
Magic Cards: A New Augmented-
Reality Approach
Olivier Demuynck and José Manuel Menéndez

Augmented-reality
applications commonly use
markers for detecting and
tracking virtual objects.
However, these applications
limit user interaction because
they require knowledge of
how to design and program
3D objects. The Magic Cards
system offers an easier
approach to creating and
managing an unlimited
number of virtual objects
encoded on special markers.

R endering effects and textures have become
so realistic that people feel real emotions
watching virtually created pictures or videos.

Nevertheless, recreating virtual scenes and persons
is neither easy nor fast, and it can be frustrating
when someone wants to be the main actor in the
virtual world. One option is to quickly design an
avatar that characterizes someone by hair color,
dressing style, and so on, and insert it in a virtual
world. However, augmented-reality (AR) technology
offers a better solution when the virtual content in
^ ^ ^ _ ^ ^ ^ _ a real environment decreases and

a person can appear as his or her
own image. Because human vi­
sual perception is so important,
the AR illusion of a virtual object
in your own hands is compelling
for many people. This has led to
AR applications in such areas as
phobia therapy.1

AR most often requires two
computer vision techniques: de­
tection and tracking. In some
cases, detection implies the ex­
tended use of computer vision and
image-processing techniques for
human body, hand, or face detec­
tion. On the other hand, AR can
be much simpler when oriented

on marker and pattern detection and tracking.2,3 In
addition, numerous libraries exist from which devel­
opers can implement pattern-based AR applications.4

For example, they can use QR (quick response) codes
to encode more data on the markers.5 Figure 1 pre­
sents some example markers for AR applications.

In some applications, scene or object detection
aims for morphological distortion, transformation,
and so on. Nevertheless, in most cases, AR consists

of representing a 3D virtual model that was previ­
ously recorded by a computer or camera-equipped
device, such as a mobile phone.6,7 To enable such
3D object representation, we've developed Magic
Cards, a marker-based application that lets us­
ers create a virtual object in a few simple steps.
The object doesn't require a 3D model previously
stored in memory, and the marker (magic card)
we use also encodes shape and color information.

Magic-Card Design
We wanted to give users an easy way to create an
unlimited number of virtual objects, which we
achieve through a unique decoding algorithm.
The kinds of objects users can create are lim­
ited to simple designs that can respond to a basic
rule. Specifically, the objects must present a rota­
tion axis that's given by the normal line from the
magic card's center. This lets users design a magic
card by drawing just the half-shape and indicating
the color information. They can also fix some size
proportions and, optionally, apply labels to cover
a virtual object with a texture other than color.

The axial-symmetry requirement reduces an ob­
ject's perspective and orientation deformations to
elliptical form, which lets us use a circular marker
for simple, robust detection. Unlike typical AR appli­
cations, we don't use a projective camera model. We
simply render the object following its parallel projec­
tion into a scene, by scaling the detected elliptical
form from the virtual object's base to its top.

Input Bitmap Files

Figure 2 presents a set of bitmap format files for
creating three magic cards. The two files for each
object are actually redundant because the color
information also presents the shape information.
However, we present both files to help users inter-

(a) (b)

(c) (d)

Figure 1. Some markers for augmented-reality (AR)

applications: (a) an ARToolKit-type marker,4 (b) the

Eiffel Tower,6 (c) a wine glass,7 and (d) a beer bottle.7

Such markers can simplify the creation of AR

applications, compared to using computer vision or

image-processing techniques.

ested in creating a white virtual object, which still
needs shape information.

From the binary shape, we extract a grayscale
information vector in the usual [0 255] range for
image coding, which is a technique used for ren­
dering 2.5D images. The white information cor­
responds to the maximum distance from the ro­
tation axis; the black information corresponds to
the minimum distance from this axis. We process
those distances in pixels for a given column of the
binary shape. Intermediate grayscale values are
processed proportionally to those extreme points
of the shape. For the color in the area given by the
shape mask, we compute the mean color value for
each column from left to right. As Figure 2 shows,
we spread some color points over the virtual object
to keep the rendering from looking too uniform.
(We discuss shape- and color-encoded informa­
tion on the resulting magic card later.)

Virtual-Object Proportions
To allow some size variation for each created object,
we set the maximum height and width. Depending
on the magic-card's size detected in the scene, we
apply those scales to render the virtual object.

To encode these parameters on the magic card,
we first use the green-on-blue ratio to determine
the object's height scale:

Heightcoiori x MaxHdghtScaie = objectHeightScale.
Hdghtcolor2

(0

Figure 2. Bitmap files for creating magic cards: (a) a

wine glass, (b) a bottle of wine, and (c) an hourglass.

The two files for each object are redundant but help

distinguish the shape of a white object.

We then use the red-on-green ratio to determine
the object's maximum radius scale:

Hd8htcolorl x MaxRadiusScale =
Heigntco\ox2

Object(Min/Max)RadiusScale.

For our experiments, we set MaxHeightScale at 4
and MaxRadiusScale at 3. Those values, given the
distance range of magic-card detection, helped
keep the virtual objects from appearing too large.

We encode those values in the following order:
ObjectHeightScale, ObjectMaxRadiusScale, and Ob-
jectMinRadiusScale. This ensures that green, blue,
and red alternate to further ease magic-card de­
coding. Regarding the virtual objects in Figure 2, this
step is fundamental to maintain each object's relative
dimensions when the objects appear together. That
is, the bottle is taller than the glass, and the hour­
glass is thinner and smaller than the other objects.

The Labeling Option
The Magic Cards application lets users associate

• i r< < >]>
. i

(a) (b)

Figure 3. A magic card: (a) front and (b) profile. We chose a circular

marker partly because circular projection is an easily detectable elliptical

form that supports a robust marker-detection algorithm.

Proportion encoded information
Shape encoded information
Color encoded information

Proportion encoded information
and texturing information (ID = 1)
Shape encoded information
Color encoded information

Proportion encoded information
Shape encoded information
Color encoded information

Figure 4. Shape, color, and scale information wrapped around the magic

card, for the (a) wine glass, (b) wine bottle, and (c) hourglass in Figure 2.

A black gap indicates the starting point for future decoding.

an image with a virtual object to fully or partly
texturize it. For example, for a virtual bottle, us­
ers could add a label beyond what the decoding
algorithm could generate.

The user must position the image's starting and
ending points over the virtual object and identify it
with a binary code. We later show how we used two-
bit image IDs to manage up to four different images.

The Magic Cards application completes the scale
information by using two white markers that refer
to the starting and ending points. It then inserts a
binary code of red and blue colors, associated with
the binary values 0 and 1, respectively, between
two same-sized white markers.

The Magic Card

Figure 3 presents two views of a magic card. In
Figure 3b, the distances x\, x2, and x3 (expressed
in pixels) and centered points A, B, and C define
the desired geometry for magic-card detection.
Because virtual objects have axial symmetry, they
don't need to be oriented respective to the rotation
axis. Also, circular projection is an easily detectable
elliptical form and supports a robust detection
algorithm. Indeed, depending on the magic card's
orientation, the Magic Cards application can use
the observed ellipse to render the virtual object in
its current orientation.

Referring to Figure 3b, we use the following pro­
portionality and centering rules to ensure robust
magic-card detection:

3ei e[-/3,/3],Xi =x3 + ei

3£2 e [-7,7], dist (A, C) x a = xi + ei

3e3e[-<5,<5], dist(A,B) = dist(B,C) + e3 (1)

Except for the floating value a, which fixes the geo­
metric proportionality, all the values in Equation
1 are integers expressed in pixels. The ranges for e¡
(i e [1, 3]) are defined as macro constant data in
the Magic Cards application.

The Results of Magic-Card Generation

Once the Magic Card application processes the
shape, color, and scale information, it wraps that
information around the designed magic card, in­
cluding any labeling. As Figure 4 shows, the shape
and color information both complete the 2it radi­
ans in the same rotational direction and indicate
angularly a unique point of the virtual object. A
black gap indicates the starting point for future
decoding.

The Magic Cards Application
Figure 5 describes the global process. The main
chart is on the left; the two charts on the right
detail particular steps. We focus here on detect­
ing and treating magic cards and representing the
virtual objects. Nevertheless, we cover some well-
known computer vision techniques.

We employ background subtraction only for
video mode. We use it to lightly speed up the pro-

New captured ¡mage

Background subtraction

Isodata-autothreshold-
based binarization

Marker detection

Blob analysis , ' '

_ , - ' Fit ellipse

Magic-card treatment

Virtual-dbject representation

Background update

Magic-card region of
interest (ROI) extraction,'

~TT^

Perspective correction

~3ZL
Log-polar, transformation

Jsodata-autothreshold-
based binarization

^ ~
Access information Shape equalizing and

smoothing

Figure 5. The Magic Cards process (video mode). The main chart is on the left; the two charts on the right

detail particular steps.

cess, improve the results of isodata autothreshold-
ing, and efficiently binarize detection events in
new captured images. Obviously, this technique
implies a fixed camera and no magic card in the
field of view when the application launches (for
background initiation).

Then, the Magic Cards application analyzes
black-to-white edges over the binarized image's
lines and columns and records a detection event
anytime the rules in Equation 1 are confirmed. A
maximum-distance parameter allows horizontal
and vertical events to generate a group when they
composed a minimum number. When a horizon­
tal group is close enough to a vertical one, the ap­
plication validates the detection, pointing to the
center of mass of those multiple events. This local­
izes the detection in the binary image, and the ap­
plication extracts the central disk by blob analysis.
Ellipse fitting determines the magic card's size and
orientation.

A virtual object's size is directly proportional to
the ellipse size, and its orientation is given by the
circle's projective deformation. A perfectly circular
disk implies a virtual object observed from above;
a horizontal line (obviously impossible to detect)
corresponds to the object's profile.

Figure 6 illustrates magic-card detection.
A square region of interest (ROI) includes the

detected magic card. We recover an almost circu­
lar magic-card shape by rotating the ROI by the el­
lipse angle (so that the ellipse's height is presented
vertically) and enlarging the ROI's width accord­
ing to the elliptical height and width relation.

From the center of this transformed magic card,
we apply a log-polar transform so that we obtain
the information in an almost linear presentation:

dst(jfi,p)<— src(x,y)

p = Mx\og([yJ(x2+y2

'.p = tan -1 (y / x)

where dst and src refer to the destination and source
images, and M is the transformation's magnitude.

Figure 7 illustrates magic-card processing. The
log-polar transformation of the almost circular
magic card returns an almost straight line (see
Figure 7d). Nevertheless, we correct perspective
deformations for only the detected ellipse (the
magic card's central part); the color, shape, and
scale information still suffer from deformations
and corrupt the decoding. So, to robustly read the
information, we binarize the log-polar transformed
ROI, using isodata autothresholding.

Figure 8 presents this binarization's results. For
each row of the image in Figure 8, scanned from
left to right, we detect the first two white-to-black
edges (indicated by arrows) and compute the pixel
distance between them. This step expresses the
residual perspective deformation and can correct
some of the lost ellipse-detection precision from
the previous step.

Figure 7d directly reveals the color, shape, and
scale information, given the pixel distance from
the left image border. We compute this by applying
a simple proportionality factor:

Figure 6. Magic-card detection, (a) The original image, (b) The magic cards detected in the isodata-

autothresholding-based binarized image.

Color[i] = WBi [i] + (WB2 [i] - WBi [i]) x (i

Shape [i] = WBi [i] + (WB2 [i] - WBi [i]) x 7

Scale [i] = WBi [i] + (WB2 [i] - WBi [i]) x <S,

where W£>i[i] and WB2[i] are integer values and
refer respectively to the first and second white-
to-black edge position, in the raw image i. The
floating values ¡3, 7, and «5 are the proportional­
ity factors for color, shape, and scale information,
respectively. Shape[i] records just one value in the
range [0 255]; Color[i] and Sca!e[i] record the red,
green, and blue channels.

The Magic Cards application uses the grayscale
image, obtained by converting the color scale in­
formation bar, to determine whether to label the
virtual object. Once again, it applies isodata auto-
thresholding on this image. If it finds just four
white stripes and their size variance is low enough,
it labels the object. In this case, it decodes the label
and accesses the associated image.

The application denoises the scale bar mainly by
forcing the value to be red, green, or blue as it is
on the original magic card. It chooses the maxi­
mum value among those three color channels.
Nevertheless, color-printing fidelity and camera
wavelength response can sometimes cause errors
(mainly between the green and blue channels).
So, additional filtering assumes the color order
and proportions for information coding. The first

half codes the ObjectHeightScale information, the
third quarter codes ObjectMinRadiusScale, and the
fourth quarter codes ObjectMaxRadiusScale.

Finally, by slightly smoothing the shape infor­
mation, the application reduces possible imaging-
sensor noise before equalization.

To further render the virtual objects, the appli­
cation uses information from the detected ellipse.
The fact that the rendering follows the parallel
projection affects the perspective rendering mainly
when virtual objects are observed in a close-up.
This isn't the case here, taking into account the
objects' size and the distance between them and
the camera. So, from the detected ellipse's center
(the virtual object's base) to the object's height,
the application successively draws scaled and col­
ored ellipses according to the decoded informa­
tion. The center of an ellipse to draw is given it-
eratively by these formulas:

X — Xdetected + COS (Angkdet ected

xObjectHeight[i\

Wldthdetected
X COS

[heightdetected

Y = Ydetected - Sin (Ailgkdetected)
<ObjectHeight [i]

Widthdetecti

heightdetected

where Angle¿etecte¿ is the detected ellipse's angle.
ObjectHeight[i] is the virtual object's height at
step i, starting from the virtual object's base to
its maximum height, proportional to the ellipse
size and processed with the decoded parameter
ObjectHeightScale. The width¿etecte¿ and heightdetected
parameters are the detected ellipse's width and
height.

We compute each new ellipse's size:

Width = WidtZldetected

x (ObjectMinRadiusScale

+ (Scale[i}/255)

x (ObjectMaxRadiusScale

-ObjectMinRadiusScale))

height = ZldgZltdetected

x (ObjectMinRadiusScale

+ (Scale[i}/255)

x (ObjectMaxRadiusScale

-ObjectMinRadiusScale)),

where ScaZe[i] points to the corresponding decoded
value (in the range [0, 255]) at a given virtual-
object height.

Obviously, the ellipse angle remains the same
for all drawn ellipses.

Figure 9 presents the results for rendering a vir­
tual wine bottle and wine glass. Figures 4a and
4b show these two objects' markers. (The wine
bottle's label ID referenced the E.T.S. Ingenieros
de Telecomunicación logo.)

Figure 10 demonstrates the application's effec­
tiveness in different lighting conditions. Figure
10a shows a scene with indoor lighting; Figure 10
shows the same scene with a virtual object ren­
dering the Berlin TV tower. Figure 10c shows an
outdoor scene on a sunny day; Figure lOd shows
the same scene with the virtual hourglass (Figure
4c shows the corresponding magic card).

Detection Limits
In the three cases in Figures 9 and 10, the magic
cards appeared at different orientations and dis­
tances. We tested the Magic Cards application to
determine the minimum size and maximum angle
for the magic card to ensure detection and proper
decoding. To do so, as we used the application, we
recorded the detected magic card ellipse informa­
tion in a file for further analysis.

To test the minimum size, we placed the magic
card at varying distances from a webcam in a fairly
planar position. Using the ellipse area formula

Figure 7. Magic-card processing, (a) An image of the ROI. (b) The ellipse-

angle-rotated ROI. (c) The ROI distorted by the ellipse height-to-width

relation, (d) The log-polar transformed ROI. These processes help

straighten the shape, color, and scale information to ease the decoding.

Figure 8. Binarization of the magic card. For each row of the image,

scanned from left to right, we detect the first two white-to-black edges

(indicated by arrows) and compute the pixel distance between them.

This step expresses the residual perspective deformation and can correct

some of the lost ellipse-detection precision from the previous step.

Figure 9. Rendering a virtual wine bottle and wine

glass. Figures 4a and 4b show these objects' magic

cards.

Amipse = 7T x width x height,

where width and height correspond to the detected
ellipse parameters, we found that the minimum
was a 300-pixel area. For this test, we used a typi­
cal portable PC-embedded 640- x 480-pixel imag­
ing sensor, which allowed the magic card to be
up to one meter from the webcam (the horizontal
field of view was approximately 60 degrees).

Ensuring a close-enough distance (less than
half a meter), we found a maximum acceptance
angle of almost 83 degrees, using this equation:

Angle - cos
7T width
— X

2 height
x90°

We verified the area limit by varying the orienta­
tion of the magic card at a greater distance. When
we increased the inclination at a fixed distance,
the ellipse area decreased, and the application
sometimes reached the minimum area before the
maximum angle.

The distance and angle limits clearly depend on
the detection parameter settings. The horizontal
and vertical scanning we described earlier doesn't
actually process every image row or column. Be­
cause of the time it would take, we just consider
odd pixel lines, and a grouping parameter finally
acknowledges detection. The desired range of work­
ing distance and angle detection is satisfactory for

this kind of application. Nevertheless, assuming a
longer processing time and a higher false-detection
rate (it's almost null using our parameter settings),
the image scan could process every line of pixels,
and the grouping parameter could be less exigent.

The Magic Cards application is robust. In opti­
mal lighting, it exhibits very efficient detection

with a very low false-detection rate. (We processed
our tests in video mode, using approximately 10
different magic cards). The orientation limit is
almost the same as with a typical ARToolkit pat­
tern,4 and the processing time is competitive. On
a 1.6-GHz Intel Atom processor with 0.99 Gbytes
of RAM, the processing time varied from 4 fps to 3
fps when we used the labeling option. The render­
ing of multiple virtual objects doesn't take much
longer, with global detection being the most time-
consuming step. Because isodata autothresholding
is more efficient over an ROI than the whole cap­
tured image, marker tracking could reinforce this
application's robustness.

The lighting conditions are crucial to this ap­
plication. Indeed, homogeneous, diffuse lighting
is important for not only marker detection but
also good shape and color conservation. Because
lighting variation, brightness, and saturation can
strongly distort virtual objects, we recommend us­
ing a mobile-device screen for marker presenta­
tion, such as a cellular phone, or any backlighted
system. Nevertheless, and as Figures 9 and 10
show, the application works properly in both full
daylight and indoor lighting; problems occur only
when the marker surface directly reflects light onto
the camera sensor. In low illumination, the detec­
tion rate decreases just slightly. The decoded scale
information is affected mostly by noise, which will
distort the rendered virtual objects a bit. Never­
theless, in such conditions, the color information
is also darker when decoded, so the rendering au­
tomatically adapts to the lighting.

For its 10th-anniversary celebration, Atomic
Playpen created an application that used four
markers to select associated virtual objects: a glass
of champagne, a glass of beer, a glass of liquor,
and a cocktail.7 For a similar Web-based AR ap­
plication, the company also claimed to have the
most managed objects.7 However, Magic Cards can
decode and integrate an unlimited set of these vir­
tual objects because they present a rotational axis.

How virtual objects are encoded on markers is
fundamental, considering that AR browsers are
increasingly appearing in mobile applications.
Even if the number and complexity of virtual

objects are restricted, applications such as ours
can help reduce bandwidth because the models
don't need to be transferred from servers to
clients. They can be directly computed using the
markers on the clients.

The labeling option might appear to contradict
the global flexibility we claim for Magic Cards. This
option could be considered a way to associate
color with a virtual object without encoding it
on the marker. So, each object would require
its own recorded image, and the application
wouldn't be generic anymore. So, for this option
to be practical, the label ID coding should use
some 2D bar code method to code and manage
a huge number of images. Even considering bar
codes' robustness (validated by a redundancy
method), our application might have difficulty
reading them. Nevertheless, and because we
propose only 2-bit-ID image coding, the basic
idea is currently just to manage a logo or brand,
not texturize the virtual object. This option
actually reinforces our original proposal of giving
users an easy way to design virtual objects, because
a simple additional step lets them create a more
complex object. v "

References

1. M.C. Juan et al., "An Augmented Reality System
for Treating Psychological Disorders: Application to
Phobia to Cockroaches," Proc. 3rd IEEE/ACM Int'l
Symp. Mixed and Augmented Reality (ISMAR 04), IEEE
CS, 2004, pp. 256-257.

2. X. Zhang, S. Fronz, and N. Navab, "Visual
Marker Detection and Decoding in AR Systems: A
Comparative Study," Proc. IEEE Int'l Symp. Mixed
and Augmented Reality (ISMAR 02), IEEE, 2002, pp.
97-106.

3. M. Fiala, "ARTag, a Fiducial Marker System Using
Digital Techniques," Proc. IEEE Computer Society
Conf. Computer Vision and Pattern Recognition (CVPR
05), vol. 2, IEEE, 2005, pp. 590-596.

4."ARToolKit," 2012; www.hitl.washington.edu/artoolkit.
5. T-W. Kan, C-H. Teng, and W-S. Chou, "Applying

QR Code in Augmented Reality Applications," Proc.
8th Int'l Conf. Virtual Reality Continuum and Its
Applications in Industry (VRCAI 09), ACM, 2009, pp.
253-257.

6. M. Muñera, "Augmented Reality," blog, 26 Oct.
2010; www.mauriciomunera.com/?cat=5.

7. "Cheers to 10 Years!," Atomic Playpen, 2010; www.
atomicplaypen.com/work_ap_cheerstolOyears.aspx.

Figure 10. Magic-card results in different lighting conditions, (a) A scene

with indoor lighting, (b) The same scene with a virtual object rendering

the Berlin TV tower, (c) An outdoor scene on a sunny day. (d) The same

scene with the virtual hourglass. The marker renders virtual objects

properly in any uniformly lit scene.

http://www.hitl.washington.edu/artoolkit
http://www.mauriciomunera.com/?cat=5
http://atomicplaypen.com/work_ap_cheerstolOyears.aspx

