

[8] M. Bodur, “An adaptive cross-entropytuning of the pid control for
robot manipulators,” in Proceedings of the World Congress on Engi-
neering, WCE2007, London, UK, July 2007, pp. 93-98.

[6

[}

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]
[20]

[21]

[22]

[23]
[24]

1189

R. E.Haber, R. M. del Toro, and A. Gajate, “Optimal fuzzy control
system using the cross-entropy method. a case study of a drilling
process,” Information Sciences, vol. 180, pp. 2777-279, March 2010.
U. S. D. of Defense: [Online]., “Available:http://www.defense.gov,”
2010.

J. Lai, L. Mejias, and J. J. Ford, “Airborne vision-based collision-
detection system,” Journal of Field Robotics, pp. 137-157, March
2011.

A. Cherubini and F. Chaumette, “Visual navigation with obstacle
avoidance,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, September 2011, pp. 1593-1598.

L. Mejias, I. Mondragon, and P. Campoy, “Omnidirectional bearing-
only see-and-avoid for small aerial robots,” in The 5th International
Conference on Automation, Robotics and Applications, 2011, pp. 23—
28.

L. Zheng, “A practical guide to tune of proportional and integral (pi)
like fuzzy controllers,” in Fuzzy Systems, 1992., IEEE International
Conference on, 1992, pp. 633-640.

“Aruco: a minimal library for augmented
ity applications based on opencv: [online].
able:http://www.uco.es/investiga/grupos/ava/node/26,” 2013.
M. Olivares-Mendez, P. Campoy, C. Martinez, and I. Mondragon, “A
pan-tilt camera fuzzy vision controller on an unmanned aerial vehi-
cle,” in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on, Oct., pp. 2879-2884.

A. P. [Online]., “Available:http://ardrone.parrot.com,” 2012.

M. Bodur, “An adaptive cross-entropy tuning of the pid control for
robot manipulators,” in World Congress on Engineering, 2007.
“Gazebo 3d simulator.” http://ros.org/wiki/gazebo, 2014. [Online].
Available: http://ros.org/wiki/gazebo

“Starmac-ros package. hybrid systems laboratory, uc berkeley,” 2012.
[Online]. Available: http://www.ros.org/wiki/starmac-ros-pkg

M. Olivares-Mendez, L. Mejias, P. Campoy, and 1. Mellado-Bataller,
“Cross-entropy optimization for scaling factors of a fuzzy controller:
A see-and-avoid approach for unmanned aerial systems,” Journal of
Intelligent & Robotic Systems, vol. 69, pp. 189-205, 2013. [Online].
Available: http://dx.doi.org/10.1007/s10846-012-9791-5

“Isruav project homepage of the automation re-
search group at snt - university of luxembourg,’
http://wwwen.uni.lu/snt/research/automation_research_group/
projects/isruav, 2014.

“Computer vision group-upm,” http://www.vision4uav.eu, 2014.
“Youtube channel of the automation research group at snt-
university of luxembourg: Automation research group snt.uni.lu,”
https://www.youtube.com/channel/UCBkpapz06ViwK _cztjwqCAQ

, 2014.

real-
avail-

