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Abstract

This letter aims to present a novel approach for unmanned aerial vehicles (UAV)’ path planning

with respect to certain quality of service requirements. More specifically, we study the max-min fairness

problem in an air-to-ground communication system where multiple UAVs and multiple ground stations

exist. We jointly optimize the UAVs trajectories and power allocation as well as the user scheduling. To

this end, we propose an effective iterative algorithm that relies on the successive convex approximation

and the block coordinate descent techniques.

Index Terms
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I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) have drawn significant research interests [1,2].

This is mainly due to the significant decrease in the production costs of these systems [3], added

to their flexible deployment and high maneuverability. Traditionally, the use of UAVs was only

dedicated to military applications in the late 90s [4]. However, research and development of

UAVs have enabled the emergence of several new applications. As a matter of fact, the drones

have started to be used in cargo delivery, traffic control, weather forecasting, farming [5], etc.

Motivated by this context, earlier research started by studying single UAV systems. To begin

with, they studied the problem of path planning that consists into scheduling the areas to visit

in a given time period. For instance, the authors in [6] presented a multi-colony algorithm that

optimizes the UAV path planning with obstacle avoidance.

After that, recent research has investigated the use of multi-UAV systems. In fact, it has

been proved that, compared to a single UAV system, the use of a fleet of UAVs allows to

perform more complex and challenging missions with higher speed and especially with increased
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performance and efficiency. However, with the use of a multi-UAV system, we are facing a new

kind of problems such as interference, energy efficiency, path planning and user scheduling.

For instance, the work in [7] has treated the path planning problem for a multi-UAV system

using genetic algorithms and Bezier curves. Furthermore, a game theoretic approach has been

presented in [8] to reduce the interference between the UAVs. However, there is only the work

in [9] that considered working on all these problems combined. However, in that work, every

single one of these problem was optimized separately. In the same context, we will conduct

different optimization approach to get better fairness among served users.

In this letter, we study a multi-UAV aided wireless system where a group of UAVs are used

to provide down-link communication to a group of ground stations (GT) in a two dimensional

area given certain quality of service requirements in communication. The objective here is to

maximize the minimum average rate among ground stations in order to achieve fair performance

among them during a given finite period. To this extent, we consider a joint optimization problem

in which we have to provide an efficient flight trajectory solution for every UAV with specifying

the optimal UAV-user association and power allocation at each time. To that end, we propose an

iterative algorithm based on the successive convex approximation (SCA) and the block coordinate

descent (BCD) techniques. The proposed algorithm and the resulting fairness will be verified by

simulation results.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless communication system where M UAVs are employed to communicate

with K ground stations. Furthermore, we assume that every ground station k (k = 1, .., K) has a

fixed position wk = [xk, yk] on the ground, while all the UAVs (m = 1, ..,M) fly on the two di-

mensional coordinate qm(n) = [xm(n), ym(n)] at a fixed altitude H1. Thus, the distance between

an UAV m and a ground station k is expressed by dk,m(n) =
√
H2 + ‖qm(n)−wk‖2. For ease

of exposition, we assume that the high altitude of UAVs enables them to effectively establish

line-of-sight (LoS) link and the Doppler effect caused by their mobility is well compensated at

the receivers. Therefore, the time-varying channel between an UAV m and a ground station k

1We suppose here that the trajectory optimization problem is intractable over continuous time. For ease of exposition, we use

the discrete linear state-space approximation. This method consists of discretizing the time horizon T into N time slots with a

step size δt. So, we have t = nδt with n = 0, 1, . . . , N . Thus all the formulas in this letter will be defined as a function of the

discrete time instant n.
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follows the free-space path loss model, which can be expressed as hk,m(n) = β0
H2+‖qm(n)−wk‖2

,

where β0 represents the channel gain at reference distance (d = 1 m).

We also assume that all the UAVs operate in the same frequency band. Thus, the corresponding

received signal to interference plus noise ratio (SINR) at user k from UAV m is computed as

γk,m(n) =
pm(n)hk,m(n)∑M

j=1
j 6=m

pj(n)hk,j(n) + σ2
0

, (1)

where pm(n) denotes the down-link transmit power of UAV m, σ2
0 represents the variance of

additive white Gaussian noise (AWGN) at the receiver and the term
∑M

j=1
j 6=m

pj(n)hk,j(n) stands

for the co-channel interference (CCI) received by ground station k during its communication

with the UAV m at time n. We consider the power control of the signals transmitted by UAVs to

ground stations at each time n in order to manage co-channel interference to the other users. The

down-link transmit power of an UAV m at time instant n is constrained on 0 ≤ pm(n) ≤ Pmax,

where Pmax denotes the maximum allowable transmit power at the UAV.

In order to define the UAV-user association and scheduling, we use a binary variable αk,m(n)

that takes 1 during communication between an UAV m and a ground station k in time n.

Otherwise, it is equal to 0. Then, we can define the achievable rate of user k over the period N

is given by:

Rk =
1

N

N∑
n=0

M∑
m=1

αk,m(n) log2(1 + γk,m(n)). (2)

Each UAV operates with a finite amount of energy due to the compact size requirement which

is limiting the serving time and data rate on flight. As explained in [?], we assume that the

communication energy consumption is much smaller than the propulsion energy consumption

and we only consider the propulsion power as the source of energy consumption, which can be

expressed by

Em =
N∑
n=0

c1‖vm(n)‖3 +
c2

‖vm(n)‖

(
1 +
‖am(n)‖2

g

)
+

1

2
w(‖vm(N)‖2 − ‖vm(0)‖2) ≤ Emax, ∀m, (3)

where c1 and c2 are constants, g is the gravitational acceleration, w is the mass of an UAV

and Emax is the maximum allowable propulsion energy during the period N . In (3) vm(n) and
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am(n) are the velocity and acceleration of UAV m at time instant n which are approximated by

the first order Taylor expansion as

vm(n+ 1) = vm(n) + am(n)δt, (4)

qm(n+ 1) = qm(n) + vm(n)δt+
1

2
am(n)δt2. (5)

The velocity and acceleration speed are limited to

‖vm(n)‖ ≤ Vmax, ∀m,n, (6)

‖am(n)‖ ≤ amax, ∀m,n, (7)

‖vm(n)‖ ≥ Vmin, ∀m,n, (8)

where Vmax and Vmin are the maximum and minimum velocity during flight and amax is the

maximum acceleration.

In order to avoid collusion, we add a constraint that sets a minimum distance between the

UAVs which is defined as

‖qm(n)− qj(n)‖ ≥ dmin, ∀m,n, j 6= m (9)

We suppose that, at each time slot, each UAV serves at most one ground station and that

each ground station is served at most by one UAV. Thus, the constraints on association binary

variables are given by
K∑
k=1

αk,m(n) ≤ 1,
M∑
m=1

αk,m(n) ≤ 1, ∀k,m, n. (10)

III. MAX-MIN RATE PROBLEM FORMULATION

In order to better understand the problem, we adopt the following notations :

• S= {αk,m(n) ∀k,m, n}: the user-UAV association.

• P= {pm(n), ∀m,n}: the transmit power of the UAVs.

• Q= {qk,m(n), ∀k,m, n}: the UAVs’ trajectories.

• V= {vk,m(n), ∀k,m, n}: the UAVs’ velocities.

• A= {ak,m(n), ∀k,m, n}: the UAVs’ accelerations.

As explained in the first section, we want to jointly optimize the down-link communication

and the UAV-user scheduling as well as the trajectory, velocity and acceleration of each UAV in
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order to maximize the minimum average rate among all users. To this end, if we set µ = min
k∈K

Rk,

we end up with the following problem (P1) :

max
µ,Q,V,A,S,P

µ

s.t. (3)− (10)

(P1) Rk ≥ µ, ∀k (11)

0 ≤ pm(n) ≤ Pmax, ∀m,n, (12)

αk,m(n) ∈ {0, 1}, ∀k,m, n, (13)

Problem (P1) is challenging to solve due to the following reasons. To begin with, our problem

includes integer constraint that is expressed in (13) due to the presence of the binary optimization

variables of UAV-user scheduling and association. Furthermore, the constraints (3), (8), (9), and

(21) are not convex with respect to either Q,V ,A,P . Finally, all the optimization variables are

closely correlated. For instance, even a slight change of a given UAV trajectory can have an

enormous impact on the trajectories of the other UAVs. So, we need to jointly optimize these

variables in order to reach the better solution. All these constraints yield a mixed-integer non-

convex problem and, in general, there is no standard method for solving this kind of problems

efficiently.

IV. PROPOSED ALGORITHM

Our problem is a mixed-integer non-convex problem that involves integer constraints. To tackle

our problem of interest, we relax our problem by changing the binary variables of UAV-user

scheduling into continuous variables. So, the resulting problem (P2) is:

max
µ,Q,V,A,S,P

µ

(P2) s.t. (3)− (12)

0 ≤ αk,m(n) ≤ 1, ∀k,m, n. (14)

This relaxation implies that the objective value of the new problem (P2) will be considered

as an upper bound of the problem (P1). Thus, from now on, we will optimize this new problem

(P2) which is still non-convex due to the constraints (3), (8) and (21).
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In order to do so, we use an iterative algorithm by leveraging the BCD method. Specifically,

we divide our optimization variables into two blocks; the first block is for the user scheduling

and association (S) and the second one is represented by the UAVs trajectory and power control

(Q,V ,A,P). So, these two blocks are alternately optimized in each iteration. As a result, we

obtain two sub-problems of problem (P2).

In the first sub-problem, we only retain the constraints that are related to the user scheduling,

while other variables (Q,V ,A,P) are fixed. Thus the first sub-problem (P2.1) can be expressed

as:

(P2.1) max
µ,S

µ s.t.. (10), (21) and (14).

(P2.1) is a standard linear problem. So, it can be solved directly by using some known opti-

mization tools.

In the second sub-problem (P2.2), we only retain the constraints that depend on the UAVs’

trajectory, velocity, acceleration and power control. Thus, (P2.2) is defined by

(P2.2) max
µ,Q,V,A,P

µ s.t.. (3)− (9), (21), (12).

The sub-problem (P2.2) is still non-convex due to the constraints (3), (8), (9) and (21). In order

to solve it, we first couple the trajectory and the transmit power variables by introducing an

auxiliary variable Bk,m(n) which is defined by Bk,m(n) = pm(n)hk,m(n). As a result, Rk is

rewritten as

Rk =
1

N

N∑
n=0

M∑
m=1

αk,m(n) log2

1 +
Bk,m(n)∑M

j=1
j 6=m

Bk,j(n) + σ2
0

 .

Additionally, the constraint (12) is transformed into

0 ≤ Bk,m(n) ≤ β0Pmax
H2 + ‖qm(n)−wk‖2

∀k,m, n, (15)

which is still non-convex. Thus, if we set B= [Bk,m(n), ∀k,m, n], we have the new problem

(P3) which can be formulated as

(P3) max
µ,B,Q,V,A

µ s.t. (3)− (9), (21), (15).

In the following, we will try to solve the sub-problem (P3) using the successive convex opti-

mization techniques. The main idea consists in finding another convex problem which represents
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a lower bound of (P3). Then, we successively maximize the lower bound of (P3) via optimizing

the trajectory and the auxiliary variable.
Using the approximations in (Appendix A), we can find a convex problem (P4) for a given

trajectory, velocity and the auxiliary variable (Qr,Vr,Br) at iteration r defined by:

max
µlb,B,Q,V,A,Λ

µlb

s.t. (4)− (7)

1

N

N∑
n=0

M∑
m=1

αk,m(n) log2

 M∑
j=1

Bk,j(n) + σ2
0

−Rupperk,m (n)) ≥ µlb, ∀k

(P4) 0 ≤ Bk,m(n) ≤ Pmaxβ0

(
−‖qm(n)−wk‖2

H4
+Dk,m(n)(qm(n)−wk)T (qrm(n)−wk) + Fk,m(n)

)
,∀k,m, n

0 ≤
N∑
n=1

c1‖vm(n)‖3 +
c2

λm(n)

(
1 +
‖am(n)‖2

g

)
+
w

2
(‖vm(N)‖2 − ‖vm(0)‖2) ≤ Emax, ∀m

λm(n) ≥ Vmin, ∀m,n

λm(n)2 ≤ ‖vrm(n)‖2 + 2(vrm(n))T (vm(n)− vrm(n)) , ∀m,n

‖qm(n)− qj(n)‖2 ≤ ‖qrm(n)− qrj(n)‖2 + 2(qrm(n)− qrj(n))T
(
qrm(n)− qj(n)− qm(n) + qrj(n)

)
, ∀m,n, j 6= m

where Λ = {λm(n) ,∀m,n} is a set of slack variables that we introduced to the problem, and
the constants Dk,m(n), Fk,m(n) and R

upper

k,m (n) are given by:

Dk,m(n) = 2

(
1

H4
− 1

(‖qrm(n)−wk‖2 +H2)2

)
Fk,m(n) =

1

‖qrm(n)−wk‖2 +H2
+ 2

1‖qrm(n)−wk‖2

(‖qrm(n)−wk‖2 +H2)2
− ‖q

r
m(n)−wk‖2

H4

R
upper

k,m (n) =

M∑
j=1
j 6=m

 log2(e)∑M
j=1
j 6=m

Brk,j(n) + σ2
0

(Bk,j(n)−Brk,j(n)
)

+ log2

 M∑
j=1
j 6=m

Brk,j(n) + σ2
0

 .

It is worthy noting that the feasible set of problem (P4) can be considered as a subset of

the sub-problem (P2.2). Thus, by solving iteratively the problem (P4), we will be successively

optimizing the lower bound of sub-problem (P2.2) in order to better approximate it. Thus, we

will end up with an efficient approximate solution of the latter. Finally, we present an overall

algorithm that synthesizes all the work done in this perspective:

Algorithm : (BCD) Algorithm for Problem (P2).

Input : Locations of GTs, Vmax, Vmin, Amax, Pmax, Emax, σ2
0, β0, c1, c2 and ε

1) Initialize Q0,V0,B0 and r = 0

2) Repeat
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a) Solve problem (P2.1) for given Qr,Vr,Br, and denote the optimal solution as Sr+1.

b) Solve problem (P4) for given Sr+1, and denote the optimal solutions asQr+1,Vr+1,Br+1.

c) Update r = r + 1.

3) Until The fractional increase of the objective value of problem (P2) is below a threshold

ε .

4) Define pm(n) =
K∑
k=1

αk,m(n)
Bk,m(n)

hk,m(n)
, ∀m,n.

As explained in (Appendix B), our algorithm performs better at each iteration and is guaranteed

to converge. Also, the complexity of our algorithm is of order Θ
(

(KM)3N + (KMN)2(KMN + M2N
2 )

)
.

But due to space limitation, the proof of convergence and complexity are shown in the companion

report [10]. Also, it has been proved in [11] that the convergence complexity of our algorithm

in terms of number of iterations is Θ(1/r) (i.e.f (xr) − f ∗ = Θ
(
1
r

)
, where f ∗ is the optimal

objective value and f (xr) is the objective value at iteration r). Thus, this indicates that our

algorithm converges in a few iterations. We will prove that our algorithm performs very well by

testing its effectiveness on some examples.

V. NUMERICAL RESULTS

We consider a system model composed of M = 2 UAVs at a fixed altitude H = 100 m

and K = 6 GTs on the ground that are arbitrarily distributed in an area of 500 × 500 m2 for

simulation purpose. For channel gain, we set Pmax = 0.1 Watt, β0 = −60 dB and σ2
0 = −110

dBm, respectively. For propulsion energy and flight dynamics, we set Vmin = 1.5 m/s, Vmax = 50

m/s, amax = 5 m/s2, Emax = 2× 105J , c1 = 9.26× 104 and c2 = 2250, respectively. Simulation

period is N = 100 with step size δt = 1 sec.

Next, in order to use our algorithm, we need to provide an initial scheme for the different

variables of our model. To that end, we start by providing a simple systematic circular trajectory

design for all the UAVs using the K-mean clustering algorithm to find the radius and center

(also called centroid) of each trajectory as explained in (Appendix C). We also assume that the

initial speed of every UAV m is set to be constant during all the flight which are respectively

equal to 3 and 4m/s.

Regarding the user scheduling, at each time slot, every UAV m will communicate with the

closest ground station that belongs to its assigned cluster m that results from the K-mean
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clustering algorithm. Also, the transmission power of all the UAVs is set to be at its maximum

level Pmax.

Thus, we end up with an efficient initialization scheme for our problem due to the following

reasons. First, this method offers a feasible solution that is compliant with all the constraints

of our problem. Second, by using this method, we ensure that all the UAVs will provide full

coverage for the areas that contains the ground stations. As a result, all the ground stations will

be served equally during the flight. Thus, this will help achieve fair performance between all

the ground stations which represents our main goal from the beginning.

Finally, since the K-mean clustering algorithm divides the ground stations into clusters that

are generally far away from each other, we can guarantee that the UAVs are sufficiently separated

during their communications with the ground stations. As a result, this tends to minimize the

co-channel interference on the ground stations and thus, the achievable data rate at the ground

stations will be at its maximum level.
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Figure 1: Optimal parameters for our proposed algorithm

We note that, in the initial solution that we provided, the UAV 2 communicates only with two
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ground stations which are represented by the red dots in Figure 1a. After applying our proposed

algorithm, the UAV 2 extended its trajectory in order to serve a third ground station that was

only served by the first UAV in the initial solution as shown in Figure 1a.

We also note that every UAV tries to position itself near the ground station when there is a

communication between them. This is explained by the fact that this helps them achieve better

communication channel. For instance, all the UAVs tend to have a high velocity when they are

moving from a ground station to another and tend to have a minimum velocity when they are

hovering next to a ground station as displayed in the Figure 1c. However, the UAVs cannot

maintain a fixed position during their flight due to the minimum velocity constraint and the

constraint of energy. As a result, they continuously revolve around the ground stations as closely

as possible with a minimum velocity in order to preserve good communication channels.

According to the Figure 1b, we note that the transmission power of the different UAVs is almost

always set at its maximum level Pmax. This is explained by the fact that, in the resulting solution

of our algorithm, the UAVs are quite distant from each other during their communications with

the ground stations. As a result, our resulting solution could be assimilated to the combination

of two distant subsystems in which every one of them is composed of one UAV. However, The

impact of the power transmission would be more tangible if we adopted a system which is

composed of a large number UAVs. In that case, the communication channel would be highly

impacted by the interference at the level of users as there are a lot of UAVs that are close to

each other emitting the signals at the same time.

Remark: We can always consider working with a larger number of UAVs and ground stations.

For instance, Figure 2 illustrates the optimal trajectories of UAVs in the case where we consider

a system composed of 4 UAVs and 9 ground stations.

A. Convergence of our proposed Algorithm

Let us study the convergence behavior of our algorithm. It can be observed from the Table I

below that the max-min throughput increases in every iteration. We also note that our algorithm

converges quickly to a final solution within about 10 iterations.
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Figure 2: UAVs’ optimal trajectories for T = 100 s.

Table I: Convergence Behavior

r 1 2 3 4 - 8 9 10 11

∆µlb 125 16.5 8 2.3 - 0.3 0.2 0.2 0.1

B. Performance Analysis

Let us compare the performance of our proposed solution to a benchmark scheme with static

access point, placed in the geometric center of the ground nodes. In fact, the baseline scheme

allows us to achieve a performance of R = 17 Bps/Hz, which is much more negligible to the

performance achieved by our solution which is R = 208 Bps/Hz. This result strongly highlight

the benefit brought by UAV mobility in such problems.

Additionally, let us compare the performance of our proposed solution to the initial trajectory

solution. We note that our proposed solution allows us to achieve results that are significantly

better than those obtained from the initial solution. Indeed, the max min rate has increased from

R = 70 Bps/Hz to R = 208 Bps/Hz for a duration T = 100 s. This represents an improvement

of nearly 150 Bps/Hz in the overall performance.
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Table II: Performance achieved by the different ground stations

GT No. 1 2 3 4 5 6

Data rate
209.1 208.6 209.4 210.1 208.8 208.4

(Bps/Hz)

Connection time
34 31 31 32 36 31

(sec)

We also note from the Table II that the UAVs have planned their movements so that the users

have the same duration of communication with them. Additionally, we note that the ground

stations have received roughly the same rate which is equal to R = 208 Bps/Hz. Thus, we

consider that the objective of achieving a fair performance among all users is achieved.

C. Impact of the energy on the solution

In this section, we study the impact of the energy constraint on the performance of our system.

So in the beginning, we denote Em as the energy consumed by the UAVs in the first example

provided in Section V for T = 100s. Next, we solve our problem for different values of Emax

and compare the results that we obtain with the first solution provided in Section V.

• Emax=0.9 Em
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Figure 3: UAVs’ trajectories with constrained energy when Emax = 0.9Em
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We note that that the UAVs managed to find trajectories that are different from those we

have in Figure 3. But, it succeeded to preserve the same max min rate R = 208 bps/Hz.

• Emax= 0.6 Em
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Figure 4: UAVs’ trajectory with constrained energy when Emax = 0.6Em

Our algorithm succeeded to converge to a final solution which is represented in Figure 4.

However, we note that the value of the max min rate has fallen drastically compared with

the initial solution, from R = 208 bps/Hz to R = 183.6 bps/Hz.

• Emax= 0.3 Em

We note that our algorithm failed to converge because it was not able to find a feasible set

for our problem that is compliant with the different constraints of energy and velocity.

VI. CONCLUSION

In this letter, we have investigated the max-min fairness problem between users in wireless

communication with multiple UAVs. The main objective behind this problem was to design an

efficient solution that jointly optimizes the UAVs’ trajectories, the transmission power and the use

scheduling that meet certain quality of service requirements. To this end, we proposed an effective

iterative algorithm that regroups the BCD and the SCA techniques. Then, we demonstrated the

effectiveness and performance of our algorithm compared to the baseline circular path planning

scheme.
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APPENDIX A

In this section, we will solve (P3) using the successive convex optimization techniques. Let
us first start by the constraints (3) and (8). The resulting sets of these constraints are not convex
with respect to V . Thereby, we start by introducing a slack variable λm(n) and replacing it with
‖vm(n)‖ . As a result, by defining Λ = {λm(n) ,∀m,n} we obtain the following problem
(P3.a) :

max
µlb,B,Q,V,A,Λ

µlb

s.t. (4)− (7), (15)

(P3.a) 0 ≤
N∑
n=1

c1‖vm(n)‖3 +
c2

λm(n)

(
1 +
‖am(n)‖2

g

)
+
w

2
(‖vm(N)‖2 − ‖vm(0)‖2) ≤ Emax,(16)

λm(n) ≥ Vmin, ∀m,n (17)

‖λm(n)‖2 ≤ ‖vrm(n)‖2, ∀m,n (18)

Λ is now considered as a new decision variable set. Additionally, we have also two new con-

straints (17) and (18). It is worth noting that at the optimal solution of this new problem (P3.a),

we must have λm(n) = ‖vm(n)‖. Otherwise, we can enlarge the feasible region corresponding

to the constraint (18) by increasing λm(n). Therefore, we can say with certainty that the problem

(P3.a) is equivalent to the previous problem (P3).

In addition, with this new reformulation, the resulting set of the energy constraint (16) is now

convex with respect to (V ,A,Λ). The constraint (17) is also convex with respect to Λ. However,

the new constraint (18) is non-convex with respect to V .

Next, As stated earlier, we are trying to solve (P3.a) approximately by solving iteratively a

series of convex problems that represent a lower bound to this latter. So, as we want to maximize

µ, our approach consists into shrinking the feasible set of the non-convex constraints by making

some approximations in order to make them convex.

Specifically, we apply the successive convex optimization. So, we define the given velocity

of an UAV in the rth iteration as Vr ={vrm(n) ,∀m,n} which represents the solution of Vr

computed at the (r − 1)th iteration. Then, we use the following lemma:

Lemma 1. If f is a convex (respectively concave) function with respect to a certain variable

x ∈ X . Then f is lower (respectively upper) bounded by its first order Taylor expansion at any

point x, y ∈ X . Thus:

• f(x) ≥ f(y) + f(y)(x− y), if f is convex

• f(x) ≤ f(y) + f(y)(x− y), if f is concave
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Since f(x)= ‖x‖2 is convex, we apply the previous lemma by taking x = vm(n) and

y = vrm(n)

Consequently, we have the following result:

‖vm(n)‖2 ≥ ‖vrm(n)‖2 + 2 (vrm(n))T (vm(n)− vrm(n)).

As a result, we define the new constraint

λm(n)2 ≤ ‖vrm(n)‖2 + 2 (vrm(n))T (vm(n)− vrm(n)),∀m,n

This new constraint is convex with respect to (V ,Λ).

Let us consider now the constraint (15) which is non-convex with respect to B. In order to deal

with it, we first write the left-hand side of the constraint as a difference between two concave

functions with respect to the auxiliary variable B. So, we have:

Rk,m(n) = log2

1 +
Bk,m(n)∑M

j=1
j 6=m

Bk,j(n) + σ2
0


= log2

(
M∑
j=1

Bk,j(n) + σ2
0

)
−Rk,m(n),

where Rk,m(n) = log2

(∑M
j=1
j 6=m

Bk,j(n) + σ2
0

)
As the first and the second terms of Rk,m(n) are concave, we cannot study the convexity

of Rk,m(n). To tackle this problem, we can use the successive convex optimization in order to

approximate R̄k,m(n) by a more controllable function at a given local point. Specifically, we

define Br ={Br
k,m(n) ∀k,m, n} which represents the given auxiliary variable calculated in the

(r − 1)th iteration.

Since f(x) = log(x) is concave, we apply the previous lemma by taking

x =
∑M

j=1
j 6=m

Bk,j(n) + σ2
0 and y =

∑M
j=1
j 6=m

Br
k,j(n) + σ2

0

We obtain the following result: Rk,m(n) ≤ Rupperk,m (n) =
∑M

j=1
j 6=m

Ak,j(n)(Bk,j(n)−Brk,j(n)) + Ck,j(n)

where the constants Ak,j(n) and Ck,j(n) are given by

Ak,j(n) = log2(e)∑M
j=1
j 6=m

Br
k,j(n)+σ

2
0

Ck,j(n) = log2

(∑M
j=1
j 6=m

Br
k,j(n) + σ2

0

)
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As a result, for a given trajectory Br defined in the rth iteration, the non-convex constraint (21)

can be approximated by:

1

N

N∑
n=0

M∑
m=1

(
αk,m(n) log2(

M∑
j=1

Bk,j(n) + σ2
0)−Rupper

k,m (n)

)
≥ µ

Now, Let us consider the constraint (15). The resulting set of this constraint is not convex

with respect to Q. So, as explained in the beginning of this section, we need to find a lower

bound to the right-hand side of this constraint which is convex.

As shown in (Appendix D), the function Bk,m,max(n) = β0Pmax

H2+‖qm(n)−wk‖2
is a concave surrogate

function. As a result, after we define Qr ={Qr
m(n) ,∀m,n} which represents the given trajectory

calculated in the (r − 1)th iteration, we have the following results:

Bk,m,max(n) ≥ Pmaxβ0

(
−‖qm(n)−wk‖2

H4
+Dk,m(n)(qm(n)−wk)

T (qrm(n)−wk) + Fk,m(n)

)
,

where the constants Dk,m(n) and Fk,m(n) are given by

Dk,m(n) = 2

(
1

H4
− 1

(‖qrm(n)−wk‖2 +H2)2

)
Fk,m(n) =

1

‖qrm(n)−wk‖2 +H2
+

2‖qrm(n)−wk‖2

(‖qrm(n)−wk‖2 +H2)2

− ‖q
r
m(n)−wk‖2

H4

As a result, for a given trajectory Qr defined in the rth iteration, the non-convex constraint

(15) can be approximated by:

0 ≤ Bk,m(n) ≤ Pmaxβ0(−
‖qm(n)−wk‖2

H4

+ Dk,m(n)(qm(n)−wk)
T (qrm(n)−wk)

+ Fk,m(n))

Finally, for a given trajectory, velocity and the auxiliary variable (Qr,Vr,Br), we obtain the

problem (P4).

Thanks to the lower bounds that we adopted in the constraints (21), (15) and (18), the resulting

set of all the constraints of the problem (P4) are convex. As a result, the problem (P4) is now

considered as a convex optimization problem that can be solved efficiently using some predefined

optimization solvers.
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APPENDIX B

PROOF OF THE CONVERGENCE AND COMPLEXITY OF OUR ALGORITHM

A. Proof of convergence

In order to prove that our algorithm converges, we first start by defining the objective values

of our main problem (P2) µ as well as the sub-problems (P2.1) and (P4) at the rth iteration as

µr(S) = µr and µlb,r(A,Q,V ,S,B) = µlb,r , respectively.

Since (P2.1) is defined as a sub-problem of (P2) for fixed (Qr,Br,Vr), then when we optimize

(P2.1) over the user scheduling the objective value µ of the global problem (P2) is also maximized

for a given (Qr,Br,Vr). Then:

µ(Sr,Qr,Vr,Br) ≤ µ(Sr+1;Qr,Vr,Br) (19)

Second, for given (Sr+1,Qr,Vr,Br) in step 2.b) of our algorithm , we can express the

following relationships:

µ(Sr+1;Qr, Br, V r)
(a)
= µlb,r(Sr+1,Qr,Vr,Br)
(b)

≤ µlb,r(Sr+1,Qr+1,Vr+1,Br+1)

(c)

≤ µ(Sr+1,Qr+1,Vr+1,Br+1) (20)

where the first equation (a) holds since the surrogate functions in (15) as well as the first-

order Taylor expansions in (21) and (18) are tight at given local points. In other words, for given

(Qr,Vr,Br), we can consider that problem (P4) has the same objective value as that of problem

(P2.2).

The second inequality (b) is derived from the fact that (Qr+1,Vr+1,Br+1) represent the optimal

solutions of problem (P4) for given (Sr+1,Qr,Vr,Br) and thanks to the non-decreasing propriety

of the objective function in this problem (because we are maximizing µ), this inequality holds.

The third inequality (c) holds since the objective function of the approximation problem (P4)

is considered as lower bound of that of the original sub-problem (P2.2).

Based on (19) and (20), we have the following result:
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µ(Sr,Qr,Vr,Br) ≤ µ(Sr+1,Qr+1,Vr+1,Br+1)

As a result, we can affirm that, in each iteration, the objective value µ of our main problem

(P2) increases or at least remains unchanged. Additionally, since the objective value is upper

bounded, the convergence of our algorithm is thus proved.

B. Proof of complexity of our algorithm

In order to determine the complexity of our algorithm, we should determine the complexity

of both subproblems (P2.1) and (P4) defined in section IV of our paper.

First, problem (P2.1) is a standard linear problem that depends only on the user-UAV asso-

ciation parameters. As explained in [12], the complexity of such problems is of order Θ (a2b),

where a is the number of variables and b is the number of constraints. Following this, it is easy

to show that the complexity of (P2.1) is of order Θ ((KMN +MN +KN +K)(KM)2).

Second, the problem (P4) is defined as follows:

max
µlb,B,Q,V,A,Λ

µlb

s.t. vm(n+ 1) = vm(n) + am(n)δt, (21)

qm(n+ 1) = qm(n) + vm(n)δt+
1

2
am(n)δt2, (22)

‖vm(n)‖ ≤ Vmax, ∀m,n, (23)

‖am(n)‖ ≤ amax, ∀m,n, (24)

1

N

N∑
n=0

M∑
m=1

αk,m(n) log2

 M∑
j=1

Bk,j(n) + σ2
0

−Rupperk,m (n)) ≥ µlb, ∀k (25)

0≤Bk,m(n)≤Pmaxβ0

(
−‖qm(n)−wk‖2

H4
+Dk,m(n)(qm(n)−wk)T (qrm(n)−wk)+Fk,m(n)

)
, ∀k,m, n

(26)

0 ≤
N∑
n=1

c1‖vm(n)‖3 +
c2

λm(n)

(
1 +
‖am(n)‖2

g

)
+
w

2
(‖vm(N)‖2 − ‖vm(0)‖2) ≤ Emax, ∀m (27)

λm(n) ≥ Vmin, ∀m,n (28)

λm(n)2 ≤ ‖vrm(n)‖2 + 2(vrm(n))T (vm(n)− vrm(n)) , ∀m,n (29)

‖qm(n)−qj(n)‖2≤‖qrm(n)−qrj(n)‖2+2(qrm(n)−qrj(n))T
(
qrm(n)−qj(n)−qm(n)+qrj(n)

)
, ∀m,n, j 6= m

(30)
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Problem (P4) is a convex problem. As stated in [1], the complexity of (P4) is of order

Θ (max(a3, a2b, F )) where a is the number of variables, b is the number of constraints and F is

the cost of evaluating the first and second derivatives of the objective and constraint functions.

• First, it can be easily proved that a = KMN + 7MN + 1.

• Second, we can compute b by summing the number of constraints in the equations (21)-(30)

which are represented in the following table:

Eq. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

b M(N − 1) M(N − 1) MN MN K KMN M MN MN M(M−1)N
2

Thus, we can totally calculate the number of constraints as b = KMN + 4MN + 2M(N −

1) +K +M + M(M−1)N
2

.

• Since F is the cost of evaluating the first and second derivatives of the objective and con-

straint functions, a simple approach consists into computing the first and second derivatives

of the equations (21)-(30) with respect to each of the optimization variables (µlb,B,Q,V ,A,Λ)

separately and then summing the number of operations required to compute every single

one of these quantities. By doing so, we get: F ≈ 122MN + (4M + 9)KMN .

It is clear that a2b is greater than a3 and F . Thus, the complexity of (P4) is

Θ

(
(KMN + 7MN + 1)2

(
KMN + 4MN + 2M(N − 1) +K +M +

M(M − 1)N

2

))
.

Finally, the complexity of one iteration of our algorithm is nothing but the sum of the

complexities of the two subproblems which is

Θ

(
(KMN +MN +KN +K)(KM)2︸ ︷︷ ︸

(P2.1)

+

(KMN + 7MN + 1)2
(
KMN + 4MN + 2M(N − 1) +K +M +

M(M − 1)N

2

)
︸ ︷︷ ︸

(P4)

)
.

If we assume that K, M and N are much larger than one (� 1), then the complexity of 1

iteration of our algorithm can be reduced to the order of

Θ

(KM)3N︸ ︷︷ ︸
(P2.1)

+ (KMN)2
(
KMN +

M2N

2

)
︸ ︷︷ ︸

(P4)

 .
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APPENDIX C

K-MEANS CLUSTERING ALGORITHM

A. Definition

K-means clustering is an unsupervised learning algorithm which is mainly used in data mining

and statistics. This iterative method aims to partition the data into K clusters by allocating each

point to the cluster with the nearest mean. In other words, this method clusters automatically

similar data examples together.

The intuition behind K-means is an iterative procedure that is explained in the following

algorithm:

Algorithm : K-means Clustering Algorithm
1) Centroids initialization.

2) Repeat

a) Calculate distance between the points and the centroids.

b) Assign the points to the closest cluster.

c) Update the position of the centroids.

3) Until Convergence
As explained in the above algorithm, we first start by initializing the position of the centroids

(points that represent the center of the clusters). In the second step, for each point, we calculate

its distance to all the centroids and then assign it to the closest one. More formally, if we define

C as the set of centroids, then each point x is attributed to a cluster based on:

arg min
ci∈C

(‖ci − x‖)

In the third step, we update the position of the centroids by taking the mean of the locations of

all the points assigned to that centroids cluster. More precisely, the new positions of the centroids

are given by :

ci =
1

|Si|
∑
ci∈Si

xi,

where Si and |Si| are respectively the set and the number of the ground stations that belongs to

the ith cluster.

Finally, we repeat iteratively the second and third steps until there is no change in the position

of centroids.
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B. Application of the K-means Clustering Algorithm

We apply the K-means clustering algorithm in order to divide the ground stations into M

clusters. First, we randomly initialize the position of the M centroids. Then, as explained in

the previous subsection, we first assign every ground station to the closest centroid and then

we update the position of these centroids by taking the mean of the cluster. So, this process is

repeated iteratively until convergence to a final solution.

Next, we attribute every cluster to a UAV m. So, every UAV m will communicate only with

the ground stations that are located in its given cluster.

Figure 5: Ground stations assignment in the first iteration
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Figure 6: Ground stations assignment in the third iteration

The figures 5 and 6 illustrate the iterative process that we used. So, in the end, we obtain two

clusters of ground stations in which the red dots are assigned to one UAV and the blue dots are

assigned to the other UAV.

Afterwards, we provide a circular trajectory as an initialization scheme for every UAV in

which the centroids that we obtained from the K-mean clustering algorithm will represent the

center of the circular trajectory of every UAV. Furthermore, the radius of this trajectory circles

will represent the average distance from the centroid to its assigned ground stations which belong

to the same cluster. In other words the radius rm is defined by:

rm =
1

|Sm|
∑

wk∈Sm

‖wk − cm‖

where Sm and |Sm| represent respectively the set and the number of ground stations that

belong to the cluster m.
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Figure 7: Initial trajectories of the UAVs

APPENDIX D

Let us define f(x) = 1
a‖x‖2+b ,where a and b are positive constants. Then, the function g

defined by:

g(x|x0) = −a‖x‖
2

b2
+ 2a

(
1

b2
− 1

(a‖x0‖2 + b)2

)
xTx0

+
1

a‖x0‖2 + b
+

2a‖x0‖2

(a‖x0‖2 + b)2
− a‖x0‖2

b2
∀x,x0 ∈ R2

is a concave surrogate function of f .

In order to prove this, we use the following lemma:

Lemma 2. In order to prove that a function g(x|x0) is a concave surrogate function of f(x),

g(x|x0) needs to satisfy the following conditions

f(x) = g(x|x) ,∀x

∇f(x) = ∇g(x|x) ,∀x

g(x|x0) ≤ f(x) ,∀x

Proof:

1) It is easy to say that f(x) = g(x|x), ∀x

2) We first calculate the gradient of f at any given point. So, we have:
∇f(x) = −2a

(a‖x‖2+b)2x, ∀x
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Then we compute the gradient of g with respect to x. We obtain:

∇g(x|x0) = −2ax

b2
+ 2a

(
1

b2
− 1

(a‖x0‖2 + b)2

)
x0, ∀x

Thus, it can be easily shown that:

∇g(x|x) = ∇f(x), ∀x
3) Let us show that: g(x|x0) ≤ f(x), ∀x

First we consider the mean value form of the Taylor series of the function f(x) − g(x|x0) at
given point x0. Then we have:

f(x)− g(x|x0) = (f(x0)− g(x0|x0))

+ (∇f(x0)−∇g(x0|x0))T (x− x0)

+
1

2
(x− x0)T (∇2f(ε)−∇2g(ε|x0)) (x− x0) ,

where ε is between x and x0.

Since we proved in 1) and 2) that f(x) = g(x|x) and ∇g(x|x) = ∇f(x), we can say that:

f(x)− g(x|x0) = 1
2
(x− x0)

T (∇2f(ε)−∇2g(ε|x0))(x− x0)

Additionally, it can be easily shown that :

• ∇2f(x) = −2a
(a‖x‖2+b)2 I + 8a2

(a‖x‖2+b)3

• ∇2g(x|x0) = −2a
b2
I

We note that the eigenvalues of ∇2f(ε) are greater than the eigenvalues of ∇2g(ε|x0). Thus

∇2f(ε)−∇2g(ε|x0) is a positive semi definite matrix.

As a result, 1
2
(x− x0)

T (∇2f(ε)−∇2g(ε|x0))(x− x0) ≥ 0

Consequently , g(x|x0) ≤ f(x), ∀x

Based on 1), 2) and 3), g(x|x0) is a concave surrogate function of f(x).

By substituting x = qm(n) − wk, x0 = qrm(n) − wk, b = H2, and a = 1 and multiplying

f(x) and g(x|x0) by Pmaxβ0 in the third condition of the lemma, we obtain the following result:

Pmaxβ0

(
−‖qm(n)−wk‖2

H4 +Dk,m(n)(qm(n)−wk)
T (qrm(n)−wk) + Fk,m(n)

)
≤ Pmaxβ0

H2+‖qm(t)−wk‖2
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where the constants Dk,m(n) and Fk,m(n) are given by:

Dk,m(n) = 2

(
1

H4
− 1

(‖qrm(n)−wk‖2 +H2)2

)
Fk,m(n) =

1

‖qrm(n)−wk‖2 +H2
+

2‖qrm(n)−wk‖2

(‖qrm(n)−wk‖2 +H2)2

− ‖q
r
m(n)−wk‖2

H4
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