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Abstract—We consider a Fog Radio Access Network (F-RAN)
with a Base Band Unit (BBU) in the cloud and multiple
cache-enabled enhanced Remote Radio Heads (eRRHs). The
system aims at delivering contents on demand with minimal
average latency from a time-varying library of popular contents.
Information about uncached requested files can be transferred
from the cloud to the eRRHs by following either backhaul or
fronthaul modes. The backhaul mode transfers fractions of the
requested files, while the fronthaul mode transmits quantized
baseband samples as in Cloud-RAN (C-RAN). The backhaul
mode allows the caches of the eRRHs to be updated, which
may lower future delivery latencies. In contrast, the fronthaul
mode enables cooperative C-RAN transmissions that may reduce
the current delivery latency. Taking into account the trade-off
between current and future delivery performance, this paper
proposes an adaptive selection method between the two delivery
modes to minimize the long-term delivery latency. Assuming an
unknown and time-varying popularity model, the method is based
on model-free Reinforcement Learning (RL). Numerical results
confirm the effectiveness of the proposed RL scheme.

I. INTRODUCTION

The architecture of the recently launched fifth generation

(5G) mobile system can leverage cloud processing at Base

Band Units (BBUs), as well as edge processing, including

edge caching, at enhanced Remote Radio Heads (eRRHs) [1].

In order to enable a flexible functional split in this architecture,

referred to as Fog-Radio Access Network (F-RAN) [2], the

concept of X-haul has been introduced to integrate the tradi-

tionally distinct backhaul and fronthaul connectivity modes for

the interface between the BBU and the eRRH into a unified

framework [3]–[5]. The backhaul mode enables the transfer

of data packets from the BBU in the cloud to the eRRHs. In

contrast, the fronthaul mode allows the BBU to carry out joint

baseband processing and deliver quantized baseband samples

to the eRRHs as in Cloud-RAN (C-RAN) [6]–[8].

In this work, we study an adaptive selection of backhaul

and fronthaul transfer modes with the aim of optimizing the

performance of content delivery. The content delivery in F-

RANs has been widely studied in recent years [9]–[15]. Most

studies assume offline caching with a static popularity model.

Under these assumptions, references [9] and [10] investigated
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Fig. 1. Illustration of the F-RAN system under study

the problem of instantaneous delivery latency minimization

and minimum data rate maximization, respectively, while

keeping the contents of the caches fixed. In contrast, in

[11] and [12], information-theoretic performance bounds were

provided on the optimal high Signal-to-Noise-Ratio (SNR)

performance by considering also the optimization of uncoded

caching strategies. An extension of this work that accounts

for time-varying and possibly unknown file popularity with

online caching was described in [13]. Under an unknown

dynamic popularity model, the works [14] and [15] presented

a Reinforcement Learning (RL) based optimization of online

caching by assuming a backhaul mode.

In this paper, we investigate for the first time the online min-

imization of the long-term delivery latency over X-haul links

in an F-RAN with time-varying unknown file popularity. We

focus on the joint optimization of linear precoding strategies

and the choice between fronthaul and backhaul modes. The

backhaul mode enables cache updates at the eRRHs, hence

potentially reducing future latencies. In contrast, the fron-

thaul mode allows cooperative C-RAN transmissions which

decrease the current delivery latency [9]–[11]. We propose a

new model-free RL approach based on a linear value function

approximation with properly selected features, and numerical

results confirm the effectiveness of the proposed RL scheme.

Notations: E [·] and Pr (·) stand for expectation and prob-

ability, respectively. |A| represents the cardinality of set A,

and Cm×n denotes an m × n complex matrix. I {c} outputs

one if condition c is true and zero otherwise. For a matrix

X, |X|, XT , XH , X−1 and tr (X) are defined as determinant,

transpose, Hermitian, inverse and trace, respectively. Im means

an m×m identity matrix while ⊗ equals a Kronecker product

operation. Also, diag
(

X1, ...,XN

)

represents block-wise diago-

nalization of matrices X1, ...,XN . Lastly, CN (µ,Ω) indicates

a circularly symmetric complex Gaussian distribution with

mean vector µ and covariance matrix Ω.

II. SYSTEM MODEL

We study the F-RAN system illustrated in Fig. 1, which

consists of a BBU in the cloud, connected to M cache-enabled
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eRRHs and K users. Each X-haul link between the BBU and

the m-th eRRH has capacity CR
m

bits per symbols and can

be operated in both backhaul and fronthaul modes [4] [5].

The k-th user and the m-th eRRH are equipped with NU
k

and

NR
m

antennas, respectively. We assume a time-slotted operation

[15], and the wireless channel matrix Hmk between the m-th

eRRH and the k-th user is assumed to be fixed for the given

time scale of interest TB slots. We also define F , {f1, ..., fF}
as the library of F L-bit files, which may be requested by

the users. Finally, we denote FR(t) ⊆ F as the subset of

files cached at time slot t at the eRRHs whose cardinality

is bounded by FR
max files due to storage capacity constraints.

Note that in this letter, we make a simplifying assumption that

all the eRRHs store the same files in their respective caches.

Generalization of the framework is possible but at the cost of

a more cumbersome notation. Detailed request, online caching

and delivery models are described in the following.

A. Request Model and Online Caching

In each time slot t, a subset Fpop(t) ⊆ F of files is popular in

the sense that all users request files from Fpop(t). Specifically,

the k-th user requests a uniformly selected file fU
k
(t) from

subset Fpop(t) without replacement [13]. The assumption of

no replacement ensures that all requested files are distinct,

yielding a worst-case performance analysis [11]. We assume

that the popularity Fpop(t) varies as a Markov process as in

[14], [16]–[18]. This is a standard assumption which provides

a first-order approximation of the evolution of the content pop-

ularity [19] [20]. Let Kreq,C(t) and Kreq,NC(t) denote the indices

of the users whose requested files Freq,C(t) ,
{

fU
k
(t)

}

k∈Kreq,C(t)

are cached and the indices of users whose requested files

Freq,NC(t) ,
{

fU
k
(t)

}

k∈Kreq,NC(t)
are not cached at time t,

respectively. In case the backhaul mode is selected at time

slot t, the requested but uncached files in Freq,NC(t) are sent on

all the X-haul links and cached. In order to make space for a

new file, a previously cached file is evicted by following the

standard Least Recently Used (LRU) rule [21].

B. Delivery Operation

At each slot t, the X-haul link is used in either fronthaul

or backhaul mode for ∆R(t, a(t)) symbols, where a(t) = 0
and 1 indicate the selection of fronthaul and backhaul modes,

respectively. Subsequently, the eRRHs deliver the requested

files in set Freq(t) , Freq,C(t) ∪ Freq,NC(t) over the wireless

channel for ∆U (t, a(t)) symbols, based on the signals received

on the X-haul links and on the cached contents. This results

in a total latency of ∆(t, a(t)) = ∆R(t, a(t)) + ∆U (t, a(t))
symbols for time slot t. Note that the eRRHs’ caches are

updated according to the caching mechanism described in

Section II-A only if the backhaul mode is selected as a(t) = 1.

C. Problem Formulation

The delivery time ∆(t, a(t)) at slot t depends on the state

of the system s(t) = {Fpop(t), FR(t), Freq(t)}, which includes

the set of popular files, cached files and requested files, respec-

tively. Given the Markovity of the process Fpop(t), the state

s(t) evolves as a controlled Markov process. s(t) is partially

observable since the set Fpop(t) is unknown, and it is only

observed indirectly via the file set Freq(t). In particular, at time

t, only the history of observations o(1:t) , {o(1), ..., o(t)}
with o(t) = {Freq(t), FR(t)} is available to the system. Thus,

a general policy can map the observations o(1:t) to the selected

action a(t) through a conditional distribution π(a(t)|o(1:t)).
In this work, we aim at minimizing the average long-term

delivery latency of the proposed F-RAN system over the

selection of policy π(a(t)|o(1:t)). Given a forgetting factor

γ ≤ 1, the problem can be formulated as

(P):min
π

Eπ

[

∑∞

t=1
γt∆(t, a(t))

]

s.t. a(t) ∈ {0, 1} , ∀t, (1a)

where calculation of the total latency ∆(t, a(t)) will be re-

viewed in Section III. The expectation in (P) is over the state

distribution, which depends on the policy.

III. MINIMUM INSTANTANEOUS LATENCY

In this section, we discuss how to evaluate the delivery la-

tency ∆(t, a(t)) in problem (P). We emphasize that ∆(t, a(t))
for a(t) = 0 and 1 is assumed known when solving problem

(P) at each time slot t, and is derived as defined in this section.

Following [9], we omit the time index t for simplicity.

A. Backhaul Mode

In the backhaul mode (a = 1), the BBU first fetches the

requested but uncached files Freq,NC and transmits them to the

eRRHs. The backhaul transmission to the m-th eRRH takes

∆R
m
=

∣

∣Freq,NC

∣

∣L/CR
m

symbols, and the total backhaul latency

is ∆R = maxm ∆R
m

, since all the eRRHs need to receive the

files in Freq,NC. As a result, all the requested files in Freq are

available at the eRRHs and cooperative transmission across

all eRRHs is feasible. Each file fU
k

∈ Freq for the k-th user

is encoded by each eRRH as the signal sk ∈ C
nk×1 ∼

CN
(

0, Ink

)

, where nk ≤ NU
k

denotes the number of data

streams allocated to the k-th user, which is assumed to be a

fixed parameter. The transmit signal from the m-th eRRH is

then given as xm =
∑

k∈Kreq
Gmksk where Kreq , Kreq,C∪Kreq,NC,

and Gmk ∈ CNR
m×nk is the precoding matrix for sk at the m-th

eRRH. Accordingly, the achievable rate for the k-th user on

the wireless channel can be written as [9]

RU
back,k

({Gk}) = log2
∣

∣INU
k
+Φ

U
back,k

∣

∣ [bits/symbol], (2)

where we have Φ
U
back,k

,
(
∑

ℓ∈Kreq\k
HkGℓG

H
ℓ

HH
k

+

σ2
k
INU

k

)−1
HkGkGH

k
HH

k
with Hk ,

[

H1k · · ·HMk

]

and Gk ,
[

GT
1k
· · ·GT

Mk

]T
, and σ2

k
represents the additive white Gaussian

noise variance at the k-th user.

The latency ∆U
k

for delivering file fU
k

for the k-th user is

obtained as ∆U
k

= L/RU
back,k

({Gk}), and the overall wireless

channel latency equals ∆U = maxk ∆
U
k

, since every request-

ing user needs to receive the requested file. The minimum

instantaneous latency ∆ for a = 1 can hence be found as a

solution of the problem

(P1): min∆U ,{Gk} ∆R +∆U (3a)

s.t. ∆U ≥ L/RU
back,k

({Gk}), ∀k ∈ Kreq, (3b)

tr
(

∑

k∈Kreq

EmGkGH
k

EH
m

)

≤ PR
m
,m = 1, ...,M, (3c)
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where PR
m

denotes the maximum transmit power of the m-

th eRRH, and we define Em ,
[

0 · · · INR
m
· · · 0

]

in which

an identity matrix INR
m

spans columns from
∑m−1

ℓ=1 NR
ℓ

+ 1
to

∑m

ℓ=1 N
R
ℓ

. Although problem (P1) is jointly non-convex,

a stationary point can be attained by leveraging Successive

Convex Approximation (SCA) as detailed in [9].

B. Fronthaul Mode

Under the fronthaul mode, any requested but uncached file

fU
k

∈ Freq,NC for the k-th user is jointly encoded and precoded

at the BBU. The resulting signal dedicated for the m-th eRRH

is written as x̂m =
∑

k∈Kreq,NC
Wmksk, where sk ∈ Cnk×1 ∼

CN
(

0, Ink

)

encodes file fU
k

, and Wmk ∈ C
NR

m×nk represents

the corresponding precoding matrix for the m-th eRRH. The

BBU then performs compression on x̂m prior to transferring

to the eRRHs. As a result, the decompressed signal at the m-

th eRRH can be written by x̃m = x̂m + q
m

with quantization

noise q
m

∈ CNR
m×1 ∈ CN (0,Ωm) for a given covariance

matrix Ωm [9] [10].

The rest of the requested cached files Freq,C are locally

precoded with {Gmk} at the eRRHs in the same manner as

in the backhaul mode. The final transmit signal at the m-th

eRRH is then given as xm =
∑

k∈Kreq,C
Gmksk + x̃m, and the

achievable rate for the k-th user can be obtained as [9]

RU
front,k

({

G̃k

}

,ΩR

)

= log2
∣

∣INU
k
+Φ

U
front,k

∣

∣ [bits/symbol], (4)

where we have Φ
U
front,k

,
(
∑

ℓ∈Kreq\k
HkG̃ℓG̃

H

ℓ
HH

k
+

HkΩRHH
k

+ σ2
k
INU

k

)−1
HkG̃kG̃

H

k
HH

k
, ΩR ,

diag
(

Ω1, ...,ΩM

)

, G̃k ,
[

G̃
T

1k · · · G̃
T

Mk

]T
with

G̃mk , bU
k

Gmk +
(

1− bU
k

)

Wmk, and bU
k

= 1 if fU
k

∈ Kreq,C

and bU
k
= 0 otherwise for the k-th user.

The wireless channel latency ∆U is defined in the same way

as in the backhaul mode. For the fronthaul latency, by the rate-

distortion theory, sending quantized signals to the m-th eRRH

consumes

gm

({

G̃k

}

,ΩR

)

= log2
∣

∣INR
m
+Φ

R
m

∣

∣ [bits/symbol], (5)

with Φ
R
m

,
(

EmΩREH
m

)−1 ∑

k∈Kreq,NC
EmG̃kG̃

H

k
EH

m
[9].

Compressing ∆U symbols produces ∆Ugm

({

G̃k

}

,ΩR

)

bits,

which need to be transferred from the BBU to the m-th eRRH.

Therefore, the fronthaul latency is given by ∆R = maxm ∆R
m

where ∆R
m

= ∆Ugm

({

G̃k

}

,ΩR

)

/CR
m

, and the minimum

instantaneous latency ∆ for a = 0 is calculated as a solution

of the problem

(P2): min∆R,∆U ,{G̃k},ΩR
∆R +∆U (6a)

s.t. ∆R ≥ ∆Ugm

({

G̃k

}

,ΩR

)

/CR
m
,m = 1, ...,M, (6b)

∆U ≥ L/RU
front,k

({

G̃k

}

,ΩR

)

, ∀k ∈ Kreq, (6c)

tr
(

∑

k∈Kreq

EmG̃kG̃
H

k
EH

m
+ EmΩREH

m

)

≤ PR
m
,

m = 1, ...,M, (6d)

which can be tackled via the SCA approach detailed in [9].

The total worst-case order of complexity for the SCA method

can be expressed as O(NSCA

√
Nconst log(Nconst/ǫ)) where ǫ, NSCA

and Nconst indicate the desired error tolerance, the maximum

number of the SCA iterations and the number of constraints,

respectively [22]. Here, Nconst equals |Kreq| + M in (P1) and

|Kreq|+ 2M in (P2).

IV. RL-BASED X-HAUL ONLINE OPTIMIZATION

In this section, we solve problem (P) by proposing an online

on-policy RL-based optimization strategy [23].

A. Problem (P) as a Partially Observable Decision Process

As discussed in Section II, problem (P) is a Partially

Observable Markov Decision Process (POMDP) with the

action space {0, 1} and the instantaneous reward given by

the negative latency r(t + 1) = −∆(t, a(t)). In order to

reduce the complexity of the policy, we optimize here over

memoryless policies that select an action a(t) based only on

the latest observation o(t) at time slot t [24] [25] as well as a

summary of the previous observations o(1:t) given by the set

{τreq,f(t)}f∈F
R(t)} where τreq,f(t) is the most recent time slot

at which cached file f was requested at time slot t.

B. SARSA with Linear Value Function Approximation

To optimize over memoryless policies, we adopt the

online on-policy value-based strategy State-Action-Reward-

State-Action (SARSA) with a carefully designed linear ap-

proximation [23]. The SARSA updates an action-value func-

tion, or Q-function, q (o, a) that estimates the expected return

E[G(t)|o = o, a = a] with G(t) ,
∑∞

τ=0 γ
τ r(t + τ + 1).

Since the total size of the observation space in (P) grows

exponentially with F , we propose a linear value function ap-

proximation q̂ (o, a,w) , wT x (o, a), where w is a parameter

vector to be learned, and x (o, a) denotes a feature vector

representing the observation-action pair (o, a) [23].

In order to determine a suitable feature vector, we first

note that vector x (o, a) should contain sufficient information

to quantify the value of caching for currently cached and

requested files. Frequently requested files typically yield lower

future latencies when cached, but an optimal choice should ac-

count not only for their popularity but also for their remaining

life time, which is a duration that a file remains popular (see

Sec. II of [26] for further discussion).

Based on these considerations, we introduce a variable φℓ(t)
for every file fℓ ∈ F as a function of the current observation

o(t) at time slot t. We set it as φℓ(t) = 1 if fℓ ∈ Freq,NC(t),
φℓ(t) = 2 if fℓ ∈ FR(t) and φℓ(t) = 0 otherwise. Further-

more, we also include a variable θ(t) , t−maxf∈FR(t) τreq,f

that measures the “age” of the currently cached files, that

is, the maximum time elapsed since the last request of the

cached files. We can quantize this variable by NΘ ranges

Θ1, ...,ΘNΘ
⊆ R+ with Θi ∩ Θj = ∅ for all i 6= j and

⋃

Θi = R+. If the caches are up to date, the quantity t− τreq,f

is small for all f ∈ FR(t), and hence θ(t) is also small.

Otherwise, if there exists any file f ∈ FR(t) with large

t− τreq,f , a refresh of the caches may be required.

Using the variables introduced above, we define the feature

vector x (o(t), a(t)) as

x (o(t), a(t)) =
[

φT
1 (t) · · · φT

F
(t) θT (t)

]T ⊗ a(t), (7)
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where we have used the one-hot encoded vectors φ
ℓ
(t) ,

[I{φℓ(t) = 1} I{φℓ(t) = 2} I{φℓ(t) = 0}]T , θ(t) , [I{θ(t) ∈
Θ1} · · · I{θ(t) ∈ ΘNΘ

}]T and a(t) , [I{a(t) = 0} I{a(t) =
1}]T . The feature vector x (o (t) , a (t)) in (7) has dimension

2(NΘ + 3F ), which increases linearly in F and is hence

significantly smaller than the size of the conventional look-up

table-based SARSA. The effectiveness of the proposed feature

vector x (o(t), a (t)) will be verified in Section V.

The overall proposed procedure for solving (P) is sum-

marized in Algorithm 1 where δ(t,w) , r(t + 1) +
γq̂ (o(t+ 1), a(t+ 1),w) − q̂ (o, a,w) denotes the temporal

difference error, and E indicates the eligibility trace. Here,

an ǫ-greedy exploration strategy with decreasing ǫ is adopted.

Note that E is used to assign credit for the current reward to

the most frequently visited states and selected actions, so as

to enable online learning (see [23] for details).

Algorithm 1: Proposed RL-based solution for problem (P)

Initialize the total number of episodes Nepi, weight vector w = 0,
eligibility trace E = 0, and parameter γ, λ ∈ (0, 1]
For nepi = 1 : Nepi

Randomly initialize cached contents FR (0) and generate {Hmk}
For t = 1 : TB

Collect observation o(t)={Freq(t), F
R(t),{τreq,f (t)}f∈F

R(t)}
Choose the delivery mode greedily with probability 1−1/nepi

as a(t) = argmaxa′ wT x (o(t), a′), and uniformly with
probability 1/nepi

If a(t) = 1, update Fcache,R (t) according to LRU
Set r(t+ 1) = −∆(t, a(t))
Update E← γλE + x (o, a)
Update w← w + βδ(t,w)E with β = 1/nepi

End
End

V. NUMERICAL RESULTS

In this section, the performance of the proposed RL-based

algorithm is evaluated via numerical examples. We adopt the

channel model Hmk =
√
ρmkĤmk, where ρmk , ρ0

(

dmk

d0

)−η

equals the distance-dependent path loss between eRRH Rm

and user Uk, ρ0 indicates the path loss at reference distance

d0, η is the path loss exponent, and dmk represents the distance

between the m-th eRRH and the k-th user. Each element of

Ĥmk follows an independent complex Gaussian distribution

with zero mean and unit variance. The eRRHs and the users are

circularly placed from the BBU at the center with uniformly

distributed angles and distance dBR = 200 m and dBU =
400 m, respectively. The bandwidth is 20 MHz and the thermal

noise is −170 dBm/Hz. We set K = 10, M = 3, ρ0 = 10−3,

d0 = 1 m, η = 3.5, TB = 100 time slots, FR
max = 4 files,

PR
m

= 30 dBm, NR
m

= NU
k

= 1 and CR
m

= 0.1 bits per

symbol. For RL, we use the hyperparameters γ = 1, λ = 0.5,

and Θℓ = [2(ℓ − 1),min(2(ℓ − 1) + 1, θmax)] with NΘ = 11
where θmax = 20 limits the maximum value of θ(t).

Reference [26] demonstrated that the popularity of files

often exhibits temporal locality in the sense that the content

is frequently requested in a bursty fashion for a certain life

time. Motivated by these findings, we model the evolution

of the subset Fpop(t) of popular files such that a currently

unpopular file f has a probability of Ppop,f to become popular,

and file f remains popular for Tlife,f time slots. We assume

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Fig. 2. Average latency with respect to the maximum cache size F
R
max

Zipf’s distribution [27] for Ppop,fℓ
= ℓ−ξ/

∑F
ν=1 ν

−ξ with

ξ = 1. The proposed RL scheme is compared with a greedy

fronthaul/backhaul mode selection that minimizes the current

delivery latency at each time slot as well as with an offline

scheme that keeps the FR
max

most popular files with the largest

Ppop,f under the idealized assumption that this is known in

prior.

Fig. 2 compares the average long-term latency performance

as a function of the eRRHs’ cache size FR
max for PR

m
=

30 dBm, Tlife,f = 10 and F = 20. We also limit the maximum

number of the SCA iterations for solving (P1) and (P2) as

NSCA = 10. Note that the convergence to a stationary point

for SCA does not affect the convergence of SARSA since we

treat the negative reward function −∆(t, a(t)) as fixed. With

FR
max

≤ 4, the fronthaul mode is seen to yield a lower latency

than the backhaul mode given the limited advantage of caching

in this regime. The opposite is true when the eRRHs have

larger caches, such as FR
max

> 4, in which the backhaul mode

outperforms the fronthaul mode. In agreement with the results

in [9]–[11] and [13], the greedy scheme almost always selects

the fronthaul mode and is hence strongly suboptimal for large

enough FR
max. The proposed RL method exhibits the lowest

latency among all schemes that do not assume the knowledge

of the popularity probability. It can be checked that the gain

is not obtained by statically selecting the best mode at each

time instant, but rather by carrying out an optimized dynamic

selection. It is also observed that in a large FR
max

regime, the

proposed strategy can outperform the static offline scheme

which assumes popularity dynamics to be known in advance.

VI. CONCLUSIONS

In this paper, we have demonstrated the advantage of adap-

tively selecting between the backhaul and fronthaul transfer

modes as a function of the current cache contents and the

history of past requests in an F-RAN system. The proposed

RL-based strategy has been shown via numerical results to out-

perform baseline schemes, confirming the potential advantages

of an X-haul implementation over static fronthaul or backhaul

deployments.
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