
Application
 Notes

46 IEEE Computational intelligence magazine | November 2018� 1556-603x/18©2018ieee

Abstract

E dge detection has been a fundamen-
tal and important task in computer
vision for many years, but it is still a

challenging problem in real-time applica-
tions, especially for unsupervised edge
detection, where ground truth is not avail-
able. Typical fast edge detection approach-
es, such as the single threshold method, are
expensive to achieve in unsupervised edge
detection. This study proposes a Genetic
Programming (GP) based algorithm to
quickly and automatically extract binary
edges in an unsupervised manner. We
investigate how GP can effectively evolve
an edge detector from a single image
without ground truth, and whether the
evolved edge detector can be directly
applied to other unseen/test images. The
proposed method is examined and com-
pared with a recent GP method and the
Canny method on the Berkeley segmen-
tation dataset. The results show that the
proposed GP method has the ability to
effectively evolve edge detectors by using
only a single image as the whole training
set, and significantly outperforms the two
methods it is compared to. Furthermore,
the binary edges detected by the evolved
edge detectors have a good balance
between recall and precision.

I. Introduction
Edge detection has been an active area of
research over many years, and it is impor-
tant for processing and understanding
images [1]. Edges are the boundaries
between different areas, such as back-
ground and objects, in digital images. Pix-
els on these boundaries are edge points. A
binary edge point indicates its corre-
sponding pixel in the image is an edge
point or not. A binary edge map consists

of a set of binary edge points. To find edge
points, different approaches have been
proposed [1–3]. These approaches can be
categorized into supervised edge detec-
tion (with ground truth provided) or
unsupervised edge detection (without
ground truth). This work focuses mainly
on unsupervised edge detection.

In unsupervised edge detection, search
ing for binary edge maps is difficult and
computationally expensive [1]. Most exist-
ing methods have high recall (i.e. the num-
ber of true edge points being detected over
the total number of true edge points), but

Digital Object Identifier 10.1109/MCI.2018.2866729
Date of publication: 15 October 2018

Fast Unsupervised Edge Detection Using Genetic Programming

Wenlong Fu
School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand

Bing Xue
School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand

Mengjie Zhang
School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand

Mark Johnston
Department of Mathematics, Institute of Science and the
Environment, University of Worcester, United Kingdom

Corresponding Author: Wenlong Fu
(Email: wenlong.fu@gmail.com)

�N ovember 2018 | IEEE Computational intelligence magazine 47

low precision (i.e. the number of detected
true edge points over the total number of
detected points), being easily affected by
noise [4, 5]. The zero threshold technique
proposed in [6] normally obtains binary
edge maps with high precision but low
recall. When both the recall and precision
measures are considered, we need a further
investigation on how to balance them.
Generally, an optimization method is used
to determine a threshold for each image.
However, a threshold found for an image
might not be good for other images.
Instead of directly searching for a threshold
for each image, it is desirable to investigate
whether a detector trained from an image
can be directly used for other unseen
images. In one-shot learning [7], prior
knowledge from existing datasets are uti-
lized to quickly obtain classifiers for recog-
nizing objects. A very small set of training
images is used in one-shot learning algo-
rithms. In our previous work [8], a single
training image can be effectively used to
evolve edge detectors by Genetic Pro-
gramming (GP) [9]. GP is a population
based evolutionary computation method,
where each individual is a candidate solu-
tion of the target problem and is often rep-
resented as a tree or computer program [9].
GP has been employed to automatically
evolve edge detectors since 1996 [10, 11].
However, there have been only very few
works using GP in unsupervised edge detec-
tion to date [12]. Therefore, it is desirable to
investigate how to employ GP to evolve
edge detectors from a single image in an
unsupervised manner and how the evolved
edge detectors can be used to detect binary
edge maps on unseen images.

The overall goal of this paper is to
investigate unsupervised edge detection
using GP to improve detection precision
without adversely affecting recall while
keeping a low computational cost. A GP
system is proposed to evolve edge detec-
tors, represented as GP programs or
trees, for marking edge points in an
image. Instead of using a simple human-
designed rule for marking edge points
(e.g. if results are larger than a threshold,
the pixels will be marked as edge
points), such rules will be automatically
evolved by the proposed GP system. To
improve the efficiency, only a single

image without ground truth is used as
the whole training data for evolving
edge detectors, and the evolved edge
detectors are directly applied to extract
binary edge maps for unseen images.
Specifically, the following research objec-
tives will be investigated:

❏❏ Whether a single training image with-
out ground truth can be used to evolve
good edge detectors by GP for directly
detecting edges in unseen images,

❏❏ Whether the automatically generated
rules by the proposed method are
better than the GP system using fixed
rules with a single threshold in [12],

❏❏ Whether the evolved edge detectors
can obtain better detection perfor-
mance than the commonly used Canny
edge detector [13], and

❏❏ Whether the evolved rules for mark-
ing pixels are flexible and adaptable
to different images.
In the remainder of this paper, Sec-

tion II gives background on edge detec-
tion and GP. Section III describes the
proposed GP system. After giving the
settings of the experiments in Section IV,
Section V provides the results with dis-
cussions. Section VI draws conclusions
and suggests future research directions.

II. Background
This section briefly describes the back-
ground on edge detection, mainly unsu-
pervised edge detection, thresholding
techniques, and existing work using GP
for edge detection.

A. Edge Detection
Edge detection often includes three stages:
pre-processing, feature extraction, and
post-processing [1, 2]. In unsupervised
edge detection, there is no ground truth
to train edge detectors. Noises are expect-
ed to be filtered in the pre-processing
stage, and then edge features are extracted.
For example, differentiation exists among

different boundaries, and differentiation-
based edge detection is used to obtain
edge responses (edge features) on these
boundaries [1–3, 14, 15]. After edge fea-
tures are extracted, thresholding techniques
are usually employed in the post-processing
stage [1, 13, 16, 17].

1) Supervised Edge Detection
In supervised edge detection, a trained
edge detector normally has a fast detec-
tion speed on unseen images [18]. A sin-
gle fixed threshold is often used for the
unseen images to determine pixels as
edge points or non-edge points [6]. The
computational cost of obtaining binary
edge maps needs to be minimized for
real-time applications. However, it is
often hard for most existing methods to
obtain a full binary edge map from an
image (normally larger than 256 256#
pixels) within a short time. In video pro-
cessing, the time of processing each frame
is often required to be shorter than
0.1 second [19]. Otherwise, it can easily
cause the flicker problem. To quickly
obtain binary edge maps, the computa-
tional cost needs to be low on both edge
feature extraction and final binary edge
points determination. In our previous
work [20], training images and their
ground truth were used to automatically
evolve good low-level edge detectors
with a low computational cost. When
there is no ground truth, an unsupervised
edge detector generally extracts a binary
edge map based on a set of thresholds,
instead of a single fixed threshold, but it is
difficult to determine values of these
thresholds, since the evaluation function
for balancing edge points and non-edge
points is difficult to design [5, 6, 17].

2) Unsupervised Edge Detection
There are generally three approaches to
unsupervised edge detection: searching
for thresholds [6, 17], finding connected

Unsupervised edge detection is challenging and
computationally expensive. Instead of searching for edge
points in each image, it is desirable to quickly learn an
edge detector that can be used for many images.

48 IEEE Computational intelligence magazine | November 2018

curves [15, 21, 22], and obtaining bound-
aries based on segmentation results [23].
Thresholding techniques normally obtain
edge points pixel by pixel. Hence, they
are generally fast and suitable for real-
time applications. However, such techniques
consider very little global information and
usually do not balance between the edge
points and non-edge points. For example,
an iterative method and an entropy based
thresholding technique were employed
to obtain binary edge maps in [17], and
the Otsu method [24] was utilized to
search for good thresholds to obtain
edge maps [17]. However, the detected
results from these three methods could
be easily affected by noise. In addition,
the binary edge maps from the thresh-
olding techniques in [4] and [5] typically
have low precision. The zero threshold
technique proposed in [6] normally
obtains binary edge maps with low
recall. However, both recall and preci-
sion are important, since recall cannot
be the proportion of non-edge points
that are incorrectly detected as edge
points, but precision cannot indicate the
proportion of true edge points being
missed. When both recall and precision
are considered, how to balance between
them needs further investigation.
Approaches based on finding connected
curves or obtaining boundaries from seg-
mentation results usually consider con-
text [1] in a detected image. The active
contour approach [21, 25] utilizes an
energy function to find good closed
edges. However, these methods [1, 21,
25] suffer from high computational cost.
Generally, only parts of the edges in an
image can be found by this approach.
Also, binary edges are usually dependent
on initial candidate curves [1, 26]. Since
an energy function considers edge curves,
instead of independent individual edge
points, it is worth investigating how to
integrate an energy function with a
thresholding technique to take the
advantages of both approaches.

Image gradients are popularly used to
extract edge features in unsupervised
edge detection, such as the Sobel edge
detector [27] and the Canny edge detec-
tor [13]. A common computational
framework is suggested in [27] to calcu-

late gradients on untextured and textured
images. In general, a horizontal derivative
and a vertical derivative are combined as
the image gradient, which are also used
to obtain edge orientation information.
To filter noise, Gaussian filters have been
applied to edge detection [2, 13]. Consid-
ering the effect of white noise, the Canny
detector employed a Gaussian filter to
approximate a given function (considered
as an optimal edge detector) [13]. In a
two-dimensional Gaussian filter (,)g x yv
(see Eq. (1)), the image horizontal deriva-
tive (,)g x y x2 2 and the image vertical
derivative (,)g x y y2 2 are defined in
Eqs. (2) and (3), respectively. Here, v is a
scale parameter. Gaussian image gradient

(,)g x yd is defined in Eq. (4), and the
edge direction i is defined in Eq. (5).

	 (,) expg x y
x y

2
1

22 2

2 2

rv v
= -

+
v c m� (1)

(,)
exp

x
g x y x x y

2 24 2

2 2

2

2

rv v
=- -

+c m� (2)

(,)
exp

y
g x y y x y

2 24 2

2 2

2

2

rv v
=- -

+c m� (3)

	 (,)
(,) (,)

g x y
x

g x y
y

g x y2 2

d
2

2

2

2
= +c cm m

� (4)

	
(,)

(,)

.arctan

x
g x y

y
g x y

2

2

2

2

i =

J

L

K
K
KK

N

P

O
O
OO

� (5)

There are many other methods for
edge feature extraction [1], such as the
image histogram gradient [28], the
image texture gradient [28], techniques
using the co-occurrence matrix [29],
and automatic construction of edge fea-
tures [30, 31]. Gaussian image gradient is
popularly used for edge detection, and
has stable performance on edge detec-
tion [1, 2]. It is also computational less
expensive than other techniques, such as
the image histogram gradient. Therefore,
this paper utilizes only Gaussian image
gradient to extract edge features.

3) Performance Evaluation
Since edge detection is subjective, i.e.,
different people may mark/label differ-
ent observations of edges in the same
natural images, it is not straightforward

to evaluate binary edge maps, where
natural images mean images coming
from different natural scenes, such as a
picture of a tree, an animal or a person
on the grass. It is expensive to manually
check the detected results. The ground
truth of a set of images is often utilized
to automatically evaluate the detected
results [28, 32]. F-measure, which com-
bines recall r and precision p with a
parameter ,a has been popularly used to
measure the detection performance [28,
33]. F-measure is defined in Eqs. (6)-(8),
where T is the number of true edge
points, TP is the number of true edge
points being correctly detected, P is the
total number of predicted edge points,
and parameter a is from 0 to 1. When a
is large, F is mainly affected by .r For a
soft edge map, a low threshold is usually
used to obtain high ,r but low ;p and a
high threshold is usually used to obtain
low ,r but high .p a is set to 0.5 to bal-
ance recall r and precision p [28, 33]:

	 r
T
TP= � (6)

	 p
P

TP= � (7)

	
()

.F
r p

rp
1a a

=
+ -

� (8)

B. Thresholding Techniques
Thresholding techniques in image pro-
cessing generally include histogram-
based methods [16, 34] and spatial
methods [17]. Histogram-based methods
employ the histogram of edge responses,
such as the image gradient, to search for
a threshold value to divide the edge
responses into different parts. In [16], an
optimal threshold was selected from a set
of pre-defined thresholds based on the
Otsu method or the maximum entropy.
Spatial methods directly apply a given
threshold to edge responses for marking
pixels as edge or normal points [18].

1) Thresholding in Supervised
Edge Detection
When the training images and their
ground truth are provided, a fixed thresh-
old can be directly used. In our previous
work, a fixed threshold of 0 was used in
the edge detectors evolved by GP [18].

�N ovember 2018 | IEEE Computational intelligence magazine 49

Different from using a given threshold,
the probabilities of a pixel being an edge
point or a non-edge point have been
used to obtain binary edge maps [20, 35].

2) Thresholding in Unsupervised
Edge Detection
When there is no ground truth provided,
results from different edge detectors can
be combined to form ground truth [36],
but it is computationally expensive. How-
ever, the detection time for a single image
is required to be shorter than 0.1 second
for many real-world problems. Therefore,
thresholding techniques focus mainly on
searching threshold values after obtaining
a histogram on the edge responses, which
are aggregated in a histogram with bins

, , ..., ,k L0 1 1= - where k is a thresh-
old level and L is the number of thresh-
old levels. The Otsu method [24] has been
widely applied to histogram-based thresh-
olding techniques [16, 34]. The Otsu
method aims to separate pixels into edge
points and non-edge points according to
the minimum intra-class variance or
(equivalently) the maximum between-
class variance. An entropy-based thresh-
olding technique [17] was used to find
thresholds with the maximum entropy,
where it is found that the Otsu method
and the entropy-based thresholding tech-
nique discriminate pixels with high recall,
but they are easily affected by noise.

Generally, the number of edge points
and the number of non-edge points are
unbalanced, and the number of true
edge points is much smaller than that of
non-edge points. Edge detection is often
treated as a binary classification problem,
and the edge point is the more impor-
tant class. In [6], there was an assumption
that the number of edge points is not less
than 1% of the total pixels in an image
based on their experimental experience.
Since the numbers of true edge points in
different images are very different, this
method may lead to the further loss of
some true edge points for images that
contain very few true edge points.

3) Thresholding in Canny
In the Canny edge detector, a threshold-
ing technique has been used [13] to
eliminate breaking edge contours. A

user-defined high threshold is used to
mark pixels as strong edge points. After
getting strong edge points, a user-
defined relatively low threshold is used
to mark a pixel as a weak edge point,
which is considered as an edge point if
it is connected to a strong edge point.
However, it is expensive to manually
tune the low and high thresholds in the
Canny edge detector. In [34], a high
threshold was determined based on the
histogram on edge responses, and a low
threshold was determined based on the
distributions of edge points and non-
edge points. In [4] and [5], a unimodal
thresholding technique on the edge
response histogram was proposed to find
a low threshold. In the unimodal thresh-
olding technique, the information (dis-
tribution of edge response magnitudes)
from each threshold level is calculated.
Therefore, the computational cost is
high. The results in [5] show that these
threshold techniques have high recall,
but are affected by noise.

Overall, existing thresholding tech-
niques focus mainly on recall (generally
using low thresholds) or precision (gen-
erally using high thresholds) only. When
both recall and precision are considered,
thresholding techniques need to be fur-
ther investigated to obtain binary edge
maps in unsupervised edge detection.

C. Related Work on GP
for Edge Detection
GP has been applied to supervised edge
detection when the training data with
desired outputs are provided. In low-lev-
el supervised edge detection, GP has
been used to automatically design edge
detectors based on pixel intensities.
There are three ways to provide training
data for evolving edge detectors. Firstly,
the ground truth of training images is
given by humans. The ground truth used
in [37] is hand-labelled, and the ground
truth used in [28] is labelled based on
the segmentation results. Note that the

segmentation results are determined by
humans. Via selecting pixels from a
13 13# moving window to construct
GP programs/trees, a multi-objective GP
system is used to extract edge features
[37]. GP has also been used to evolve
edge detectors where pixels in a moving
window were considered as terminals,
i.e. the leaf nodes of GP trees/programs
[38, 39]. To avoid setting a window size,
search operators, such as a shifting opera-
tor, have been used as functions, i.e. the
internal nodes of GP programs, to evolve
edge detectors based on full images [11,
20]. Secondly, the “ground truth” of
training images comes from existing
edge detectors, such as the approxima-
tion of the Sobel detector [40] and the
Canny detector [41]. Thirdly, when edges
are considered as signals, GP is used to
evolve formulae to approximate the
designed “signal” responses on edges and
non-edges points. One-dimensional step
edge responses are designed for evolving
formulae, which are used as edge detec-
tors [10].

The GP evolved low-level edge de
tectors can compete well with the re
sults from the existing edge detectors,
such as the Sobel edge detector [18] and
the Canny edge detector [37] according
to F-measure. Also, specific domain
knowledge for edge detection was used
to evolve edge detectors by GP. For
example, morphological erosion and
dilation were used as terminals of GP
trees to evolve edge detectors in binary
images [42, 43]. Gaussian filters were
used to evolve Gaussian-based edge
detectors by GP [44, 45]. Statistical
knowledge has been used to construct
composite features in our previous work
[35]. After utilizing specific domain
knowledge in GP, the detection perfor-
mance of the evolved edge detectors has
been improved.

In summary, most of the existing
works using GP for edge detection are
based on ground truth. Our previous

Existing unsupervised edge detection methods often
have high recall, but low precision and are easily
affected by noise.

50 IEEE Computational intelligence magazine | November 2018

work conducted an initial investigation
on unsupervised edge detection [12]. The
results show that GP has the potential to
evolve edge detectors from a single image.
In this work we will further investigate
the capability of GP for evolving edge
detectors without ground truth.

III. The New Method:
Modified GP (MGP)
This section introduces the proposed
unsupervised edge detection method, a
modified GP system (MGP), which is
extended from our preliminary investi-
gation on GP for unsupervised edge
detection in [12]. This section firstly
briefly describes the baseline algorithm
in [12] which is called a GP artificial ant
system (GPA), then introduces the new
MGP method.

A. The Baseline Algorithm: GPA
GP [12, 39] has been used to design arti-
ficial ant sittings in an image to search
for edge points without using ground
truth. Edge points are considered as ant
food sources. An action “eat” is used to
mark a pixel as an edge point or not.
GPA was proposed to evolve ants to
search for edge points.

The terminal set in GPA includes
four different types of markers: marking
a pixel as an edge point, marking a set of
pixels as edge points, marking a pixel as
a non-edge point, and marking a set of
pixels as non-edge points. The function

set in GPA includes { , , , ,IFC NIF + -
, /, (,)prog P P2 1 2# and (, ,prog P P3 1 2
)}.P3 In (, , ,)IFC f t P P1 2 , f is a specific

feature, t is a constant threshold, and P1
and P2 are sub-programs. P1 is execut-
ed if ;f t1 otherwise, P2 is executed.
Considering the global information
from the whole image and the local
curves in a small moving window, a fit-
ness function FitGPA shown in Eq. (9) was
proposed for GPA, which relaxed the
edge continuity constraint in an ener-
gy function:

	 Fit EE
N
w pwGPA i

N
i

2
1

= +
=
/ � (9)

where

	

log

log

EE

N
g

g

w

1 1 1

1

1

i
i

N

i
i

N

1

1

1

=

+ +

+

+

=

=

e

e o

o/

/

�
(10)

where N is the number of pixels marked
as edge points, gi is the image gradient
for pixel ,i w1 and w2 are weight fac-
tors, and pwi is a penalty weight for
thickness. A thick edge point for pixel i
used ,pw 1i = which is only considered
when the corresponding pixel is
marked as an edge point and the num-
ber of its neighbors being marked as
edge points is not smaller than five. For
all other cases, pwi is equal to 0. Func-

tion EE (Eq. (10)) includes the average
of the image gradients N g1 i

N
i1R =^ h

and the sum of the image gradients
.gi

N
i1R =^ h

FitGPA could utilize energies to effec-
tively evaluate programs on a single
image, but it has three parameters ,w1 ,w2
and pwi to adjust. Further analysis shows
that most of the evolved programs have
similar structures and include mainly

.IFC The terminal for marking a set of
pixels as edge points has a very low usage
over all the evolved programs. To effec-
tively evolve edge detectors and reduce
the number of the parameters in ,FitGPA
MGP is proposed in this paper.

B. Terminal Set
Table 1 lists the terminal set used in MGP
and GPA, where the terminal set of
MGP consists of { , , , ,a rm nE nE nd , } .sd g
Each GP program scans pixels from left
to right and from top to bottom in an
image. To mark a pixel, we designed ter-
minals called markers in GPA, as shown
in Table 1. Two basic markers m and nE
are utilized to mark pixels as edge points
or non-edge points, respectively. Marker
anE marks a set of pixels as non-edge
points, i.e. the pixels within a small area.

Since the image gradient g was used
in GPA without post-processing, there
were thick responses on detected edges.
When the moving window size is in
creasing, GPA might not handle thick
responses well, and a large moving win-
dow size does not suit GPA. To thin edge
responses, non-maximum suppression [13] is
integrated into MGP. The terminal set of
MGP includes the following two parts.

First, MGP keeps all the terminals
from GPA except for the markers mH
and ,mV which were used to mark a set
of pixels either horizontally or vertically.
From the initial investigation, it was
found that markers mH and mV were
seldom selected in the evolved edge
detectors. For a horizontal edge line,
the width of a detected line might be
two pixels if the non-maximum sup-
pression is not used. If the non-maxi-
mum suppression is used, the width
would be only one pixel. Therefore,
using mH and mV may increase the
false alarms.

Table 1 Terminals in MGP and GPA [12].

Terminal MGP GPA [12] Note

m Yes Yes mark a pixel as an edge point

nE Yes Yes mark a pixel as a non-edge point

anE Yes Yes mark a set of pixels as non-edge points

mH No Yes horizontally mark pixels as edge points

mV No Yes vertically mark pixels as edge points

rnd Yes No random constant

sd Yes No standard deviation

g Yes No gradient

With the flexible tree based representation, Genetic
Programming is able to use different functions and
terminals to evolve rules as edge detectors.

�N ovember 2018 | IEEE Computational intelligence magazine 51

Second, random constants ,rnd the
image gradient ,g and the standard devi-
ation sd are used as terminals to construct
conditions. { , , }rnd sd g in GPA were
used as arguments of function ,IFC not
individual terminals. IFC is still used
in MGP. Fig. 1 provides a simple GP
tree using function IFC. The tree is

. , , ,IFC g m nE0 2^ h, where g is the value
generated by the non-maximum suppres-
sion operation on the image gradient
from the current moving window and
the condition is . .g0 2 1 These terminals

, andrnd g sd^ h return real numbers.
They are used to combine sub-programs
as conditions for calling different markers.
Note that there are two different types of
terminals, where each marker conducts
an action, but the others , andrnd g sd^ h
return real numbers.

C. Function Set
The conditions (rules) used in the func-
tions IFC^ h in GPA were based on a
single fixed threshold. IFC was inspired
by the experiential design of humans
developing edge detectors to find edge
curves, where the rules used are very
limited. It is possible to evolve rules to
improve detection performance. There-
fore, MGP is designed to automatically
generate sub-programs as conditions
(rules). Since the directional markers
mH and mV are not used in MGP,
programs evolved by MGP search
mainly for single edge points. Without
directionally marking pixels, functions

(,)prog P P2 1 2 and (, ,)prog P P P3 1 2 3
used in GPA are not included in MGP.
Different from GPA using the given
conditions, MGP automatically evolves
conditions and edge detectors at the
same time. Therefore, the conditions
used in IFC are relaxed, and f and t
are replaced by sub-programs NP1 and
NP2 with the numerical return type.
Here, NP1 and NP2 are constructed by
the numerical terminals and arithmetic
functions { , , , /}#+ - used in MGP.
Note that / is the protected division,
returning 1 when being divided by 0.

In order to use the logical operator
IFC in numerical return sub-programs
(for automatically constructing condi-
tions), a new numerical return function

(, , ,)NIF NP NP NP NP1 2 3 4 is intro-
duced in MGP, where NP3 and NP4
are sub-programs whose return types are
numerical. When ,NP NP1 21 IFN
returns a numerical result from ;NP3
otherwise, a numerical result is obtained
from .NP4

In summary, the function set in MGP
consists of { , , , ,IFC NIF + - , /} .#
Given the different return types of the
terminals and functions, strongly typed
GP [9] is used to develop the proposed
MGP system.

D. Fitness Function
Since the non-maximum suppression is
used, the thickness will not be consid-
ered. Fitness function FitMGP in Eq. (11)
is actually the energy function EE
shown by Eq. (10):

.

log

log

Fit EE

N
g

g

w

1 1 1

1

1

MGP

i
i

N

i
i

N

1

1

1

=

=

+ +

+

+

=

=

e

e o

o/

/

�

(11)

There is a trade-off between the
ave r age of the i m a g e g r a d i e n t s

N g1 i
N

i1R =^ h and the sum of the image
gradients .gi

N
i1R =^ h The average is high

(low) when pixels with high (low)
image gradients are selected. The sum is
high (low) when a large number (or
only a few) pixels are selected. In gener-
al, if the average is high, precision will

be high because pixels with high gradi-
ents usually are true edge points. If the
sum is high, recall is usually high
because most pixels are marked as
edge points. MGP removes the penal-
ty item N pw wi

N
i2 1R = in FitGPA in

Eq. (9). There is only one parameter
w1 in fitness function FitMGP in Eq.
(11). w1 is used to balance recall and
precision of the detected results, which
has a similar function to a in F-mea-
sure in Eq. (8).

E. Unsupervised GP vs Thresholding
Techniques
MGP is expected to evolve programs
from a single image without ground
truth, and the evolved program, i.e. edge
detector, can be directly applied to
extract edges from unseen images, i.e.
images in the test set. Once the edge
detector is evolved from the single
image, the GP system does not need to
restart to evolve a new edge detector
again for unseen images. In contrast, a
thresholding technique, such as the his-
togram-based method [16, 34], searches
for an optimal threshold for each image
and needs to restart the search for a
threshold when the detected image is
changed. If there are N images, there
will be N optimization tasks of search-
ing for optimal thresholds. Therefore, the
proposed MGP system has low compu-
tational cost to detect edges on unseen
images. The cost of the edge detectors
evolved by MGP is mainly from the
image gradient calculation.

IFC

g m nE0.2

Image

Edge Point

Gradient

GP Program

Moving Window

Figure 1 An example GP program for detecting edge points using a moving window.

52 IEEE Computational intelligence magazine | November 2018

IV. Experiment Design

A. Image Dataset
The Berkeley Segmentation Dataset
(BSD) [28] is used in the experiments.
There are 200 training images and 100
test images in BSD, and each image has
481 321# pixels or 321 481# pixels.
The BSD dataset provides ground truth,
but it is not used by MGP during the
evolutionary learning process.

Six images shown in Fig. 2 are
selected as training images, where five
images are from the BSD training set
and the other one (image 101085) is
from the BSD test set (the ground truth
of image 101085 is not used, i.e. unseen,
during the training process). These
images are chosen because they have
rich edge information (such as intensity
differences between objects and back-
ground) and relatively large numbers of
true edge points.

We have conducted six sets of experi-
ments, each using a different single image
from Fig. 2 to evolve an edge detector.
Each of the evolved edge detectors is
evaluated on the 100 test images from the
BSD dataset.

B. Experiment Settings
Table 2 lists the settings of MGP and
GPA. MGP automatically evolves con-
ditions to search over edge pixels, and
the depth of an evolved sub-program as
a condition could be larger than 1.
Therefore, the maximum depth of a
program in MGP should be larger than
in GPA. However, since only rnd, sd, and
g, and a small set of functions are used
for generating rules (conditions), it is
expected that sub-programs (used for
these rules) are not too much larger.
Therefore, the maximum depth is set to
five in MGP. Based on initial experi-
ments, a population size of 50 and the

maximum number of generations is set
to 30. Probabilities used for mutation
(0.35), crossover (0.60) and reproduction
(0.05) are taken from [46]. The initial
population is created by the ramp-half-
and-half method. 30 independent runs
are conducted for each experiment.

For the n n# moving window, the
parameter n is set to 11 in the experi-
ments, since the best test F-measure per-
formance of the Canny edge detector,
i.e . ,F 0 56= is achieved when .n 11=
The best test F-measure of .F 0 56= is
the same as reported in [28]. Since GPA
has a problem with thick/many respons-
es and a large window size might not be
suitable in GPA, we still keep n = 9 for
GPA. Generally, at least one percent of
the pixels in an image would be suggest-
ed as edge points [6]. Therefore, to
approximately balance the two terms in

,FitMGP we use .w 1 0 01 1001 = = in
this paper.

V. Results and Discussion
The F-measure [28] is employed to
evaluate the performance of MGP on
the 100 test images in the BSD dataset.

A. Test Performance in terms of
F-measure, Recall and Precision
Table 3 presents the means and standard
deviations of the performance F values
over the 100 test images for the edge
detectors evolved by MGP and GPA
over the 30 runs. The thick binary edges
obtained from GPA were thinned by a
binary thinning operator [47], then the
thinned edges were used to obtain recall
and precision. Two sample t-tests and
Mann-Whitney-Wilcoxon (MWW,
non-parametric) tests [48] with a signifi-
cance level of 0.05 are used to compare
the performance of MGP and GPA,
where the p-values are presented in the
third and fourth columns of Table 3,
respectively. “ -” indicates that MGP is
significantly better than GPA.

Table 3 shows that the test perfor-
mance F of the edge detectors evolved
by MGP is significantly better than that
of GPA in all cases, i.e. using each of the
six images as the training set. The overall
test performance of MGP is, of course, a
significant improvement over GPA, i.e.

Table 2 Experiment Settings of MGP and GPA [12].

MGP GPA [12]

Terminals { , , , , , }m nE anE rnd sd g { , , , , }m mH mV nE anE

Functions { , , , , ,/}IFC NIF #+ - { , , }IFC prog prog2 3

Fitness Function FitMGP FitGPA

Population 50 100

Generation 30 30

Mutation 0.35 0.35

Crossover 0.60 0.60

Depth 5 3

n (window size) 11 9

(a) (b) (c)

(d) (e) (f)

Figure 2 Five BSD training images (a)–(e) and one BSD test image (f). (a) 23025, (b) 23080,
(c) 33066, (d) 370036, (e) 385028, and (f) 101085.

�N ovember 2018 | IEEE Computational intelligence magazine 53

from the average of 0.5267 to 0.5673.
This suggests that by employing the
new terminal set, function set and fitness
function, MGP can further improve the
performance of GPA in terms of the
F-measure. We further investigate their
performance in terms of the recall and
precision in Table 4.

Table 4 gives the averages of recall
and precision of the 30 edge detectors
evolved by MGP or GPA (from the
30 runs) on the test set, when each of
the six single images is used as the train-
ing data for evolving GP detectors. The
MWW tests with a significance level of
0.05 are used to compare their perfor-
mance. As can be seen from Table 4, the
precision of the evolved edge detectors
is significantly improved when MGP is
used in all the six cases, from (a) to (f  ).
Their improvement is over 0.58 or 13%,
except for the 9.6% improvement when
image (f  ) is used. The overall average is
increased from 0.4607 to 0.5267 by
around 0.066 or 14.33%. The results
of recall in MGP are generally similar
to GPA, with two significant smaller
cases and four similar or better cases.

The overall average recall is slightly
decreased by MGP compared with
GPA, from 0.6199 to 0.6180, by a very
small value. Additionally, on training
image (a), there is no significant differ-
ences between MGP and GPA in terms
of recall.

According to Table 3 and Table 4,
MGP mainly improves the precision of
the detected results. There are two
potential reasons: First, by using non-
maximum suppression in MGP, the fit-
ness function FitMGP does not need to
evaluate the thickness of binary edges,
and only addresses recall and precision
using a weight .w1 However, fitness
function FitGPA needs to address recall,
precision, and the thickness of edges
using three parameters ,w1 ,w2 and pwi
(see Eq. 9). It is more complicated to
use FitGPA than FitMGP for evaluating
edge detectors. Second, MGP automati-
cally evolves conditions while evolving
edge detectors, whereas in GPA, a limit-
ed set of conditions are pre-defined.
The number of potential conditions
evolved by MGP is larger than by GPA,
and the evolved conditions are poten-

tially better than the limited set of pre-
defined conditions.

B. GP vs Canny
From [28], the best F performance of
the Canny edge detector on the BSD
test set is 0.56. The results of MGP from
Table 3 are significantly larger than 0.56,
according to the t-tests with the signifi-
cance level of 0.05 and MWW tests.
Note that the standard deviations of F
values from MGP in Table 3 are very
small. Most of the MGP edge detectors
have detection performance F higher
than 0.56. The image gradient used by
the Canny edge detector is normalized
(from 0 to 1). As discussed in Section II,
since it is not easy to search for two opti-
mal thresholds in the Canny edge detec-
tor, a high threshold is used to find
strong edge points (with high magni-
tudes of the image gradient) and a low
threshold is used to find weak edge
points which are connected to strong
edge points. If the high threshold is too
large, some important edge points will
be removed and the connected weak
edge points will not be found. If the

Table 3 Mean ! standard deviation of the 30 F values on the test set by MGP and GPA. Note that p-values
are from t-tests and Mann-Whitney-Wilcoxon (MWW) tests.

Training Image MGP GPA p-value (t-test) p-value (MWW)

(a) 0.5671 ! 0.0018 . .0 5265 0 0097! .0 0000 - .0 0000 -

(b) 0.5669 ! 0.0036 . .0 5288 0 0010! .0 0000 - .0 0000 -

(c) 0.5697 ! 0.0022 . .0 5278 0 0015! .0 0000 - .0 0000 -

(d) 0.5706 ! 0.0013 . .0 5273 0 0018! .0 0000 - .0 0000 -

(e) 0.5647 ! 0.0032 . .0 5278 0 0047! .0 0000 - .0 0000 -

(f) 0.5648 ! 0.0054 . .0 5218 0 0113! .0 0000 - .0 0000 -

average 0.5673 0.5267 — —

Table 4 Recall and precision for the GP edge detectors evolved by MGP and GPA.

Training
Image

MGP GPA p-value (MWW)

recall precision recall precision recall precision

(a) 0.6005 ! 0.0110 0.5375 ! 0.0057 0.5996 ! 0.0362 0.4709 ! 0.0150 0.4325 .0 0000 -

(b) 0.6089 ! 0.0318 0.5322 ! 0.0194 . .0 6269 0 0219! 0.4579 ! 0.0118 .0 0003 - .0 0000 -

(c) 0.6471 ! 0.0171 0.5093 ! 0.0097 0.6544 ! 0.0218 0.4428 ! 0.0114 .0 0318 . .0 0000 -

(d) 0.6708 ! 0.0179 0.4970 ! 0.0102 0.6619 ! 0.0203 0.4387 ! 0.0112 .0 0182 - .0 0000 -

(e) 0.5887 ! 0.0189 0.5434 ! 0.0106 0.6198 ! 0.0271 0.4605 ! 0.0132 .0 0000 . .0 0000 -

(f) 0.591 ! 0.0218 0.5410 ! 0.0104 0.5570 ! 0.0393 0.4935 ! 0.0177 .0 0000 - .0 0000 -

average 0.6180 0.5267 0.6199 0.4607 — —

54 IEEE Computational intelligence magazine | November 2018

high threshold is too low, some noisy
pixels might be considered as edge
points, and when finding weak edge
points, more noisy pixels may be marked
as edge points. Without ground truth, it
is still an open issue to investigate how
to effectively search for the best two
thresholds [17, 49]. In this paper, we only
use a single threshold in the Canny edge
detector to quickly search for “good”
binary edge maps. A fixed set of
thresholds , , , ,i i52 1 2 51f=^ h are

given to obtain F values based on the
ground truth of the 100 test BSD images.

.F 0 56= is obtained as the maximum F
from the 51 thresholds for the Canny
edge detector, and it is the same as
reported in [28].

Note that the Canny edge detector
uses a set of thresholds and obtains dif-
ferent results. The test performance is
the best test performance (maximum F)
from all these results. The GP evolved
edge detectors directly generate the final

binary edge maps, and do not involve
multiple thresholds to choose. The com-
parisons show that MGP has the abili-
ty to effectively evolve edge detectors
when only a single image without
ground truth is employed as the whole
training set.

C. Computational Cost
As discussed in [12], GPA has a low com-
putational cost. Table 5 provides the test
times (in seconds) of the GP edge detec-
tors evolved by MGP and GPA. All the
experiments are based on a system with
CPU 2.1 GHz and RAM 2GB. T-tests a
significance level of 0.05 are used to com-
pare their computational cost. “-” means
that GPA is significantly faster than MGP.
It can be seen that the programs evolved
by MGP have significantly longer test
times than that of GPA, but the average
test times in MGP are still much shorter
than 0.1 second per image. Therefore, the
MGP edge detectors’ computational costs
are still well within the 0.1 second
requirement in real-time applications. Of
course, a more powerful CPU can be
used to further reduce the computational
time on the test images.

D. Example GP Edge Detectors
Fig. 3 shows an edge detector gpold
(with a commonly found structure)
evolved by GPA, while Fig. 4 gives an
example of the edge detector gpnew
evolved by MGP.

GPA focused mainly on the combi-
nations of conditions in function .IFC If
the condition in IFC is true, IFC calls
the left sub-program; otherwise, it calls
the right sub-program. From the struc-
ture of GP edge detector ,gpold the stan-
dard deviation sd in the root is helpful to
choose a threshold on image gradient .g
When sd is high, a threshold on g for
images with noise needs to be larger
than that of without noise.

For MGP, the image intensity in
MGP is from 0 to 1. As can be seen
from Fig. 4, the edge detector gpnew
includes mainly two sub-parts sub1 and
sub2. sub1 works mainly on marking
edge points and sub2 works on how to
mark pixels as non-edge points. There
are three interesting observations.

IFC

IFC

/

/

sub1
sub2

NIF g m

sd sd

sd

0.2 * g

g

g

anE nE

sd

0.9

Figure 4 Example GP edge detector gpnew (with F = 0.5723) evolved by MGP.

IFC

IFC IFCsd44.79

17.95 g gm mnE nE15.94

Figure 3 Example GP edge detector gpold (with .F 0 5304=) evolved by GPA [12].

Table 5 Test times (mean ± standard deviation) of the GP edge detectors
(in seconds).

Training Image MGP GPA

(a) . .0 0569 0 0327! . .0 0335 0 0088 -!

(b) . .0 0632 0 0343! . .0 0163 0 0155 -!

(c) 0.0713 ! 0.0323 . .0 0334 0 0123 -!

(d) 0.0697 ! 0.0373 . .0 0312 0 0074 -!

(e) 0.0655 ! 0.0353 . .0 0331 0 0080 -!

(f) 0.0585 ! 0.0334 . .0 0315 0 0097 -!

�N ovember 2018 | IEEE Computational intelligence magazine 55

Firstly, sub-part sub1 is constructed
as a condition to discriminate pixels as
edge points or non-edge points. Rather
than using a fixed threshold on the
image gradient ,g the automatically
constructed sub1 includes a condition
using sd in addition to a fixed thresh-
old. As a result, for an edge pixel from a
noisy area, its sd and g are not low, so
a fixed single threshold is chosen by
sub1, and this threshold is expected to
identify this pixel as an edge point. If
the fixed threshold with a high value is
used to consider the pixel as a non-
edge point, some pixels (true edge
points) in non-noisy areas are consid-
ered as non-edge points because their
gradients are not large. Sub-part sub1
adaptively employs a fixed threshold, sd
and g to mark pixels as edge points or
non-edge points for noisy areas and
non-noisy areas.

Secondly, sub-part sub2 is utilized as
a condition to mark a single pixel as a
non-edge point or a set of pixels as non-
edge points. When a pixel has a very low
g and a low ,sd its neighbors are usually
located in a non-edge area. sub2 can
quickly mark its neighbors as non-edge
points. However, when its g and sd are
not low, it is hard to determine whether
its neighbors are located in a non-edge
area. From the evolved condition in
sub2, the relationship between g and sd
influences the ability of identifying a set
of pixels being located in an edge area
or a non-edge area.

Thirdly, similar to the detector ,gpold

the detector gpnew utilizes the combina-
tion of sd and g to mark pixels as edge
points or non-edge points. Although we
do not pre-define condition functions in
MGP, the detector gpnew has evolved
adaptive conditions to mark pixels.

From the example detector ,gpnew
we can easily see that MGP can effec-
tively evolve adaptive conditions for
extracting edges, not directly using a
single fixed threshold.

E. Visual Results
Fig. 5 shows examples of the detected
results from the edge detectors evolved
by GPA using each of the six training
images (a)–(f ) as the training set. It is

Image

GT

(a)

(b)

(c)

(d)

(e)

(f)

1018085 106024 296007

Figure 5 Examples of the detected results on three example BSD images from GPA [12] (“GT”
is ground truth). The grayscale for GT and the detected results are inverted.

56 IEEE Computational intelligence magazine | November 2018

found that the detected results from the
six training images are quite similar.
Without providing ground truth, GPA
can effectively evolve edge detectors
based on the image gradient.

Fig. 6 shows examples of the detect-
ed results from the Canny edge detector
and the edge detectors evolved by MGP.
Comparing with the Canny edge detec-
tor (i.e. the results with best F based on
the ground truth), the GP edge detec-
tors evolved by MGP achieve higher
precision. For instance, for image
101085, the Canny edge detector has
more false alarms than the edge detec-
tors evolved by MGP. The MGP evolved
edge detectors is significantly better than
the Canny edge detector, more than 1%
increase in terms of the F-measure. This
is probably because the Canny edge
detector uses only a fixed threshold for
all the test images, but MGP has the
ability to automatically construct condi-
tions adaptively using the image gradi-
ent, the local standard deviation, and a
fixed threshold.

Comparing the detected results in
Figs. 5 and 6, MGP evolves edge detec-
tors with single edge responses. A reason
for this is that the energy (the image
gradient) used in MGP is further pro-
cessed by non-maximum suppression.
These results suggest that MGP also has
the ability to evolve edge detectors with
similar detection performance when
using (different) single training images
without ground truth.

F. Single Training Image
This subsection discusses why a single
image can be used by MGP and GPA as
the whole training set to evolve edge
detectors with good detection perfor-
mance. This is also to continue the inves-
tigation on how to effectively evolve
edge detectors using a single image, done
initially in our previous work in the
supervised learning scenario in [8].

For both supervised learning (with
ground truth) and unsupervised learn-
ing (without ground truth), pre-defined
specific knowledge, considered as prior
domain knowledge, is helpful to find
edge detectors when only a single image
is used as the training data. In GPA, the

Image

GT

Canny

(a)

(b)

(c)

(d)

(e)

(f)

1018085 106024 296007

Figure 6 Examples of the detected results on three example BSD images from the GP edge
detectors evolved by MGP (“GT” is ground truth). The grayscale for GT and the detected results
are inverted.

�N ovember 2018 | IEEE Computational intelligence magazine 57

image gradient and the standard de
viation are considered as the pr ior
knowledge. However, unlike existing
thresholding techniques [16, 17], GP
automatically evolves programs for mark-
ing edge points, rather than directly using
one or two thresholds. These evolved
programs can be considered as adaptive
methods, which can effectively employ
the image gradient and the standard
deviation on different areas of the image,
such as the examples shown in Figs. 3
and 4. To find such adaptive rules, the
single training image should include
various edge and non-edge informa-
tion, such as texture, noise, and differen-
tiation between two objects. This is
probably why MGP can effectively
evolve edge detectors when only a sin-
gle image is used.

One-shot learning has been applied
to object recognition, using a small set
of training images [7, 50]. One-shot
learning employs a very small set of
training examples to train new classifiers,
but needs prior knowledge extracted
from existing datasets, such as learnt
classifiers or pre-defined feature distri-
butions, and such information is often
obtained from a large dataset. Different
from one-shot learning, MGP in this
paper only relies on the pre-defined fea-
tures (the image gradient and the stan-
dard deviation) and the given single
image without any prior knowledge.
Thus, MGP can be easier and faster to
apply to train edge detectors than one-
shot learning.

Note that in this work an image is
used as the training data only if it has
rich edge information. If an image has
little edge information, such as cases
with no or minor changes in a single
color object, the edge detector evolved
by MGP might not work well on other
images. We will investigate how to
determine whether the edge informa-
tion of a single image is rich enough in
the future.

VI. Conclusions
The goal of this paper was to develop an
unsupervised learning GP system to
improve the edge detection precision
without adversely affecting the recall

while keeping the low computational
cost. The goal has been achieved by
designing a terminal set, a function set,
and a fitness function to propose a new
algorithm named MGP. MGP uses only
a single image as the whole training set
to automatically evolve/generate effec-
tive edge detectors. Six images without
ground truth were individually used by
MGP for evolving effective edge detec-
tors in the experiments. The results
show that MGP can evolve edge detec-
tors to obtain significantly better detec-
tion performance than the baseline
algorithm GPA and the best perfor-
mance of the Canny edge detector.
The superior performance of MGP over
GPA is probably due to the automatic
condition rule construction and inte-
grating non-maximum suppression,
which also addresses the edge thickness
problem. Further analysis on the evolved
edge detectors reveals that MGP auto-
matically combined the image gradient
and the standard deviation with a
threshold to evolve adaptive edge detec-
tors, rather than using a single threshold
only, to mark pixels as edge points or
non-edge points.

This paper focuses mainly on the
automatic construction of edge detec-
tors using a single image, which is not
specific to any particular domains, such
as medical images. In the future, we will
investigate edge detection and image
analysis for medical images. Further-
more, we also aims to reduce the com-
putational cost of MGP, and design a
new marker as a terminal in GP to
mark all points in certain local areas that
include non-edge points only.

Acknowledgments
This work was supported in part by the
Marsden Fund of New Zealand Gov-
ernment under Contracts VUW1209,
VUW1509 and VUW1615, Huawei
Industry Fund E2880/3663, and the
University Research Fund at Victoria
University of Wellington 209862/3580,
and 213150/3662.

References
[1] G. Papari and N. Petkov, “Edge and line oriented con-
tour detection: State of the art,” Image Vis. Comput., vol.
29, pp. 79–103, Feb. 2011.

[2] M. Basu, “Gaussian-based edge-detection methods:
A survey,” IEEE Trans. Syst., Man, Cybern. C, Appl.
Rev.(1995–2012), vol. 32, no. 3, pp. 252–260, Dec.
2002.
[3] C. I. Gonzalez, P. Melin, J. R. Castro, O. Castillo,
and O. Mendoza, “Optimization of interval type-2 fuzzy
systems for image edge detection,” Appl. Soft Comput.,
vol. 47, pp. 631–643, Oct. 2016.
[4] R. Medina-Carnicer and F. Madrid-Cuevas, “Uni-
modal thresholding for edge detection,” Pattern Recog.,
vol. 41, no. 7, pp. 2337–2346, July 2008.
[5] R. Medina-Carnicer, F. Madrid-Cuevas, A. Carmo-
na-Poyato, and R. Mun̋oz-Salinas, “On candidates selec-
tion for hysteresis thresholds in edge detection,” Pattern
Recog., vol. 42, no. 7, pp. 1284–1296, July 2009.
[6] K. Ray, “Unsupervised edge detection and noise de-
tection from a single image,” Pattern Recog., vol. 46, no. 8,
pp. 2067–2077, Aug. 2013.
[7] F.-F. Li, R. Fergus, and P. Perona, “One-shot learn-
ing of object categories,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 28, no. 4, pp. 594–611, Apr. 2006.
[8] W. Fu, M. Johnston, and M. Zhang, “Is a single image
suff icient for evolving edge features by genetic program-
ming?” in Proc. Int. Conf. Applications Evolutionary Compu-
tation: EvoApplications, 2014, pp. 451–463.
[9] J. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA,
USA: MIT Press, 1992.
[10] C. Harris and B. Buxton, “Evolving edge detectors
with genetic programming,” in Proc. 1st Annu. Conf. Ge-
netic Programming, 1996, pp. 309–314.
[11] R. Poli, “Genetic programming for image analysis,”
in Proc. 1st Annu. Conf. Genetic Programming, 1996, pp.
363–368.
[12] W. Fu, M. Johnston, and M. Zhang, “Unsupervised
learning for edge detection using genetic programming,”
in Proc. IEEE Congr. Evolutionary Computation, 2014, pp.
117–124.
[13] J. Canny, “A computational approach to edge detec-
tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 8, no. 6,
pp. 679–698, Nov. 1986.
[14] W. Fu, M. Johnston, and M. Zhang, “Genetic pro-
gramming for edge detection: A Gaussian-based ap-
proach,” Soft Comput., vol. 20, no. 3, pp. 1231–1248,
Mar. 2016.
[15] X. Lu, J. Yao, L. Li, Y. Liu, and W. Zhang, “Edge
chain detection by applying Helmholtz principle on gra-
dient magnitude map,” in Proc. 23rd Int. Conf. Pattern Rec-
ognition, 2016, pp. 1364–1369.
[16] M. Sezgin and B. Sankur, “Survey over image
thresholding techniques and quantitative performance
evaluation,” J. Electron. Imaging, vol. 13, no. 1, pp. 146–
168, Jan. 2004.
[17] P. Kaur and R. Maini, “Performance evaluation of
various thresholding methods using Canny edge detec-
tor,” Int. J. Comput. Appl., vol. 71, no. 9, pp. 26–32, Dec.
2013.
[18] W. Fu, M. Johnston, and M. Zhang, “Genetic pro-
gramming for edge detection: A global approach,” in
Proc. IEEE Congr. Evolutionary Computation, 2011, pp.
254–261.
[19] J. T. Fulton, Processes in biological vision online Co-
rona Del Mar CA. USA vision concepts, 2004. [Online].
Available: http://neuronresearch.net/vision/. Accessed
on: Aug. 27, 2018.
[20] W. Fu, M. Johnston, and M. Zhang, “Soft edge
maps from edge detectors evolved by genetic program-
ming,” in Proc. IEEE Congr. Evolutionary Computation,
2012, pp. 24–31.
[21] S. Wang, T. Kubota, J. M. Siskind, and J. Wang,
“Salient closed boundary extraction with ratio contour,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, pp. 546–
561, Apr. 2005.
[22] M. Setayesh, M. Zhang, and M. Johnston, “Detec-
tion of continuous smooth and thin edges in noisy im-
ages using constrained particle swarm optimisation,” in
Proc. Genetic and Evolutionary Computation Conf., 2011,
pp. 45–52.
[23] S. Raut, M. Raghuvanshi, R. Dharaskar, and A.
Raut, “Image segmentation: A state-of-art survey for
prediction,” in Proc. Int. Conf. Advanced Computer Control,
2009, pp. 420–424.

58 IEEE Computational intelligence magazine | November 2018

[24] N. Otsu, “A threshold selection method from gray-
level histogram,” IEEE Trans. Syst., Man, Cybern.* (1971–
1995), vol. 9, no. 1, pp. 62–66, Jan. 1979.
[25] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes:
Active contour models,” Int. J. Comput. Vis., vol. 1, pp.
321–331, Jan. 1988.
[26] T. Chan and L. Vese, “Active contours without
edges,” IEEE Trans. Image Process., vol. 10, no. 2, pp.
266–277, Feb. 2001.
[27] L. Ganesan and P. Bhattacharyya, “Edge detection
in untextured and textured images: A common computa-
tional framework,” IEEE Trans. Syst. Man, Cybern. B, Cy-
bern. (1995–2012), vol. 27, no. 5, pp. 823–834, Sept. 1997.
[28] D. Martin, C. Fowlkes, and J. Malik, “Learning to
detect natural image boundaries using local brightness,
color, and texture cues,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 5, pp. 530–549, May 2004.
[29] D. J. Park, K. M. Nam, and R.-H. Park, “Edge
detection in noisy images based on the co-occurrence
matrix,” Pattern Recog., vol. 27, no. 6, pp. 765–775, June
1994.
[30] W. Fu, M. Johnston, and M. Zhang, “Genetic pro-
gramming for automatic construction of variant features
in edge detection,” in Proc. Int. Conf. Applications of Evo-
lutionary Computation: EvoApplications, 2013, pp. 354–364.
[31] W. Fu, M. Johnston, and M. Zhang, “Low-level
feature extraction for edge detection using genetic pro-
gramming,” IEEE Trans. Cybern., vol. 44, no. 8, pp.
1459–1472, Aug. 2014.
[32] C. Lopez-Molina, B. De Baets, and H. Bustince,
“Quantitative error measures for edge detection,” Pattern
Recog., vol. 46, no. 4, pp. 1125–1139, Apr. 2013.
[33] M. Donoser, H. Riemenschneider, and H. Bischof,
“Linked edges as stable region boundaries,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2010, pp.
1665–1672.

[34] Y.-K. Huo, G. Wei, Y.-D. Zhang, and L.-N. Wu,
“An adaptive threshold for the Canny operator of edge
detection,” in Proc. Int. Conf. Image Analysis and Signal Pro-
cessing, 2010, pp. 371–374.
[35] W. Fu, M. Johnston, and M. Zhang, “Distribution-
based invariant feature construction using genetic pro-
gramming for edge detection,” Soft Comput., vol. 19, no.
8, pp. 2371–2389, Aug. 2015.
[36] N. Fernández-García, A. Carmona-Poyato, R. Me-
dina-Carnicer, and F. Madrid-Cuevas, “Automatic gen-
eration of consensus ground truth for the comparison of
edge detection techniques,” Image Vis. Comput., vol. 26,
no. 4, pp. 496–511, Apr. 2008.
[37] Y. Zhang and P. I. Rockett, “Evolving optimal fea-
ture extraction using multi-objective genetic program-
ming: A methodology and preliminary study on edge
detection,” in Proc. Genetic and Evolutionary Computation
Conf., 2005, pp. 795–802.
[38] T. Golonek, D. Grzechca, and J. Rutkowski, “Ap-
plication of genetic programming to edge detector de-
sign,” in Proc. Int. Symp. Circuits and Systems, 2006, pp.
4683–4686.
[39] E. Bolis, C. Zerbi, P. Collet, J. Louchet, and E. Lut-
ton, “A GP artif icial ant for image processing: Prelimi-
nary experiments with EASEA,” in Proc. 4th European
Conf. Genetic Programming, 2001, pp. 246–255.
[40] S. Harding and W. Banzhaf, “Genetic program-
ming on GPUs for image processing,” Int. J. High Per-
formance Syst. Architecture, vol. 1, no. 4, pp. 231–240,
Mar. 2008.
[41] M. Ebner, “On the edge detectors for robot vision
using genetic programming,” in Proc. Horst-Michael Grob,
Workshop SOAVE 97 – Selbstorganisation von Adaptivem
Verhalten, 1997, pp. 127–134.
[42] M. I. Quintana, R. Poli, and E. Claridge, “Morpho-
logical algorithm design for binary images using genetic

programming,” Genetic Program. Evolvable Mach., vol. 7,
pp. 81–102, Mar. 2006.
[43] J. Wang and Y. Tan, “A novel genetic programming
based morphological image analysis algorithm,” in Proc.
12th Annu. Conf. Genetic and Evolutionary Computation,
2010, pp. 979–980.
[44] I. Kadar, O. Ben-Shahar, and M. Sipper, “Evolu-
tion of a local boundary detector for natural images via
genetic programming and texture cues,” in Proc. 11th
Annu. Conf. Genetic and Evolutionary Computation, 2009,
pp. 1887–1888.
[45] W. Fu, M. Johnston, and M. Zhang, “Automatic
construction of Gaussian-based edge detectors using ge-
netic programming,” in Proc. 16th European Conf. Applica-
tions Evolutionary Computation, 2013, pp. 365–375.
[46] U. Bhowan, M. Johnston, and M. Zhang, “Devel-
oping new fitness functions in genetic programming for
classif ication with unbalanced data,” IEEE Trans. Syst.
Man, Cybern. B, Cybern. (1995–2012), vol. 42, no. 2, pp.
406–421, 2012.
[47] L. Lam, S.-W. Lee, and C. Suen, “Thinning meth-
odologies: A comprehensive survey,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 14, no. 9, pp. 869–885, Sept.
1992.
[48] W. H. Kruskal, “Historical notes on the Wilcoxon
unpaired two-sample test,” J. Amer. Stat. Assoc., vol. 52,
no. 279, pp. 356–360, Sept. 1957.
[49] Y. Li, M. Paluri, J. M. Rehg, and P. Dollár, “Unsu-
pervised learning of edges,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2016, pp. 1619–1627.
[50] H. Al-Sahaf, M. Zhang, and M. Johnston, “A one-
shot learning approach to image classif ication using ge-
netic programming,” in Proc. 26th Australasian Joint Conf.
Artificial Intelligence, 2013, vol. 8272, pp. 110–122.

�

caused, whether it is congenital, or
acquired in childhood or adulthood, is
likely to play important roles and influ-
ence the performance of the system.
Note that a BCI game is more impor-
tant for a person with missing upper
limbs. The situation becomes more chal-
lenging if we consider the fact that a
particular area of the brain is no more in
charge of a body part but in charge of
activities that are done by that body part.
Thus if we want to design a BCI based
system, as an example, for people with
missing upper limbs, it appears that we
should use data from subjects with miss-
ing limbs. But this certainly poses a
challenge to generate adequate data for
designing such a system. This raises
other important questions: To design a
machine learning system for motor

imagery, can we use imagination of lip
movement or movement of the feet to
do the same task? Using a BCI system
how can we analyze what a person is
actually doing (not functionally, but
physically)? I have no answer to all these
questions but they all appear to be chal-
lenging and are likely to impact design-
ing of AI systems based on BCI.

References
[1] D. C. Knill and A. Pouget, “The Bayesian brain: The
role of uncertainty in neural coding and computation,”
Trends Neurosci., vol. 27, no. 12, pp. 712–719, 2004.
[2] K. Friston, J. Kilner, and L. Harrison, “A free energy
principle for the brain,” J. Physiology-Paris, vol. 100, no.
1–3, pp. 70–87, 2006.
[3] K. Friston, “The free-energy principle: A unified
brain theory?” Nature Rev. Neurosci., vol. 11, no. 2, pp.
127–138, 2010.
[4] N. Birbaumer, W. Lutzenberger, P. Montoya, W.
Larbig, K. Unertl, S. Töpfner, W. Grodd, E. Taub, and
H. Flor, “Effects of regional anesthesia on phantom limb
pain are mirrored in changes in cortical reorganization,”
J. Neurosci., vol. 17, no. 14, pp. 5503–5508, 1997.

[5] R. Chen, B. Corwell, Z. Yaseen, M. Hallett, and L.
G. Cohen, “Mechanisms of cortical reorganization in
lower-limb amputees,” J. Neurosci., vol. 18, no. 9, pp.
3443–3450, 1998.
[6] P. Montoya, K. Ritter, E. Huse, W. Larbig, C. Braun,
S. Töpfner, W. Lutzenberger, W. Grodd, H. Flor, and N.
Birbaumer, “The cortical somatotopic map and phantom
phenomena in subjects with congenital limb atrophy and
traumatic amputees with phantom limb pain,” Eur. J.
Neurosci., vol. 10, no. 3, pp. 1095–1102, 1998.
[7] H. Flor, T. Elbert, W. Mühlnickel, C. Pantev, C.
Wienbruch, and E. Taub, “Cortical reorganization and
phantom phenomena in congenital and traumatic upper-
extremity amputees,” Exp. Brain Res., vol. 119, no. 2, pp.
205–212, 1998.
[8] W.-H. Qiu, H.-X. Wu, Q.-L. Yang, Z. Kang, Z.-
C. Chen, K. Li, G.-R. Qiu, C.-Q. Xie, G.-F. Wan, and
S.-Q. Chen, “Evidence of cortical reorganization of
language networks after stroke with subacute Broca’s
aphasia: A blood oxygenation level dependent-functional
magnetic resonance imaging study,” Neural Regener. Res.,
vol. 12, no. 1, pp. 109–117, 2017.
[9] A. Hahamy, S. N. Macdonald, F. van den Heiligen-
berg, P. Kieliba, U. Emir, R. Malach, H. Johansen-Berg,
P. Brugger, J. C. Culham, and T. R. Makin, “Represen-
tation of multiple body parts in the missing-hand terri-
tory of congenital one-handers,” Current Biol., vol. 27,
no. 9, pp. 1350–1355, 2017.

�

President’s Message (continued from page 4)

