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Abstract

E dge detection has been a fundamen-
tal and important task in computer 
vision for many years, but it is still a 

challenging problem in real-time applica-
tions, especially for unsupervised edge 
detection, where ground truth is not avail-
able. Typical fast edge detection approach-
es, such as the single threshold method, are 
expensive to achieve in unsupervised edge 
detection. This study proposes a Genetic 
Programming (GP) based algorithm to 
quickly and automatically extract binary 
edges in an unsupervised manner. We 
investigate how GP can effectively evolve 
an edge detector from a single image 
without ground truth, and whether the 
evolved edge detector can be directly 
applied to other unseen/test images. The 
proposed method is examined and com-
pared with a recent GP method and the 
Canny method on the Berkeley segmen-
tation dataset. The results show that the 
proposed GP method has the ability to 
effectively evolve edge detectors by using 
only a single image as the whole training 
set, and significantly outperforms the two 
methods it is compared to. Furthermore, 
the binary edges detected by the evolved 
edge detectors have a good balance 
between recall and precision.

I. Introduction
Edge detection has been an active area of 
research over many years, and it is impor-
tant for processing and understanding 
images [1]. Edges are the boundaries 
between different areas, such as back-
ground and objects, in digital images. Pix-
els on these boundaries are edge points. A 
binary edge point indicates its corre-
sponding pixel in the image is an edge 
point or not. A binary edge map consists 

of a set of binary edge points. To find edge 
points, different approaches have been 
proposed [1–3]. These approaches can be 
categorized into supervised edge detec-
tion (with ground truth provided) or 
unsupervised edge detection (without 
ground truth). This work focuses mainly 
on unsupervised edge detection.

In unsupervised edge detection, search
ing for binary edge maps is difficult and 
computationally expensive [1]. Most exist-
ing methods have high recall (i.e. the num-
ber of true edge points being detected over 
the total number of true edge points), but 
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low precision (i.e. the number of detected 
true edge points over the total number of 
detected points), being easily affected by 
noise [4, 5]. The zero threshold technique 
proposed in [6] normally obtains binary 
edge maps with high precision but low 
recall. When both the recall and precision 
measures are considered, we need a further 
investigation on how to balance them. 
Generally, an optimization method is used 
to determine a threshold for each image. 
However, a threshold found for an image 
might not be good for other images. 
Instead of directly searching for a threshold 
for each image, it is desirable to investigate 
whether a detector trained from an image 
can be directly used for other unseen 
images. In one-shot learning [7], prior 
knowledge from existing datasets are uti-
lized to quickly obtain classifiers for recog-
nizing objects. A very small set of training 
images is used in one-shot learning algo-
rithms. In our previous work [8], a single 
training image can be effectively used to 
evolve edge detectors by Genetic Pro-
gramming (GP) [9]. GP is a population 
based evolutionary computation method, 
where each individual is a candidate solu-
tion of the target problem and is often rep-
resented as a tree or computer program [9]. 
GP has been employed to automatically 
evolve edge detectors since 1996 [10, 11]. 
However, there have been only very few 
works using GP in unsupervised edge detec-
tion to date [12]. Therefore, it is desirable to 
investigate how to employ GP to evolve 
edge detectors from a single image in an 
unsupervised manner and how the evolved 
edge detectors can be used to detect binary 
edge maps on unseen images.

The overall goal of this paper is to 
investigate unsupervised edge detection 
using GP to improve detection precision 
without adversely affecting recall while 
keeping a low computational cost. A GP 
system is proposed to evolve edge detec-
tors, represented as GP programs or 
trees, for marking edge points in an 
image. Instead of using a simple human-
designed rule for marking edge points 
(e.g. if results are larger than a threshold, 
the pixels will be marked as edge 
points), such rules will be automatically 
evolved by the proposed GP system. To 
improve the efficiency, only a single 

image without ground truth is used as 
the whole training data for evolving 
edge detectors, and the evolved edge 
detectors are directly applied to extract 
binary edge maps for unseen images. 
Specifically, the following research objec-
tives will be investigated:

❏❏ Whether a single training image with-
out ground truth can be used to evolve 
good edge detectors by GP for directly 
detecting edges in unseen images,

❏❏ Whether the automatically generated 
rules by the proposed method are 
better than the GP system using fixed 
rules with a single threshold in [12],

❏❏ Whether the evolved edge detectors 
can obtain better detection perfor-
mance than the commonly used Canny 
edge detector [13], and

❏❏ Whether the evolved rules for mark-
ing pixels are flexible and adaptable 
to different images.
In the remainder of this paper, Sec-

tion II gives background on edge detec-
tion and GP. Section III describes the 
proposed GP system. After giving the 
settings of the experiments in Section IV, 
Section V provides the results with dis-
cussions. Section VI draws conclusions 
and suggests future research directions.

II. Background
This section briefly describes the back-
ground on edge detection, mainly unsu-
pervised edge detection, thresholding 
techniques, and existing work using GP 
for edge detection.

A. Edge Detection
Edge detection often includes three stages: 
pre-processing, feature extraction, and 
post-processing [1, 2]. In unsupervised 
edge detection, there is no ground truth 
to train edge detectors. Noises are expect-
ed to be filtered in the pre-processing 
stage, and then edge features are extracted. 
For example, differentiation exists among 

different boundaries, and differentiation-
based edge detection is used to obtain 
edge responses (edge features) on these 
boundaries [1–3, 14, 15]. After edge fea-
tures are extracted, thresholding techniques 
are usually employed in the post-processing 
stage [1, 13, 16, 17].

1) Supervised Edge Detection
In supervised edge detection, a trained 
edge detector normally has a fast detec-
tion speed on unseen images [18]. A sin-
gle fixed threshold is often used for the 
unseen images to determine pixels as 
edge points or non-edge points [6]. The 
computational cost of obtaining binary 
edge maps needs to be minimized for 
real-time applications. However, it is 
often hard for most existing methods to 
obtain a full binary edge map from an 
image (normally larger than 256 256#  
pixels) within a short time. In video pro-
cessing, the time of processing each frame 
is often required to be shorter than 
0.1 second [19]. Otherwise, it can easily 
cause the flicker problem. To quickly 
obtain binary edge maps, the computa-
tional cost needs to be low on both edge 
feature extraction and final binary edge 
points determination. In our previous 
work [20], training images and their 
ground truth were used to automatically 
evolve good low-level edge detectors 
with a low computational cost. When 
there is no ground truth, an unsupervised 
edge detector generally extracts a binary 
edge map based on a set of thresholds, 
instead of a single fixed threshold, but it is 
difficult to determine values of these 
thresholds, since the evaluation function 
for balancing edge points and non-edge 
points is difficult to design [5, 6, 17].

2) Unsupervised Edge Detection
There are generally three approaches to 
unsupervised edge detection: searching 
for thresholds [6, 17], finding connected 

Unsupervised edge detection is challenging and 
computationally expensive. Instead of searching for edge 
points in each image, it is desirable to quickly learn an 
edge detector that can be used for many images.
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curves [15, 21, 22], and obtaining bound-
aries based on segmentation results [23]. 
Thresholding techniques normally obtain 
edge points pixel by pixel. Hence, they 
are generally fast and suitable for real-
time applications. However, such techniques 
consider very little global information and 
usually do not balance between the edge 
points and non-edge points. For example, 
an iterative method and an entropy based 
thresholding technique were employed 
to obtain binary edge maps in [17], and 
the Otsu method [24] was utilized to 
search for good thresholds to obtain 
edge maps [17]. However, the detected 
results from these three methods could 
be easily affected by noise. In addition, 
the binary edge maps from the thresh-
olding techniques in [4] and [5] typically 
have low precision. The zero threshold 
technique proposed in [6] normally 
obtains binary edge maps with low 
recall. However, both recall and preci-
sion are important, since recall cannot 
be the proportion of non-edge points 
that are incorrectly detected as edge 
points, but precision cannot indicate the 
proportion of true edge points being 
missed. When both recall and precision 
are considered, how to balance between 
them needs further investigation. 
Approaches based on finding connected 
curves or obtaining boundaries from seg-
mentation results usually consider con-
text [1] in a detected image. The active 
contour approach [21, 25] utilizes an 
energy function to find good closed 
edges. However, these methods [1, 21, 
25] suffer from high computational cost. 
Generally, only parts of the edges in an 
image can be found by this approach. 
Also, binary edges are usually dependent 
on initial candidate curves [1, 26]. Since 
an energy function considers edge curves, 
instead of independent individual edge 
points, it is worth investigating how to 
integrate an energy function with a 
thresholding technique to take the 
advantages of both approaches.

Image gradients are popularly used to 
extract edge features in unsupervised 
edge detection, such as the Sobel edge 
detector [27] and the Canny edge detec-
tor [13]. A common computational 
framework is suggested in [27] to calcu-

late gradients on untextured and textured 
images. In general, a horizontal derivative 
and a vertical derivative are combined as 
the image gradient, which are also used 
to obtain edge orientation information. 
To filter noise, Gaussian filters have been 
applied to edge detection [2, 13]. Consid-
ering the effect of white noise, the Canny 
detector employed a Gaussian filter to 
approximate a given function (considered 
as an optimal edge detector) [13]. In a 
two-dimensional Gaussian filter ( , )g x yv  
(see Eq. (1)), the image horizontal deriva-
tive ( , )g x y x2 2  and the image vertical 
derivative ( , )g x y y2 2  are defined in 
Eqs. (2) and (3), respectively. Here, v is a 
scale parameter. Gaussian image gradient 

( , )g x yd  is defined in Eq. (4), and the 
edge direction i  is defined in Eq. (5).
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There are many other methods for 
edge feature extraction [1], such as the 
image histogram gradient [28], the 
image texture gradient [28], techniques 
using the co-occurrence matrix [29], 
and automatic construction of edge fea-
tures [30, 31]. Gaussian image gradient is 
popularly used for edge detection, and 
has stable performance on edge detec-
tion [1, 2]. It is also computational less 
expensive than other techniques, such as 
the image histogram gradient. Therefore, 
this paper utilizes only Gaussian image 
gradient to extract edge features.

3) Performance Evaluation
Since edge detection is subjective, i.e., 
different people may mark/label differ-
ent observations of edges in the same 
natural images, it is not straightforward 

to evaluate binary edge maps, where 
natural images mean images coming 
from different natural scenes, such as a 
picture of a tree, an animal or a person 
on the grass. It is expensive to manually 
check the detected results. The ground 
truth of a set of images is often utilized 
to automatically evaluate the detected 
results [28, 32]. F-measure, which com-
bines recall r  and precision p  with a 
parameter ,a  has been popularly used to 
measure the detection performance [28, 
33]. F-measure is defined in Eqs. (6)-(8), 
where T  is the number of true edge 
points, TP  is the number of true edge 
points being correctly detected, P  is the 
total number of predicted edge points, 
and parameter a  is from 0 to 1. When a  
is large, F  is mainly affected by .r  For a 
soft edge map, a low threshold is usually 
used to obtain high ,r  but low ;p  and a 
high threshold is usually used to obtain 
low ,r  but high .p  a  is set to 0.5 to bal-
ance recall r  and precision p  [28, 33]:
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B. Thresholding Techniques
Thresholding techniques in image pro-
cessing generally include histogram-
based methods [16, 34] and spatial 
methods [17]. Histogram-based methods 
employ the histogram of edge responses, 
such as the image gradient, to search for 
a threshold value to divide the edge 
responses into different parts. In [16], an 
optimal threshold was selected from a set 
of pre-defined thresholds based on the 
Otsu method or the maximum entropy. 
Spatial methods directly apply a given 
threshold to edge responses for marking 
pixels as edge or normal points [18].

1) Thresholding in Supervised  
Edge Detection
When the training images and their 
ground truth are provided, a fixed thresh-
old can be directly used. In our previous 
work, a fixed threshold of 0 was used in 
the edge detectors evolved by GP [18]. 
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Different from using a given threshold, 
the probabilities of a pixel being an edge 
point or a non-edge point have been 
used to obtain binary edge maps [20, 35].

2) Thresholding in Unsupervised 
Edge Detection
When there is no ground truth provided, 
results from different edge detectors can 
be combined to form ground truth [36], 
but it is computationally expensive. How-
ever, the detection time for a single image 
is required to be shorter than 0.1 second 
for many real-world problems. Therefore, 
thresholding techniques focus mainly on 
searching threshold values after obtaining 
a histogram on the edge responses, which 
are aggregated in a histogram with bins 

, , ..., ,k L0 1 1= -  where k  is a thresh-
old level and L  is the number of thresh-
old levels. The Otsu method [24] has been 
widely applied to histogram-based thresh-
olding techniques [16, 34]. The Otsu 
method aims to separate pixels into edge 
points and non-edge points according to 
the minimum intra-class variance or 
(equivalently) the maximum between-
class variance. An entropy-based thresh-
olding technique [17] was used to find 
thresholds with the maximum entropy, 
where it is found that the Otsu method 
and the entropy-based thresholding tech-
nique discriminate pixels with high recall, 
but they are easily affected by noise.

Generally, the number of edge points 
and the number of non-edge points are 
unbalanced, and the number of true 
edge points is much smaller than that of 
non-edge points. Edge detection is often 
treated as a binary classification problem, 
and the edge point is the more impor-
tant class. In [6], there was an assumption 
that the number of edge points is not less 
than 1% of the total pixels in an image 
based on their experimental experience. 
Since the numbers of true edge points in 
different images are very different, this 
method may lead to the further loss of 
some true edge points for images that 
contain very few true edge points.

3) Thresholding in Canny
In the Canny edge detector, a threshold-
ing technique has been used [13] to 
eliminate breaking edge contours. A 

user-defined high threshold is used to 
mark pixels as strong edge points. After 
getting strong edge points, a user-
defined relatively low threshold is used 
to mark a pixel as a weak edge point, 
which is considered as an edge point if 
it is connected to a strong edge point. 
However, it is expensive to manually 
tune the low and high thresholds in the 
Canny edge detector. In [34], a high 
threshold was determined based on the 
histogram on edge responses, and a low 
threshold was determined based on the 
distributions of edge points and non-
edge points. In [4] and [5], a unimodal 
thresholding technique on the edge 
response histogram was proposed to find 
a low threshold. In the unimodal thresh-
olding technique, the information (dis-
tribution of edge response magnitudes) 
from each threshold level is calculated. 
Therefore, the computational cost is 
high. The results in [5] show that these 
threshold techniques have high recall, 
but are affected by noise.

Overall, existing thresholding tech-
niques focus mainly on recall (generally 
using low thresholds) or precision (gen-
erally using high thresholds) only. When 
both recall and precision are considered, 
thresholding techniques need to be fur-
ther investigated to obtain binary edge 
maps in unsupervised edge detection.

C. Related Work on GP  
for Edge Detection
GP has been applied to supervised edge 
detection when the training data with 
desired outputs are provided. In low-lev-
el supervised edge detection, GP has 
been used to automatically design edge 
detectors based on pixel intensities. 
There are three ways to provide training 
data for evolving edge detectors. Firstly, 
the ground truth of training images is 
given by humans. The ground truth used 
in [37] is hand-labelled, and the ground 
truth used in [28] is labelled based on 
the segmentation results. Note that the 

segmentation results are determined by 
humans. Via selecting pixels from a 
13 13#  moving window to construct 
GP programs/trees, a multi-objective GP 
system is used to extract edge features 
[37]. GP has also been used to evolve 
edge detectors where pixels in a moving 
window were considered as terminals, 
i.e. the leaf nodes of GP trees/programs 
[38, 39]. To avoid setting a window size, 
search operators, such as a shifting opera-
tor, have been used as functions, i.e. the 
internal nodes of GP programs, to evolve 
edge detectors based on full images [11, 
20]. Secondly, the “ground truth” of 
training images comes from existing 
edge detectors, such as the approxima-
tion of the Sobel detector [40] and the 
Canny detector [41]. Thirdly, when edges 
are considered as signals, GP is used to 
evolve formulae to approximate the 
designed “signal” responses on edges and 
non-edges points. One-dimensional step 
edge responses are designed for evolving 
formulae, which are used as edge detec-
tors [10].

The GP evolved low-level edge de
tectors can compete well with the re
sults from the existing edge detectors, 
such as the Sobel edge detector [18] and 
the Canny edge detector [37] according 
to F-measure. Also, specific domain 
knowledge for edge detection was used 
to evolve edge detectors by GP. For 
example, morphological erosion and 
dilation were used as terminals of GP 
trees to evolve edge detectors in binary 
images [42, 43]. Gaussian filters were 
used to evolve Gaussian-based edge 
detectors by GP [44, 45]. Statistical 
knowledge has been used to construct 
composite features in our previous work 
[35]. After utilizing specific domain 
knowledge in GP, the detection perfor-
mance of the evolved edge detectors has 
been improved.

In summary, most of the existing 
works using GP for edge detection are 
based on ground truth. Our previous 

Existing unsupervised edge detection methods often  
have high recall, but low precision and are easily  
affected by noise.
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work conducted an initial investigation 
on unsupervised edge detection [12]. The 
results show that GP has the potential to 
evolve edge detectors from a single image. 
In this work we will further investigate 
the capability of GP for evolving edge 
detectors without ground truth.

III. The New Method:  
Modified GP (MGP)
This section introduces the proposed 
unsupervised edge detection method, a 
modified GP system (MGP), which is 
extended from our preliminary investi-
gation on GP for unsupervised edge 
detection in [12]. This section firstly 
briefly describes the baseline algorithm 
in [12] which is called a GP artificial ant 
system (GPA), then introduces the new 
MGP method.

A. The Baseline Algorithm: GPA
GP [12, 39] has been used to design arti-
ficial ant sittings in an image to search 
for edge points without using ground 
truth. Edge points are considered as ant 
food sources. An action “eat” is used to 
mark a pixel as an edge point or not. 
GPA was proposed to evolve ants to 
search for edge points.

The terminal set in GPA includes 
four different types of markers: marking 
a pixel as an edge point, marking a set of 
pixels as edge points, marking a pixel as 
a non-edge point, and marking a set of 
pixels as non-edge points. The function 

set in GPA includes { , , , ,IFC NIF + -  
, /, ( , )prog P P2 1 2#  and ( , ,prog P P3 1 2
)}.P3  In ( , , , )IFC f t P P1 2 , f is a specific 

feature, t  is a constant threshold, and P1 
and P2 are sub-programs. P1 is execut-
ed if ;f t1  otherwise, P2 is executed. 
Considering the global information 
from the whole image and the local 
curves in a small moving window, a fit-
ness function FitGPA  shown in Eq. (9) was 
proposed for GPA, which relaxed the 
edge continuity constraint in an ener-
gy function:
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where N  is the number of pixels marked 
as edge points, gi  is the image gradient 
for pixel ,i  w1  and w2  are weight fac-
tors, and pwi  is a penalty weight for 
thickness. A thick edge point for pixel i  
used ,pw 1i =  which is only considered 
when the corresponding pixel is 
marked as an edge point and the num-
ber of its neighbors being marked as 
edge points is not smaller than five. For 
all other cases, pwi  is equal to 0. Func-

tion EE (Eq. (10)) includes the average 
of the image gradients N g1 i

N
i1R =^ h 

and the sum of the image gradients 
.gi

N
i1R =^ h

FitGPA  could utilize energies to effec-
tively evaluate programs on a single 
image, but it has three parameters ,w1 ,w2  
and pwi  to adjust. Further analysis shows 
that most of the evolved programs have 
similar structures and include mainly 

.IFC  The terminal for marking a set of 
pixels as edge points has a very low usage 
over all the evolved programs. To effec-
tively evolve edge detectors and reduce 
the number of the parameters in ,FitGPA  
MGP is proposed in this paper.

B. Terminal Set
Table 1 lists the terminal set used in MGP 
and GPA, where the terminal set of 
MGP consists of { , , , ,a rm nE nE nd , } .sd g  
Each GP program scans pixels from left 
to right and from top to bottom in an 
image. To mark a pixel, we designed ter-
minals called markers in GPA, as shown 
in Table 1. Two basic markers m  and nE  
are utilized to mark pixels as edge points 
or non-edge points, respectively. Marker 
anE  marks a set of pixels as non-edge 
points, i.e. the pixels within a small area.

Since the image gradient g  was used 
in GPA without post-processing, there 
were thick responses on detected edges. 
When the moving window size is in
creasing, GPA might not handle thick 
responses well, and a large moving win-
dow size does not suit GPA. To thin edge 
responses, non-maximum suppression [13] is 
integrated into MGP. The terminal set of 
MGP includes the following two parts.

First, MGP keeps all the terminals 
from GPA except for the markers mH 
and ,mV  which were used to mark a set 
of pixels either horizontally or vertically. 
From the initial investigation, it was 
found that markers mH  and mV  were 
seldom selected in the evolved edge 
detectors. For a horizontal edge line, 
the width of a detected line might be 
two pixels if the non-maximum sup-
pression is not used. If the non-maxi-
mum suppression is used, the width 
would be only one pixel. Therefore, 
using mH  and mV  may increase the 
false alarms.

Table 1 Terminals in MGP and GPA [12].

Terminal MGP GPA [12] Note 

m Yes Yes mark a pixel as an edge point 

nE Yes Yes mark a pixel as a non-edge point 

anE Yes Yes mark a set of pixels as non-edge points

mH No Yes horizontally mark pixels as edge points

mV No Yes vertically mark pixels as edge points 

rnd Yes No random constant 

sd Yes No standard deviation 

g Yes No gradient 

With the flexible tree based representation, Genetic 
Programming is able to use different functions and 
terminals to evolve rules as edge detectors.
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Second, random constants ,rnd  the 
image gradient ,g  and the standard devi-
ation sd are used as terminals to construct 
conditions. { , , }rnd sd g  in GPA were 
used as arguments of function ,IFC  not 
individual terminals. IFC  is still used 
in MGP. Fig. 1 provides a simple GP 
tree using function IFC. The tree is 

. , , ,IFC g m nE0 2^ h, where g  is the value 
generated by the non-maximum suppres-
sion operation on the image gradient 
from the current moving window and 
the condition is . .g0 2 1  These terminals 

, andrnd g sd^ h  return real numbers. 
They are used to combine sub-programs 
as conditions for calling different markers. 
Note that there are two different types of 
terminals, where each marker conducts 
an action, but the others , andrnd g sd^ h 
return real numbers.

C. Function Set
The conditions (rules) used in the func-
tions IFC^ h in GPA were based on a 
single fixed threshold. IFC  was inspired 
by the experiential design of humans 
developing edge detectors to find edge 
curves, where the rules used are very 
limited. It is possible to evolve rules to 
improve detection performance. There-
fore, MGP is designed to automatically 
generate sub-programs as conditions 
(rules). Since the directional markers 
mH  and mV  are not used in MGP, 
programs evolved by MGP search 
mainly for single edge points. Without 
directionally marking pixels, functions 

( , )prog P P2 1 2  and  ( , , )prog P P P3 1 2 3  
used in GPA are not included in MGP. 
Different from GPA using the given 
conditions, MGP automatically evolves 
conditions and edge detectors at the 
same time. Therefore, the conditions 
used in IFC  are relaxed, and f  and t  
are replaced by sub-programs NP1 and 
NP2 with the numerical return type. 
Here, NP1 and NP2 are constructed by 
the numerical terminals and arithmetic 
functions { , , , /}#+ -  used in MGP. 
Note that / is the protected division, 
returning 1 when being divided by 0.

In order to use the logical operator 
IFC in numerical return sub-programs 
(for automatically constructing condi-
tions), a new numerical return function 

( , , , )NIF NP NP NP NP1 2 3 4  is intro-
duced in MGP, where NP3 and NP4 
are sub-programs whose return types are 
numerical. When ,NP NP1 21  IFN  
returns a numerical result from ;NP3  
otherwise, a numerical result is obtained 
from .NP4

In summary, the function set in MGP 
consists of { , , , ,IFC NIF + -  , /} .#  
Given the different return types of the 
terminals and functions, strongly typed 
GP [9] is used to develop the proposed 
MGP system.

D. Fitness Function
Since the non-maximum suppression is 
used, the thickness will not be consid-
ered. Fitness function FitMGP  in Eq. (11) 
is actually the energy function EE 
shown by Eq. (10):
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There is a trade-off between the 
ave r age  of the i m a g e  g r a d i e n t s  

N g1 i
N

i1R =^ h and the sum of the image 
gradients .gi

N
i1R =^ h  The average is high 

(low) when pixels with high (low) 
image gradients are selected. The sum is 
high (low) when a large number (or 
only a few) pixels are selected. In gener-
al, if the average is high, precision will 

be high because pixels with high gradi-
ents usually are true edge points. If the 
sum is high, recall is usually high 
because most pixels are marked as 
edge points. MGP removes the penal-
ty item N pw wi

N
i2 1R =  in FitGPA  in 

Eq. (9). There is only one parameter 
w1 in fitness function FitMGP  in Eq. 
(11). w1 is used to balance recall and 
precision of the detected results, which 
has a similar function to a  in F-mea-
sure in Eq. (8).

E. Unsupervised GP vs Thresholding 
Techniques
MGP is expected to evolve programs 
from a single image without ground 
truth, and the evolved program, i.e. edge 
detector, can be directly applied to 
extract edges from unseen images, i.e. 
images in the test set. Once the edge 
detector is evolved from the single 
image, the GP system does not need to 
restart to evolve a new edge detector 
again for unseen images. In contrast, a 
thresholding technique, such as the his-
togram-based method [16, 34], searches 
for an optimal threshold for each image 
and needs to restart the search for a 
threshold when the detected image is 
changed. If there are N  images, there 
will be N  optimization tasks of search-
ing for optimal thresholds. Therefore, the 
proposed MGP system has low compu-
tational cost to detect edges on unseen 
images. The cost of the edge detectors 
evolved by MGP is mainly from the 
image gradient calculation.

IFC

g m nE0.2

Image

Edge Point

Gradient

GP Program

Moving Window

Figure 1 An example GP program for detecting edge points using a moving window.
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IV. Experiment Design

A. Image Dataset
The Berkeley Segmentation Dataset 
(BSD) [28] is used in the experiments. 
There are 200 training images and 100 
test images in BSD, and each image has 
481 321#  pixels or 321 481#  pixels. 
The BSD dataset provides ground truth, 
but it is not used by MGP during the 
evolutionary learning process.

Six images shown in Fig. 2 are 
selected as training images, where five 
images are from the BSD training set 
and the other one (image 101085) is 
from the BSD test set (the ground truth 
of image 101085 is not used, i.e. unseen, 
during the training process). These 
images are chosen because they have 
rich edge information (such as intensity 
differences between objects and back-
ground) and relatively large numbers of 
true edge points.

We have conducted six sets of experi-
ments, each using a different single image 
from Fig. 2 to evolve an edge detector. 
Each of the evolved edge detectors is 
evaluated on the 100 test images from the 
BSD dataset.

B. Experiment Settings
Table 2 lists the settings of MGP and 
GPA. MGP automatically evolves con-
ditions to search over edge pixels, and 
the depth of an evolved sub-program as 
a condition could be larger than 1. 
Therefore, the maximum depth of a 
program in MGP should be larger than 
in GPA. However, since only rnd, sd, and 
g, and a small set of functions are used 
for generating rules (conditions), it is 
expected that sub-programs (used for 
these rules) are not too much larger. 
Therefore, the maximum depth is set to 
five in MGP. Based on initial experi-
ments, a population size of 50 and the 

maximum number of generations is set 
to 30. Probabilities used for mutation 
(0.35), crossover (0.60) and reproduction 
(0.05) are taken from [46]. The initial 
population is created by the ramp-half-
and-half method. 30 independent runs 
are conducted for each experiment.

For the n n#  moving window, the 
parameter n is set to 11 in the experi-
ments, since the best test F-measure per-
formance of the Canny edge detector, 
i.e . ,F 0 56=  is achieved when .n 11=  
The best test F-measure of .F 0 56=  is 
the same as reported in [28]. Since GPA 
has a problem with thick/many respons-
es and a large window size might not be 
suitable in GPA, we still keep n = 9 for 
GPA. Generally, at least one percent of 
the pixels in an image would be suggest-
ed as edge points [6]. Therefore, to 
approximately balance the two terms in 

,FitMGP  we use .w 1 0 01 1001 = =  in 
this paper.

V. Results and Discussion
The F-measure [28] is employed to 
evaluate the performance of MGP on 
the 100 test images in the BSD dataset.

A. Test Performance in terms of 
F-measure, Recall and Precision
Table 3 presents the means and standard 
deviations of the performance F  values 
over the 100 test images for the edge 
detectors evolved by MGP and GPA 
over the 30 runs. The thick binary edges 
obtained from GPA were thinned by a 
binary thinning operator [47], then the 
thinned edges were used to obtain recall 
and precision. Two sample t-tests and 
Mann-Whitney-Wilcoxon (MWW, 
non-parametric) tests [48] with a signifi-
cance level of 0.05 are used to compare 
the performance of MGP and GPA, 
where the p-values are presented in the 
third and fourth columns of Table 3, 
respectively. “ -” indicates that MGP is 
significantly better than GPA.

Table 3 shows that the test perfor-
mance F  of the edge detectors evolved 
by MGP is significantly better than that 
of GPA in all cases, i.e. using each of the 
six images as the training set. The overall 
test performance of MGP is, of course, a 
significant improvement over GPA, i.e. 

Table 2 Experiment Settings of MGP and GPA [12].

MGP GPA [12]

Terminals { , , , , , }m nE anE rnd sd g  { , , , , }m mH mV nE anE  

Functions { , , , , ,/}IFC NIF #+ -  { , , }IFC prog prog2 3  

Fitness Function FitMGP FitGPA

Population 50 100 

Generation 30 30 

Mutation 0.35 0.35 

Crossover 0.60 0.60 

Depth 5 3 

n (window size) 11 9 

(a) (b) (c)

(d) (e) (f)

Figure 2 Five BSD training images (a)–(e) and one BSD test image (f). (a) 23025, (b) 23080, 
(c) 33066, (d) 370036, (e) 385028, and (f) 101085.
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from the average of 0.5267 to 0.5673. 
This suggests that by employing the 
new terminal set, function set and fitness 
function, MGP can further improve the 
performance of GPA in terms of the 
F-measure. We further investigate their 
performance in terms of the recall and 
precision in Table 4.

Table 4 gives the averages of recall 
and precision of the 30 edge detectors 
evolved by MGP or GPA (from the 
30  runs) on the test set, when each of 
the six single images is used as the train-
ing data for evolving GP detectors. The 
MWW tests with a significance level of 
0.05 are used to compare their perfor-
mance. As can be seen from Table 4, the 
precision of the evolved edge detectors 
is significantly improved when MGP is 
used in all the six cases, from (a) to (f  ). 
Their improvement is over 0.58 or 13%, 
except for the 9.6% improvement when 
image (f  ) is used. The overall average is 
increased from 0.4607 to 0.5267 by 
around 0.066 or 14.33%. The results 
of recall in MGP are generally similar 
to GPA, with two significant smaller 
cases and four similar or better cases. 

The overall average recall is slightly 
decreased by MGP compared with 
GPA, from 0.6199 to 0.6180, by a very 
small value. Additionally, on training 
image (a), there is no significant differ-
ences between MGP and GPA in terms 
of recall.

According to Table 3 and Table 4, 
MGP mainly improves the precision of 
the detected results. There are two 
potential reasons: First, by using non-
maximum suppression in MGP, the fit-
ness function FitMGP  does not need to 
evaluate the thickness of binary edges, 
and only addresses recall and precision 
using a weight .w1  However, fitness 
function FitGPA  needs to address recall, 
precision, and the thickness of edges 
using three parameters ,w1  ,w2  and pwi  
(see Eq. 9). It is more complicated to 
use FitGPA  than FitMGP  for evaluating 
edge detectors. Second, MGP automati-
cally evolves conditions while evolving 
edge detectors, whereas in GPA, a limit-
ed set of conditions are pre-defined. 
The number of potential conditions 
evolved by MGP is larger than by GPA, 
and the evolved conditions are poten-

tially better than the limited set of pre-
defined conditions.

B. GP vs Canny
From [28], the best F  performance of 
the Canny edge detector on the BSD 
test set is 0.56. The results of MGP from 
Table 3 are significantly larger than 0.56, 
according to the t-tests with the signifi-
cance level of 0.05 and MWW tests. 
Note that the standard deviations of F  
values from MGP in Table 3 are very 
small. Most of the MGP edge detectors 
have detection performance F  higher 
than 0.56. The image gradient used by 
the Canny edge detector is normalized 
(from 0 to 1). As discussed in Section II, 
since it is not easy to search for two opti-
mal thresholds in the Canny edge detec-
tor, a high threshold is used to find 
strong edge points (with high magni-
tudes of the image gradient) and a low 
threshold is used to find weak edge 
points which are connected to strong 
edge points. If the high threshold is too 
large, some important edge points will 
be removed and the connected weak 
edge points will not be found. If the 

Table 3 Mean ! standard deviation of the 30 F values on the test set by MGP and GPA. Note that p-values  
are from t-tests and Mann-Whitney-Wilcoxon (MWW) tests.

Training Image MGP GPA p-value (t-test) p-value (MWW) 

(a) 0.5671 ! 0.0018 . .0 5265 0 0097! .0 0000 -  .0 0000 -  

(b) 0.5669 ! 0.0036 . .0 5288 0 0010!  .0 0000 -  .0 0000 -  

(c) 0.5697 ! 0.0022 . .0 5278 0 0015! .0 0000 -  .0 0000 -  

(d) 0.5706 ! 0.0013 . .0 5273 0 0018! .0 0000 -  .0 0000 -  

(e) 0.5647 ! 0.0032 . .0 5278 0 0047! .0 0000 -  .0 0000 -  

(f) 0.5648 ! 0.0054 . .0 5218 0 0113! .0 0000 -  .0 0000 -  

average 0.5673 0.5267 — —

Table 4 Recall and precision for the GP edge detectors evolved by MGP and GPA.

Training 
Image

MGP GPA p-value (MWW)

recall precision recall precision recall precision

(a) 0.6005 ! 0.0110 0.5375 ! 0.0057 0.5996 ! 0.0362 0.4709 ! 0.0150 0.4325 .0 0000 -  

(b) 0.6089 ! 0.0318 0.5322 ! 0.0194 . .0 6269 0 0219!  0.4579 ! 0.0118 .0 0003 - .0 0000 -  

(c) 0.6471 ! 0.0171 0.5093 ! 0.0097 0.6544 ! 0.0218 0.4428 ! 0.0114 .0 0318 . .0 0000 -  

(d) 0.6708 ! 0.0179 0.4970 ! 0.0102 0.6619 ! 0.0203 0.4387 ! 0.0112 .0 0182 - .0 0000 -  

(e) 0.5887 ! 0.0189 0.5434 ! 0.0106 0.6198 ! 0.0271 0.4605 ! 0.0132 .0 0000 . .0 0000 -  

(f) 0.591 ! 0.0218 0.5410 ! 0.0104 0.5570 ! 0.0393 0.4935 ! 0.0177 .0 0000 - .0 0000 -  

average 0.6180 0.5267 0.6199 0.4607 — —
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high threshold is too low, some noisy 
pixels might be considered as edge 
points, and when finding weak edge 
points, more noisy pixels may be marked 
as edge points. Without ground truth, it 
is still an open issue to investigate how 
to effectively search for the best two 
thresholds [17, 49]. In this paper, we only 
use a single threshold in the Canny edge 
detector to quickly search for “good” 
binary edge maps. A fixed set of 
thresholds , , , ,i i52 1 2 51f=^ h  are 

given to obtain F  values based on the 
ground truth of the 100 test BSD images. 

.F 0 56=  is obtained as the maximum F  
from the 51 thresholds for the Canny 
edge detector, and it is the same as 
reported in [28].

Note that the Canny edge detector 
uses a set of thresholds and obtains dif-
ferent results. The test performance is 
the best test performance (maximum F ) 
from all these results. The GP evolved 
edge detectors directly generate the final 

binary edge maps, and do not involve 
multiple thresholds to choose. The com-
parisons show that MGP has the abili-
ty to effectively evolve edge detectors 
when only a single image without 
ground truth is employed as the whole 
training set.

C. Computational Cost
As discussed in [12], GPA has a low com-
putational cost. Table 5 provides the test 
times (in seconds) of the GP edge detec-
tors evolved by MGP and GPA. All the 
experiments are based on a system with 
CPU 2.1 GHz and RAM 2GB. T-tests a 
significance level of 0.05 are used to com-
pare their computational cost. “-” means 
that GPA is significantly faster than MGP. 
It can be seen that the programs evolved 
by MGP have significantly longer test 
times than that of GPA, but the average 
test times in MGP are still much shorter 
than 0.1 second per image. Therefore, the 
MGP edge detectors’ computational costs 
are still well within the 0.1 second 
requirement in real-time applications. Of 
course, a more powerful CPU can be 
used to further reduce the computational 
time on the test images.

D. Example GP Edge Detectors
Fig. 3 shows an edge detector gpold  
(with a commonly found structure) 
evolved by GPA, while Fig. 4 gives an 
example of the edge detector gpnew  
evolved by MGP.

GPA focused mainly on the combi-
nations of conditions in function .IFC  If 
the condition in IFC  is true, IFC  calls 
the left sub-program; otherwise, it calls 
the right sub-program. From the struc-
ture of GP edge detector ,gpold  the stan-
dard deviation sd in the root is helpful to 
choose a threshold on image gradient .g  
When sd  is high, a threshold on g for 
images with noise needs to be larger 
than that of without noise.

For MGP, the image intensity in 
MGP is from 0 to 1. As can be seen 
from Fig. 4, the edge detector gpnew  
includes mainly two sub-parts sub1 and 
sub2. sub1 works mainly on marking 
edge points and sub2 works on how to 
mark pixels as non-edge points. There 
are three interesting observations.

IFC

IFC
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sub2

NIF g m

sd sd

sd

0.2 * g
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g
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Figure 4 Example GP edge detector gpnew (with F = 0.5723) evolved by MGP.

IFC

IFC IFCsd44.79

17.95 g gm mnE nE15.94

Figure 3 Example GP edge detector gpold (with .F 0 5304= ) evolved by GPA [12].

Table 5 Test times (mean ± standard deviation) of the GP edge detectors  
(in seconds).

Training Image MGP GPA 

(a) . .0 0569 0 0327!  . .0 0335 0 0088 -!

(b) . .0 0632 0 0343!  . .0 0163 0 0155 -!

(c) 0.0713 ! 0.0323 . .0 0334 0 0123 -!

(d) 0.0697 ! 0.0373 . .0 0312 0 0074 -!

(e) 0.0655 ! 0.0353 . .0 0331 0 0080 -!

(f) 0.0585 ! 0.0334 . .0 0315 0 0097 -!
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Firstly, sub-part sub1 is constructed 
as a condition to discriminate pixels as 
edge points or non-edge points. Rather 
than using a fixed threshold on the 
image gradient ,g  the automatically 
constructed sub1 includes a condition 
using sd  in addition to a fixed thresh-
old. As a result, for an edge pixel from a 
noisy area, its sd  and g  are not low, so 
a fixed single threshold is chosen by 
sub1, and this threshold is expected to 
identify this pixel as an edge point. If 
the fixed threshold with a high value is 
used to consider the pixel as a non-
edge point, some pixels (true edge 
points) in non-noisy areas are consid-
ered as non-edge points because their 
gradients are not large. Sub-part sub1 
adaptively employs a fixed threshold, sd  
and g  to mark pixels as edge points or 
non-edge points for noisy areas and 
non-noisy areas.

Secondly, sub-part sub2 is utilized as 
a condition to mark a single pixel as a 
non-edge point or a set of pixels as non-
edge points. When a pixel has a very low 
g  and a low ,sd  its neighbors are usually 
located in a non-edge area. sub2 can 
quickly mark its neighbors as non-edge 
points. However, when its g  and sd  are 
not low, it is hard to determine whether 
its neighbors are located in a non-edge 
area. From the evolved condition in 
sub2, the relationship between g  and sd  
influences the ability of identifying a set 
of pixels being located in an edge area 
or a non-edge area.

Thirdly, similar to the detector ,gpold

the detector gpnew  utilizes the combina-
tion of sd  and g  to mark pixels as edge 
points or non-edge points. Although we 
do not pre-define condition functions in 
MGP, the detector gpnew  has evolved 
adaptive conditions to mark pixels.

From the example detector ,gpnew  
we can easily see that MGP can effec-
tively evolve adaptive conditions for 
extracting edges, not directly using a 
single fixed threshold.

E. Visual Results
Fig. 5 shows examples of the detected 
results from the edge detectors evolved 
by GPA using each of the six training 
images (a)–(f ) as the training set. It is 

Image

GT

(a)

(b)

(c)

(d)

(e)

(f)

1018085 106024 296007

Figure 5 Examples of the detected results on three example BSD images from GPA [12] (“GT” 
is ground truth). The grayscale for GT and the detected results are inverted.
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found that the detected results from the 
six training images are quite similar. 
Without providing ground truth, GPA 
can effectively evolve edge detectors 
based on the image gradient.

Fig. 6 shows examples of the detect-
ed results from the Canny edge detector 
and the edge detectors evolved by MGP. 
Comparing with the Canny edge detec-
tor (i.e. the results with best F based on 
the ground truth), the GP edge detec-
tors evolved by MGP achieve higher 
precision. For instance, for image 
101085, the Canny edge detector has 
more false alarms than the edge detec-
tors evolved by MGP. The MGP evolved 
edge detectors is significantly better than 
the Canny edge detector, more than 1% 
increase in terms of the F-measure. This 
is probably because the Canny edge 
detector uses only a fixed threshold for 
all the test images, but MGP has the 
ability to automatically construct condi-
tions adaptively using the image gradi-
ent, the local standard deviation, and a 
fixed threshold.

Comparing the detected results in 
Figs. 5 and 6, MGP evolves edge detec-
tors with single edge responses. A reason 
for this is that the energy (the image 
gradient) used in MGP is further pro-
cessed by non-maximum suppression. 
These results suggest that MGP also has 
the ability to evolve edge detectors with 
similar detection performance when 
using (different) single training images 
without ground truth.

F. Single Training Image
This subsection discusses why a single 
image can be used by MGP and GPA as 
the whole training set to evolve edge 
detectors with good detection perfor-
mance. This is also to continue the inves-
tigation on how to effectively evolve 
edge detectors using a single image, done 
initially in our previous work in the 
supervised learning scenario in [8].

For both supervised learning (with 
ground truth) and unsupervised learn-
ing (without ground truth), pre-defined 
specific knowledge, considered as prior 
domain knowledge, is helpful to find 
edge detectors when only a single image 
is used as the training data. In GPA, the 

Image

GT

Canny

(a)

(b)

(c)

(d)

(e)

(f)

1018085 106024 296007

Figure 6 Examples of the detected results on three example BSD images from the GP edge 
detectors evolved by MGP (“GT” is ground truth). The grayscale for GT and the detected results 
are inverted.
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image gradient and the standard de
viation are considered as the pr ior 
knowledge. However, unlike existing 
thresholding techniques [16, 17], GP 
automatically evolves programs for mark-
ing edge points, rather than directly using 
one or two thresholds. These evolved 
programs can be considered as adaptive 
methods, which can effectively employ 
the image gradient and the standard 
deviation on different areas of the image, 
such as the examples shown in Figs. 3 
and 4. To find such adaptive rules, the 
single training image should include 
various edge and non-edge informa-
tion, such as texture, noise, and differen-
tiation between two objects. This is 
probably why MGP can effectively 
evolve edge detectors when only a sin-
gle image is used.

One-shot learning has been applied 
to object recognition, using a small set 
of training images [7, 50]. One-shot 
learning employs a very small set of 
training examples to train new classifiers, 
but needs prior knowledge extracted 
from existing datasets, such as learnt 
classifiers or pre-defined feature distri-
butions, and such information is often 
obtained from a large dataset. Different 
from one-shot learning, MGP in this 
paper only relies on the pre-defined fea-
tures (the image gradient and the stan-
dard deviation) and the given single 
image without any prior knowledge. 
Thus, MGP can be easier and faster to 
apply to train edge detectors than one-
shot learning.

Note that in this work an image is 
used as the training data only if it has 
rich edge information. If an image has 
little edge information, such as cases 
with no or minor changes in a single 
color object, the edge detector evolved 
by MGP might not work well on other 
images. We will investigate how to 
determine whether the edge informa-
tion of a single image is rich enough in 
the future.

VI. Conclusions
The goal of this paper was to develop an 
unsupervised learning GP system to 
improve the edge detection precision 
without adversely affecting the recall 

while keeping the low computational 
cost. The goal has been achieved by 
designing a terminal set, a function set, 
and a fitness function to propose a new 
algorithm named MGP. MGP uses only 
a single image as the whole training set 
to automatically evolve/generate effec-
tive edge detectors. Six images without 
ground truth were individually used by 
MGP for evolving effective edge detec-
tors in the experiments. The results 
show that MGP can evolve edge detec-
tors to obtain significantly better detec-
tion performance than the baseline 
algorithm GPA and the best perfor-
mance of the Canny edge detector. 
The superior performance of MGP over 
GPA is probably due to the automatic 
condition rule construction and inte-
grating non-maximum suppression, 
which also addresses the edge thickness 
problem. Further analysis on the evolved 
edge detectors reveals that MGP auto-
matically combined the image gradient 
and the standard deviation with a 
threshold to evolve adaptive edge detec-
tors, rather than using a single threshold 
only, to mark pixels as edge points or 
non-edge points.

This paper focuses mainly on the 
automatic construction of edge detec-
tors using a single image, which is not 
specific to any particular domains, such 
as medical images. In the future, we will 
investigate edge detection and image 
analysis for medical images. Further-
more, we also aims to reduce the com-
putational cost of MGP, and design a 
new marker as a terminal in GP to 
mark all points in certain local areas that 
include non-edge points only.
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caused, whether it is congenital, or 
acquired in childhood or adulthood, is 
likely to play important roles and influ-
ence the performance of the system. 
Note that a BCI game is more impor-
tant for a person with missing upper 
limbs. The situation becomes more chal-
lenging if we consider the fact that a 
particular area of the brain is no more in 
charge of a body part but in charge of 
activities that are done by that body part. 
Thus if we want to design a BCI based 
system, as an example, for people with 
missing upper limbs, it appears that we 
should use data from subjects with miss-
ing limbs. But this certainly poses a 
challenge to generate adequate data for 
designing such a system. This raises 
other important questions: To design a 
machine learning system for motor 

imagery, can we use imagination of lip 
movement or movement of the feet to 
do the same task? Using a BCI system 
how can we analyze what a person is 
actually doing (not functionally, but 
physically)? I have no answer to all these 
questions but they all appear to be chal-
lenging and are likely to impact design-
ing of AI systems based on BCI.
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