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Abstract—The traffic classification is the foundation for many
network activities, such as Quality of Service (QoS), security
monitoring, Lawful Interception and Intrusion Detection Sys-
tems (IDS). A recent statistics-based approach to address the
unsatisfactory results of traditional port-based and payload-
based approaches has attracted attention. However, the presence
of non-informative attributes and noise instances degrade the
performance of this approach. Thus, to address this problem, in
this paper, we propose a hybrid clustering-classification approach
(called CluClas) to improve the accuracy and efficiency of
network traffic classification by selecting informative attributes
and representative instances. An extensive empirical study on
four traffic data sets shows the effectiveness of our proposed
approach.

I. INTRODUCTION

The process of classifying network traffic into a set of
categories according to the applications which generate them
is known as traffic classification. Traffic classification meth-
ods are essential tools for improving the quality of service
(QoS) and enhancing system security, which have been widely
studied in recent years. Traditional network classification
methods [21], [14], including port-based methods that directly
identify applications by port number, the packet headers and
deep packet inspection methods, have shown a number of
drawbacks, especially with the rapid evolution of new traffic
applications. For example, new applications and encrypted
traffic can easily evade detection by using a technique like
dynamic port assignment. To address this limitation, a new
method based on statistical characteristics of IP flows [32],
[13], [27] (e.g. mean and variance of packet size and inter-
packet time in traffic flows) and machine learning algorithms,
shows promising results.

The classification process for statistics-based classifiers can
be divided into two phases including training and testing [32],
[13], [27]. The former phase feed the training data to learning
algorithms to build classifier models, while the latter phase is
used to predict the application types based on the generated
model obtained from the training phase. Two types of learning
methods can be used for both training and testing phases,
depending on whether the class labels are available or not. For
example, supervised learning algorithms are used with labelled
data; on the other hand, unsupervised learning is used with
unlabelled data.

To the best of our knowledge, there are a limited number of
studies which combine the advantages of both supervised and
unsupervised learning algorithms to improve the performance
of network classifiers. Thus, in this paper, we propose a new
hybrid clustering-classification approach (namely CluClas) to
eliminate noise attributes and instances for better network
classification. In particular, our proposed approach first pre-
processes the traffic data and removes redundant and irrelevant
attributes from the global perspective. Second, we apply a K-
means clustering algorithm [6] on the training set to discard
noise instances and select the centroid of each cluster as
representative training instances. This step is important for
some learning algorithms which may be noise-fragile, and also
to reduce the amount of computation for such learning algo-
rithms. Finally, using a Hidden Markov Mode (HMM) [19],
a network classifier is built on the representative training
instances, which can be used for evaluating new traffic in real-
time.

Four publicly available traffic data sets [25], [20], [26],
[1] are used to evaluate our proposed CluClas approach. The
experimental results show that our approach achieved better
results in comparison to individual methods, including K-
means and HMM.

The rest of the paper is organized as follows. Section II
presents related work in the area of network classification and
machine learning. Section III describes our hybrid clustering-
classification approach. Experimental evaluation and discus-
sion of the results are presented in Section IV. Section V
presents the conclusion and outlines of future work

II. RELATED WORK

Classication techniques based on Machine Learning are
divide into two categories: supervised and unsupervised. An
extensive study of ML and traffic classification can be found
in the survey of Nguyen et al. [22]

For supervised algorithms [32], [20], [27], the class of
each traffic flow must be known before the learning stage.
A classification model is built using a training set of example
instances that represents each class. The model is then able to
predict class membership for new instances by examining the
feature values of unknown flows.
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Supervised learning creates knowledge structures that sup-
port the task of classifying new instances into pre-defined
classes [23]. A group of sample instances, pre-classified into
classes, are being provided to the learning machine. A classifi-
cation model is the output of the learning process. A classifica-
tion model is constructed by analysing and generalizing from
the provided instances. As a result, supervised learning’s main
focus is on modelling the input and output relationships. Its
main goal is to find a mapping from input features to an output
class. The knowledge learnt can be presented as classification
rules, a decision tree, a flowchart, etc. This knowledge will
be used later to classify a new instance. There are two major
steps in supervised learning: training and testing. Training is
a learning phase which analyses the provided data, which is
called the training data set, and builds a classification model.
Testing is also known as classifying. In this phase, the model
that has been built in the training phase is used to classify
previously unseen instances.

Unlike classification techniques in supervised machine
learning, clustering methods [17], [18] do not use any pre-
defined training instances; instead, they find natural clusters
in the data using internalized heuristics [9]. McGregor et
al. in [18] is one of the earliest works to use unsupervised
machine learning techniques to group network traffic flows
using transport layer attributes with Expectation Maximization
(EM) method. Even though the authors do not evaluate the
accuracy of the classification as well as which traffic flow
attributes produce the best results, this approach clusters traffic
with similar observable properties into different application
types. In [31], Zander et al. extend this work by using another
Expectation Maximization (EM) algorithm called AutoClass
and analyse the best set of attributes to use. Both [18] and
[31] with Bayesian clustering techniques were implemented by
an EM algorithm which is guaranteed to converge to a local
maximum. To find the global maximum, AutoClass repeats
EM searches starting from pseudo-random points in parameter
space, thus it performs much better than the original EM
method. Both the early works in [7] and [31] have shown
that cluster analysis has the ability to group Internet traffic
using only transport layer characteristics. Erman et al in [10]
proposed to use K-Mean and DBSCAN clustering methods to
evaluate the predicating performance. They also demonstrated
that both K-Mean and DBSCAN perform better and work
more quickly than the clustering method of AutoClass used
in [31]. However, these unsupervised techniques are not as
good as supervised techniques. Thus, in this paper, we will
exploit the advantages of both supervised and unsupervised
techniques for better accuracy of network classifiers.

III. THE PROPOSED HYBRID
CLUSTERING-CLASSIFICATION APPROACH

In this paper, a CluClas approach is proposed to improve
the accuracy and the efficiency of network traffic classification.
The CluClas is based on combining the advantages of clus-
tering and classification algorithms. The following subsections
illustrate the process and details of our CluClas approach.

A. Overview of proposed approach

Fig. 1 illustrates the overall view of the proposed CluClas
approach. In particular, the proposed approach is comprised
of three phases: (1) the pre-processing of the data to discard
and remove irrelevant and redundant attributes of the original
data from a global perspective, (2) identifying the most repre-
sentative instances with the aim of improving the efficiency of
the learning process as well as the overall prediction accuracy
by partitioning the samples belong to a single class only and
extracting the centroid of each cluster to act as a representative
instance of that application class, and (3) building a network
traffic classification model based on the Hidden Markov Model
(HMM).

Training Traffic Data

Feature Selection

K-means Clustering

States

Temporal
Relationship
of States

HTTP Model

IMAP Model

SMTP Model

SSH Model

P2P Model

DNS Model

FTP Model

Maximum Likelihood
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Classification

Results

Building Model

Process of Hidden Markov ModelPreprocessing phase

Fig. 1: Overview of the proposed CalClus approach

B. Discarding irrelevant and redundant attributes

The quality of the data always affects the accuracy and
execution of the machine learning algorithm during the train-
ing phase [28], [12]. This is due to the presence of irrele-
vant and redundant attributes in the data. Thus, to discard
these non-informative attributes, feature selection techniques
are used. Feature selection (FS) techniques can be divided
into two main categories: the wrapper method and the filter
method [16], [3]. The former method [3] employs an existing
ML technique [2] as a classifier and uses the classifier’s
accuracy as the evaluation measure to select the best possible
attributes. Such a method tends to be not only computationally
expensive, but also inherits a bias toward the predetermined
learning algorithm. The latter method [3] relies on the natural
characteristics of the data (e.g. correlation) and does not
require a predetermined mining algorithm to select feature
subsets. As a result, this method does not inherit the bias of
any mining algorithm, and it is also computationally effective.
However, the filter techniques eliminate both irrelevant and
redundant attributes from a local perspective, and thus it can
be tricked in a situation where the dependence between a
pair of attributes is weak, but the total inter-correlation of
one attribute to the others is strong. Thus, in this paper, we
introduce a new FS approach to select informative attributes
from a global perspective [5], [11]. The process of discarding
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irrelevant and redundant attributes from a global perspective
and only keeping the optimal attributes is presented in Table I.

Table I shows the procedure of discarding the irrelevant and
redundant attributes in two parts. In the first part, the algorithm
eliminates irrelevant attributes by applying the symmetrical
uncertainty correlation measure. In particular, the symmetrical
uncertainty correlation evaluates the reliability of each individ-
ual attribute for predicting the accurate class label as follows:

H = (Y ) = −
∑
y∈Y

p(y) log2 p(y), (1)

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2(y|x), (2)

gain = H(Y )−H(Y |X) (3)
= H(X)−H(X|Y )

= H(Y ) +H(X)−H(X,Y )

Information gain is considered to be a bias in attributes with
more values. Thus the correlation value in Equation 1 should
be normalized to the range [0, 1] as follows:

SU(X,Y ) = 2.0×
[

gain

H(Y ) +H(X)

]
(4)

Note that attributes whose symmetrical uncertainty’s value is
zero are removed, which means that attributes do not have the
power to distinguish between traffic classes. The remaining
attributes are then ranked in descending order according to
their value of symmetrical uncertainty, and the mean of these
attributes is calculated, µrv. In the second part, the inter-
correlation between attributes is computed and the total values
of the symmetrical uncertainty related to that attribute are
added. The weight factor w is computed (as in line (5.a)) to be
used for selecting optimal attributes from a global perspective.
Finally, attributes greater than zero are selected, which means
that they not only can accurately predict the class, but also
have a low correlation to other attributes.

C. Identifying representative instances In CluClas

Original training data set may contain noise instances which
can affect noise-fragile learning algorithms. Thus, an instance
selection step is important to discard as many instances as
possible without significantly degradation of reduced data
set for learning processes. To do so, we apply a clustering
algorithm on the training set and select only the centroid of
each cluster, which can act as a representative instance. As a
result of selecting only representative instances, we can not
only reduce the amount of computation, but also improve the
accuracy of a machine learning algorithm such as the k-nearest
neighbours, Naive Bayes and so on. To cluster the training
data, there are a large number of clustering algorithms [30].
However, in this study, our proposed CluClas approach to
finding representative instances is based particularly on a K-
means clustering algorithm [6]. In particular, we have chosen
a K-means algorithm for a number of reasons, including: (1) it
is simple to implement, (2) it does not need to re-compute the

TABLE I: The process of selecting optimal attributes globally.

Input:
Given the input data set D
Specify the number of optimal features K.

Remove irrelevant attributes
1. Compute the mutual information for each attribute, xi.

1.a SU(xi, Y ) = 2.0×
[

gain
H(Y )+H(xi)

]
.

2. Rank the attributes in descending order based on the value of SU(Y |xi).
3. Select xi whose relevant score is greater than 0.

3.a If SU(xi, Y ) > 0 then Xrr = Xrr ∪ {xi}.

4. Compute the mean of relevant scores.

4.a µrv =
∑|Xrr|

i=0 SU(xi,Y )

|Xrr|
.

Remove redundant attributes
5. For each xj ∈ Xrr .

5.a Compute the inter-correlation between attributes, as

SU(xi, xj) = 2.0×
[

gain
H(xi)+H(xj)

]
.

6. Compute the mean of the redundance scores as

6.a µrd =
∑|Xrr|

i=0 SU(xi,xj)

|Xrr|
.

7. Compute the weight value based on both the relevant and redundant scores.

7.a w = µrd
µrr

.

8. For each xj ∈ Xrr .

8.a Use the weight value to calculate the importance of attributes from a global prospective.

S(xi) = w · xirv − xird.

8.b Select the optimal attributes Soptimal.

If S(xi) > 0 then Soptimal =Soptimal ∪ xi.

9. Return the final set of optimal attributes, Soptimal.

centroid, (3) it has a limited number of parameter settings; (4)
it can generate tighter clusters in comparison to hierarchical
clustering, and (5) it is computationally faster than Expectation
Maximization (EM) and hierarchical clustering algorithms,
especially with a large number of variables. The K-means
clustering algorithm partitions the traffic flows into k disjoint
clusters (where k is a predefined parameter). Each cluster
represents a region of similar instances based on the Euclidean
distance between the instances and their centroids. Table II
illustrates the process of selecting the most representative
instances based on the concept of the K-means clustering
algorithm. Particularly, in this paper, since a traffic data set
can contain patterns from different classes, we adapted the
concept of homogeneous clustering to partition and identify
the instances belonging to each class separately. At the com-
pletion of the K-means cluster, we select the centroid of
each cluster to represent all of the data in the corresponding
cluster. Consequently, the number of training sets becomes
much smaller than the original instances.

D. Learning process in the CluClas approach

At the completion of the clustering process, we utilize
the centroid of each cluster to build a representative train-
ing data set to generate the classification model. We have
chosen a classification model here instead of clustering as
it has better accuracy [8]. Our approach to building a traffic
classifier is based on the concept of the Hidden Markov Model
(HMM) [19]. This is due to its powerful modeling; it is far
more powerful than many statistical methods. Hidden Markov
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TABLE II: The process of selecting the most representative
instances.

Input:
Given the input data set D to be clustered.
specify the number of clusters k.

Building Cluster:
1. Select k random instances from the training set as an initial centroid.
2. For each training instance X ∈ D, do the following.

a. Compute the Euclidean distance as.

argmin
∑k

i=1

∑
xj∈Ci

∥∥xj −mi

∥∥.

b. Find and assign X to the closest cluster C.

Cti =
{
xj :

∥∥xj −mti∥∥ ≤ ∥∥xj −mtl∥∥ for all l = 1, · · · , k
}
.

c. Update the centroid of C.

mt+1
i = 1

|Ct
i |
∑
xj∈Ct

i
xj .

3. Repeat step 2 until the centroids of clusters stabilize based on the mean square error.
4. Return the centroid of each cluster as a representative instance.

Model (HMM) is one of the most popular statistical methods
widely applied in pattern recognition [15], [4]. This is due to
its good capability to grasp temporal statistical properties of
stochastic processes. The basic idea of the HMM process is
to construct an optimal model which can explain in a time
sequence the occurrence of observations, which can be then
used to identify other observation sequences. In particular,
for modelling the data distribution, our approach is based
on a finite mixture model for the probability of the cluster
labels. The main assumption is that the traffic applications yi
are modelled as random variables drawn from a probability
distribution described as a hidden Markov model:

p(x) =

M∑
i=1

p(x|θi)pi (5)

where x denotes the observation, pi denotes the weight of the
i-th model, and p(x|θi) is the density function for the obser-
vation x given the component model pi with the parameters
θi Here we assume that the models p(x|θi) are HMMs; thus,
the observation density parameters θi for the i-th component
are the transition matrices. p(x|θi) can be computed via the
forward part of the forward backward procedure. By applying
the Hidden Markov Model (HMM) on the representative
training sets, it would create a set of hidden states Q and a state
transition probability matrix A which includes the probability
of moving from one hidden state to another. In general, there
are at most M2 transitions among the hidden states, where M
denotes the number of states.

E. Classification/Prediction process in CluClas approach

Fig. 1 illustrates also the process of classification phase.
Given a new statistical flow instance of TCP, the log-likelihood
for this observation is calculated based on all generated
Markov models Mk, with

∏k
= (πk1 , · · · , πkn) and AK ={

akσi,σj

}
as:

logPr(O|M (k)) = log

(
πo1k +

n∑
i=1

log akoi,oi+1

)
(6)

Hence, each flow will be assigned to its application type for
which the log-likelihood is the largest.

IV. EXPERIMENTAL EVALUATION

The aim of this section is to comprehensively evaluate the
proposed CluClas approach by performing a large number
of experiments. In this section, we present our experimental
evaluation in four parts. In Section IV-A, we describe the
four traffic data sets. In Sections IV-B and IV-C, we present
the evaluation metric and discuss the experimental setting. In
Section IV-D, we present the results of the CluClas approach
and compare it to individual K-means and HMM classification.

A. Experimental setting

To get robust results, we have repeated the experiments ten
times with the same set of parameters. For these experiments,
we have set the value of k for K-means clustering algorithm to
400, since the large value of k can result in better performance.
For the CluClas approach, we used K-means clustering to
partition instances of flow from the same class into k clusters
and the centroid of each cluster was then selected as training
instances for HMM model to build an accurate classification
model. For the traditional HMM approach, we built each
model individual application type and then used the built
model to classify the testing traffic data.

To test the effectiveness of each approach, the data set
was divided into two sets. In particular, 75% of the data
was selected randomly as training set, and the remaining
data was considered as testing set. All experiments were
performed on a 64-bit Windows-based system with 4-duo and
Core(i7), 3.30 GHz Intel CPU with 8-GB of memory. For the
implementation, we used Java and integrated it with Weka
software [29].

B. Traffic data sets

TABLE III: Summery of data sets used in the experiments

Data sets Features Classes Training instances Testing instances
ITD 149 12 15750 5250
DARPA 41 2 7500 2500
wide 20 6 10030 3100
isp 20 14 10500 3500

To evaluate the performance of the CluClas approach, we
conducted the experiments using four publicly available traffic
data sets. In what follows, we will discuss the characteristics
of the four traffic data sets.
• Internet Traffic Data (ITD): the traffic data sets collected

by the high-performance network monitor (described
in [20]) are some of the largest publicly available net-
work traffic traces used in our experiment. These data
sets are based on traces captured using its loss-limited,
full-payload capture to disk, where timestamps with a
resolution of better than 35 nanoseconds are provided.
The data were taken for several different time periods
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from one site on the Internet. This site is a research-
facility which hosts up to 1,000 users connected to the
Internet via a full-duplex Gigabyte Ethernet link.

• DARPA data sets: Since 1999, the DARPA99 data have
been the most widely used data set for IDS evaluations
that use machine learning techniques. This data set was
prepared by Stolfo et al [25] and is built based on the data
captured in the DARPA cup99 IDS evaluation program.
This data set contains raw traffic flow records, each with
an associated label to indicate whether the record was
labeled as either normal or an attack. In particular, the
simulated attacks fall in one of the most common types of
attacks, including: Denial of Service Attack (DoS), User
to Root Attack (U2R), Remote to Local Attack (R2L)
and a Probing Attack.

• wide data set [1]: This is a real network traffic data set
randomly selected from 182 wide traces. This data set is
annotated by using a deep packet inspection (DPI) tool
and manual inspection to assist researchers in evaluat-
ing their intrusion detection systems (IDS) models. In
particular, the flows in this data set are categorized into
6 type of traffic applications including HTTP (dominate
application), P2P, DNS, FTP, CHAT, and MAIL.

• isp data set [26]: This annotated data set is obtained from
isp traces. The isp traces is a full payload traffic data set
collected from a medium-sized Australian isp network
which hosts few hundred users and internal servers for
web, mail and name services. The isp data set consists
of 30k flows randomly sampled from 14 types of traffic
applications, inclusing BT, DNS, eBuddy, FTP, HTTP,
IMAP, MSN, POP3, RSP, SMTP, SSH, SSL, XMPP, and
YahooMsg.

In general, we focused our study on TCP flows (as did most
of the pervious works [12], [32]). This is due to the clear
start-end information for TCP flows. Table III summarizes the
number of features, the number of classes in the four data sets,
and the proportion of training and testing instances.

C. Evaluation metrics

In this section, we investigate the performance of our
proposed CluClas approach. To do so, we used well-known
confusion metrics. These metrics include Classification Accu-
racy (CA), Precision (PR), Recall (RC) and F-measure. Below
each metrics is explained:

TABLE IV: Standard Confusion Metrics for Evaluation of
Attack Classification

Actual label of flows Predicted label of flows
Normal Attack

Normal True Negative False Positive
(TN) (FP)

Attack False Negative True Positive
(FN) (TP)

• overall accuracy: is the percentage of all normal and
anomaly instances that are correctly classified, which is

defined as follows in terms of the metrics defined in
Table IV: CA is defined as

CA =
TP + TN

|Ω|
(7)

where Ω is the total number of instances in the data set.
• Recall: is the percentage of anomaly instances correctly

detected, which is defined as follows in terms of the
metrics defined in Table IV:

Recall =
TP

TP + FN

• Precision: is the percentage of correctly detected
anomaly instances over all the detected anomaly in-
stances, which is defined as follows in terms of the
metrics defined in Table IV:

Precision =
TP

TP + FP

• F-measure is the equally-weighted (harmonic) mean of
precision and recall, which is defined as follows:

F −measure = 2.
Recall × Precision
Recall + Precision

For the theoretical basis of F-measure, please refer to [24]
for details.

D. Result and discussion

In the following subsection, we present the results of our
CluClas approach and compare them against each individual
approach.

1) Accuracy Performance: Here, we present the accuracy
of the K-means, HMM and CluClas approaches on DARPA,
isp, wide and ITD data sets. Since the evaluation process of
clustering algorithms is totally different from classification
algorithms, we adapted the evaluation concept of the classifi-
cation to evaluate the clustering outputs. To do so, we labeled
the cluster based on the dominant application in each cluster.
In particular, the labeling function (LF) assigns a class label
to each cluster as:

LF = arg maxAi∈A
∑
xj∈C

Ψ(θ(xj),Ai) (8)

where A and C denote the actual application class label and
the cluster respectively. Ψ(θ(xj), Ai) returns the actual class
label of a flow instance x, and it can be defined as follows:

Ψ(θ(xj), Ai) =

{
1 if θ(xj)= Ai
0 otherwise (9)

After labeling the cluster, we can use the standard confusion
metrics to evaluate the quality of K-means clustering.

Figures 2a, 2b, 2c and 2d illustrate the accuracy value
obtained by each individual approach. For the K-means and
CluClas the k value was set to 400 (Fig. 3 justifies the setting
of the k value). In general, we can observe that CluClas has
better performance than the K-means and HMM approaches
in terms of TPR, FPR, precision, accuracy and f-measure
on all data sets. In particular, the average F-measure scores
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Fig. 2: The Accuracy Performance of K-means, HMM, CluClas Approaches on Four Different Traffic Data Sets

of CluClas are always higher than K-means and HMM by
about 3.47-12.21 percent on all four traffic data sets, and the
overall accuracy is always higher than K-means and HMM by
about 7.19-17.48 percent on all four traffic data sets. This can
be explained by the fact that the CluClas approach discards
the irrelevant and redundant attributes, chooses informative
sample flows which can represent the whole data fairly well,
and combine the advantages of both K-means and HMM to
efficiently build the classification model. It can be seen from
Figures 2a, 2b, 2c and 2d that the performance of the HMM
approach outperforms the K-means on all four data sets by
about 2.01-6.45 percent and 2.17-7.06 percent with respect to
the overall accuracy and F-measure values.

Figures 3a, 3b, 3c and 3d show the overall accuracy of K-
means and CluClas approaches with respect to the number of
clusters, k. It can be seen that the performance of both K-
means and CluClas keet improving as the number of clusters
increased on all four data sets. For example, on the isp data
set, it can be seen as the number of cluster gradually increased
from 5 to 400, the average accuracy of CluClas also keeps
improving from 70.011 to 97.016 percent and from 51.12 to
85.01 percent for K-means clustering. This can be explained
by the fact that setting the number of clusters to a low value
would underestimate the natural grouping within the traffic
data and thus force samples from different applications to be
a part of the same cluster.

2) Runtime Performance: Another key motivation of the
CluClas approach is to improve the runtime performance of

network classification. Thus, in this section, we compare the
runtime performance of the CluClas approach against the each
individual approach. For each approach, the test was repeated
ten times to give the average execution time and to have greater
confidence in the obtained results.

Fig. 4a shows the normalized training time for the K-
means, CluClas and HMM approaches on all four data sets.
This is particularly important because the model building
phase is computationally time consuming. Note the value of 1
represents the slowest training time. It can be seen from Fig. 4b
that K-means has the fastest training time in comparison to
both the CluClas and HMM approaches. In particular, the
average building time for the K-means approach is only 30.12
percent of the building time of CluClas and 8.34 percent of
the runtime of HMM. Also, it can be seen from Fig. 4b that
the CluClas approach achieved the second fastest training time
in comparison to HMM, with an average of 27.65 percent. A
promising future research direction would be to reduce the
execution time of these three approaches by using parallel
computing, such as multi-core CPUs or Graphics Processing
Units (GPU).

Fig. 4b compares the normalized classification time of the
K-means, CluClas and HMM approaches on all four data
sets. This is particularly important when considering real-time
classification of potentially thousands of simultaneous network
flows. Note the value of 1 represents the slowest classification
time. From Fig. 4b, it can be seen that the K-means algorithm
has the best classification time, while HMM has the worst clas-

173



5 100 200 300 400

0.8

0.85

0.9

0.95

1

# of Clusters

A
cc

ur
ac

y

 

 

K−means
CluClas

(a) The Influence of k Value Variation on Accuracy of K-means and CluClas
Approaches on DARPA Data Set

5 100 200 300 400
0.4

0.5

0.6

0.7

0.8

0.9

1

# of Clusters

A
cc

ur
ac

y

 

 

K−means
CluClas
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(c) The Influence of k Value Variation on Accuracy of K-means and CluClas
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Fig. 3: The Influence of k Value Variation on Accuracy of K-means, HMM, CluClas Approaches on Four Different Traffic
Data Sets
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(a) Comparing the Building Model Time of K-means, HMM and CluClas
Approaches on all Traffic Data Sets
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(b) Comparing the Classification Time of K-means, HMM and CluClas Ap-
proaches on all Traffic Data Sets
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Fig. 4: The Runtime and Scalability Performance of K-means, HMM, CluClas Approaches on Four Different Traffic Data Sets
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sification time. Generally, we observed marginal differences
between these three approaches in terms of classification time.
To make the result more precise, the average classification time
of K-means was about 85.46 percent of CluClas and 76.23
percent of HMM. On the other hand, it is notable that the
average classification time of CluClas was only 89.19 percent
of HMM.

Fig. 4c analyses the runtime the behaviour of CluClas and
the K-means approaches when the k value was varied. Note
number of clusters, k, varies from 5 to 400. Not surprisingly,
it can be observed from Fig. 4c that the computational time of
both approaches is affected as the k value increases. However,
the runtime of K-means generally is better than CluClas as the
value of k increases.

In this section, we also examine the scalability of our
proposed CluClas approach against individual approaches,
including K-means and HMM. With ever-looming page lim-
itations, it was felt sufficient to evaluate the scalability of
the CluClas and the other two approaches only on the wide
data set. For the scalability analysis, the performance of each
approach was evaluated with traffic samples varying from
approximately 1000 to 10000 traffic samples (the size of the
samples in the training data set is limited by the amount of
memory since these approaches need to load the entire training
data into memory before building the model). As can be seen
from Fig. 4d, that K-means scales better than CluClas and
HMM respectively. On the other hand, CluClas obtains better
scalability results than HMM; this can be explained by the fact
that our CluClas worked only on small representative samples,
while the traditional HMM was required to process all of the
instances.

V. CONCLUSION

In this paper, we developed a CluClas approach for network
traffic classification. First, the traffic data was preprocessed
by applying a new feature selection method on the training
data to identify informative attributes and remove irrelevant
and redundant attributes. Second, representative instances from
the training data set are selected to improve the accuracy
and efficiency of the learning capability. In particular, we
select these representative instances by applying a K-means
clustering algorithm to partition the training instances into
k disjoint clusters and then select only the centroid of each
cluster. Third, the hidden Markov Model (HMM) is built on the
representative training data to improve overall classification
accuracy. We compared our approach with the individual K-
means and HMM in terms of classification accuracy and
runtime performance over four traffic data sets. The experi-
mental results show that our CluClas approach achieved higher
classification accuracy compared to K-means and HMM. On
the other hand, while the CluClas approach has improved the
accuracy and runtime of network classification, future work
devoted to improve the scalability of ClaClus approach by
using (i) the GPU environment and/or (ii) parallel computing.

A future direction of this research is evaluating our approach
over different types of clustering and classification methods.

Developing a theoretical proof also is left for future work.
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