
LOCUS: A Multi-Sensor Lidar-Centric Solution for High-Precision
Odometry and 3D Mapping in Real-Time

Matteo Palieri1,2, Benjamin Morrell1, Abhishek Thakur3, Kamak Ebadi1, Jeremy Nash1, Arghya Chatterjee4,
Christoforos Kanellakis5, Luca Carlone6, Cataldo Guaragnella2, Ali-akbar Agha-mohammadi1

Accepted for publication at RA-L, please cite as follows:
M. Palieri, B. Morrell, A Thakur, K. Ebadi, J. Nash, A. Chatterjee, C. Kanellakis, L. Carlone, C. Guaragnella, A. Agha-mohammadi

“LOCUS: A Multi-Sensor Lidar-Centric Solution for High-Precision Odometry and 3D Mapping in Real-Time”,
IEEE Robotics and Automation Letters, 2020.

Abstract— A reliable odometry source is a prerequisite to
enable complex autonomy behaviour in next-generation robots
operating in extreme environments. In this work, we present
a high-precision lidar odometry system to achieve robust and
real-time operation under challenging perceptual conditions.
LOCUS (Lidar Odometry for Consistent operation in Uncertain
Settings), provides an accurate multi-stage scan matching unit
equipped with an health-aware sensor integration module for
seamless fusion of additional sensing modalities. We evaluate
the performance of the proposed system against state-of-
the-art techniques in perceptually challenging environments,
and demonstrate top-class localization accuracy along with
substantial improvements in robustness to sensor failures. We
then demonstrate real-time performance of LOCUS on various
types of robotic mobility platforms involved in the autonomous
exploration of the Satsop power plant in Elma, WA where the
proposed system was a key element of the CoSTAR team’s
solution that won first place in the Urban Circuit of the DARPA
Subterranean Challenge.

I. INTRODUCTION

Robotic systems are rapidly entering in all aspects of hu-
man life. In particular, robots are being deployed in increas-
ingly complex environments for a broad spectrum of appli-
cations ranging from mining [1] and search-and-rescue [2],
to industrial monitoring [3] and planetary exploration [4]. In
these scenarios, darkness, presence of obscurants (e.g. fog,
dust, smoke), lack of prominent perceptual features in self-
similar areas, and slippery terrains (leading to jerky sensory
motion) are common features that pose severe perceptual
challenges to robotic operation. In this work, we focus on
developing an accurate and reliable odometry estimation
method (i.e., estimating the robot movement) which is a key

This work was supported by the Jet Propulsion Laboratory - California
Institute of Technology, under a contract with the National Aeronautics and
Space Administration (80NM0018D0004). This work was partially funded
by the Defense Advanced Research Projects Agency (DARPA). ©2020 All
rights reserved.

1Palieri, Morrell, Ebadi, Nash, and Agha-mohammadi are with NASA Jet
Propulsion Laboratory, California Institute of Technology, Pasadena, CA,
USA matteo.palieri@poliba.it

2Palieri and Guaragnella are with the Department of Electri-
cal And Information Engineering, Polytechnic University of Bari, IT
matteo.palieri@poliba.it

3Thakur is with Aptiv, Troy, MI, USA abhi.dtu11@gmail.com
4Chatterjee is with Bangladesh University of Engineering and Technol-

ogy, Dhaka, Bangladesh. arghyame20buet@gmail.com
5Kanellakis is with Luleå University of Technology, Luleå, Sweden.

christoforos.kanellakis@ltu.se
6Carlone is with Department of Aeronautics and Astronautics,

Massachusetts Institute of Technology, Cambridge, MA, USA.
lcarlone@mit.edu

Fig. 1. Testing of the proposed lidar odometry system, LOCUS, in the
DARPA Subterranean Challenge. a) Urban Circuit test environment with a
Husky wheeled robot, showing unavoidable rubble. b) Tunnel Circuit test
environment with a Husky wheeled robot carrying two lidars, showing self-
similar areas with low lidar observability. c) Tunnel dataset ground truth
map. d) Example Urban Circuit test with a legged robot carrying one lidar.
Both robots run LOCUS. e) Map produced by LOCUS on one Husky robot
in the Urban Beta course. f) Urban Alpha ground truth map.

requirement to enable advanced autonomous behaviours in
such perceptually-challenging conditions.

As lidar sensors are less sensitive to illumination variations
and provide high-fidelity, long-range 3D measurements, they
have been commonly used for robotic odometry estimation
in the last decade. Typically, lidar odometry (LO) algorithms
estimate the ego motion of the robot by comparing and
registering consecutive lidar acquisitions. When it comes
to perceptually-challenging settings, lidars are commonly
fused with additional sensing modalities to improve accuracy.
However, in these settings, potential failures in different
sensing modalities can degrade, or drastically compromise
the odometry performance.

In this paper, we present LOCUS (Lidar Odometry for
Consistent operation in Uncertain Settings), a lidar odom-
etry system that (i) enables accurate real-time operation
in extreme and perceptually-challenging scenarios, and (ii)
is robust to intermittent and faulty sensor measurements.
LOCUS has been a key element of the CoSTAR team’s
solution [5] that won first place at the Urban Circuit of the
DARPA Subterranean Challenge (SubT Challenge), where
robots are tasked to autonomously explore complex GPS-
denied underground environments (e.g. Fig. 1).

A. Related Works

LO algorithms can be categorized by the representation
type and the number of points (or features) used to align

ar
X

iv
:2

01
2.

14
44

7v
1 

 [
cs

.R
O

] 
 2

8 
D

ec
 2

02
0



lidar-scans, including (i) feature-based methods, (ii) grid-
based methods, and (iii) dense methods.

Feature-based methods: Feature-based methods rely on
extracting and matching salient features across consecutive
lidar-scans to estimate the ego motion of the robot. Pos-
sible features can include planar and edge features [6]–
[9], ellipsoidal surfels [10] and ground features [11]. These
features can be matched by proximity [12], type [6], or
descriptor [10], depending on the algorithm and feature type.

Grid-based methods: Probability grid methods map lidar-
scans into grids and compute the occupancy probability den-
sities that can later be matched using Newton’s method [13].

Dense methods: Dense methods work with a large subset
of lidar-scan points. As using the full point cloud can
be computationally expensive for real-time operation, most
approaches select a subset of points for scan matching. The
Generalized Iterative Closest Point (GICP) [14] is a common
dense point-based scan matching method, where local surface
normal information is used to better address the measurement
noise in scan matching by using both point-to-point and
point-to-plane matching, with planes being evaluated in local
neighborhoods. LOCUS falls into this category.

Scan-to-scan alignment: The computation of the optimal
alignment between two scans can be cast as a non-linear
optimization problem, addressed by various solvers including
Levenberg-Marquardt (e.g. [6]), iterative gradient descent
(e.g. [8], [12], [14]), optimization tools such as Ceres [15],
least-squares solvers (e.g. [16]), or in a sliding-window, pose-
graph structure (e.g. [17], [18]) with GTSAM [19].

Scan-to-map alignment: To enable global consistency
across the history of scans, the computed pose is refined by
aligning the current scan and the existing map. For various
map representations, ranging from feature-based (e.g. [6],
[11], [17], [20]), to grid-based maps (e.g. [21]) and point-
based maps (e.g. [12]), one can adopt different scan-to-
map alignment methods. This includes point-based alignment
methods (e.g. [12]), Normalized Distributions Transform
(e.g. [13], [22]) or smoothing function alignment (e.g. [21]).

Sensor fusion: While pure lidar-based methods are pow-
erful, their performance can significantly degrade when it
comes to perceptually-challenging conditions, including en-
vironments with geometrically self-similar patterns or agile
robots with high-rate motions. To address these challenges, it
is important to fuse lidar with additional sensing modalities,
such as an inertial measurement unit (IMU) or visual-inertial
odometry (VIO). The IMU can provide rotational estimates
that are tightly integrated (e.g. [9], [18], [20], [21]) or loosely
integrated (e.g. [6], [8], [10], [17]) with the scan matching
process. When the drift is translational (referred to as lidar-
slip in this paper), VIO, wheel-inertial odometry (WIO) and
kinematic-inertial odometry (KIO) can complement IMUs by
providing a full 6-DOF transform estimate. Tight integration
(e.g. [7]) and loose integration (e.g. [17], [21]) of these
methods with lidars have shown significant improvements
over individual use of either one of these modalities. LOCUS
follows the loosely-coupled model, where in addition to
improving accuracy, these sensor fusion methods can reduce

Lidar 1
Lidar 2
Lidar N Point 

Cloud 
Merger

Point 
Cloud 
FilterMDC

FGA

Odometry IMU Odometry Map

Scan 
to 

Scan

Scan 
to 

Submap

Scan Matching Unit

Health
Monitor

Sensor
Integration

Module  GICP seed

MDC
MDC

Point Cloud Preprocessor

Point Cloud

Fig. 2. Architecture of the proposed lidar odometry system.

computation by providing a near-optimal prior to the lidar
scan-matching optimization in the GICP.

B. Method Highlights and Contributions

The highlights and contributions of LOCUS are:
1) Architecture: The LOCUS architecture (see Fig. 2)

enables accurate, robust, and real-time odometry in
perceptually-stressing settings and alleviates sensor failure
challenges. The architecture can be adapted to heterogeneous
robotic platforms with diverse sensor inputs and computa-
tional capabilities.

2) Resilience: The system is fail-safe to drops or loss of
one or more sensor channels by relying on a loosely-coupled
switching scheme between sensing modalities.

3) Environment adaptability: The system further enables
incorporation of domain knowledge (if available), such as flat
grounds in human-made structures.

4) Field demonstration: We present an extensive field
demonstration of LOCUS. In particular, we provide results
and insights from deploying LOCUS as part of the CoSTAR
team’s solution that won the Urban Circuit of the SubT
Challenge. We present an ablation study on LOCUS and then
compare the performance with six state-of-the-art methods
using the data acquired in the field tests.

II. SYSTEM DESCRIPTION

In this section, we describe the system architecture re-
ported in Fig. 2 and provide details of each submodule.

A. Point Cloud Preprocessor

Motion Distortion Correction: We assume information
from one or more 360 degree lidar sensors, such as the
Velodyne Puck or Ouster lidars. The raw information coming
from the lidar is fed into a motion distortion correction
(MDC) unit which corrects the Cartesian position of each
point to account for the motion of the robot while a single
scan of the lidar is completed1. This correction is particularly
important for points at large range, when high-rate rotations
are experienced by the robot, and is a commonly employed
step [17], [20]. The correction is informed by either an
IMU, or an odometry source (e.g VIO, WIO, KIO) where

1The Velodyne Puck lidar requires 0.1 s to complete one scan

2



the chosen source depends on what is reliably available and
calibrated on a given robot.

Point Cloud Merger: For robots with multiple lidars, to
enlarge the overall robot field-of-view, the point cloud merger
(Fig. 2, top and middle) combines each motion-corrected
point cloud into a single one, using the known rigid body
transformation between sensors. This step is implemented so
the rest of the pipeline is consistent for robots with one or
multiple lidar sensors.

Point Cloud Filter: The resulting point cloud is then
processed in the point cloud filter to remove noise and out-
of-range points, manage the volume of data, and reduce
computational load. The point cloud filter is composed by
a sequential combination of a 3D voxel grid filter and
a random downsampling filter, which can be individually
tuned, activated and deactivated. The voxel grid filter takes
the average of the points in each 3D volume (a voxel) to
decrease the data size while still capturing the dominating
structure of the environment. We use a voxel size of 0.1m
in the tests presented in this paper. For the random down-
sampling filter, we use an implementation of [23] with a
downsampling percentage of 90%. For both filters we use
the implementation in the Point Cloud Library [24].

B. Scan Matching Unit

The scan matching unit (light blue box in Fig. 2) performs
a GICP-based scan-to-scan and scan-to-submap matching
operation to estimate the 6-DOF motion of the robot between
consecutive lidar acquisitions.

Notation: We denote with R the coordinate system of
the robot and with W the coordinate system of the world,
that coincides with R at the start of the test. We therefore
address the problem of determining the poses of R with
respect to W by means of consecutive lidar acquisitions
to incrementally reconstruct a trajectory and a map of the
explored environment. We denote with Lk the lidar scan
collected at time k and with Lk−1 the lidar scan collected at
time k− 1. All lidar scans are expressed in the robot frame.
We denote with Xk ∈ SE(3) the robot pose in W at time
k and with Xk−1 the robot pose in W at time k − 1. We
denote with Tk−1

k = X−1
k−1Xk the rigid body transformation

between two consecutive robot poses, where Tk−1
k ∈ SE(3)

is the transform between Xk−1 and Xk.

1) Sensor integration module: In robots with multi-modal
sensing, if available, we use an initial transform estimate
from a non-lidar source in the scan-to-scan matching stage
to improve accuracy and reduce computation.

Health monitoring: Multiple sources of odometry (e.g
VIO, KIO, WIO) and raw IMU measurements are first
transformed into R, and then fed into a health monitor which
selects an output from a priority queue of inputs that are
deemed healthy (see bottom left of Fig. 2). The system is
designed to take in a variety of sources of health metrics to
evaluate the health of input sources. For example, ongoing
work is looking to integrate with the Heterogeneous Robust

Odometry (HeRO) system [25] that employs custom health
analysis (such as feature counts and observability analysis)
on each odometry source, as well as rate and covariance
checks. For our implementation presented below, we use a
simple rate-check: if input messages are at a sufficient rate
(> 1Hz), then the source is healthy.

Priority queue: The priority queue is intend to always se-
lect the highest accuracy source, based on previous testing for
a given robotic system in similar environments. If the robot
enters an area where the highest priority source is degraded,
it is intended for this to be reflected in the health metric,
that would trigger a transition to the next highest, healthy
input. With this health-metric-driven dynamic switching, the
priority queue is static. The priority queue for our legged
robot is: VIO, KIO, IMU, no input, and for our wheeled
robot is: VIO (if present), WIO, IMU, no input.

We define the pose estimate (with respect to W) of the
highest priority source that is found to be healthy as Y.
To reduce operations, we buffer only Y and interpolate
the buffered data at lidar timestamps, tk−1, and tk to get
Yk−1 and Yk: the pose of highest priority healthy source
at times tk−1 and tk, respectively. We denote with Ek−1

k =
Y−1

k−1Yk the rigid body transformation of the sensor integra-
tion module output between Yk−1 and Yk in the [tk−1, tk]
time interval where Ek−1

k ∈ SE(3). Each odometry source
provides a rotation and translation, whereas for the IMU we
only use the rotation measurements.

2) Scan-to-scan: In the scan-to-scan matching stage,
GICP computes the optimal transformation T̂

k−1

k that mini-
mizes the residual error E between corresponding points in
Lk−1 and Lk.

T̂
k−1

k = arg min
Tk−1
k

E(Tk−1
k Lk, Lk−1) (1)

When the sensor integration module is successful, we ini-
tialize the GICP with Tk−1

k = Ek−1
k . If all sensors fail, the

GICP is initialized with identity rotation and zero translation
and the system reverts to pure lidar odometry.

3) Scan-to-submap: The motion estimated in the scan-to-
scan matching stage is further refined by a scan-to-submap
matching step. Here Lk is matched against a local submap
Sk which is taken from the local region of the global map
Mk given the current estimate of the robot pose in W .

T̃
k−1

k = arg min
Tk−1
k

E(Tk−1
k Lk, Sk) (2)

In this optimization, Tk−1
k is initialized with the T̂

k−1

k result
from Eqn. 1. The global map is a point cloud stored in an
octree format that is an accumulation of point clouds after
every t meters of translation, or r degrees of rotation: for
our results, we use t = 1, r = 30o. We use an octree with
a minimum resolution of 0.001m to store the map, which
usually maintains all points in an easily searchable format.

3



Output: After scan-to-scan and scan-to-submap matching,
the final estimated motion T̃

k−1

k between consecutive lidar
acquisitions is used to update the robot pose in W: the gen-
erated odometry is therefore the integration of all computed
incremental transforms.

Both accuracy and computational speed are improved by
the incremental estimation from input odometry to scan-to-
scan and finally scan-to-map (shown, for example, in [12]). A
good initial estimate in both Eqn. (1) and Eqn. (2) reduces
the chances of converging in a sub-optimal local minima,
and reduces the number of iterations needed to converge,
lowering computation time.

4) Notes on multi-threading: The computational speed
of the scan-to-scan and scan-to-submap matching has been
greatly increased through the development of a multi-
threaded GICP approach, modified from the PCL imple-
mentation [24]. The multi-threading utilizes a user-specified
number of cores for the normal computation stage in GICP,
which represents over 70% of the computation time in the
process. For the evaluations performed in this paper, we use
4 threads unless otherwise stated.

C. Environment Adaptation: Flat Ground Assumption

In human-made environments there are many areas with
flat grounds, which if known prior, could be utilized to
aid odometry algorithms. When detected or known, the flat
ground assumption (FGA) can be activated to limit drift in
Z and error in roll and pitch (lower-right blue box in Fig. 2).
FGA operates on the output of both scan-to-scan and scan-
to-submap alignment, by zeroing any Z movement, roll or
pitch, all in a global, gravity aligned reference frame.

FGA activation modalities: The system provides two
ways to detect a flat ground and activate FGA: context-
based, and sensor-based. The first approach relies on prior
knowledge of the environment that can be acquired by a
human supervisor, for instance in single floor exploration of
urban environments. For stair-climbing robots, the initiation
of a stair mission can be used to deactivate FGA, and then
reactivate it when the stair mission is complete through the
input of a human operator (see [26] for an example). In the
second approach, an IMU monitor can be used to detect
periods when the robot has near-zero roll and pitch over a
sufficient time period to activate FGA, and then deactivate it
when this condition is no longer met.

D. Adaptation for Different Platforms

The system includes adjustable components to adapt to
heterogeneous robotics platforms with different computing
power and sensors. These adaptations are primarily in: the
number of lidars, the filtering, and number of threads for
GICP and the measurements used for the initial transform
estimate. Sec. III-C, demonstrates the flexibility of LOCUS
through application to two different robotic platforms.

III. FIELD EXPERIMENTS

In this section we present the experimental results obtained
from tests in the Tunnel and Urban circuits of the SubT
Challenge. We first use three datasets from a Clearpath
Husky ground rover (Fig. 1.a-b) to perform an ablation study
on LOCUS, and compare it with state-of-the-art lidar odom-
etry solutions. We then showcase results achieved during
live operations in field tests across heterogeneous robotic
platforms. See https://youtu.be/5QQkkQ_YrbU for
visualization of the results.

Dataset description: Each dataset comprises 3D lidar
scans coming from 2 on-board VLP16 lidars (one flat, one
pitched forward 30o), along with IMU (Vector Nav 100)
and WIO measurements for a 60-minute run. Each dataset is
selected to contain components that are challenging for lidar
odometry. The Urban datasets (Alpha Course, Fig. 1.f and
Beta Course, Fig. 1.e) are collected in a dismissed power
plant located in Elma, WA that presents many challenges
for robot perception such as long feature-poor corridors and
large open spaces (the test area dimensions are 100x100x20
m). The Tunnel dataset (Safety Research Course, Fig. 1.c)
is recorded in the Bruceton Research Mine in Pittsburgh,
PA that is characterized by self-similar and self-repetitive
geometries (the test are dimension are 200x200x10 m).
All datasets have substantial vibrations and large, sudden
accelerations as is characteristic of a skid-steer wheeled robot
traversing rough terrain and rubble. See Fig. 1 for sample
images of the environments.

Lidar scans are recorded at 10Hz. WIO and IMU are
recorded at 50Hz in the Urban datasets, while a higher-rate
IMU recording (100Hz) is available for the Tunnel dataset.
Both motion corrected and raw points are available for the
Urban datasets, whereas the Tunnel dataset only has raw
points available. We use LOCUS to do scan matching on
the ground-truth map provided by DARPA to estimate the
ground-truth reference of the robot trajectory.

A. Ablation Study
To investigate the impact of each component of LOCUS

on the overall pipeline accuracy, we evaluate the Absolute
Position Error (APE) of the robot-trajectory in the Urban
Alpha dataset2 The results are summarized in Fig. 3. The
study confirms that the use of motion-corrected points is
essential, and highlights the effectiveness of the filtering
approaches that limit the data volume and reduce com-
putational load. Feature-based filtering (e.g. LOAM-type
features of edges and planes) can result in greater accuracy,
yet with a higher CPU load (25% more than the baseline
configuration), leading to non-real-time performance on our
system. Environmental knowledge of a flat ground is not
essential, but can help to improve accuracy for exploration
of human-made buildings. The loose sensor integration of
WIO or IMU results in minor improvements, however, we
use this approach as baseline to robustly operate in scenarios
with high-rate motions or low lidar observability.

2While these results are for one dataset, we observed similar trends from
tests on the Urban Beta dataset.

4

https://youtu.be/5QQkkQ_YrbU


Fig. 3. Evolution of the Absolute Position Error (APE) of the proposed
method for different processing configurations in the Alpha course of the
SubT Challenge. The inset gives more detail on the four best configurations.
baseline: all features in Sec. II. imu int: no WIO integration, only IMU
integration, no int: neither WIO or IMU integration, loam feat: using
LOAM feature extraction instead of filtering, fga off: no FGA, rdf off: no
random downsample filter, vgf off: no voxel-grid filter, mdc off: no MDC.

TABLE I
SUMMARY OF STATE-OF-THE-ART, OPEN-SOURCE ALGORITHMS

Algorithm Align. Opt. IMU Odom. MDC*
LOCUS Dense GICP Loose Loose Yes
BLAM [27]3 Dense GICP None None No
ALOAM [6]4 Features Ceres None None No
FLOAM [6]5 Features Ceres None None No
Cartog. [21]6 Grid Ceres Tight Loose Yes
LIO-Map. [20]7 Features Ceres Tight None Yes
LIO-SAM [18]8 Features GTSAM Tight None Yes
* See section IIIB for more details.

B. Evaluation Against the State-of-the-Art

We compare the proposed algorithm against a variety
of the state-of-the-art open-source lidar odometry systems,
selected to cover the range of aligment methods and sensor
integration methods, as summarized in Table I. While we
would like to compare against systems integrating with
visual odometry (e.g. [7], [17]), these algorithms do not
have open source implementations to readily test. FLOAM
and ALOAM are two modern implementations of LOAM
aimed to simplify the code structure and increase compu-
tational speed, respectively. Cartographer is an LIO algo-
rithm distinguished by its use of grid-based matching. LIO-
Mapping is a more recent LIO algorithm that combines the
IMU pre-integration approach from VINS-Mono [28] with
LOAM-type feature alignment. LIO-SAM is yet more recent,
and builds from LeGo-LOAM [11], adding in IMU pre-
integration in a smoothing-and-mapping approach.

Comparison criteria: We aim to compare the lidar odom-
etry systems holistically, hence we use three criteria: i)
Accuracy, ii) Robustness and iii) Efficiency.

Comparison setup: Each algorithm is setup for the best
performance, yet with minimal parameter tuning, only input
adjustment (number of lidars, motion corrected points). WIO
is the odometry input, if used. Loop closures are disabled to

3github.com/erik-nelson/blam_slam
4github.com/HKUST-Aerial-Robotics/A-LOAM
5github.com/wh200720041/floam
github.com/cartographer-project/cartographer
7github.com/hyye/lio-mapping
8github.com/TixiaoShan/LIO-SAM

focus on the lidar odometry performance. Variations in the
input for each algorithm are summarized below.

LOCUS, BLAM, and ALOAM each use two lidars in all
datasets, with motion-corrected points in the Urban datasets.
FLOAM only succeeded with one lidar in the Urban Alpha
dataset and otherwise uses two lidars, in each case (with
motion correction in Urban datasets). Cartographer can do
internal motion correction, but only with the input of points
as individual UDP packets from a single lidar. We elected to
instead feed pre-corrected scans from two lidars to Cartog-
rapher. LIO-Mapping and LIO-SAM are both set up to do
internal motion-correction on the point clouds, leveraging
the integrated IMU data, hence uncorrected scans are used
as inputs. For LIO-Mapping, 2 lidars were used, except for
Urban Alpha, where only a 1 lidar test was successful.

LIO-SAM was only able to run with a single lidar input, as
there are internal assumptions of a structured point cloud of
rings for motion correction and feature extraction. We were
not able to get LIO-SAM working on the Urban datasets,
likely due to the IMU rate, at 50Hz being lower than the
recommended 200Hz for LIO-SAM.

1) Accuracy Evaluation: We evaluate the accuracy with
two metrics: position error and map error.

Position error: To evaluate the localization accuracy, we
use evo [29] to compute the absolute position error (APE)
of the trajectories estimated by the different methods against
the ground-truth reference. We report in Fig. 4 a boxplot
visualization of the APE results for the Urban and Tunnel
datasets and summarize these results in Table II.

The results show that LOCUS is equal to or better than
the state-of-the-art in all datasets. FGA does help to improve
LOCUS performance, but is not essential for LOCUS to
perform well. LIO-Mapping has similarly low error, as
expected with tight integration of IMU and lidar, yet with a
large delay from a mean processing time of 1s per scan. The
larger optimization being performed with pre-integration,
scan alignment and extrinsic estimation all together likely
leads to the longer computation times.

LIO-SAM performs the best in the Tunnel dataset, and
with feasible computational speeds, yet the strict require-
ments on appropriate input data limit the range of platforms
and datasets it can be applied to. Cartographer and ALOAM
perform relatively well in Urban, showing the effectiveness
of edge and plane features as well as grid methods in human-
made environments.

For dense alignment methods, BLAM perfoms adequately
in the Urban datasets, but poorly in the Safety Research
dataset, suggesting the WIO integration employed by LO-
CUS is an important component in the self-similar and low
lidar observability conditions seen in that dataset.

Map error: As second quantitative evaluation, we com-
pare the maps obtained with each algorithm to the DARPA
provided ground-truth map to compute the overall cloud-to-
cloud error. To account for potential calibration misalign-
ments, we run Iterative Closest Point (ICP) between the
reconstructed map and ground-truth map before performing
error analysis. We report in Table II, a numerical summary of

5

github.com/erik-nelson/blam_slam
github.com/HKUST-Aerial-Robotics/A-LOAM
github.com/wh200720041/floam
github.com/cartographer-project/cartographer
github.com/hyye/lio-mapping
github.com/TixiaoShan/LIO-SAM


the RMSE values of the map error (ME) computed for each
algorithm on each relevant dataset. The results show similar
trends to the position error, with some negligible differences
in the order of the algorithms

2) Robustness Evaluation: The previous section high-
lighted the robustness to low lidar observability, substantial
vibrations, large accelerations and self-similar environments
through the accuracy results on the datasets. In this section
we focus on another aspect of robustness: the ability to
handle a sudden failure of an input source. Specifically, we
test the following scenarios: i) failure of WIO/IMU, ii) failure
of WIO, iii) failure of lidar. Each of these failure scenarios
have been experienced in real field tests in preparation for
the SubT Challenge. We artificially create these failures in
our datasets to have a controlled way of isolating the source
of the failure, and the resulting impact on the algorithms.
The results are summarized in Table III, with example maps
resulting from different failure modes shown in Fig 5.

WIO/IMU failure: We simulate sensor failure after
1200s, by shutting down WIO and IMU streams for the
rest of the run. This failure only affects those algorithms
that use IMU, where the algorithms cease to run, either
relying on a synced callback with WIO and IMU (e.g.
Cartographer) or relying on pre-integrated IMU to provide
odometry updates between scans as well as initial scan
to map alignment estimates (LIO-Mapping, LIO-SAM). In
contrast, LOCUS processes the input data separately, and
hence can automatically switch from lidar odometry with
WIO integration, to lidar odometry with IMU integration,
to pure lidar odometry, demonstrating robust handling of
sensor failures in a cascaded fashion. This behavior is highly
desirable to accommodate the unforeseen challenges posed
by rough terrains in real-world applications where hardware
failures are likely to happen, or sensors sources can become
unreliable (e.g. dark areas with no visual texture for VIO).

WIO failure: We simulate a loss of WIO after 1200s.
Cartographer and LOCUS are the only algorithms affected,
with the same result as the WIO/IMU case.

Lidar failure: We stress the systems by subtracting the
most fundamental data source: lidar. More specifically, we
simulate a 10s gap in lidar data while the robot is in motion.

There are three responses to this failure. The first response
is that the algorithm stops running until the lidar returns,
resulting in large map errors (BLAM, ALOAM, FLOAM,
and Cartographer due to the synced callback). The second
response is that the algorithm runs purely on IMU integra-
tion, leading to an accumulation of drift before the lidar
returns (LIO-Mapping, LIO-SAM). The final response is
only seen by LOCUS, where the loose coupling allows WIO
to accumulated over the 10s of no lidar data to produce an
accurate initial transform when the lidar returns.

3) Efficiency Evaluation: We profile the time needed
from the different algorithms to process a single lidar scan
when running the algorithms on an Intel Hades Canyon
NUC8i7HVKVA (4x1.9 GHz, 32 GB RAM) running Ubuntu
18.04 LTS. Fig. 6 shows the resulting times per scan with
scans at 10Hz (LIO-Mapping is omitted as the processing

time, 1s per scan, is too large). Additionally, Table II shows
the CPU loads for each algorithm. All values are from the
Urban Beta dataset, except for LIO-SAM, which is on the
Tunnel Safety Research dataset.

LOCUS, ALOAM and BLAM can all maintain real-time
processing, whereas ALOAM and LIO-SAM can only stay
real-time with a lower rate of lidar scans. LIO-SAM can
use the IMU pre-integration to cope with a lower IMU
rate, and by using features, ALOAM can also handle a
lower rate for certain datasets. Both FLOAM and LIO-
Mapping do not appear to be feasible for real-time operation.
Cartographer has both the quickest processing time and the
lowest CPU load, yet the accuracy is not as strong as the
other algorithms. LOCUS produces the best accuracy, with
real-time performance, yet requires the largest CPU load.

C. Real-Time Operation Across Different Platforms

In this section, we demonstrate real-time field operation
of LOCUS on different robotic platforms during the Urban
Circuit of the SubT Challenge and provide statistics from
logged online operation. Results come from the four compe-
tition runs, two in Alpha course and two in Beta course.

1) Hardware and Tuning: During the competition, we
deployed LOCUS on two very different robots: i) the Husky
from the datasets used above (see Fig. 1.b), and ii) Spot from
Boston Dynamics (see Fig. 1.d).

Husky:
In addition to the sensors described in Sec. III, Husky

carries an AMD RYZEN 9 3900X 12-Core 3.8 GHz for
computation.

Spot: A legged robot that is equipped with 1 VLP16 and
an Intel NUC7i7DN 4-Core 1.9 GHz for computation. Both
VIO and KIO are available from the Boston Dynamics API,
and can be used for integration into LOCUS. We choose VIO
as it was shown to be more accurate than KIO in our tests.

Adaptation: The paramaters of LOCUS are tuned to
achieve accurate and robust real-time operation on both
platforms while accounting for differences in computational
capabilities and hardware configurations. Table IV summa-
rizes the configurations used during the competition.

2) Performance: We report in Table V the average value
of the number of lidar scans dropped per second by each
robot in each course of the competition during real-time
operation. Point clouds are subscribed to at 10hz and we
do not buffer any lidar scans, to minimize the delay of the
computed odometry. Therefore, the number of dropped scans
per second represent how frequently the lidar processing
time exceeded 0.1s. Spot drops 2 scans a second, due to
the less powerful computer onboard. However, Spot has a
more accurate additional odometry source than Husky, with
VIO. The reliable initial transform from VIO enables Spot
to process fewer scans per second, and still perform well.

Real-time accuracy profiling: LOCUS performed ac-
curately for both Husky and Spot in the competition, as
evident in the overall team’s performance, winning first

6



Fig. 4. Boxplot visualization of the Absolute Position Error (APE) computed for the different methods on the test datasets. For clarity, only the best six
algorithms in each dataset are shown.

TABLE II
SUMMARY OF ACCURACY ANALYSIS RESULTS ON ALPHA, BETA AND SAFETY RESEARCH DATASETS

Algorithm Alpha Course Beta Course Safety Research Course CPUβ

APE [m] ME [m] APE [m] ME [m] APE [m] ME [m] Num. of Cores
max mean std RMSE max mean std RMSE max mean std RMSE max mean

LOCUS 1.69 0.62 0.57 0.29 1.51 0.88 0.51 0.69 3.39 1.67 0.76 0.63 3.39 2.72
LOCUS FGA 0.63 0.26 0.18 0.28 1.20 0.58 0.39 0.48 - - - - 3.39 2.72
BLAM 3.44 1.01 0.94 0.43 3.89 2.27 0.89 1.27 171.34 35.45 51.91 5.37 1.14 0.93
ALOAM 4.33 1.38 1.19 0.60 2.58 2.11 0.44 0.99 18.61 10.01 6.01 6.11 1.65 1.41
FLOAM 29.49 9.19 8.96 1.73* 40.64 3.94 8.42 3.73* 85.31 32.49 25.73 20.16 1.76 1.44
Cartographer 5.84 2.91 1.60 1.05 2.64 1.37 0.67 0.31 50.05 14.31 13.45 14.25 1.75 0.88
LIO-Mapping 2.12 0.99 0.51 0.45 1.60 1.18 0.22 0.61 3.31 1.99 0.55 0.76 1.80 1.53
LIO-SAM - - - - - - - - 2.45 1.26 0.58 0.52 2.75+ 2.00+

* failure leads to a low map error. β CPU loads are computed from the Urban Beta dataset, and Tunnel dataset for LIO-SAM (+)

TABLE III
SUMMARY OF ROBUSTNESS TEST RESULTS

Robustness Test Result
Algorithm a) WIO/IMU Fail b) WIO Fail c) Lidar Drop
LOCUS OK OK OK
BLAM NA NA Errors
ALOAM NA NA Errors
FLOAM NA NA Errors
Cartographer Stops Stops Errors
LIO-Mapping Stops NA Errors
LIO-SAM Stops NA Errors
OK: negligible degradation in accuracy. NA: Not Applicable - the algorithm does not use that sensor source.
Errors: substantial errors in accuracy. Stops: no more odometry output after failure.

Fig. 5. Robustness test in Beta course: a) results on WIO/IMU failure, b)
results on WIO failure, c) results on Lidar failure. The failure locations are
circled in all cases.

Fig. 6. Comparison of lidar processing time across the different lidar
odometry algorithms. The times are the duration for processing a single
scan. Top - Urban Beta dataset, Bottom - Tunnel Safety Research dataset.
A processing time of 0.1 s indicates realtime performance (10 Hz scans).TABLE IV

SUMMARY OF LOCUS SETTINGS ON DIFFERENT ROBOTS

Parameter Husky Spot
Number of lidars 2 1

Voxel Grid Filter leaf size (m) 0.1 None
GICP iterations in scan-to-submap 20 25

GICP number of cores 4 1
Sensor Integration WIO VIO

place9. Fig. 7, shows the live performance of LOCUS with
FGA on the Husky in Beta 2, with a slightly larger error than
the post-processed results (on a different computer), yet still
highly competitive.

For Spot, LOCUS was run live in a multi-level exploration

9The LOCUS output was integrated with a robust odometry aggrega-
tor [25], and then fed to a back-end SLAM algorithm [12]

7



TABLE V
DROPPED LIDAR SCANS FROM REAL-TIME ON-ROBOT TESTS

Number of dropped scans / sRobot Alpha 1 Alpha 2 Beta 1 Beta 2 Average
Husky 0 0 0 0 0
Spot 2.082 2.205 1.833 2.016 2.034

Fig. 7. Absolute Position Error (APE) of the trajectories estimated by the
different methods against ground-truth in Beta course, including the perfor-
mance when running live in the SubT Challenge (LOCUS REALTIME).

in the Urban Alpha 2 course. In this run, the mean APE was
0.586 m, and the maximum APE was 2.599 m, which was
sufficiently small for scoring in the competition.

D. Discussion

Overall, fusion of additional sensing modalities is crucial
to enable accurate operation in such extreme explorations: by
relying on a loosely-coupled mechanism, LOCUS is robust
to potential failures of sensors, and can achieve improved
performance with respect to tightly-coupled approaches in
settings where the extrinsic sensors calibration is not ideal.
Additionally, by not making assumptions on the environment
type, LOCUS can use a larger number of points with respect
to feature-based methods during scan registration, and pro-
cess a greater amount of information at reasonable compu-
tational cost by taking advantage of the priors informed by
the additional sensing modalities to seed the GICP.

IV. CONCLUSIONS

Achieving accurate lidar odometry in perceptually-
challenging conditions can be difficult due to the lack of
reliable perceptual features, presence of noisy sensor mea-
surements, and high-rate motions. While integrating addi-
tional sensing modalities can help address these challenges,
potential sensor failures can have dramatic impacts on the
mission outcome if not robustly handled. In this paper,
we present a lidar odometry system to enable accurate
and resilient ego-motion estimation in challenging real-
world scenarios. The proposed system, LOCUS, provides an
accurate multi-stage scan matching unit equipped with an
health-aware sensor integration module for seamless loose
integration of additional sensing modalities. The proposed
architecture is adaptable to heterogeneous robotic platforms
and is optimized for real-time operation.

We compare LOCUS against state-of-the-art open-source
algorithms and demonstrate top-class accuracy in perceptu-
ally challenging real-world datasets, top-class computation
time and superior robustness to sensor failures, yet with

greater CPU load. Finally, we demonstrate field-proven real-
time operation of LOCUS on two different robots involved in
fully autonomous exploration of Satsop power plant during
the Urban Circuit of the DARPA Subterranean Challenge,
where the proposed system was a key component of CoSTAR
team’s solution that achieved first place.

REFERENCES

[1] R. Lösch, S. Grehl, M. Donner, C. Buhl, and B. Jung, “Design of
an autonomous robot for mapping, navigation, and manipulation in
underground mines,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 1407–1412.

[2] J. S. Jennings, G. Whelan, and W. F. Evans, “Cooperative search
and rescue with a team of mobile robots,” in 1997 8th International
Conference on Advanced Robotics. Proceedings. ICAR’97. IEEE,
1997, pp. 193–200.

[3] R. Bogue, “Robots for monitoring the environment,” Industrial Robot:
An International Journal, 2011.

[4] J. Haruyama, T. Morota, S. Kobayashi, S. Sawai, P. G. Lucey, M. Shi-
rao, and M. N. Nishino, “Lunar holes and lava tubes as resources for
lunar science and exploration,” in Moon. Springer, 2012, pp. 139–163.

[5] A. Agha, CoSTAR team website, 2020. [Online]. Available:
https://costar.jpl.nasa.gov/

[6] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-
time,” in Robotics: Science and Systems, vol. 2. IEEE, 2014, p. 9.

[7] S. S. J. Zhang, “Laser–visual–inertial odometry and mapping with high
robustness and low drift,” in Journal of Field Robotics, 2018, pp. pp.
1242–1264.

[8] J.-L. Blanco-Claraco, “A modular optimization framework for local-
ization and mapping.” in Robotics: Science and Systems, 2019.

[9] C. Le Gentil, T. Vidal-Calleja, and S. Huang, “In2laama: Inertial
lidar localization autocalibration and mapping,” IEEE Transactions on
Robotics, 2020.

[10] M. Bosse and R. Zlot, “Continuous 3d scan-matching with a spinning
2d laser,” in ICRA, 2009, pp. pp. 4312–4319.

[11] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. pp. 4758–4765.

[12] K. Ebadi, Y. Chang, M. Palieri, A. Stephens, A. Hatteland, E. Heiden,
A. Thakur, N. Funabiki, B. Morrell, S. Wood, L. Carlone, and A.-
a. Agha-mohammadi, “LAMP: Large-Scale Autonomous Mapping
and Positioning for exploration of perceptually-degraded subterranean
environments,” in ICRA. IEEE, 2020.

[13] P. Biber and W. Straßer, “The normal distributions transform: A new
approach to laser scan matching,” in Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2003)(Cat. No. 03CH37453), vol. 3. IEEE, 2003, pp. 2743–2748.

[14] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.” in Robotics:
science and systems, vol. 2, no. 4. Seattle, WA, 2009, p. 435.

[15] e. a. S. Agarwal, K. Mierle, “Ceres solver available online:,” in
http://ceres-solver.org.

[16] G. Grisetti, T. Guadagnino, I. Aloise, M. Colosi, B. Della Corte, and
D. Schlegel, “Least squares optimization: from theory to practice,”
Robotics, vol. 9, no. 3, p. 51, July 2020.

[17] W. Shao, S. Vijayarangan, C. Li, and G. Kantor, “Stereo visual inertial
lidar simultaneous localization and mapping,” in IROS, 2019.

[18] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus,
“Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and
mapping,” in IEEE/RSJ IROS. IEEE, 2020.

[19] F. Dellaert, “Factor graphs and gtsam: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep., 2012.

[20] H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3d lidar inertial
odometry and mapping,” in ICRA, 2019, pp. pp. 3144–3150.

[21] D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d
lidar slam,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. pp. 1271–1278.

[22] E. Takeuchi and T. Tsubouchi, “A 3-D scan matching using improved
3-D normal distributions transform for mobile robotic mapping,” in
2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2006, pp. 3068–3073.

[23] J. S. Vitter, “Faster methods for random sampling,” Communications
of the ACM, vol. 27, no. 7, pp. 703–718, 1984.

8

https://costar.jpl.nasa.gov/


[24] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
ICRA. IEEE, 2011, pp. 1–4.

[25] A. Santamaria-navarro, R. Thakker, D. D. Fan, B. Morrell, and
A. Agha-mohammadi, “Towards resilient autonomous navigation of
drones,” in International Symposium on Robotics Research, 2019.

[26] A. Bouman, M. Ginting, N. Alatur, M. Palieri, D. Fan, T. Touma,
T. Pailevanian, S. Kim, K. Otsu, J. Burdick, and A. Agha-Mohammadi,
“Autonomous spot: Long-range autonomous exploration of extreme
environments with legged locomotion,” IROS 2020.

[27] E. Nelson. (2016) Berkley localization and mapping. [Online].
Available: https://github.com/erik-nelson/blam

[28] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[29] M. Grupp, “evo: Python package for the evaluation of odometry and
slam.” https://github.com/MichaelGrupp/evo, 2017.

9

https://github.com/erik-nelson/blam
https://github.com/MichaelGrupp/evo

	I Introduction
	I-A Related Works
	I-B Method Highlights and Contributions

	II System Description
	II-A Point Cloud Preprocessor
	II-B Scan Matching Unit
	II-B.1 Sensor integration module
	II-B.2 Scan-to-scan
	II-B.3 Scan-to-submap
	II-B.4 Notes on multi-threading

	II-C Environment Adaptation: Flat Ground Assumption
	II-D Adaptation for Different Platforms

	III Field Experiments
	III-A Ablation Study
	III-B Evaluation Against the State-of-the-Art
	III-B.1 Accuracy Evaluation
	III-B.2 Robustness Evaluation
	III-B.3 Efficiency Evaluation

	III-C Real-Time Operation Across Different Platforms
	III-C.1 Hardware and Tuning
	III-C.2 Performance

	III-D Discussion

	IV Conclusions
	References

