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GLSkeleton: A Geometric Laplacian-based
Skeletonisation Framework for Object Point Clouds

Qingmeng Wen1, Seyed Amir Tafrishi1, Ze Ji1 and Yu-Kun Lai2

Abstract—The curve skeleton is known to geometric modelling
and computer graphics communities as one of the shape de-
scriptors which intuitively indicates the topological properties
of the objects. In recent years, studies have also suggested the
potential of applying curve skeletons to assist robotic reasoning
and planning. However, the raw scanned point cloud model is
typically incomplete and noisy. Besides, dealing with a large
point cloud is also computationally inefficient. Focusing on
the curve skeletonisation of incomplete and poorly distributed
point clouds of objects, an efficient geometric Laplacian-based
skeletonisation framework (GLSkeleton) is proposed in this work.
We also present the computational efficiency of the introduced
local reduction strategy (LPR) approach without sacrificing the
main topological structure. Comprehensive experiments have
been conducted to benchmark performance using an open-source
dataset, and they have demonstrated a significant improvement in
both contraction and overall skeletonisation computational speed.

Index Terms—Computational Geometry; Computer Vision for
Automation; Perception for Grasping and Manipulation

I. INTRODUCTION

SKELETONS are frequently associated with vertebrates
while this term also refers to a concept that describes the

3D shape geometry features. A study in volunteers conducted
by Ayzenberg et al. [1] indicates that skeletal descriptions
contribute the most when humans discriminate objects. Gen-
erally, the skeleton of a shape should provide an intuitive
and effective abstraction and is expected to promote shape
understanding and manipulation [2], [3]. The curve skeleton
is one of the most notable descriptors of the shape of the
skeleton, and its counterpart is medial axis surface [4], [5]. In
comparison with the medial axis surface, the curves are more
widely accepted for practical applications, attributed to their
simple topology, and reduced complexity for manipulation [3],
[6]. Skeletonisation of various shapes holds great potential for
applications in robotics; however, its computational complex-
ity, sensitivity to noise, and imperfect capture remain open
challenges.

Curve skeletonisation algorithms have been extensively
researched, but the existing work preferentially focuses on
watertight surface models [7]–[13]. In the literature, Chuang
et al. [11] presented a curve skeleton extraction method using
a generalised potential field. Based on the work of Chuang et
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Figure 1: Skeleton-assisted grasping planning

al., Cornea et al. [8] discussed a 3D object retrieval method
with generated curve skeletons. Au et al. [7] extracted the
curve skeleton through Laplacian mesh contraction, followed
by a connectivity surgery refinement. Dey et al. [9] gave
the definition of curve skeletons of meshes as the subset of
the medial axis and designed a medial geodesic function to
gain curve skeletons, whereas the medial axis is not well
defined. Although most of those existing methods dealing
with watertight models can generate satisfactory results, the
expected perfect input models are rarely acquired. In fact, it
is more common in practice that models are with boundaries
and in the form of triangle soups [14]. Besides, those methods
typically consider meshes as feeding models for their skele-
tonisation pipelines while raw and unorganised point clouds,
are more accessible in comparison with meshes. However, the
raw scanned point clouds cannot provide explicit topology
connections like meshes and tend to be incomplete, noisy and
often include unavoidable outliers.

Different studies on unorganised point-cloud skeletonisa-
tion have explored various strategies for form determination.
For example, Tagliasacchi et al. [2] investigated an optimal
cutting plane for each anchor point to extract the rotational
symmetry axis of cylindrical shapes. By adapting local L1-
medial information, Huang et al. [15] introduced L1-medial
skeletons, which is insensitive to noises and demonstrating
considerable accuracy of each branch. However, the L1-medial
skeleton extraction method overlooks the interconnections be-
tween skeleton points. Besides, the good performance of their
method prefers cylindrical shapes [16], [17]. Researchers also
explored curve skeletonisation by leveraging the optimal mass
transport method to enhance robustness [3]. However, their
proposed algorithm is computationally inefficient and exhibits
limitations in skeletonisation of sparse point clouds [17]. In
recent years, the application of deep learning methods to
extract curve skeletons has gained momentum. Nevertheless,
existing studies mainly concentrate on generating the medial
axis transform of point clouds instead of curve skeletons [17]–
[19]. Besides, these learning-based methods might be con-
strained in applications since they are specifically designed for
skeletonising point clouds with particular shapes. One might
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explore enabling mesh skeletonisation methods to work on
point cloud models. In this way, surface reconstruction is con-
ducted before the models can be operated as meshes. Although
reconstructed surface theoretically improves skeletonisation
accuracy, issues such as self-intersection may obstruct the
reconstruction process. Thus, the existing reconstruction al-
gorithms [20]–[22] can rarely obtain results that satisfy skele-
tonisation requirements in both computational efficiency and
reconstruction quality. Instead of reconstructing the surface,
Cao et al. extended the Laplacian-contraction-based curve
skeletonisation method of meshes to directly solve point cloud
models [7], [14]. In their experiment, the whole skeletonisation
process typically takes less than 2 minutes with 10K points, but
the computation speed is insufficient for real-time applications,
especially when handling models with more points.

In recent years, researchers have been inspired by various
potential applications of curve skeletons. Cornea et al. [5] pro-
vided a brief introduction to the application of curve skeletons
in visualisation. Their findings highlight the broad spectrum
of benefits these structures can offer across different domains,
including visualisation, image processing, and animation. Wu
et al. [23] argued that curve skeletons can assist 3D recon-
struction of objects using visual SLAM reconstructed 3D
points. Moreover, the advent of 3D skeletonization methods
has expanded the scope of applications to include portable
and movable devices, unlocking new possibilities for practical
implementation.

On a more specific note, recent advancements in skeleton
research have demonstrated significant potential in the realm of
robotics, particularly in the context of grasping planning. Stud-
ies by Pokorny et al. [24] and Stork et al. [25] revealed that the
topology feature can be applied to grasping objects with holes.
Przybylski et al. [26]–[28] believed that finding a feasible
geometric representation that simplifies analysis may result in
stable grasp planning. Thus, a union of balls is considered as
the medial axis and used to generate candidate grasps. Their
grasping experiments have been done both in simulation and in
the real world. Also, Vahrenkamp et al. [6] studied the curve-
skeleton-based method for planning grasps. As illustrated in
Fig. 1, the grasping candidate can be generated with curve
skeletons extracted as the topology of the objects. According
to experimental results by [6], the skeleton-based grasp planner
is more robust and potentially outperforms the surface-based
approach. Despite the great potential of curve skeletons for
robot grasping, the computational cost and the uncertainty of
the physical world are remaining challenges that impede the
pace of application.

In this paper, we propose a point reduction strategy within
the skeletonisation process using a Laplacian-based contrac-
tion method. The proposed approach’s contributions are as
follows:

• Introducing an in-loop local geometry-based point re-
duction strategy (LPR) that accelerates the Laplacian-
contraction process by eliminating redundant points while
preserving the main geometry features of the point cloud
in Section II. The strategy also enhances the computa-
tion processes with certain robustness for cloud points
characterized by non-uniform distributions and noises.

• Proposing a novel terminating checking condition for
Laplacian-contraction with in-loop point cloud reduction
that exhibits greater robustness to local changes in Sec-
tion II-C.
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Figure 2: Block diagram of the GLSkeleton framework

• Conducting an extensive evaluation of the geometric
method using a real-world OminiObject dataset compris-
ing different objects in Section III.

Finally, we conclude our findings in Section IV.

II. GLSKELETON FRAMEWORK

GLSkeleton presents a novel Laplacian-contraction-based
skeletonisation framework stemming from the Laplacian
smoothing algorithm. The framework comprises four main
parts as illustrated in Fig 2. The local point ring is computed
prior to the Laplacian contraction process, after which the
curve skeleton is extracted through topological connection and
refinement. It is noteworthy that the computational demands
associated with 3D point cloud data increase significantly
alongside point number. To address this, we introduce a
geometric local point reduction technique (LPR) within the
contraction iterations to eliminate superfluous points from
local rings, as detailed in section II-B. Besides, regarding the
reduced cloud number, a more robust contraction terminating
condition is also introduced for the contraction loop.

A. Overview of Laplacian Skeletonisation
The Laplacian-based skeletonisation method was initially

introduced for mesh skeletonisation by Au et al. [7] and was
subsequently extended to point clouds by Cao et al. [14]. In
order to adapt this method to point clouds, a local point ring
strategy is introduced to establish connections among points
without requiring explicit topology. Given a point cloud P =
[p1,p2, ...,pn]

T , pi = [pix, piy, piz]
T ∈ R3, the local ring of

a specific anchor point pi is computed by identifying the k
nearest neighbour points of pi and then projecting them onto
the tangent plane. The resulting 2D Delaunay triangulation
formed by these neighbouring points, as depicted in Fig. 3
(b), results in the local ring µi ⊆ {1, 2, . . . , n}. This point
ring sequence consists of point indices corresponding to P
and maintains a clockwise order relative to the tangent plane.

The Laplacian-based contraction method functions as an
optimisation system that guides the movement of points by
applying and balancing the forces of contraction and attraction.
Within this system, the contraction force leads the points to
move vertically toward the medial axis surface. In this process,
cotangent Laplacian coordinates, known as an estimation of
the surface normals, are computed. For the given point cloud
P ∈ Rn×3, the cotangent Laplacian coordinates of the points
δ = [δ1, δ2, ..., δn]

T are defined as

δ = L P, (1)
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(a) Projected plane (b) Delaunay Triangulation

Figure 3: For each anchor point (red), both neighbouring
points (yellow) and the anchor point itself are projected onto
a tangent plane (a). The neighbour point ring, resembling an
umbrella-like shape, is hidden within the Delaunay triangula-
tion result processed on this plane (b).

where Laplacian matrix with cotangent weights L =
[l1, l2, .., ln]

T and li = [li1, li2, . . . , lin]
T . Then, we compute

Lij by

Lij =


ωij = cotαij + cotβij , if j ∈ µi;∑k

k∈µi
−ωik, if i = j;

0, Otherwise;
(2)

where αij and βij are two opposite angles of edge (i, j) in
the neighbour ring formed triangles (Fig. 3-b). Please note,
µi is the index set of neighbour point ring and edge (i, j) is
associated with (pi,pj), which denote the center point and
neighbour point respectively. To prevent excessive contraction
that could potentially disrupt the model’s structure and achieve
balance, the attraction component is also incorporated into this
optimisation system. In this aspect, the deviation of points
from their prior positions is taken into account and considered
as the attraction force that pulls them back from too much
contraction. By incorporating both contraction and attraction
components in this system, the equations for Laplacian-based
contraction are defined by[

WLL
WH

]
Pc(k + 1) =

[
0

WHPc(k)

]
(3)

where Pc(k) ∈ Rn×3 and Pc(k+1) ∈ Rn×3 denotes input and
resultant cloud points of the k-th contraction, WH and WL

are n× n diagonal weight matrices that control the attraction
and contraction force respectively.

By solving Eq. (3), the contraction process then turns to
minimising the quadratic energy as follows [7]:

∥WLLPc(k)∥2 +
∑
i

W2
H,i∥pc,i(k + 1)− pc,i(k)∥2 (4)

where the two parts of the equation take the contraction
constraints and the attraction constraints, respectively. The
Laplacian contraction is an iterative process. From beginning,
WH and WL are initialised as certain values [14]. But after
each iteration, their values should be updated to continue the
contraction iterations. The weights can be updated after k-th
iteration by the following equations,[

WL(k + 1)
WH(k + 1)

]
=

[
sLWL(k)

WH(k) (S(0)/S(k))

]
, (5)

where sL is a scalar, S(0) = [s1(0), s2(0), . . . , sn(0)]
T and

S(k) = [s1(k), s2(k), . . . , sn(k)]
T comprises the closest dis-

tances to the neighbours of each point of current and original
models respectively.

As illustrated in Fig. 2, within contraction loops, the cloud
points are cautiously removed by geometric local point re-
duction strategy (LPR) as discussed in Section II-B, and
the contraction loop will break if the contracted cloud point
satisfies the contraction terminating condition, as explained
in Section II-C. However, there are still no topological con-
nections between points after Laplacian contraction. Thus,
topology connections are conducted, followed by topology
refinement, upon the contracted points to obtain the final
skeletons.

B. Geometric Local Point Reduction Strategy
To accelerate Laplacian computation, we introduce a new

geometric method called local point reduction (LPR). As
shown in Algorithm 1 and Fig. 2, after each contraction
loop, the resultant point cloud Pc is fed to a local point
reduction procedure. This procedure begins by selecting and
removing points based on their point-wise contraction stage
function values. After the removal of the selected points,
the neighbouring rings µ are reconstructed through a ring
combination process, as the neighbour rings are disrupted by
the removal of ring points. In addition, the original point cloud
P is updated within the process to maintain a one-to-one
correspondence with the contracted point cloud.

In the Laplacian-based contraction for skeletonisation, the
computation slowdown primarily stems from the size of the
point cloud data. This occurs consistently throughout the skele-
tonisation process, as a significant number of points become
progressively redundant during contraction operations. This
redundancy arises from increased local point cloud density
and gradual abstraction of the main structure as the point
cloud is compressed. Thus, retaining all points might be
unnecessary for subsequent procedures. As a solution, LPR
is devised to eliminate points that become unnecessary after
each contraction iteration.

The primary concept of LPR is to release the abnormal
constraints that limit the contraction speed by removing se-
lected points in the point ring. Considering Eqs. (4)-(5), the
contraction weights WL and attraction weights WH restrict
the contraction process within iterations. In fact, during every
contraction iteration, the weights should be updated before the
point cloud can be contracted. The reason is that when the last
iteration is finished, the system will reach a balance, and the
Laplacian weights become minimal. In Eq. (4), the contraction
energy term decreases, and, in contrast, the attraction energy
term increases while the cloud points are getting contracted.
Thus, if the model is a convex point set, the system which
reaches the balance should satisfy

∥WLLPc(k)∥2 =
∑
i

W2
H,i∥pc,i(k + 1)− pc,i(k)∥2 (6)

Focusing on each point and substituting Eq. (2), we propose
a point-wise stage function via the quadratic energy of con-
traction and attraction by

V (pc,i, k + 1) = w2
l (k + 1)∥δi(k + 1)∥2

− wh,i(k + 1)
2∥∆pc,i(k + 1)∥2 = sk+2

L w2
l (0)∥δi(k + 1)∥2

−
(

si(0)

si(k + 1)
wh,0

)2

∥∆pc,i(k + 1)∥2, (7)

where ∆pc,i(k + 1) = pc,i(k + 1) − pc,i(k), wh,i(k) and
wl(k) are point cloud rate of change, point-wise weights
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corresponding to WH(k) and WL(k) in Eq. (5), respectively.
With the stage function and the given predicted point cloud,
the contraction stage can be tested. If the points are right at
the balance stage of the next iteration, the function will give
a 0 value. But if the points go too much inward, the function
will give a positive value, and vice versa. Let ψ denote the
average neighbour ring size reduction rate in the k-th iteration,
ψ ∈ [0, 1], we assume

si(k + 1) = si(k)− ψ′si(0), (8)

where ψ′ is the expected reduction rate of the neighbour ring
size for the k + 1-th iteration, ψ′ = εψ. Then we have

δi(k + 1) =
si(k + 1)

si(0)
δi(k) =

si(k)− ψ′si(0)

si(0)
δi(k), (9)

∆pc,i(k + 1) = [pc,i(0)− pc,i(k)]− [pc,i(0)

− pc,i(k + 1)] = [pc,i(0)− pc,i(k)]−
si(0)− si(k + 1)

si(0)− si(k)

· [pc,i(0)− pc,i(k)] =
ψ′si(0)

si(0)− si(k)
(pc,i(k)− pc,i(0)),

(10)

By utilising the original stage function (7), the points in the
point cloud that impede the contraction pace can be diagnosed,
and considered to be removed. Besides, to preserve the sharp
features on shapes, where the points usually appear as signif-
icant curvature differences with respect to their neighbours,
the curvature difference term is also considered in our LPR.
Substituting Eqs. (8)-(10) and adding the curvature protecting
term U(k), the function is finalised to

F (pc,i(k + 1)) = ω1V1(k + 1) + ω2V2(k + 1) + ω3U(k)

V1(k + 1) = sk+2
L w2

l (0)∥ηδi(k)∥2

V2(k + 1) =

(
wh,i(k)

η

)2

∥ ψ′si(0)

si(0)− si(k)
(pc,i(k)− pc,i(0))∥2

U(k) = ∥δi(k)−
1

ni

∑
j∈µi

δj(k)∥2 (11)

where η = [si(k) − ψ′si(0)]/si(0), ω1 = 1, ω2 = −1, ω3 =
3, δi(k) is the Laplacian coordinates worked as estimation
of kn,i · n and ni is the points number of ring neighbours
respectively. Please note that the gains (ω1, ω2) are selected
for satisfying stable convergence of contraction with convex
set to reach (6), and ω3 is determined by which the sharp
details can be preserved. As illustrated in Algorithm 1, the
points which meet the inequality

F (pc,i, k + 1) < ϕs2i (k) (12)

where ϕ is the scaling coefficient, are decided to be removed
its closest neighbours after each contraction iteration.

C. Terminating Condition for Contraction Iterations
Apart from computational costs, determining when to termi-

nate contraction iterations poses another challenge with point
reduction. In the study by Cao et al. [14], a threshold based
on the difference in ring sizes is used to decide when to stop
the contraction process. However, if point reduction is applied,
this value may not be able to indicate the contraction stage.
Hence, in this research, the change in the explained score,
which serves as an indicator of the global contraction rate, is
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Figure 4: Illustration of LPR. The original model of an egg
(a) and the model after one iteration of contraction (b), where
locally improved parts are highlighted in yellow circles. The
red points are removed, and the blue points are the remaining
points. (c) and (d) depict the point numbers and contraction
costs, variation of differences of the explained score within
corresponding contraction iterations, respectively.

adopted as the criterion to break the loop of the contraction
process.

The PCA method is applied to describe the explained
score for the contracted point cloud. Given a k point set
{xk},xk ∈ R3, let m denote the centre of the point set, the
3×3 covariance matrix of the point set is computed as follows,

CV =
∑
k

(xk −m)⊗ (xk −m), (13)

where⊗ is the outer product vector operator. Let λi,1, λi,2, λi,3
denote the eigenvalues of the covariance matrix CVµi

, where

Algorithm 1 The computation of LPR of GLSkeleton.

1: procedure LPR(P(k),Pc(k),µ(k))
2: for Each point pc,i in Pc(k) and µi in µ(k) do
3: compute stage function value F (pc,i) by Eq. (11)
4: if the stage function value meet the inequality (12)

then
5: m = argminj∈1,2,...,ki

∥Pc,i −Pc,µi(j)∥
6: Remove pµi(m) and pc,µi(m) from point cloud

P(k) and Pc(k) respectively
7: Compute new µi by combining ring µi and µm

with estimated surface normals (1)
8: Remove ring µm from µ(k)
9: Update all rings in µ(k)

10: end if
11: end for
12: {P(k + 1), Pc(k + 1), µ(k + 1)} ← {P(k), Pc(k),

µ(k)}
13: return P(k + 1), Pc(k + 1) and µ(k + 1)
14: end procedure



WEN et al.: GLSKELETON: A GEOMETRIC LAPLACIAN-BASED SKELETONISATION FRAMEWORK FOR OBJECT POINT CLOUDS 5

λi,1 ≥ λi,2 ≥ λi,3. And denote the corresponding unit
eigenvectors as vi,1,vi,2,vi,3. Each element λi is a principal
component value corresponding to the directions of vector vi.

Consider the whole contracted model Pc = {Pc,i} as a
point set in Eq. (13) and barycenter as the centre. Similarly,
we can get covariance matrix CVPc

. Then the explained score
e of Pc on each projected plane is defined as

e = [ e1 e2 e3 ]
T

=
1

2(λ1 + λ2 + λ3)
[ λ1 + λ2 λ1 + λ3 λ2 + λ3 ]

T
,

(14)

where λ1, λ2, λ3 are the associated eigenvalues of CVPc
and

satisfy λ1 ≥ λ2 ≥ λ3. We choose the values of the most
explained two projected planes by

e =
1

2
(e1 + e2) =

2λ1 + λ2 + λ3
2(λ1 + λ2 + λ3)

, (15)

where e ∈ [0, 1]. Since the total explained scores on those two
planes keep increasing, we can get the difference of explained
scores to terminate the contraction at a satisfied stage by

∆e(k) =
|e(k + 1)− e(k)|

1− (n(k)− n(k + 1))/n(0)
, (16)

where the point number differences (n(k) − n(k + 1)) are
also accounted for to eliminate point reduction effect. During
the contraction iterations, if ∆e(k) is smaller than a threshold
θ ∈ [0, 1], then the contraction loop will break.

III. RESULTS & DISCUSSION

In this section, we demonstrate the performance of the
GLSkeleton by testing on OminiObject3D dataset [29]. Omin-
iObject3D is a real-scanned 3D object dataset containing a
wide range of object categories, of which the objects are
highly diverse in shape and appearance. Apart from that, it is
worth saying that as a real-scanned dataset, the resulting point
cloud models usually have noises, and the points are unevenly
distributed. Please note that the algorithm in this work is coded
and tested in MATLAB on a PC with an Intel(R) Core(TM)
i7-3770K CPU.

A. Contraction Speed Comparison
In comparison with Cao et al. [14], the in-loop local point

reduction method mainly benefits the contraction speed within
iterations. We consider the method of [14] as baseline and con-
duct experiments with both methods. Within the experiments,
we set the parameters as Table I.

To make the comparison, 216 experimental point cloud
models, each with 3 different resolutions are selected from
the dataset without particular preference on object of interest.
During the contraction iterations, the unnecessary points that
impede the contraction process are successfully removed,
illustrated in Fig. 4-a. The time complexity for solving the

Table I: Parameter settings for GLSkeleton

Parameters Value Descriptions
ε 1.2 ψ′/ψ
ϕ 1e5 Parameter of Eq. (12)
θ 0.02 Contraction termination threshold of ∆e
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Figure 5: Contraction cost comparison between GLSkeleton
(blue) and the baseline (red). From top to bottom, the left
column shows the contraction costs of 216 object models with
resolutions of 1024, 4096, and 16384 points, respectively. The
right column depicts the corresponding remaining points after
the contraction process.
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Figure 6: Curve computation cost from contracted point cloud
(a) and Overall computation cost (b).

contraction system (4) is O(n), where n is the point number
of the model. Thus, the point reduction can linearly speed
up the contraction process. The result in Fig. 4-c proves this
point. Meanwhile, the proposed difference of explained score
reaches a peak and then decreases with iterations as illustrated
in Fig. 4-d, which means that ∆e is in line with the global
contraction rates variance. In other words, it is logical to use
∆e as an indicator to terminate the contraction iteration.

As depicted in Fig. 5, when dealing with small-scaled data
(point cloud with 1024 points), the GLSkeleton remains at the
same performance level as the baseline despite the additional
computation cost for point reduction. However, as the point
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(a) (b) (c) (d) (e) (f)
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Figure 7: Skeletonisation result comparison. (a-f) and (g-l) are skeletonisation results of challenging point cloud models of the
baseline (upper row) and GLSkeleton (lower row).

(a) Baseline (b) Baseline (c) Baseline

(d) GLSkeleton (e) GLSkeleton (f) GLSkeleton

Figure 8: Skeletonisation results of noised point clouds. From
the left to the right, 5%, 10% and 20% value of Gaussian
spread noises are added to every point of original input point
cloud.

number increases, GLSkeleton works faster than the baseline
since the point number starts dominantly impacting the con-
traction cost. For models with 4096 points, the contraction
cost is nearly halved, while in the case of models with 16384
points, the costs are further reduced. Though GLSkeleton does
not show significant differences while dealing with light point
cloud data (Fig. 5-a), it is still inspiring that the computational
costs of different objects are less varied (the standard deviation
of baseline and GLSkeleton costs are 1.2996 and 0.3205
respectively). In other words, the contraction speed is more
controllable with GLSkeleton.

B. Skeletonisation Results
To further compare GLSkeleton with the baseline, complete

skeletonisation experiments are conducted for selected 77 ob-
ject models (4096 points) with logical patterns of 3D skeletons,

while other objects are mainly composed of sphere shapes
or 2D sheets. Please be aware that among the 216 objects’
skeletonization patterns, some exhibit a substantial number
of similarities. Despite this, there are persistent challenges
where current methods struggle to establish coherent skeleton
patterns (including baseline method). This difficulty ultimately
influenced the decision to opt for a smaller set of object
models for this part. We think those objects will give a clear
comparison of the performance of the skeletonisation.

According to the results, the local cloud point reduction
also remarkably benefits the curve computation process, as
shown in Fig. 6-a. The main reason is that the farthest
sphere sampling working for the topological connection [14]
uses a kd-tree algorithm for ball range query, and the time
complexity of the kd-tree range query is O(n

2
3 ). Thus, the

overall computational cost of skeletonisation by GLSkeleton
is reasonably faster than that by the baseline (Fig. 6-b). Please
note that it is normal that the difference of computational cost
in Fig. 6-b appears less significant than in Fig. 5-c. That
is because GLSkeleton and the baseline method share the
same neighbour ring computation process before Laplacian
contraction, as depicted in Fig. 2.

According to the generated skeletons (Fig. 7), GLSkele-
ton mainly preserves the topological features, despite some
minimal differences in comparison with the baseline (Figs. 7-
a,d,g,j). Even when dealing with the models with missing data
(Figs. 7-e,k), the curve structure can be plausibly extracted.
However, since points are removed during contraction itera-
tions of GLSkeleton, certain features are inevitably faded or
biased, potentially resulting in non-medial skeletal branches.
This phenomenon is more likely to occur when dealing with
joint and loop shapes in sparse point sets, due to the enlarged
size of neighbour point rings (Figs. 7-g, h, i, l). Fortunately,
the effect of this issue is negligible in most cases. Illustrated
in Fig. 8, experimental results of handling noisy data are
shown. In the experiment, each point of the input point
cloud is subjected to varying levels of Gaussian noise. Even
though extreme noises are applied, GLSkeleton consistently
produces acceptable results compared to no-noise conditions,
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occasionally surpassing the performance of the baseline but
with a lighter computation load.

Fig. 7 shows the graphical presentation of skeletonisation
for some example objects’ point clouds (the horse model
is with 1987 points, the rests are with 4096 points) from
real scanning. The resultant skeletons of GLSkeleton are
able to provide clear and meaningful skeleton vertices with
corresponding topological vertex connections that can be used
for grasping planning [6]. The well-organised skeleton vertices
can be applied for model segmentation and to compute curva-
tures at skeleton points, which are critical for local geometrical
property analysis through applying specific grasping strategies.
However, there are certain challenges to applying GLSkeleton
in real-time for grasping planning. For instance, vertices of
the skeleton generated by GLSkeleton are non-medial in some
cases, potentially affecting segmentation of point cloud model.
Another challenge could be that some strictly convex objects,
such as spheres, do not have meaningful skeleton patterns.

IV. CONCLUSION

In this work, a geometric Laplacian-based skeletonisation
framework is proposed, which can gain similar skeletonisation
results with less computational cost. In this framework, the lo-
cal point reduction strategy judges and removes the redundant
points that impede the contraction speed, which significantly
improves the overall skeletonisation speed in comparison with
baselines. In addition, a more robust global contraction rate
indicator, which is independent of local point distributions,
is also presented to adapt to the point-reduction-in-loop con-
traction scenario. Finally, the computational performance is
evaluated by the real-scanned dataset. Although GLSkele-
ton can successfully extract skeletons from the majority of
unorganised point cloud models, some issues still remains.
Firstly, there are remaining limitations with the Laplacian-
based method [14]. For example, the accuracy of topology
of the resultant skeleton might lose since a constant value
of radius are chosen for farthest-point sampling, leading to
unstable performance. Second, there is a gap in the evaluation
of the skeletonisation results, which is crucial for addressing
applications.

In the future, further work will focus on improving the ro-
bustness of the skeletonisation and publishing our dataset. We
may utilize potential motion planning strategies for creating
skeleton patterns from our reduced cloud point model rather
than using topological connections and refinement strategy.
We will also focus on study of grasp planning with the
proposed skeletonisation approach, including the reference
skeleton quality on grasping and geometric relation of grasping
(contact point) with skeleton and object’s contacted surface
(local mesh).
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