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hen I was in school, biology was not a favorite subject 
of mine. I am not sure about the exact reason for this–

whether it was the topics that we were taught, the way 
those were taught, or my limitation and interest. However, in 2002 
I made a short trip to National Chiao-Tung University, Taiwan to 
visit Prof. Chin-Teng Lin. While interacting with him and his 
group, I found them working on the protein folding problem 

among other topics. I found the topic very interesting and challenging. This made 
me interested in the use of machine learning to protein folding. In fact, I became 
interested in other problems in biology, and bioinformatics, in particular. The more I 
read, the more I realized that to understand biology one needs to exploit physics, 
chemistry, mathematics, statistics, and computer science. As of today, I know very little 
of the subject. In biology, in my view, the most amazing and at the same time the 
most complex thing is the human brain. That is why the brain is often referred to as 
the most complex object in the known universe. The brain is responsible for our 
ability of reasoning, understanding, sensing, cognition, learning, and emotion–the list 
goes on. The brain consists of about one hundred billion neurons and about one 
hundred trillion synapses (the number varies with age). Scientists all over the globe 
are trying to understand this most complex and mysterious object. There have been 
some interesting attempts to provide probabilistic models for perceptual computa-
tion. For example, Knill and Pouget [1] made a Bayesian coding hypothesis. The 
information received by sensory organs from the environment is represented in the 
brain by a conditional probability density function. Thus, the brain is a kind of proba-
bilistic machine, which makes predictions and then based on the information that it 
gets via its sensory organs, it updates the predictions using the Bayesian principle. 
Although it is beyond my capability to assess how general such a theory is to explain 
all aspects of the brain, certainly there are activities related to perception and recogni-
tion where such an approach appears a very plausible one. Even for activities like 
crossing a road without a traffic signal, we look at the cars and other conditions, and 
then make a hypothesis/prediction whether it is the right time to cross. Then we 
update our prediction with sensory inputs and take action depending on the traffic 
situation. Moving further, Friston and his team [2], [3] attempted to unify ideas and 
concepts about how brain processes information to reason and decide. In this con-
text, a “free energy principle” is proposed which can be viewed as a unified theory of 
perception and learning in the brain [2], [3]. According to the free energy principle, 
any self-organizing system must minimize its free energy to reach its equilibrium 
state, here the free energy is defined in terms of information theoretic quantities. This 
theory can bring several other theories under the same umbrella, which is very 
important. However, to establish this as the theory of the brain, a lot more needs to 
be done in terms of experimental verification. In fact, Friston himself wrote “If the 
arguments underlying the free-energy principle hold, then the real challenge is to 
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understand how it manifests in the 
brain” [3]. In my view, there is a huge 
scope for us to exploit these theoretical 
advancements in biological science to 
design “intelligent” systems for engi-
neering applications. In this context, it 
is worth noting that a Hopfield network 
minimizes such an energy to reach an 
equilibrium state.

There are many experimental investi-
gations in brain science that can also help 
and/or pose challenges in designing of 
intelligent systems for various applica-
tions. Next I briefly touch on a few such 
experiments. Understanding of the brain 
has been both challenging and an excit-
ing problem and has attracted many 
researchers to study experimentally dif-
ferent facets of the brain. There is grow-
ing evidence that different brain regions 
can take over functions that they are 
genetically not destined to perform. 
Many studies have demonstrated some 
reorganization of sensory and motor 
cortical maps following limb amputation 
[4]–[6]. It is well known that subjects 
with traumatic amputation of limbs 
develop phantom limbs when the ampu-
tation took place in adulthood [7]. There 
are also other studies on the reorganiza-
tion of cortical maps for subjects with 
congenital missing limbs [6], [7]. For 
example, Montoya et al. [6] considered 
subjects with congenital missing of one 
of the upper limbs, traumatic amputees 
with phantom limb pain, and healthy 
controls. They concluded that congenital 
absence of a limb did not lead to cortical 
reorganization but traumatic amputees 
with phantom limb pain exhibited shifts 
of the cortical areas near the amputation 
zone. More specifically, traumatic ampu-
tees exhibited a significant shift of the 
cortical map representation of the lower 
lip, but this was not the case for subjects 
with congenital upper limb atrophy. 
They inferred that there is no significant 
difference in the organization of somato-
sensory cortex of subjects with congeni-
tal limb atrophy and that of healthy 
subjects. Flor et al. [7] also reported an 
extensive reorganization of cortical maps 
for traumatic amputees with phantom 
limb pain. But for traumatic amputees 
without phantom limb pain, they practi-

cally could not find any reorganization 
of the cortical maps. In fact, there are 
other studies such as [8] related to corti-
cal reorganization of a language network 
that is associated with acquired language 
disabilities. A large percentage of stroke 
survivors develop aphasia-loss of lan-
guage ability. In [8] subjects with stroke-
induced aphasia and healthy subjects 
were given a picture naming task, and 
their blood-oxygen-level dependent 
(BOLD)- fMRI (functional Magnetic 
Resonance Imaging) was analyzed. 
Compared to the healthy controls, the 
activation in the left hemisphere of sub-
jects with aphasia was significantly small-
er. For aphasia subjects, the activation 
frequency and intensity in the regions 
that are related to language were much 
smaller compared to those of the con-
trols. On the other hand, for the patients, 
the right superior temporal gyrus and 
the bilateral superior parietal lobule 
exhibited significantly higher activation 
than the controls. All these findings may 
not be too surprising. However, a recent 
study reported some strikingly different 
observations than what we used to 
believe [9]. These findings may influence 
the way we develop BCI (Brain Com-
puter Interface) applications us ing 
machine learning. It considered 17 con-
genital one-handed subjects and 24 two-
handed control subjects. One-handed 
people often use other body parts to 
compensate for the missing hand. These 
subjects were given five tasks like wrap-
ping a gift and taking out money from a 
wallet and were asked to complete them 
as quickly as possible. Some important 
and striking findings of this study are: 
compared to the control, one-handers 
were found more likely to use their 
lower face, lower limbs, and the environ-
ment to compensate for their missing 
hand’s function. Thus multiple body 
parts are involved in the compensatory 
behavior. More surprisingly, compared to 
the controls, movements of residual arms, 
lips, and feet when used for compensato-
ry behavior, triggered a high activation 
in the missing hand-territory! Generally, 
it is believed that different parts of the 
brain (cortex) are organized based on 
different body parts–different areas of the 

cortex are responsible for motor func-
tions or sensory functions for different 
parts of the body (cortical homunculus). 
In other words, different parts of the 
brain control different body parts. Thus, 
corresponding to a hand, say the left 
hand, there is a brain area, which is in 
charge of the left hand functions. But the 
above study revealed a completely differ-
ent representation–the left hand area is 
not in charge of the left hand but is in 
charge of the activities that are normally 
carried out by the left hand! This is a 
very important finding. This is in sharp 
contrast to findings from several other 
studies as discussed earlier. Note that, this 
is not a topological reorganization but a 
functional reorganization. For example, 
other studies could not find any map-
ping of the lip movement into the miss-
ing hand territory [6], [7]. Flor et al. [7] 
reported not to find any cortical reorga-
nization for congenital amputees. Here, 
the observations are limited to subjects 
with congenital missing hands. So the 
discovery reported in [9] has remarkable 
consequences. Can this be taken as a 
strong indication that the brain organiza-
tion is not in terms of body parts but in 
terms of functions? What happens with 
other kinds of disability? For example, we 
have discussed the issue of cortical reor-
ganization with stroke-induced language 
disability. What happens with congenital 
speaking disability? If it turns out that in 
general (or just for people with congeni-
tal disabilities) the brain is organized in 
terms of the functions then this may 
have a significant impact on the way we 
design BCI systems. Often we analyze 
motor imagery EEG data from normal 
subjects and design BCI systems. What 
would happen if we try to transfer such 
knowledge (via a trained machine learn-
ing system) to subjects with congenital 
missing limbs or to traumatic amputees? 
What about designing BCI games? It is 
possible that the games designed based 
on normal subjects (that is what is nor-
mally done) may not do well when the 
games are played by people with missing 
limbs or people with language disorder. 
Even factors like how the disorder is 
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caused, whether it is congenital, or 
acquired in childhood or adulthood, is 
likely to play important roles and influ-
ence the performance of the system. 
Note that a BCI game is more impor-
tant for a person with missing upper 
limbs. The situation becomes more chal-
lenging if we consider the fact that a 
particular area of the brain is no more in 
charge of a body part but in charge of 
activities that are done by that body part. 
Thus if we want to design a BCI based 
system, as an example, for people with 
missing upper limbs, it appears that we 
should use data from subjects with miss-
ing limbs. But this certainly poses a 
challenge to generate adequate data for 
designing such a system. This raises 
other important questions: To design a 
machine learning system for motor 

imagery, can we use imagination of lip 
movement or movement of the feet to 
do the same task? Using a BCI system 
how can we analyze what a person is 
actually doing (not functionally, but 
physically)? I have no answer to all these 
questions but they all appear to be chal-
lenging and are likely to impact design-
ing of AI systems based on BCI.
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