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In the United States, there are about 153,000 public 
drinking water systems1 and more than 16,000 pub-
licly owned wastewater treatment plants.2 While 
systems control and data acquisition (SCADA) has 

become a standard in large water treatment and distribu-
tion plants,3 a very small (unknown) percentage of those 
plants have cyber defenses in place.4 

MOTIVATION
SCADA infrastructures, as evidence shows,5 are very 
prone and vulnerable to cyberthreats. Additionally, there 
has been a rising number of attacks, especially on water 
plants, in the United States and around the world. The 
traditional cybersecurity approach to utilizing firewalls 
and double authentication is beneficial and can mitigate 
multiple forms of cyberattacks; however, more sophisti-
cated attacks, such as data poisoning, data manipulation, 
minimum perturbations, concealed attacks,6 info stealer, 

botnets, and ransomware, require algorithms 
that can detect unusual activities (that is, out-
lier events)7; classify the source of adversarial 
actions; and perform attack mitigation ac-

tivities. The current state of the art provides evidence that 
artificial intelligence (AI) is the leading approach to such 
defenses8 due to its ability to adequately identify unwar-
ranted pattern shifts in networks and datasets, a feature 
that is not achievable using traditional approaches.

STORIES OF INTEREST
Critical infrastructures, such as smart grids, nuclear plants, 
medical monitoring systems, smart farms, and intelligent 
water systems (IWSs), are deemed obsolete (and danger-
ous to human life) without comprehensive measures to 
protect them and secure their outcomes.9 The workings 
of these systems are usually governed by laws and policies 
as well as domain-specific best practices.10 However, the 
challenge of securing those cyberphysical systems is exac-
erbated by the dependency of their cyber, human, biologi-
cal, and physical components on each other. For instance, 
a programmable logic controller controlling the pH levels 
of water at a treatment plant is an example of a cyber and 
bio interdependency; smart sensors reading water flow in 
municipal water pipes is an example of physical and cyber 
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dependencies; and so on.11 Wastewater 
treatment plants dump treated water 
(effluent) into rivers all over the coun-
try, while U.S. Environmental Protec-
tion Agency policies dictate acceptable 
amounts of phosphorous and nitrogen. 
For instance, an unwarranted modifi-
cation of that value as being measured 
by sensors at a wastewater treatment 
facility can cause severe environmen-
tal damage to rivers and lakes due to 
excess amounts of such chemicals—
that is not hypothetical; recent motiva-
tion examples of applying AI for water 
are presented.

Data poisoning and 
water poisoning
In the last two decades, U.S. water sys-
tems have been exposed to different 
cyberthreats.12 In 2015, the U.S. Depart-
ment of Homeland Security responded 
to 25 cyber incidents related to the 
water sector, representing a 78.6% in-
crease in the number of reported cases 
since 20142—one of the highest rate 
increases among all sectors. Cyberat-
tacks have continued to grow exponen-
tially relative to the attention given to 
the sector by governments, operators, 
practitioners, and academics—deem-
ing the sector unsafe.13 In February 
2021, a plant operator in Oldsmar, FL, 
saw his cursor being moved around 
on a computer screen, starting various 
software functions that control the wa-
ter being treated. While the operator 
assumed that it was another employee 
accessing the system remotely, the in-
truder boosted (that is, data poisoning) 
the value of one data point—the so-
dium hydroxide (lye) amount—by 100 
times. Sodium hydroxide, the main 
ingredient in cleaning liquids, is added 
to treat the acidity of water and remove 
metals from water for purposes of hu-
man consumption (that is, drinking). 
Increasing its amount to higher levels 
can cause poisoning, burns, and multi-
ple other health risks.4

Water, farmers, and irrigation
The Brookings Institution reports an av-
erage of 30 farmers committing suicide 

per day in India due to water-related 
events.14 Albeit this is a fluctuating 
rate, the cause of farmers’ uncertainty 
is increasingly due to water access, 
extreme weather events, rainfall, the 
lack of water, inaccurate forecasts of 
water levels in rivers and lakes,15 and 
unwarranted chemicals in water used 
for agricultural irrigation. Such events 
affect agricultural yield, the quality of 
crops, crop disease, and even the prices 
of agricultural commodities around 
the world.16 As is known, nimble agri-
culture and food security is vital to hu-
man survival. In the past three years, 
global agriculture has been negatively 
affected by many water-related shocks. 
Unprecedented uncertainties (such as 
floods and droughts) have affected the 
range of decisions starting at the farm 
and reaching the household consump-
tion of certain goods.

Water Security
We suggest that the status quo defini-
tion of water security ought to expand 
from merely covering water “availabil-
ity” to including cyber-, physical, and 
biosecurity aspects.17 Conventional 
definitions don’t satisfy the rising 
need to cover all areas of how water can 
be secure. The United Nations provides 
a working definition for water security 
as follows11: “Water security is defined 
here as the capacity of a population to 
safeguard sustainable access to ade-
quate quantities of acceptable qual-
ity water for sustaining livelihoods.” 
Based on the three-pillared challenge 
involved in the sector (cyber, bio, and 
physical), we propose the following 
new definition for water security en-
compassing emerging trends and con-
ventional challenges related to water 
availability and quality: 

“Water security is the capac-
ity of nations to safeguard 
the quality and availability of 
water for all desired purposes 
of society, which includes 
ensuring measures related to 
securing access; valid treatment 
processes; cyber hygiene; and 

mitigating risks associated with 
environmental factors, data 
collection, biological threats, 
and emerging technologies.” 

While we understand that this defini-
tion is debatable, the goal of presenting 
such a definition is to urge scientists 
and practitioners in the water sector to 
consider the novel aspects.

AREAS OF APPLICATION
Water has an obvious effect on econ-
omies besides farming and drinking 
water. Societies flourish next to water 
bodies18; sanitation and health19 are 
not manageable or possible without 
access to water; and manufacturing 
is heavily dependent on reliable water 
sources. It is rather difficult to capture 
all potential AI applications in the wa-
ter sector; here, a brief review of three 
examples is elaborated.

Water treatment and management
As AI becomes more developed and 
deployed further across critical in-
frastructure, operators will be blind-
sided if they rely only on their past 
experience or expertise when mak-
ing decisions (such as deciding on the 
number of pumps to operate during 
a storm, assessing the performance 
of the adsorption process, and eval-
uating water quality). Future leaders 
need to possess a fundamental knowl-
edge of AI to better lead and protect 
their institutions.20 A modern water 
treatment plant, referred to as an IWS, 
has hundreds of sensors and actua-
tors—for pipes, tanks, reservoirs, and 
pumps. Such equipment has inter- and 
intradependencies that increase the 
complexity of detecting a breach.21 
Accordingly, AI can be used at waste-
water treatment plants for multiple 
use cases in decision making.22 De-
cision-making support involves op-
timization techniques to allocate an 
optimal combination of factors that 
maximize/minimize a numerical ob-
jective function (that is, the factor af-
fected by the decision). From the onset 
of hydraulic modeling, optimization 
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techniques have been critical to wa-
ter distribution networks.23 Areas 
of application that can benefit from 
AI optimization algorithms include: 
optimizing energy consumption, the 
number of pumps used at a certain 
point in time, the optimal design of 
monitoring and control networks, and 
the management of tunnels and pipes 
during extreme weather events.24

Optimization through AI is per-
formed via multiple approaches, but 
the most common ones include ge-
netic algorithms (GAs), deep learn-
ing (DL), and reinforcement learning 
(RL). For instance, if a water treatment 
plant aims to minimize nitrogen in the 
effluent, then a DL or GA optimization 
approach could be utilized. RL algo-
rithms can, for instance, reinforce prac-
tices that lead to better water quality 
or increase water volume (gallons) 
processing per day.

Agricultural irrigation and farming
Essential crops (such as wheat, corn, 
and soybeans), livestock, fruit, and 
all agricultural commodities require 
water to survive. However, access to 
water is not always guaranteed; for in-
stance, in drought-prone areas, smart 
irrigation is a critical strategy due to 
the scarcity of water.25 Urban and 
vertical farming are similar; in those 
scenarios, precision irrigation is im-
portant to maintain farm finances and 
create profit for the farmers.16 Such 
AI-driven decision-making processes 
(for example, crop yield prediction, 
livestock price forecasting, and opti-
mizing the right mix of biodegradable 
pesticides) are heavily dependent on 
big data. Data, however, are prone to 
poisoning, validation issues, and in-
correctness. Poisoned data can change 
farming recommendations; manip-
ulate smart-irrigation systems’ out-
comes; and compromise water meters, 
humidity sensors, water pumps, and 
other agricultural control devices.

Water economics and policy
Water and the environment are diffi-
cult spaces to regulate, mainly due to 

the shared nature of their resources 
(that is, the tragedy of the commons). 
Policymakers need to refer to experts 
to understand the domain and create 
reasonable policies that can govern the 
space fairly. Park et al.,26 for instance, 
utilized AI, Shapley Additive exPlana-
tions (SHAP), and partial dependence 
plots for identifying important vari-
ables that affect algal bloom in rivers: 
generally, a challenging (and poten-
tially subjective) aspect to measure. 
One of the theories in computational 
quantification is referred to as value 
loading.27 It presents matters with a sub-

jective concept, such as policy evalua-
tion—of the Clean Water Act 33 U.S.C. 
§1251 et seq. (1972), for instance—that 
could be defined mathematically and 
measured in a more empirical manner.

However, we argue the following 
for the application of AI for public 
policy. Science used as a foundation 
for statutes is ever changing, and in 
many cases, different contexts could 
lead to different results. Accordingly, 
data-driven lawmaking has to be one 
of the major ways of constructing 
and evaluating the success of stat-
utes—a direction that is becoming 
progressively inevitable and is also 
increasingly further backed up by the 
public.28 One of the ongoing debates 
in water and environmental law is the 
Water of the United States issue—that 
is, which authority (state versus fed-
eral) prevails and who has control over 
water bodies of the United States. 

Multiple administrations have tackled 
this issue, but what is very interesting 

is the involvement of different scien-
tific assumptions as a basis for crite-
ria that define answers to the debate. 
For instance, the Obama administra-
tion used the significant nexus test, 
while the Trump administration used 
the narrower definition derived from 
the Supreme Court’s Rapanos versus 
USA case, 547 U.S. 715 (2006). Both 
are deemed reasonable, but one would 
ask: Which one should be followed? 
And without sufficient data, how does 
one measure the outcome? The answer 
lies in empirical evaluations and sci-
entific experimentation (not expert 

opinions or political partisanship)—
multiple research institutes produce 
research that generates results and 
directions that ought to support a cer-
tain direction, although contradicting 
in some cases, but referring to such sci-
entific debates usually leads to a con-
sensus that is backed up by different 
dimensions.

In some cases, U.S. law cannot be 
defined in isolation; therefore, the 
national well-being also has to be in 
the balance when it comes to ratify-
ing statutes that contradict or con-
firm international treaties. For such 
difficult goals to be balanced in the 
same legal realm, AI can be one of 
the main referees in determining the 
best version of a statute as it is being 
crafted or amended.

A I has been helping cure disease, 
create art, drive cars, perform 
surgery, and identify crime; the 

“Water security is the capacity of nations to 
safeguard the quality and availability of water for 
all desired purposes of society, which includes 
ensuring measures related to securing access; 
valid treatment processes; cyber hygiene; and 
mitigating risks associated with environmental 
factors, data collection, biological threats, and 

emerging technologies.”
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water sector is no different. In this ar-
ticle, the use cases, AI methods, and 
applications aim to encourage the wa-
ter industry to investigate and further 
apply AI for decision making while con-
sidering assurances (such as security) 
for deriving actionable intelligence.

Besides cybersecurity, explainabil-
ity, and correctness, other challenges 
involved with AI’s deployability to 
the water sector include adoption by 
operators; the black box nature of AI 
models; and data privacy issues—all 
of which are applicable to most sec-
tors. Ultimately, however, these issues 
ought to be addressed, especially be-
cause water has no substitute. 
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