
Just-in-Time Aggregation for Federated Learning

K. R. Jayaram
IBM Research AI, USA

Ashish Verma
IBM Research AI, USA

Gegi Thomas
IBM Research AI, USA

Vinod Muthusamy
IBM Research AI, USA

Abstract—The increasing number and scale of federated learn-
ing (FL) jobs necessitates resource efficient scheduling and
management of aggregation to make the economics of cloud-
hosted aggregation work. Existing FL research has focused
on the design of FL algorithms and optimization, and less
on the efficacy of aggregation. Existing FL platforms often
employ aggregators that actively wait for model updates. This
wastes computational resources on the cloud, especially in large
scale FL settings where parties are intermittently available for
training.

In this paper, we propose a new FL aggregation paradigm
– “just-in-time” (JIT) aggregation that leverages unique prop-
erties of FL jobs, especially the periodicity of model updates,
to defer aggregation as much as possible and free compute
resources for other FL jobs or other datacenter workloads.
We describe a novel way to prioritize FL jobs for aggregation,
and demonstrate using multiple datasets, models and FL ag-
gregation algorithms that our techniques can reduce resource
usage by 60+% when compared to eager aggregation used in
existing FL platforms. We also demonstrate that using JIT
aggregation has negligible overhead and impact on the latency
of the FL job.

1. Introduction

Federated learning (FL) [1], illustrated in Figure 1, is a
type of machine learning which avoids centralization of data,
and enables participants to train models without sharing their
private data with cloud services and with each other. At
the start of and FL job, parties agree among themselves on
the architecture of the machine learning model (e.g., the
specific neural network) to be trained and hyperparameters
to be used and train locally (i.e., within their controlled
domains). Only model updates are shared, typically, to a
central aggregator server hosted by a cloud service provider.
The aggregator fuses local model updates from parties to
compute a global aggregated model which is communicated
back to the parties. Providing strong privacy protection to
participant data is a key goal of FL and central to its
definition.

FL is typically deployed in two scenarios: cross-device
and cross-silo. The cross-device scenario involves a large
number of parties (> 1000), but each party has a small
number of data items, constrained compute capability, and
limited energy reserve (e.g., mobile phones or IoT devices).

Party B

Private Data

Local Training

A
ggregatorModel update B

Party A

Party C

Updated
Global
Model

Model update C

Model update A

Figure 1. Federated Learning illustration with three parties

They are highly unreliable and intermittently available, i.e,
expected to drop and rejoin frequently. Examples include a
large organization learning from data stored on employees’
devices and a device manufacturer training a model from
private data located on millions of its devices (e.g., Google
Gboard [2]). Contrarily, in the cross-silo scenario, the num-
ber of parties is small, but each party has extensive compute
capabilities (with stable access to electric power and/or
equipped with hardware accelerators) and large amounts
of data. There is reliable participation throughout the en-
tire federated learning training life-cycle. Examples include
multiple hospitals collaborating to train a model from ra-
diographs (e.g., NVIDIA’s work on COVID CT scans [3]),
multiple banks collaborating to train a credit card fraud
detection model, etc.

FL has been shown to achieve significant increases in
model utility when compared to parties training solely on
their local datasets. Increasing adoption of FL has, in turn,
increased the need for FL-as-a-service offerings by public
cloud providers, which serve as a nexus for parties in an FL
job and aggregate/fuse model updates (e.g., IBM Federated
Learning (IBMFL) [4], [5]). Such cloud services have to
scale effectively to support multiple concurrent FL jobs
and multi-tenancy. Hence, effective aggregation of model
updates is a key problem in FL, when viewed from either a
performance, scalability, resource efficiency/cost, or privacy
perspective. However, these aspects remain under-addressed
in FL research.

Performing aggregation in a resource and cost effective

ar
X

iv
:2

20
8.

09
74

0v
1

 [
cs

.D
C

]
 2

0
A

ug
 2

02
2

manner, while scaling to a large number of participants, is
challenging for cloud service providers. The key question
for a cloud/datacenter-based FL service becomes when to
schedule aggregation without delaying an FL job, while
also ensuring high datacenter resource utilization. A related
question which also poses a challenge is how long to keep
the aggregator deployed waiting for model updates. This is
primarily due to two factors – the intermittent availability
of parties and heterogeneity of their hardware and data.

This paper revisits the traditional “always-on” aggre-
gation paradigm in FL and makes the following technical
contributions:

1) A detailed description of why efficient aggregation
of model updates is a hard problem, especially
when viewed from a cloud or service provider’s
perspective.

2) An illustration of how unique properties of FL jobs,
namely periodicity and linearity, can be used to
aggregate efficiently.

3) A new ”just-in-time” (JIT) aggregation strategy for
FL jobs that defers aggregation as much as possible
to free compute resources for other FL jobs or other
datacenter workloads.

4) An empirical comparison of lazy aggregation
against eager and batched aggregation using three
different models/datasets and two aggregation algo-
rithms to demonstrate that it does not increase the
latency of FL jobs but leads to significant resource
savings.

2. Background

2.1. FL Jobs and Model Aggregation

An FL job involves parties performing local training
on their data, sharing the weights of their model (also
called a model update) with the aggregator, which ag-
gregates the weight vectors of all parties using a fusion
algorithm. A model update (whether weight update or gra-
dient update) is flattened, and represented as a list of one-
dimensional vectors (e.g., in Tensorflow/Keras), with each
vector corresponding to a layer. Ways to fuse/aggregate
these model updates involve coordinate-wise computations
on these vectors (averaging, weighted averaging, multipli-
cation etc.). That is, aggregation ⊕ of two model updates
M1[1, . . . , n] and M2[1, . . . , n] involves applying a func-
tion f to each component/element of the update vector
M1 ⊕ M2 = [f(M1[1],M2[1]), . . . , f(M1[n],M2[n])].
Then, the merged/aggregated model is sent back to all
parties for the next round of training on their local datasets.

Like regular (centralized) machine learning training
which makes several passes over a centralized dataset, an FL
job proceeds over a number of model fusion/synchronization
rounds, determined by the batch size (B) used. While model
fusion after every minibatch (B) is possible, typically parties
in an FL job synchronize every local epoch, i.e., they train
by making a pass over their entire local data set before

fusing local models. The performance of an FL job has two
dimensions (i) Utility – is the accuracy of the federated
model much better than that of the locally trained model,
and (ii) Latency, which includes training and aggregation
latency. Training latency depends on the amount of data at
each party and the hardware available for training. Aggrega-
tion Latency is the time taken for aggregation to complete
after the last required model update is available. Aggrega-
tion latency is the manner in which the effectiveness and
performance of the aggregator is perceived by the parties; a
lower aggregation latency is better.

2.2. Active vs. Intermittent Participants

Active participation means that parties have dedicated
resources to the FL job, and will promptly respond to ag-
gregator messages. That is, for every synchronization round,
once the aggregator sends the updated model, the party starts
the next local training round and sends a (local) model
update as soon as training is done. Active participation does
not mean specific types of optimization algorithms are used.
Generally, active participation is only seen in small scale FL
jobs, and more often in cross-silo settings.

Intermittent participation means that for every FL round,
each party trains at its convenience, or feasibility. This may
be when connected to power in the case of mobile phones,
tablets and laptops; when (local) resource utilization from
other computations is low and when there are no pending
jobs with higher priority. In these scenarios, the aggregator
expects to hear from the parties eventually - typically over
several minutes or hours and sometimes once a day in the
case of mobile phones. Large-scale FL jobs almost always
involve intermittent parties – at scale, it is unreasonable to
expect that all parties participate at the same pace.

2.3. Heterogeneity

In FL, party heterogeneity takes two forms – (i) parties
with varying compute capabilities and (ii) parties having
different amounts of data. Although heterogeneity is in-
tuitive and easy to visualize in cross-device settings, our
experience has been that it affects cross-silo settings as well,
both with active and intermittent parties. Some examples we
have observed are: hospitals of different sizes in different
timezones actively participating in an FL job from their
datacenters (data and compute heterogeneity), an FL job
consisting of different types of devices (laptops, mobile
phones, desktops, etc.).

The arguments regarding minimizing aggregation la-
tency apply here as well. If an FL job merges model updates
per local epoch, the amount of data at each party determines
when the local training completes and model update arrives.
Training time is also dependent on the compute capabili-
ties of each party. Party heterogeneity, thus increases the
intermittent nature of model updates, making aggregation
challenging.

Eager Aggr.
Always on Aggregator

Lazy Aggr.
Serverless

Just In Time Aggr.
Proactive

Serverless

Time

P1 P2 P3 P4 P5 P6

Last Required Update

Best possible agg. Latency
Low cluster utilization

High agg. Latency
Optimal utilization

Low agg. Latency
Optimal utilization

Agg. Latency measured from here

Eager Aggr.
Serverless

Low agg. Latency
Higher cluster utilization

Time spent for aggregation is shaded dark grey

Time spent for launching aggregators and
loading/storing models is shaded orange

Time that an “always on” aggregator spends
Idling waiting for updates is shaded light grey

Green represents resources released to the
Cluster manager while waiting for updates

0 5 10 15 20

Figure 2. Aggregation Design Options

3. Design/Deployment Choices for Aggregation

In this section, we describe four aggregation strate-
gies – Eager Always-on, Lazy, Eager Serverless, and JIT
Serverless, examine their pros/cons and implementation
challenges.

Eager Always-on: In this strategy, used in FL platforms
like IBM FL [4], [5], FATE [6], NVFLARE [7], aggregators,
either deployed as servers, virtual machines or containers are
“always on”, i.e., deployed continuously throughout the FL
job, waiting for updates, and handle each update as soon
as it arrives. This is illustrated in Figure 2 with the dark
grey representing aggregation and light grey representing
periods when the aggregator is idle. Assume an FL job
with six parties (P1−P6) that proceeds over several model
fusion rounds. Assume that round r starts at time t = 0;
the parties send their model updates intermittently over 20s
and that aggregation takes 1s for a pair of model updates.
Eager aggregation is completed at time t = 21, because the
aggregator handles the updates from P1−P5 while waiting
for P6, and immediately handles P6’s update at t = 20.
However, this requires the aggregator to be scheduled and
provisioned for 21 time units, while aggregation only takes
6 time units, thereby idling for 6

21 or 71.4% of the time.
The only benefit is that the aggregation latency – the time
taken for aggregation to complete after the last model update
arrives, is minimal.

Lazy Dynamic/Serverless: The Lazy strategy, as the
name implies, schedules the aggregator for all updates only
after the last update arrives. This is optimal from a cluster
utilization point of view but can result in high aggregation
latency (Figure 2). Lazy serverless can be useful when there
only a few parties, but aggregation latency grows quickly
as the number of parties increases. For some FL jobs,
aggregation can dominate training when the lazy serverless
strategy is used.

Eager Dynamic/Serverless: One way to improve eager
aggregation is to deploy the aggregator dynamically every
time a model update arrives. This can be done either us-
ing technologies like Kubernetes pods or through server-
less (cloud) functions. When compared to an “always-on”
strategy, Eager serverless has overheads at deployment and
shutdown time. At deployment time, there is the overhead of
scheduling the serverless function and the time taken to load
aggregator state from stable datacenter/cloud storage. At the
end of each deployment, the aggregated model and other
state has to be checkpointed back to stable storage. These
overheads are illustrated in Fig. 2 (orange color). Eager
serverless improves cluster utilization when compared to
the “always-on” deployment, because it relinquishes cluster
resources more frequently (green color in Figure 2). Over-
heads increase aggregation latency somewhat, but it is still
low compared to using a lazy aggregation strategy. Using
any dynamic deployment strategy (including serverless func-
tions) requires that model updates be buffered somewhere in
the datacenter, e.g., a message queue like Kafka or a cloud
object store.

JIT Aggregation: Our goal in this paper, is to design
and implement a “Just In Time” aggregation strategy as
illustrated in Fig. 2 – a strategy that starts aggregation just
in time anticipating the arrival of the last model update; a
strategy that optimizes cluster utilization and aggregation
latency. The key question to answer to achieve this is to
schedule aggregation at just the “right time” and anticipate
when a model update is going to arrive. We describe this in
the next section

4. Predicting the Next Update

To do any form of JIT aggregation, predicting the arrival
of the next model update becomes vital. In this paper,

2 4 6 8
Epoch

150

200

250

300
M

in
ib

at
ch

 T
im

e
(m

s)

Stanford Cats Dogs, K80
Stanford Cats Dogs, CPU

2 4 6 8
Epoch

40

60

80

Ep
oc

h
Ti

m
e

(s
)

Stanford Cats Dogs, K80
Stanford Cats Dogs, CPU

Figure 3. Minibatch time (left) and Epoch time (right) remain fairly
constant across epochs in the absence of changes to data and hardware.
Efficientnet-B7 on Stanford Cats/Dogs

we leverage two key properties of many machine learning
workloads – Periodicity and Linearity to make educated
guesses about when the next model update is going to arrive
(or not arrive).

4.1. Periodicity of Model Updates & Active Parties

The “local” part of FL is similar to traditional ML,
i.e., model training makes several passes over the dataset
(each pass is called an epoch). A local model update is
generated either once every epoch or for every batch of
data items processed (also called mini-batch in gradient
descent terminology). From our experience building and
operating machine learning platforms, we have observed
that minibatch times and epoch times are constant if the
training dataset at a party does not change between epochs
and if there are no competing workloads. We have validated
these observations with multiple experiments, one of which
is illustrated in Figure 3. Here, we train the EfficientNet-
B7 neural network model on the Stanford Cats/Dogs and
CIFAR100 datasets on different hardware – NVIDIA K80
GPU and an eight core (Core i9) Intel CPU using Tensor-
flow. This isn’t surprising, since each minibatch involves
the same number of data items, and since the data items are
normalized (e.g., images converted to the same resolution),
each minibatch, and consequently each epoch takes roughly
the same time on the same hardware in the absence of
competing workloads. ML engineers have observed this
behavior across a variety of models/datasets. Consequently,

100 200 300 400 500
Batch Size

0

1000

2000

3000

4000

5000

M
in

ib
at

ch
 T

im
e

(m
s)

Stanford Cats Dogs, K80
CIFAR 100, K80
Stanford Cats Dogs, CPU
CIFAR 100, CPU

200 400 600 800
Dataset Size

0

20

40

60

80

Ep
oc

h
Ti

m
e

(s
)

Stanford Cats Dogs, K80
CIFAR 100, K80
Stanford Cats Dogs, CPU
CIFAR 100, CPU

Figure 4. Minibatch time vs. batch size and Epoch time vs. Dataset size

from an FL aggregation perspective, an active participant
should roughly take the same time for each FL training
round, making model updates from a given party periodic.

4.2. Linearity

Furthermore, in Figure 4, we observe a linear relation-
ship between the minibatch time and the batch size, as well
as a linear relationship between the epoch time and the
dataset size. We observe this for two different datasets –
Stanford Cats/Dogs and CIFAR100 with EfficientNet-B7;
the behavior is similar on other datasets. Again, this behavior
is intuitive – the time taken to train a neural network with
32 images (batch size of 32) will roughly be twice the time
taken to train with 16. Similarly, time taken to complete a
local epoch with 32 GB of local data will be roughly twice
that with 16 GB of local data. Due to this linearity, even
when training data changes (e.g. new data items are added
or some data is lost), linear regression can be used to predict
new epoch times from previous measurements. Periodicity
and linearity can be very useful in predicting when the next
model update is going to be sent from a party, which in
turn can be used to determine when aggregation must be
scheduled to meet SLA and efficiency requirements.

4.3. Active vs. Intermittent Participation

Active parties dedicate resources to model training,
which means that they send periodic model updates every
ttrain + tcomm, where ttrain is the time taken for local
training and tcomm is the time taken for transmitting the
model to and from the aggregator.

With intermittent parties, typically, there is an agreement
among parties and the aggregator that parties train at their
convenience, but this is not open ended and there are time-
outs. Generally, for every FL round, each party is expected
to respond to the aggregator within a certain time period
twait from the start of the FL round. Beyond this, the model
update is ignored. twait is highly application dependent (it
can be minutes or hours or as long as a day) and agreed
at the start of the FL job by mutual consent. This also sets
SLA expectations for parties with respect to aggregation –
parties expect a new round to start every twait and expect
aggregation to complete before that. There is typically no
incentive to complete earlier because parties may not be
able to start the next round (because e.g., the goal may be
to train every night or on data received during the day).
Our approach leverages these expectations to ensure that
aggregation is always complete within twait.

5. JIT Aggregation – Design and Implementa-
tion

Our core contribution lies in using training time esti-
mation of machine learning jobs to schedule aggregation
in a resource efficient manner in federated learning set-
tings, while minimizing aggregation latency. An architec-
tural overview of JIT aggregation in a cloud hosted FL plat-
form is presented in Figure 5, and the high level pseudocode
of the JIT aggregation is presented in Figure 6.

Kubernetes

Ray

A
gg

re
ga

to
r

A
gg

re
ga

to
r

A
gg

re
ga

to
r

FL Job Manager

FL Job Analysis
+ Runtime Estimation

Kafka

A
gg

re
ga

to
r

Parties

M
od

el

U
pd

at
es

FL Job Spec

FL Job Spec

JIT Scheduler

Figure 5. Architectural Overview of JIT Aggregation

5.1. FL Jobs and Specs

In existing FL systems [4], [5], the aggregator of
every FL job knows the model architecture, the opti-
mizer/aggregation algorithm and the hyperparameters of the
job. Hyperparameters include learning rate, batch size and
frequency of synchronization, i.e., the frequency of global
model update. Frequency of synchronization is typically
once per local epoch, but can also be once every few
minibatches. Agreement on the model architecture and hy-
perparameters is essential to set up the job. Other inputs
specific to the FL job include twait in the case of intermit-
tent parties, and the minimum number of parties that are
needed (quorum) for an FL round to be successful. Parties

agree on these inputs and send an “FL Job Specification”
to the aggregator (typically a cloud service provider that
hosts aggregation). Our system analyzes this specification
to predict the arrival of updates to schedule aggregation.

5.2. Additional Input Needed From Parties

Our system needs the following additional information
from parties in an FL job: (i) mode of participation, i.e.,
whether the party intends to participate actively, (ii) training
time – epoch time, minibatch time and size of the party’s
dataset or party hardware information – number and type of
CPUs/GPUs used for training and (iii) network bandwidth
between the party and aggregator. Mode of participation is
easy to provide. To estimate when the next update is likely to
arrive, our technique relies on parties to directly provide lo-
cal minibatch or epoch time – these are measured by default
by most machine learning frameworks including Tensorflow
and PyTorch, without the programmer even having to write
additional code. If for some reason, parties are unwilling to
provide these, there is the option of providing information
about the hardware used for training from which minibatch
time is estimated using linear regression. For network band-
width, we have implemented an extension to Tensorflow
using standard Linux tools to periodically measure average
network bandwidth between the party and the aggregator.
From periodic measurements, we compute Bd and Bu, which
are the average aggregator → party and party → aggregator
bandwidths respectively. The frequency of measurement can
be configured depending on the party (sensor vs. mobile
phone vs. datacenter). Information about the job including
all the above inputs are stored in a persistent store like
MongoDB.

5.3. Local Training Time Estimation

For each active party in an FL job J, the expected time
for a party Pi to finish local training t

(i)
train is estimated

(Fig. 6, Line 7) as:

• t
(i)
ep , if t(i)ep is provided by the (active) party and the

models are aggregated once per local epoch.
• t

(i)
mb ×Nk

mb if t(i)mb is provided by the (active) party
Pi and the model fusion for job Jk happens every
Nk

mb. If t(i)mb is not provided by the party, it can be
estimated using linear regression if the hardware and
memory available to the party are known.

• tkwait of job Jk if the party is intermittent.

At the start of each FL round, the party downloads a
global model to use for training, and at the end of the local
training, it uploads the model update to the aggregator. The
time taken for this t(i)comm is therefore model size

B(i)
d

+model size

B(i)
u

(Fig. 6, Line 9). Hence, the model update from Pi can be
expected to arrive at t(i)upd = t

(i)
train + t

(i)
comm (Fig. 6, Line

10).

1: upon ARRIVAL(FLJob J) do
2: fagg ← GET AGG FREQUENCY(J)
3: twait ← GET WAIT TIME(J)
4: M← GET MODEL SIZE(J)
5: {P1, . . . ,PN} ← GET PARTIES(J)
6: for all Pi ∈ {P1, . . . ,PN} do

7: t
(i)
train ←


twait if Pi intermittent
t
(i)
ep if fagg = 1 local epoch
Nmb × t(i)mb if fagg = Nmb minibatches

8: (B(i)d ,B(i)u)← GET BANDWIDTH(Pi)

9: t
(i)
comm ←M/B(i)d +M/B(i)u {Time spent transfering

models}
10: t

(i)
upd ← t

(i)
train + t

(i)
comm {When is Pi going to update?}

11: trnd ← max({t(1)upd, . . . , t
(N)
upd}) {Estimated time for each

round}
12: FLJOBS[J]← {trnd, tagg} {Store estimated parameters}

13: tagg ←
Nparties×tpair

Cagg×Nagg
+ M
Bdc

{Est. aggregation time.
Section 5.4}

14: upon START ROUND(J) do
15: A ← CREATE AGGREGATORS(J) {Create aggregator

tasks}
16: {trnd, tagg} ← FLJOBS[J]
17: SET PRIORITY(A, trnd − tagg) {Section 5.5}
18: SET TIMER(A, trnd − tagg) {Section 5.5}
19: upon TIMER ALERT(A) do
20: if A not executing then
21: FORCE TRIGGER(A) {Deadline reached. Section 5.5}

Figure 6. High-level Pseudocode of JIT Aggregation Scheduler

5.4. Aggregation Time Estimation

Each party in an FL job trains the same model; model
updates merely differ in the values assigned to the weights
in the model. Hence, if the time taken at the aggrega-
tor to fuse a pair of updates is tpair, then the computa-
tion time taken to aggregate all updates from Nparties is
tagg = Nparties× tpair. If model updates can be aggregated
in parallel (i.e., if the aggregation function is data parallel),
and if Nagg aggregator nodes (VMs/containers) are used
with each aggregator having Cagg usable CPU/GPU cores,
then the computation time taken to complete aggregation is
(Nparties × tpair)/(Cagg × Nagg). tpair on a single CPU
core/GPU can be easily computed offline on the aggregator
before the FL job starts – by randomly generating model
updates (assigning random values to weights in the model)
and measuring the time taken to fuse pairs of these randomly
generated model updates. We also note that Cagg is the
number of usable cores for aggregation – for CPU based
aggregation, this is often equal to the number of CPU cores
in the aggregator node (VM or container). But, for GPU
based aggregation, the number of available GPU cores may
be much higher than the number of model updates that can
fit into GPU memory. To the computation time, we add the

communication time for loading models from the message
queue to computation time to obtain tagg (Fig. 6, Line 13,
where Bdc is the intra-datacenter bandwidth).

5.5. JIT Aggregation with Deadlines and Priorities

Consider an FL job with N parties, with the estimated
model update times of {t(1)upd, . . . , t

(N)
upd}, and estimated ag-

gregation time tagg. This aggregation can be safely de-
ferred from the start of an FL round until trnd − tagg
where trnd = max({t(1)upd, . . . , t

(N)
upd}). This is because the

goal of JIT aggregation is to minimize aggregation latency,
which is the time taken to complete aggregation after trnd;
consequently, aggregation should complete soon after trnd.
Starting aggregation any time after trnd− tagg increases the
probability of a higher aggregation latency. Hence, we em-
ploy a timer to ensure that aggregation starts at trnd− tagg.
This is the purest form of JIT aggregation.

But, we would like to be opportunistic (“greedy”) and
use the cluster if it is idle. Hence we combine timers with
priorities. We set the priority of the aggregation task to
trnd−tagg as well; a smaller priority value indicates a higher
priority job. Hence, if the Kubernetes cluster has idle cycles
before (trnd − tagg), aggregation jobs are automatically
scheduled by the JIT scheduler according to their priority,
and execute if there are model updates waiting in the mes-
sage queue. Scheduling decisions are made every δ seconds,
which is configurable. If higher priority FL aggregation tasks
or ther workloads arrive, lower priority aggregators are pre-
empted by checkpointing partially aggregated model updates
using the message queue. If there are no pending updates to
aggregate, the JIT scheduler defers aggregation tasks, while
retaining their priority.

6. Evaluation

In this section, we evaluate the efficacy of JIT aggre-
gation, by comparing it to eager aggregation, and batched
eager aggregation. Specifically, we evaluate the (i) efficiency
by examining whether JIT aggregation increases the latency
of an FL job, as perceived by a participant, (ii) scalability by
examining the impact of the number of parties on latency,
and (iii) resource efficiency, by measuring resource con-
sumption (in terms of the number and duration of containers
used for aggregation) and projected total cost.

6.1. Implementation & Experimental Setup

For Eager “Always-On” aggregation, we simply use IBM
FL [5]. For Eager Serverless (Eager λ), we take the aggrega-
tion code from IBM FL [5] and execute it in parallel using
the serverless computing feature of the Ray distributed com-
puting platform. We employ Ray (as opposed to KNative and
Openwhisk) because of its native support for Python (and
consequently ML frameworks like Tensorflow and Pytorch).
Batched Serverless is a variant of Eager Serverless where

10 100 1000 10000
of Parties

0

2

4

6

8

Ag
gr

eg
at

io
n

La
te

nc
y

(s
)

EfficientNet on CIFAR100
Batch Serverless
Eager Always On
JIT

10 100 1000 10000
of Parties

0

2

4

6

8

10

12

14

Ag
gr

eg
at

io
n

La
te

nc
y

(s
)

VGG16 on RVL-CDIP
Batch Serverless
Eager Always On
JIT

10 100 1000 10000
of Parties

0

5

10

15

20

25

30

Ag
gr

eg
at

io
n

La
te

nc
y

(s
)

InceptionV4 on iNaturalist
Batch Serverless
Eager Always On
JIT

Figure 7. Aggregation Latency (s) – time taken for aggregation to finish after the last model update is available. Heterogeneous intermittent parties

10 100 1000 10000
of Parties

0

2

4

6

8

10

Ag
gr

eg
at

io
n

La
te

nc
y

(s
)

EfficientNet on CIFAR100
Batch Serverless
Eager Always On
JIT

10 100 1000 10000
of Parties

0

2

4

6

8

10

12

14

16
Ag

gr
eg

at
io

n
La

te
nc

y
(s

)
VGG16 on RVL-CDIP

Batch Serverless
Eager Always On
JIT

10 100 1000 10000
of Parties

0

5

10

15

20

25

30

35

Ag
gr

eg
at

io
n

La
te

nc
y

(s
)

InceptionV4 on iNaturalist
Batch Serverless
Eager Always On
JIT

Figure 8. Aggregation Latency (s) – time taken for aggregation to finish after the last model update is available. Heterogeneous active parties

aggregation is triggered after batches of model updates have
been sent and are available at the message queue; we im-
plement Batched Serverless and our JIT strategy using Ray
as well. Aggregation was executed on a Kubernetes cluster
on CPUs, using Ray on Docker containers. Each container
(with a Ray executor) was equipped with 2 vCPUs (2.2 Ghz,
Intel Xeon 4210) and 4 GB RAM. Parties were emulated,
and distributed over four datacenters (different from the
aggregation datacenter) to emulate geographic distribution.
Each party was also executed inside Docker containers (2
vCPUs and 8 GB RAM) on Kubernetes, and these containers
had dedicated resources. We actually had parties running
training to emulate realistic federated learning, as opposed
to using, e.g., Tensorflow Federated simulator.

6.2. Metrics

We execute Ray serverless functions using Docker con-
tainers on Kubernetes pods in our datacenter, and measure
the number of container seconds used by an FL job from
start to finish. Container seconds is calculated by multiply-
ing the number of containers used with the time that each
container was used/alive. This includes all the resources
used by the ancillary services, including MongoDB (for
metadata), Kafka and Cloud Object Store. Measuring con-
tainer seconds helps us use publicly available pricing from
cloud providers like Microsoft Azure to project the monetary
cost of aggregation, in both cases, and project cost savings.

Since our JIT strategy defers aggregation as much as
possible, overheads in our work will usually manifest in the

form of increased aggregation latency. Given that aggre-
gation depends on whether the expected number of model
updates are available, we define aggregation latency as
the time elapsed between the reception of the last model
update and the availability of the aggregated/fused model.
It is measured for each FL synchronization round, and the
reported numbers in the paper are averaged over all the
rounds of the FL job. We want aggregation latency to be
as low as possible. Scalability, or the lack thereof, of any
FL aggregation architecture, also manifests in the form of
increased aggregation latency when the number of parties
rises.

6.3. Workloads

We select three real-world federated learning jobs – two
image classification tasks from the Tensorflow Federated
(TFF) [9] benchmark and one popular document classifi-
cation task. From TFF [9], we select (i) CIFAR100 dataset
which can be distributed over 10-10000 parties, with clas-
sification performed using the EfficientNet-B7 model and
the FedProx [10] aggregation algorithm and (ii) iNaturalist
dataset which can be distributed over 10-10000 parties,
with classification performed using the InceptionV4 model
and FedProx [10] aggregation algorithm. Thus, we consider
two types of images and two models of varying sizes. We
do not consider other workloads from TFF because they
involve less than 1000 parties. For additional diversity, we
consider a third workload using the VGG16 [11] model
and FedSGD [2] aggrgeation algorithm on RVL-CDIP [12]

Total container seconds Proj. Total cost US$ Cost Savings (%)
Parties JIT Batch Eager Eager JIT Batch Eager Eager JIT vs. JIT vs. JIT vs.

λ λ AO λ λ AO Batch λ Eager λ Eager AO

EfficientNet-B7 on CIFAR100 using FedProx aggregation algorithm. Active homogeneous Parties.

10 179 274 524 1723 0.05 0.07 0.14 0.46 28.57% 64.29% 91.67%
100 229 361 743 2653 0.06 0.1 0.2 0.71 40% 70% 90.54%

1000 2017 2988 5691 22340 0.54 0.8 1.53 6.01 32.5% 64.71% 90.71%
10000 24940 40860 78093 298900 6.71 11 21.02 80.46 39% 68.08% 91.94%

VGG16 on RVL-CDIP using FedSGD aggregation algorithm. Active homogeneous Parties.

10 134 205 456 1953 0.04 0.06 0.12 0.53 33.33% 66.67% 94.55%
100 170 244 523 3078 0.05 0.07 0.14 0.83 28.57% 64.29% 95.24%

1000 1324 2026 4099 25250 0.36 0.55 1.1 6.8 34.55% 67.27% 95.15%
10000 17298 30321 66083 337830 4.66 8.16 17.79 90.94 42.89% 73.81% 94.79%

InceptionV4 on iNaturalist using FedProx aggregation algorithm. Active homogeneous Parties.

10 223 369 747 2365 0.06 0.1 0.2 0.64 40% 70% 88.68%
100 397 646 1338 3354 0.11 0.17 0.36 0.9 35.29% 69.44% 89.69%

1000 2940 5246 11916 30545 0.79 1.41 3.21 8.22 43.97% 75.39% 90.4%
10000 41192 71048 162650 420870 11.09 19.13 43.79 113.3 42.03% 74.67% 89.88%

EfficientNet-B7 on CIFAR100 using FedProx aggregation algorithm. Active heterogeneous Parties.

10 129 271 508 1767 0.03 0.07 0.14 0.48 57.14% 78.57% 91.49%
100 193 390 776 2728 0.05 0.1 0.21 0.73 50% 76.19% 91.78%

1000 1665 3000 6083 22421 0.45 0.81 1.64 6.04 44.44% 72.56% 93.02%
10000 21268 40864 81354 298965 5.73 11 21.9 80.48 47.91% 73.84% 92.21%

VGG16 on RVL-CDIP using FedSGD aggregation algorithm. Active heterogeneous Parties.

10 96 195 388 1975 0.03 0.05 0.1 0.53 40% 70% 96.36%
100 117 247 497 3123 0.03 0.07 0.13 0.84 57.14% 76.92% 96.47%

1000 929 2036 4069 25335 0.25 0.55 1.1 6.82 54.55% 77.27% 96.48%
10000 14873 30329 63099 337856 4 8.16 16.99 90.95 50.98% 76.46% 95.87%

InceptionV4 on iNaturalist using FedProx aggregation algorithm. Active heterogeneous Parties.

10 175 371 869 2056 0.05 0.1 0.23 0.55 50% 78.26% 90.91%
100 285 623 1340 3616 0.08 0.17 0.36 0.97 52.94% 77.78% 91.67%

1000 2719 5252 11153 30630 0.73 1.41 3 8.25 48.23% 75.67% 91.25%
10000 39058 71027 152020 420903 10.51 19.12 40.92 113.31 45.03% 74.32% 91.56%
EfficientNet-B7 on CIFAR100 using FedProx aggregation algorithm. Intermittent heterogeneous Parties.

10 201 282 380 634 0.05 0.08 0.1 0.17 28.72% 47.11% > 99%
100 306 460 654 576 0.08 0.12 0.18 0.16 33.48% 53.21% > 99%

1000 801 1289 2426 10516 0.22 0.35 0.65 2.83 37.86% 66.98% > 99%
10000 13102 20786 49023 105021 3.53 5.6 13.2 28.27 36.97% 73.27% > 99%

VGG16 on RVL-CDIP using FedSGD aggregation algorithm. Intermittent heterogeneous Parties.

10 235 283 392 33043 0.06 0.08 0.11 8.9 16.96% 40.05% > 99%
100 280 418 576 33037 0.08 0.11 0.16 8.89 33.01% 51.39% > 99%

1000 1666 2853 4752 510039 0.45 0.77 1.28 137.3 41.61% 64.94% > 99%
10000 19474 35419 72258 5700030 5.24 9.53 19.45 1534.45 45.02% 73.05% > 99%

InceptionV4 on iNaturalist using FedProx aggregation algorithm. Intermittent heterogeneous Parties.

10 420 534 794 34365 0.11 0.14 0.21 9.25 21.35% 47.1% > 99%
100 417 663 840 34358 0.11 0.18 0.23 9.25 37.1% 50.36% > 99%

1000 11618 17672 30434 734456 3.13 4.76 8.19 197.72 34.26% 61.83% > 99%
10000 138469 232010 520420 6783036 37.28 62.46 140.1 1825.99 40.32% 73.39% > 99%

Figure 9. Resource usage and projected cost, using container cost/s of 0.0002692 US$ (source Microsoft Azure [8]). λ means serverless and AO means
“Always-On”

document classification dataset. Each job was executed for
50 synchronization rounds, with model fusion happening
after every local epoch. For all scenarios, the datasets were
partitioned in a realistic non-IID manner. For batched ag-
gregation, aggregation was triggered every (2,10,100,100)
model updates for the (10, 100, 1000, 10000) party scenar-
ios.

In the case of active participants, model training and
update is straightforward. To emulate intermittent partici-
pants, we used a random update scheme – within the time
interval allotted to an FL round, each participant would
send their model update at a random time. In the case of
homogeneous parties, each party was allotted 2 vCPUs and
4GB RAM with a equal slice of the dataset chosen in a
non-IID manner. That is, each party got the same amount
of data but the distribution of the data among the labels
was different among parties. For heterogeneous parties, each
party was randomly allotted 1 or 2 vCPUs with (2, 4, 6, 8)
GB of RAM, also chosen randomly.

6.4. Aggregation Latency

First, we examine the impact of JIT aggregation on
the latency of the FL job. Figures 8 and 7 illustrate the
effect of JIT aggregation on latency, for heterogeneous
parties with and without active participation. The results for
homogeneous parties is very similar; we omit these due to
space constraints. We observe that the perceived effect of
JIT aggregation (as measured by latency from the parties’
side) is negligible when compared to eager aggregation.
This is a validation of our central thesis that training time
can be accurately estimated in FL. Once this is done, and
aggregation scheduled in time for the final update from the
parties, there is no impact on latency. This is true in the case
of heterogeneous parties as well, whether the training time
is estimated directly from minibatch/epoch time provided
by the parties or using linear regression. The aggregation
latency of batched aggregation is generally higher than that
of eager or JIT schemes, because batching keeps waiting
for certain amounts of updates to arrive, and in cases where
updates are bunched up due to heterogeneity, completing
aggregation takes additional time. We also observe that
while increasing the number of parties slightly increases
overall latency, JIT aggregation continues to perform as well
as eager aggregation.

6.5. Resource Efficiency

Next, we examine the resource and cost savings realized
by deferring aggregation. Figure 9 illustrates the resource
savings with active homogeneous, active heterogeneous and
intermittent heterogeneous parties for all three model/dataset
combinations. We observe that, eager always-on (Eager AO)
aggregation in existing FL platforms is the most resource
intensive, irrespective of whether parties are active or in-
termittent, homogeneous or heterogeneous. Eager serverless
(Eager λ) performs better than Eager AO, because it in-
volves dynamically deploying aggregators and relinquishes

resources when possible. Batched serverless (Batch λ) fur-
ther improves utilization because it reduces the number of
times the aggregator has to be deployed, and it also ensures
that each deployed aggregator has substantial work – Eager
λ may deploy an aggregator to process one or two model
updates, while Batch λ ensures at least a batch of updates
to process, amortizing deployment overheads and context
switches.

Figure 9 starts with active, homogeneous parties. This is
the ideal case for training time estimation, and we observe a
healthy 60-75% resource and cost savings with respect to ea-
ger serverless aggregation and ≈ 90% with respect to eager
always-on (IBM FL). In batched aggregation, aggregators
are not deployed as often as the eager strategy. Hence, the
savings with respect to batched aggregation is not as high
as the eager case, but nevertheless significant at 28-40%. As
the number of parties increases, the overall resource usage
increases significantly for all experiments, but the savings
persist. Thus, JIT aggregation has the same or better latency
than eager and batched aggregation but saves a large chunk
of datacenter resources, which can be used by other FL jobs
and other workloads.

We observe from Fig. 9 that this trend persists for
active, heterogeneous entities, where training time can still
be predicted with high accuracy. Resource savings w.r.t
Eager λ and Batch λ are higher than active homogeneous
parties because model updates arrive at different times,
which makes the JIT strategy more useful. The case with
intermittent participants who are heterogeneous represents
a challenging case for JIT aggregation, because updates
arrive any time during the aggregation window and these
experiments test our priority setting strategy of Section 5.5.
Aggregation latency continues to remain low (in Figure 9)
while still achieving savings of 70+% with respect to eager
aggregation.

7. Related Work

To the best of our knowledge, our work is the first to
explore lazy or deferred aggregation for federated learning.
A broad overview of the area of federated learning is beyond
the scope of this paper; for that, we refer the reader to [1],
[13], [14]. Scalable and efficient aggregation is a key prob-
lem in federated learning, as identified by [1], [5], [6]. While
[2] uses hierarchical aggregation, its programming model
is different from our work. Its primary goal is scalability
and consequently, it deploys long lived actors and seems to
implement the eager aggregation model. Oort [15] is another
recent system that prioritizes the subset of clients who have
both data that offers the greatest utility in improving model
accuracy and the compute to run training quickly. But Oort
does not address the challenge of scheduling aggregation
effectively and providing aggregation as a cloud service.

A number of ML frameworks – Siren [16], Cirrus [17]
and the work by LambdaML [18] use serverless func-
tions for centralized (not federated) ML and DL training.
Siren [16] allows users to train models (ML, DL and RL)

in the cloud using serverless functions with the goal to
reduce programmer burden involved in using traditional ML
frameworks and cluster management technologies for large
scale ML jobs. It also contains optimization algorithms to
tune training performance and reduce training cost using
serverless functions. Cirrus [17] goes further, supporting
end-to-end centralized ML training workflows and hyperpa-
rameter tuning using serverless functions. LambdaML [18]
analyzes the cost-performance trade-offs between IaaS and
serverless for datacenter/cloud hosted centralized ML train-
ing. Our work differs from Siren, Cirrus and LambdaML
in significant ways – Distributed ML (in Siren, Cirrus and
LambdaML) is different from FL. Distributed ML involves
centralizing data at a data center or cloud service and
performing training at a central location. In contrast, with
FL, data never leaves a participant. FL’s privacy guarantees
are much stronger and trust requirements much lower than
that of distributed ML. FedLess [19] has the ability to run
a single eager aggregator as a cloud function, but does not
have the ability to parallelize aggregation.

8. Conclusions and Future Work

In this paper, we take a fresh look at the problem of
scalable aggregation for federated learning. While FL has
been increasingly adopted, existing research has gaps in ad-
dressing how cloud providers should manage large numbers
of FL jobs if they decide to become a nexus between their
customers and offer FL-as-a-service. We demonstrate that
using a JIT strategy to defer aggregation until the point it is
needed can be helpful and resource efficient, with negligible
overheads. JIT aggregation is applicable to a variety of
different scenarios, whether aggregators are deployed as
serverless functions or containers, with or without cluster
management systems. It also works with multiple existing
aggregation algorithms, as demonstrated in our empirical
evaluation.

References

[1] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and Open Problems in Federated Learning,” arXiv preprint
arXiv:1912.04977, 2019.

[2] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, H. B. McMahan
et al., “Towards Federated Learning at Scale: System Design,” arXiv
preprint arXiv:1902.01046, 2019.

[3] I. Dayan et. al., “Federated Learning for Predicting Clinical Outcomes
in Patients with COVID-19,” Nature Medicine, 2021.

[4] IBM Corporation, “IBM Federated Learning Library”, https://github.
com/IBM/federated-learning-lib, 2021.

[5] H. Ludwig, N. Baracaldo, G. Thomas, Y. Zhou, A. Anwar, S. Ra-
jamoni, Y. Ong, J. Radhakrishnan, A. Verma, M. Sinn, M. Purcell,
A. Rawat, T. Minh, N. Holohan, S. Chakraborty, S. Whitherspoon,
D. Steuer, L. Wynter, H. Hassan, S. Laguna, M. Yurochkin, M. Agar-
wal, E. Chuba, and A. Abay, “IBM Federated Learning: an Enterprise
Framework White Paper v0.1,” arXiv preprint arXiv:2007.10987,
2020.

[6] Y. Liu, T. Fan, T. Chen, Q. Xu, and Q. Yang, “FATE: An Industrial
Grade Platform for Collaborative Learning with Data Protection,”
Journal of Machine Learning Research, vol. 22, no. 226, pp. 1–6,
2021. [Online]. Available: http://jmlr.org/papers/v22/20-815.html

[7] NVIDIA, “NVIDIA Federated Learning Application Runtime Envi-
ronment,” https://github.com/NVIDIA/NVFlare, 2021.

[8] Microsoft Corporation, “Azure Container Instances pricing,” https://
azure.microsoft.com/en-us/pricing/details/container-instances/, 2021.

[9] Tensorflow Project, “Using TFF for Federated Learning Research,”
https://www.tensorflow.org/federated, 2022.

[10] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated Optimization in Heterogeneous Networks,” in Conference
on Machine Learning and Systems (MLSys), I. Dhillon, D. Papail-
iopoulos, and V. Sze, Eds., 2020, pp. 429–450.

[11] A. Das, S. Roy, U. Bhattacharya, and S. K. Parui, “Document Image
Classification with Intra-domain Transfer Learning and Stacked Gen-
eralization of deep convolutional neural networks,”[Online]. Avail-
able: https://arxiv.org/abs/1801.09321, 2018.

[12] A. W. Harley, A. Ufkes, and K. G. Derpanis, “Evaluation of Deep
Convolutional Nets for Document Image Classification and Retrieval,”
in International Conference on Document Analysis and Recognition.
IEEE, 2015, pp. 991–995.

[13] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated Machine Learning:
Concept and Applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, jan 2019. [Online]. Available: https://doi.org/10.1145/3298981

[14] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, J. E. Gonza-
lez, R. A. Popa, I. Stoica, and D. A. Patterson, “Cloud Programming
Simplified: A Berkeley view on Serverless Computing,” 2019.

[15] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort:
Efficient Federated Learning via Guided Participant Selection,”
in 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21). USENIX Association, Jul. 2021,
pp. 19–35. [Online]. Available: https://www.usenix.org/conference/
osdi21/presentation/lai

[16] H. Wang, D. Niu, and B. Li, “Distributed Machine Learning with a
Serverless Architecture,” in IEEE INFOCOM 2019 - IEEE Confer-
ence on Computer Communications, 2019, pp. 1288–1296.

[17] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz,
“Cirrus: A Serverless Framework for End-to-End ML Workflows,”
in ACM Symposium on Cloud Computing SoCC ’19. New
York, NY, USA: ACM, 2019, p. 13–24. [Online]. Available:
https://doi.org/10.1145/3357223.3362711

[18] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso, A. Klimovic, A. Singla,
W. Wu, and C. Zhang, “Towards Demystifying Serverless Machine
Learning Training,” in ACM SIGMOD, 2021.

[19] A. Grafberger, M. Chadha, A. Jindal, J. Gu, and M. Gerndt, “Fedless:
Secure and Scalable Federated Learning Using Serverless Comput-
ing,” in IEEE International Conference on BigData, 2021.

http://arxiv.org/abs/1912.04977
http://arxiv.org/abs/1902.01046
https://github.com/IBM/federated-learning-lib
https://github.com/IBM/federated-learning-lib
http://arxiv.org/abs/2007.10987
http://jmlr.org/papers/v22/20-815.html
https://github.com/NVIDIA/NVFlare
https://azure.microsoft.com/en-us/pricing/details/container-instances/
https://azure.microsoft.com/en-us/pricing/details/container-instances/
https://www.tensorflow.org/federated
https://arxiv.org/abs/1801.09321
https://doi.org/10.1145/3298981
https://www.usenix.org/conference/osdi21/presentation/lai
https://www.usenix.org/conference/osdi21/presentation/lai
https://doi.org/10.1145/3357223.3362711

	1 Introduction
	2 Background
	2.1 FL Jobs and Model Aggregation
	2.2 Active vs. Intermittent Participants
	2.3 Heterogeneity

	3 Design/Deployment Choices for Aggregation
	4 Predicting the Next Update
	4.1 Periodicity of Model Updates & Active Parties
	4.2 Linearity
	4.3 Active vs. Intermittent Participation

	5 JIT Aggregation – Design and Implementation
	5.1 FL Jobs and Specs
	5.2 Additional Input Needed From Parties
	5.3 Local Training Time Estimation
	5.4 Aggregation Time Estimation
	5.5 JIT Aggregation with Deadlines and Priorities

	6 Evaluation
	6.1 Implementation & Experimental Setup
	6.2 Metrics
	6.3 Workloads
	6.4 Aggregation Latency
	6.5 Resource Efficiency

	7 Related Work
	8 Conclusions and Future Work
	References

